Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Perovskite–organic tandem solar cells

Abstract

The bandgap tunability of halide perovskites makes perovskite solar cells excellent building blocks for multijunction architectures that can overcome the fundamental efficiency limits of single-junction devices. Meanwhile, the introduction of non-fullerene acceptors has led to tremendous advances in the field of organic solar cells. Organic and perovskite semiconductors share similar processing technologies, making them attractive partners for multijunction architectures. This Perspective article outlines the prospects and challenges of perovskite–organic tandem solar cells by highlighting the key aspects of the individual building blocks and how they interact with one another. The discussion includes the role of non-fullerene acceptors in narrow-gap organic solar cells with high operational stability, the need for long-term stability in wide-gap perovskite solar cells and the impact of the design and functionality of high-quality interconnects on the characteristics of the tandem device. Finally, the prospects of perovskite–organic tandem solar cells are benchmarked against other emerging tandem solar cell technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Working principle of perovskite–organic tandem solar cells.
Fig. 2: Organic subcell.
Fig. 3: Wide-gap perovskite cells for tandem devices.
Fig. 4: The interconnect in perovskite–organic tandem solar cells.
Fig. 5: Integrated perovskite–organic solar cells.
Fig. 6: Benchmarking perovskite–organic cells against other emerging tandem solar cells.

Similar content being viewed by others

References

  1. Green, M. A. et al. Solar cell efficiency tables (version 62). Prog. Photovolt. Res. Appl. 31, 651–663 (2023).

    Article  Google Scholar 

  2. Vos, A. D. Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D Appl. Phys. 13, 839–846 (1980).

    Article  ADS  Google Scholar 

  3. Brinkmann, K. O. et al. Perovskite–organic tandem solar cells with indium oxide interconnect. Nature 604, 280–286 (2022). First perovskite–organic tandem cell with an ALD-grown metal oxide interconnect; discovery of the near-infrared illumination stability of the NFA organic subcell.

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Wang, X. et al. Highly efficient perovskite/organic tandem solar cells enabled by mixed-cation surface modulation. Adv. Mater. 35, e2305946 (2023).

    Article  PubMed  Google Scholar 

  5. Chen, W. et al. Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer. Nat. Energy 7, 229–237 (2022). First perovskite–organic tandem cell with a sputtered metal oxide interconnect.

    Article  ADS  CAS  Google Scholar 

  6. Jia, Z. et al. Near-infrared absorbing acceptor with suppressed triplet exciton generation enabling high performance tandem organic solar cells. Nat. Commun. 14, 1236 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ho-Baillie, A. W. Y. et al. Recent progress and future prospects of perovskite tandem solar cells. Appl. Phys. Rev. 8, 041307 (2021).

    Article  ADS  CAS  Google Scholar 

  8. Caspar, J. V. & Meyer, T. J. Application of the energy gap law to nonradiative, excited-state decay. J. Phys. Chem. 87, 952–957 (1983).

    Article  CAS  Google Scholar 

  9. Englman, R. & Jortner, J. The energy gap law for radiationless transitions in large molecules. Mol. Phys. 18, 145–164 (1970).

    Article  ADS  CAS  Google Scholar 

  10. Tokmoldin, N. et al. Explaining the fill‐factor and photocurrent losses of nonfullerene acceptor‐based solar cells by probing the long‐range charge carrier diffusion and drift lengths. Adv. Energy Mater. 11, 2100804 (2021).

    Article  CAS  Google Scholar 

  11. Schopp, N. et al. Understanding interfacial recombination processes in narrow-band-gap organic solar cells. ACS Energy Lett. 7, 1626–1634 (2022).

    Article  CAS  Google Scholar 

  12. Zhou, B. et al. On the stability of non‐fullerene acceptors and their corresponding organic solar cells: influence of side chains. Adv. Funct. Mater. 32, 2206042 (2022).

    Article  CAS  Google Scholar 

  13. Hu, H. et al. The role of demixing and crystallization kinetics on the stability of non‐fullerene organic solar cells. Adv. Mater. 32, 2005348 (2020).

    Article  CAS  Google Scholar 

  14. Zhou, K., Xin, J. & Ma, W. Hierarchical morphology stability under multiple stresses in organic solar cells. ACS Energy Lett. 4, 447–455 (2019).

    Article  CAS  Google Scholar 

  15. Zhang, K.-N. et al. High‐performance ternary organic solar cells with morphology‐modulated hole transfer and improved ultraviolet photostability. Sol. RRL 4, 2000165 (2020).

    Article  CAS  Google Scholar 

  16. Peng, Z., Stingelin, N., Ade, H. & Michels, J. J. A materials physics perspective on structure–processing–function relations in blends of organic semiconductors. Nat. Rev. Mater. 8, 439–455 (2023). A review article covering the thermodynamic mechanisms that govern morphological stability in binary and ternary bulk heterojunctions.

    Article  ADS  Google Scholar 

  17. Ye, L. et al. Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nat. Mater. 17, 253–260 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Peng, Z. & Ade, H. Unveiling re-entrant phase behavior and crystalline–amorphous interactions in semi-conducting polymer:small molecule blends. Mater. Horiz. 10, 2698–2705 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Ghasemi, M. et al. A molecular interaction–diffusion framework for predicting organic solar cell stability. Nat. Mater. 20, 525–532 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Zhu, Y. et al. Rational strategy to stabilize an unstable high‐efficiency binary nonfullerene organic solar cells with a third component. Adv. Energy Mater. 9, 1900376 (2019).

    Article  Google Scholar 

  21. Ye, L. et al. Quenching to the percolation threshold in organic solar cells. Joule 3, 443–458 (2019).

    Article  CAS  Google Scholar 

  22. Qin, Y. et al. The performance-stability conundrum of BTP-based organic solar cells. Joule 5, 2129–2147 (2021).

    Article  CAS  Google Scholar 

  23. Wienhold, K. S. et al. Effect of solvent additives on the morphology and device performance of printed nonfullerene acceptor based organic solar cells. ACS Appl. Mater. Interfaces 11, 42313–42321 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. He, Q. et al. Revealing morphology evolution in highly efficient bulk heterojunction and pseudo‐planar heterojunction solar cells by additives treatment. Adv. Energy Mater. 11, 2003390 (2021).

    Article  CAS  Google Scholar 

  25. Wang, X. et al. High‐efficiency (16.93%) pseudo‐planar heterojunction organic solar cells enabled by binary additives strategy. Adv. Funct. Mater. 31, 2102291 (2021).

    Article  CAS  Google Scholar 

  26. Gasparini, N., Salleo, A., McCulloch, I. & Baran, D. The role of the third component in ternary organic solar cells. Nat. Rev. Mater. 4, 229–242 (2019). Spotlight on the electronic functionality of ternary bulk heterojunctions.

    Article  ADS  Google Scholar 

  27. Pan, M.-A. et al. 16.7%-Efficiency ternary blended organic photovoltaic cells with PCBM as the acceptor additive to increase the open-circuit voltage and phase purity. J. Mater. Chem. A 7, 20713–20722 (2019).

    Article  CAS  Google Scholar 

  28. Liu, F. et al. Ternary organic solar cells based on polymer donor, polymer acceptor and PCBM components. Chin. Chem. Lett. 31, 865–868 (2020).

    Article  CAS  Google Scholar 

  29. Hoppe, H. & Sariciftci, N. S. Organic solar cells: an overview. J. Mater. Res. 19, 1924–1945 (2004).

    Article  ADS  CAS  Google Scholar 

  30. Neugebauer, H., Brabec, C., Hummelen, J. C. & Sariciftci, N. S. Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells. Sol. Energy Mater. Sol. Cell 61, 35–42 (2000).

    Article  CAS  Google Scholar 

  31. Günes, S., Neugebauer, H. & Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324–1338 (2007).

    Article  PubMed  Google Scholar 

  32. Tang, H. et al. Interface engineering for highly efficient organic solar cells. Adv. Mater. https://doi.org/10.1002/adma.202212236 (2023).

  33. Jiang, Y. et al. Photocatalytic effect of ZnO on the stability of nonfullerene acceptors and its mitigation by SnO2 for nonfullerene organic solar cells. Mater. Horiz. 6, 1438–1443 (2019).

    Article  CAS  Google Scholar 

  34. Jiang, P. et al. On the interface reactions and stability of nonfullerene organic solar cells. Chem. Sci. 13, 4714–4739 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zilberberg, K., Gharbi, H., Behrendt, A., Trost, S. & Riedl, T. Low-temperature, solution-processed MoOx for efficient and stable organic solar cells. ACS Appl. Mater. Interfaces 4, 1164–1168 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Jørgensen, M., Norrman, K. & Krebs, F. C. Stability/degradation of polymer solar cells. Sol. Energy Mater. Sol. Cell 92, 686–714 (2008).

    Article  Google Scholar 

  37. Jørgensen, M. et al. Stability of polymer solar cells. Adv. Mater. 24, 580–612 (2012).

    Article  PubMed  Google Scholar 

  38. Weitz, P. et al. Revealing photodegradation pathways of organic solar cells by spectrally resolved accelerated lifetime analysis. Adv. Energy Mater. 13, 2202564 (2023).

    Article  CAS  Google Scholar 

  39. Liu, T. et al. Photochemical decomposition of Y‐series non‐fullerene acceptors is responsible for degradation of high‐efficiency organic solar cells. Adv. Energy Mater. 13, 2300046 (2023).

    Article  CAS  Google Scholar 

  40. Wang, Y. et al. The critical role of the donor polymer in the stability of high-performance non-fullerene acceptor organic solar cells. Joule 7, 810–829 (2023).

    Article  CAS  Google Scholar 

  41. Zhou, Y., Poli, I., Meggiolaro, D., De Angelis, F. & Petrozza, A. Defect activity in metal halide perovskites with wide and narrow bandgap. Nat. Rev. Mater. 6, 986–1002 (2021).

    Article  ADS  Google Scholar 

  42. He, R. et al. Wide-bandgap organic–inorganic hybrid and all-inorganic perovskite solar cells and their application in all-perovskite tandem solar cells. Energy Environ. Sci. 14, 5723–5759 (2021).

    Article  CAS  Google Scholar 

  43. Nie, T., Fang, Z., Ren, X., Duan, Y. & Liu, S. Recent advances in wide-bandgap organic–inorganic halide perovskite solar cells and tandem application. Nanomicro Lett. 15, 70 (2023).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Motti, S. G. et al. Phase segregation in mixed-halide perovskites affects charge-carrier dynamics while preserving mobility. Nat. Commun. 12, 6955 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Knight, A. J. & Herz, L. M. Preventing phase segregation in mixed-halide perovskites: a perspective. Energy Environ. Sci. 13, 2024–2046 (2020). A perspective article covering common strategies to identify and overcome halide segregation.

    Article  CAS  Google Scholar 

  47. Tong, Y. et al. Wide‐bandgap organic–inorganic lead halide perovskite solar cells. Adv. Sci. 9, 2105085 (2022).

    Article  CAS  Google Scholar 

  48. Caprioglio, P. et al. Nano-emitting heterostructures violate optical reciprocity and enable efficient photoluminescence in halide-segregated methylammonium-free wide bandgap perovskites. ACS Energy Lett. 6, 419–428 (2021). An article unravelling the connection between parasitic recombination and halide segregation.

    Article  CAS  Google Scholar 

  49. Mahesh, S. et al. Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Energy Environ. Sci. 13, 258–267 (2020).

    Article  MathSciNet  CAS  Google Scholar 

  50. Peña-Camargo, F. et al. Halide segregation versus interfacial recombination in bromide-rich wide-gap perovskite solar cells. ACS Energy Lett. 5, 2728–2736 (2020). Clear evidence disentangling interface recombination and halide segregation.

    Article  Google Scholar 

  51. Thiesbrummel, J. et al. Ion induced field screening governs the early performance degradation of perovskite solar cells. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-2495973/v1 (2023).

  52. Yao, Q. et al. Dual sub‐cells modification enables high‐efficiency n–i–p type monolithic perovskite/organic tandem solar cells. Adv. Funct. Mater. 33, 2212599 (2023).

    Article  CAS  Google Scholar 

  53. Lai, H. et al. High‐performance flexible all‐perovskite tandem solar cells with reduced VOC-deficit in wide‐bandgap subcell. Adv. Energy Mater. 12, 2202438 (2022).

    Article  CAS  Google Scholar 

  54. Chen, H. et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613, 676–681 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Wang, C. et al. Suppressing phase segregation in wide bandgap perovskites for monolithic perovskite/organic tandem solar cells with reduced voltage loss. Small 18, 2204081 (2022).

    Article  CAS  Google Scholar 

  56. Thiesbrummel, J. et al. Understanding and minimizing VOC losses in all‐perovskite tandem photovoltaics. Adv. Energy Mater. 13, 2202674 (2023).

    Article  CAS  Google Scholar 

  57. Tian, J. et al. Quantifying the energy losses in CsPbI2Br perovskite solar cells with an open-circuit voltage of up to 1.45 V. ACS Energy Lett. 7, 4071–4080 (2022).

    Article  CAS  Google Scholar 

  58. Guo, Z. et al. A universal method of perovskite surface passivation for CsPbX3 solar cells with VOC over 90% of the S-Q limit. Adv. Funct. Mater. 32, 2207554 (2022). All-inorganic wide-gap perovskite solar cells exceeding 90% of the VOC detailed balance limit.

    Article  CAS  Google Scholar 

  59. Brennan, M. C., Draguta, S., Kamat, P. V. & Kuno, M. Light-induced anion phase segregation in mixed halide perovskites. ACS Energy Lett. 3, 204–213 (2017).

    Article  Google Scholar 

  60. Datta, K. et al. Light-induced halide segregation in 2D and quasi-2D mixed-halide perovskites. ACS Energy Lett. 8, 1662–1670 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kamat, P. V. & Kuno, M. Halide ion migration in perovskite nanocrystals and nanostructures. Acc. Chem. Res. 54, 520–531 (2021). Spotlight on the microscopic origins of halide segregation.

    Article  CAS  PubMed  Google Scholar 

  62. Brinkmann, K. O. et al. Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells. Nat. Commun. 8, 13938 (2017). A paper demonstrating the merit of SnOx as internal barrier layer.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kato, Y. et al. Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv. Mater. Interfaces 2, 1500195 (2015).

    Article  Google Scholar 

  64. Sakhatskyi, K. et al. Assessing the drawbacks and benefits of ion migration in lead halide perovskites. ACS Energy Lett. 7, 3401–3414 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhao, Y., Zhou, W., Han, Z., Yu, D. & Zhao, Q. Effects of ion migration and improvement strategies for the operational stability of perovskite solar cells. Phys. Chem. Chem. Phys. 23, 94–106 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Kerner, R. A., Xu, Z., Larson, B. W. & Rand, B. P. The role of halide oxidation in perovskite halide phase separation. Joule 5, 2273–2295 (2021). A paper highlighting the implications of halide oxidations on halide segregation.

    Article  CAS  Google Scholar 

  67. Wright, A. D., Patel, J. B., Johnston, M. B. & Herz, L. M. Temperature‐dependent reversal of phase segregation in mixed‐halide perovskites. Adv. Mater. 35, 2210834 (2023).

    Article  CAS  Google Scholar 

  68. Choe, H., Jeon, D., Lee, S. J. & Cho, J. Mixed or segregated: toward efficient and stable mixed halide perovskite-based devices. ACS Omega 6, 24304–24315 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhao, Y. et al. Strain-activated light-induced halide segregation in mixed-halide perovskite solids. Nat. Commun. 11, 6328 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Elmelund, T., Seger, B., Kuno, M. & Kamat, P. V. How interplay between photo and thermal activation dictates halide ion segregation in mixed halide perovskites. ACS Energy Lett. 5, 56–63 (2020).

    Article  CAS  Google Scholar 

  71. Belisle, R. A. et al. Impact of surfaces on photoinduced halide segregation in mixed-halide perovskites. ACS Energy Lett. 3, 2694–2700 (2018).

    Article  CAS  Google Scholar 

  72. Dubose, J. T. & Kamat, P. V. Hole trapping in halide perovskites induces phase segregation. Acc. Mater. Res. 3, 761–771 (2022).

    Article  CAS  Google Scholar 

  73. Knight, A. J. et al. Electronic traps and phase segregation in lead mixed-halide perovskite. ACS Energy Lett. 4, 75–84 (2019).

    Article  CAS  Google Scholar 

  74. Knight, A. J., Patel, J. B., Snaith, H. J., Johnston, M. B. & Herz, L. M. Trap states, electric fields, and phase segregation in mixed‐halide perovskite photovoltaic devices. Adv. Energy Mater. 10, 1903488 (2020).

    Article  CAS  Google Scholar 

  75. Wang, S., Wang, A. & Hao, F. Toward stable lead halide perovskite solar cells: a knob on the A/X sites components. iScience 25, 103599 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  76. Xu, Z., Kerner, R. A., Berry, J. J. & Rand, B. P. Iodine electrochemistry dictates voltage‐induced halide segregation thresholds in mixed‐halide perovskite devices. Adv. Funct. Mater. 32, 2203432 (2022).

    Article  CAS  Google Scholar 

  77. Mathew, P. S., Szabó, G., Kuno, M. & Kamat, P. V. Phase segregation and sequential expulsion of iodide and bromide in photoirradiated Ruddlesden–Popper 2D perovskite films. ACS Energy Lett. 7, 3982–3988 (2022).

    Article  CAS  Google Scholar 

  78. Duong, T. et al. Light and electrically induced phase segregation and its impact on the stability of quadruple cation high bandgap perovskite solar cells. ACS Appl. Mater. Interfaces 9, 26859–26866 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  79. Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

    Article  ADS  Google Scholar 

  80. Tao, S. et al. Absolute energy level positions in tin- and lead-based halide perovskites. Nat. Commun. 10, 2560 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  81. Kim, D. et al. Microstructural evaluation of phase instability in large bandgap metal halide perovskites. ACS Nano 15, 20391–20402 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Knight, A. J. et al. Halide segregation in mixed-halide perovskites: influence of A-site cations. ACS Energy Lett. 6, 799–808 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu, S., Liu, M. & Jen, A. K. Y. Prospects and challenges for perovskite–organic tandem solar cells. Joule 7, 484–502 (2023).

    Article  CAS  Google Scholar 

  84. Wang, Z. et al. Recent advances and perspectives of photostability for halide perovskite solar cells. Adv. Opt. Mater. 10, 2101822 (2022).

    Article  CAS  Google Scholar 

  85. Zheng, Y. et al. Downward homogenized crystallization for inverted wide‐bandgap mixed‐halide perovskite solar cells with 21% efficiency and suppressed photo‐induced halide segregation. Adv. Funct. Mater. 32, 2200431 (2022).

    Article  CAS  Google Scholar 

  86. Tao, L. et al. Stability of mixed-halide wide bandgap perovskite solar cells: strategies and progress. J. Energy Chem. 61, 395–415 (2021).

    Article  CAS  Google Scholar 

  87. Rehman, W. et al. Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties. Energy Environ. Sci. 10, 361–369 (2017).

    Article  CAS  Google Scholar 

  88. Jiang, Q. et al. Compositional texture engineering for highly stable wide-bandgap perovskite solar cells. Science 378, 1295–1300 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  89. Levine, I. et al. Charge transfer rates and electron trapping at buried interfaces of perovskite solar cells. Joule 5, 2915–2933 (2021).

    Article  CAS  Google Scholar 

  90. Lim, V. J. Y. et al. Impact of hole‐transport layer and interface passivation on halide segregation in mixed‐halide perovskites. Adv. Funct. Mater. 32, 2204825 (2022).

    Article  CAS  Google Scholar 

  91. Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with 29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  92. Xia, J., Sohail, M. & Nazeeruddin, M. K. Efficient and stable perovskite solar cells by tailoring of interfaces. Adv. Mater. 35, 2211324 (2023).

    Article  CAS  Google Scholar 

  93. Luo, P. et al. Colorful, bandgap-tunable, and air-stable CsPb(IxBr1-x)3 inorganic perovskite films via a novel sequential chemical vapor deposition. Ceram. Int. 44, 12783–12788 (2018).

    Article  CAS  Google Scholar 

  94. Kulkarni, S. A. et al. Band-gap tuning of lead halide perovskites using a sequential deposition process. J. Mater. Chem. A 2, 9221–9225 (2014).

    Article  CAS  Google Scholar 

  95. Bush, K. A. et al. Compositional engineering for efficient wide band gap perovskites with improved stability to photoinduced phase segregation. ACS Energy Lett. 3, 428–435 (2018).

    Article  CAS  Google Scholar 

  96. Xiang, W., Liu, S. & Tress, W. A review on the stability of inorganic metal halide perovskites: challenges and opportunities for stable solar cells. Energy Environ. Sci. 14, 2090–2113 (2021).

    Article  CAS  Google Scholar 

  97. Zhao, X. et al. Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells. Science 377, 307–310 (2022). A paper showing the stability potential of perovskites, demonstrating 50,000 h of operation stability.

    Article  ADS  CAS  PubMed  Google Scholar 

  98. Li, T. et al. Inorganic wide-bandgap perovskite subcells with dipole bridge for all-perovskite tandems. Nat. Energy 8, 610–620 (2023).

    Article  ADS  CAS  Google Scholar 

  99. Wang, P. et al. Tuning of the interconnecting layer for monolithic perovskite/organic tandem solar cells with record efficiency exceeding 21%. Nano Lett. 21, 7845–7854 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  100. Mariotti, S. et al. Stability and performance of CsPbI2Br thin films and solar cell devices. ACS Appl. Mater. Interfaces 10, 3750–3760 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Ji, S. G. et al. Stable pure-iodide wide-band-gap perovskites for efficient Si tandem cells via kinetically controlled phase evolution. Joule 6, 2390–2405 (2022).

    Article  CAS  Google Scholar 

  102. Cariou, R. et al. III–V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration. Nat. Energy 3, 326–333 (2018).

    Article  ADS  CAS  Google Scholar 

  103. Kröger, M. et al. Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films. Appl. Phys. Lett. 95, 123301 (2009).

    Article  ADS  Google Scholar 

  104. Meyer, J. et al. Transition metal oxides for organic electronics: energetics, device physics and applications. Adv. Mater. 24, 5408–5427 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  105. Becker, T. et al. All-oxide MoOx/SnOx charge recombination interconnects for inverted organic tandem solar cells. Adv. Energy Mater. 8, 1702533 (2018).

    Article  ADS  Google Scholar 

  106. Gahlmann, T. et al. Impermeable charge transport layers enable aqueous processing on top of perovskite solar cells. Adv. Energy Mater. 10, 1903897 (2020).

    Article  CAS  Google Scholar 

  107. Hoffmann, L. et al. Spatial atmospheric pressure atomic layer deposition of tin oxide as an impermeable electron extraction layer for perovskite solar cells with enhanced thermal stability. ACS Appl. Mater. Interfaces 10, 6006–6013 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Wang, Y.-L. et al. Room temperature deposited indium zinc oxide thin film transistors. Appl. Phys. Lett. 90, 232103 (2007).

    Article  ADS  Google Scholar 

  109. Lany, S. et al. Surface origin of high conductivities in undoped In2O3 thin films. Phys. Rev. Lett. 108, 016802 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  110. Kibis, L. S. et al. The investigation of oxidized silver nanoparticles prepared by thermal evaporation and radio-frequency sputtering of metallic silver under oxygen. Appl. Surf. Sci. 257, 404–413 (2010).

    Article  ADS  CAS  Google Scholar 

  111. Raffi, M., Rumaiz, A. K., Hasan, M. M. & Shah, S. I. Studies of the growth parameters for silver nanoparticle synthesis by inert gas condensation. J. Mater. Res. 22, 3378–3384 (2007).

    Article  ADS  CAS  Google Scholar 

  112. Trost, S. et al. Plasmonically sensitized metal-oxide electron extraction layers for organic solar cells. Sci. Rep. 5, 7765 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Polywka, A., Vereshchaeva, A., Riedl, T. & Görrn, P. Manipulating the morphology of silver nanoparticles with local plasmon-mediated control. Part. Part. Syst. Charact. 31, 342–346 (2014).

    Article  CAS  Google Scholar 

  114. Martínez-Otero, A., Liu, Q., Mantilla-Perez, P., Bajo, M. M. & Martorell, J. An extremely thin and robust interconnecting layer providing 76% fill factor in a tandem polymer solar cell architecture. J. Mater. Chem. A 3, 10681–10686 (2015).

    Article  Google Scholar 

  115. Yang, H. et al. Regulating charge carrier recombination in the interconnecting layer to boost the efficiency and stability of monolithic perovskite/organic tandem solar cells. Adv. Mater. 35, 2208604 (2023).

    Article  CAS  Google Scholar 

  116. Sun, S. Q. et al. All‐inorganic perovskite‐based monolithic perovskite/organic tandem solar cells with 23.21% efficiency by dual‐interface engineering. Adv. Energy Mater. 13, 2204347 (2023).

    Article  CAS  Google Scholar 

  117. Schloemer, T. H. et al. The molybdenum oxide interface limits the high-temperature operational stability of unencapsulated perovskite solar cells. ACS Energy Lett. 5, 2349–2360 (2020).

    Article  CAS  Google Scholar 

  118. Meyer, J., Zilberberg, K., Riedl, T. & Kahn, A. Electronic structure of vanadium pentoxide: an efficient hole injector for organic electronic materials. J. Appl. Phys. 110, 033710 (2011).

    Article  ADS  Google Scholar 

  119. Abdollahi Nejand, B. et al. Scalable two-terminal all-perovskite tandem solar modules with a 19.1% efficiency. Nat. Energy 7, 620–630 (2022).

    Article  ADS  CAS  Google Scholar 

  120. Yu, Z. et al. Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells. Nat. Energy 5, 657–665 (2020).

    Article  ADS  CAS  Google Scholar 

  121. Brinkmann, K. O., Gahlmann, T. & Riedl, T. Atomic layer deposition of functional layers in planar perovskite solar cells. Sol. RRL 4, 1900332 (2020).

    Article  CAS  Google Scholar 

  122. Behrendt, A. et al. Highly robust transparent and conductive gas diffusion barriers based on tin oxide. Adv. Mater. 27, 5961–5967 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Zhao, J. et al. Self-encapsulating thermostable and air-resilient semitransparent perovskite solar cells. Adv. Energy Mater. 7, 1602599 (2017).

    Article  Google Scholar 

  124. Ruben, G. C. Ultrathin (1 nm) vertically shadowed platinum-carbon replicas for imaging individual molecules in freeze-etched biological DNA and material science metal and plastic specimens. J. Electron. Microsc. Tech. 13, 335–354 (1989).

    Article  CAS  PubMed  Google Scholar 

  125. Hoffmann, L. et al. Atmospheric pressure plasma enhanced spatial atomic layer deposition of SnOx as conductive gas diffusion barrier. J. Vac. Sci. Technol. A 36, 01A112 (2018).

    Article  Google Scholar 

  126. Illiberi, A. et al. Atmospheric plasma-enhanced spatial-ALD of InZnO for high mobility thin film transistors. J. Vac. Sci. Technol. A 36, 04F401 (2018).

    Article  Google Scholar 

  127. Katsouras, I., Frijters, C., Poodt, P., Gelinck, G. & Kronemeijer, A. J. Large‐area spatial atomic layer deposition of amorphous oxide semiconductors at atmospheric pressure. J. Soc. Inf. Disp. 27, 304–312 (2019).

    Article  CAS  Google Scholar 

  128. Zhao, M.-J. et al. Properties and mechanism of PEALD-In2O3 thin films prepared by different precursor reaction energy. Nanomaterials 11, 978 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kim, D.-H. et al. Separation of extremely small indium oxide quantum dots and their highly luminescent properties by dispersing agent. J. Alloy Compd 921, 166073 (2022).

    Article  CAS  Google Scholar 

  130. Granada-Ramirez, D. A. et al. Chemical synthesis and optical, structural, and surface characterization of InP-In2O3 quantum dots. Appl. Surf. Sci. 530, 147294 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang, J. et al. Optical generation of high carrier densities in 2D semiconductor heterobilayers. Sci. Adv. 5, eaax0145 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang, P., Zhao, Y. & Wang, T. Recent progress and prospects of integrated perovskite/organic solar cells. Appl. Phys. Rev. 7, 031303 (2020).

    Article  ADS  CAS  Google Scholar 

  133. Liu, Y. et al. Integrated perovskite/bulk-heterojunction toward efficient solar cells. Nano Lett. 15, 662–668 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  134. Daboczi, M. et al. Towards efficient integrated perovskite/organic bulk heterojunction solar cells: interfacial energetic requirement to reduce charge carrier recombination losses. Adv. Funct. Mater. 30, 2001482 (2020).

    Article  CAS  Google Scholar 

  135. Hong, S. & Lee, J. Recent advances and challenges toward efficient perovskite/organic integrated solar cells. Energies 16, 266 (2022).

    Article  Google Scholar 

  136. Cai, Z. et al. Suppressing interface charge recombination for efficient integrated perovskite/organic bulk-heterojunction solar cells. J. Power Sources 541, 231665 (2022).

    Article  CAS  Google Scholar 

  137. Zuo, C. & Ding, L. Bulk heterojunctions push the photoresponse of perovskite solar cells to 970 nm. J. Mater. Chem. A 3, 9063–9066 (2015).

    Article  CAS  Google Scholar 

  138. Liu, Y. & Chen, Y. Integrated perovskite/bulk‐heterojunction organic solar cells. Adv. Mater. 32, 1805843 (2020).

    Article  CAS  Google Scholar 

  139. Dong, S. et al. Unraveling the high open circuit voltage and high performance of integrated perovskite/organic bulk-heterojunction solar cells. Nano Lett. 17, 5140–5147 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  140. Zhang, M. et al. Integrated perovskite/organic photovoltaics with ultrahigh photocurrent and photoresponse approaching 1,000 nm. Sol. RRL 4, 2000140 (2020).

    Article  CAS  Google Scholar 

  141. He, X. et al. Enhancing photoresponse and photocurrent of integrated perovskite/organic solar cells via layer-by-layer processing. ACS Appl. Energy Mater. 6, 981–988 (2023).

    Article  CAS  Google Scholar 

  142. Chen, W. et al. High short-circuit current density via integrating the perovskite and ternary organic bulk heterojunction. ACS Energy Lett. 4, 2535–2536 (2019).

    Article  CAS  Google Scholar 

  143. Wu, Y. et al. Toward broad spectral response inverted perovskite solar cells: insulating quantum‐cutting perovskite nanophosphors and multifunctional ternary organic bulk‐heterojunction. Adv. Energy Mater. 12, 2200005 (2022).

    Article  MathSciNet  CAS  Google Scholar 

  144. Shi, Z. et al. Light management through organic bulk heterojunction and carrier interfacial engineering for perovskite solar cells with 23.5% efficiency. Adv. Funct. Mater. 32, 2203873 (2022).

    Article  CAS  Google Scholar 

  145. Wu, S. et al. Low‐bandgap organic bulk‐heterojunction enabled efficient and flexible perovskite solar cells. Adv. Mater. 33, 2105539 (2021).

    Article  CAS  Google Scholar 

  146. Zhou, X. et al. Integrated ideal‐bandgap perovskite/bulk‐heterojunction solar cells with efficiencies >24%. Adv. Mater. 34, 2205809 (2022).

    Article  CAS  Google Scholar 

  147. Wang, H. et al. Photoconductive charge transfer complexes as charge transport layers for high performance inverted perovskite solar cells. Adv. Funct. Mater. 32, 2201935 (2022).

    Article  CAS  Google Scholar 

  148. Tian, X., Stranks, S. D. & You, F. Life cycle energy use and environmental implications of high-performance perovskite tandem solar cells. Sci. Adv. 6, eabb0055 (2020). A paper benchmarking the energy demand of all-perovskite against perovskite–silicon solar cells.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wagner, L. et al. The resource demand of terawatt-scale perovskite tandem photovoltaics Prepritn at SSRN https://doi.org/10.2139/ssrn.4493241 (2023).

  150. Hu, T. et al. Indium-free perovskite solar cells enabled by impermeable tin-oxide electron extraction layers. Adv. Mater. 29, 1606656 (2017).

    Article  Google Scholar 

  151. Zilberberg, K. & Riedl, T. Metal-nanostructures — a modern and powerful platform to create transparent electrodes for thin-film photovoltaics. J. Mater. Chem. A 4, 14481–14508 (2016).

    Article  CAS  Google Scholar 

  152. Reb, L. K. et al. Perovskite and organic solar cells on a rocket flight. Joule 4, 1880–1892 (2020).

    Article  CAS  Google Scholar 

  153. Yu, R. et al. Improved charge transport and reduced nonradiative energy loss enable over 16% efficiency in ternary polymer solar cells. Adv. Mater. 31, 1902302 (2019).

    Article  Google Scholar 

  154. Wang, J. et al. A tandem organic photovoltaic cell with 19.6% efficiency enabled by light distribution control. Adv. Mater. 33, 2102787 (2021).

    Article  CAS  Google Scholar 

  155. Zheng, Z. et al. Tandem organic solar cell with 20.2% efficiency. Joule 6, 171–184 (2022).

    Article  ADS  CAS  Google Scholar 

  156. Wang, J. et al. Tandem organic solar cells with 20.6% efficiency enabled by reduced voltage losses. Natl Sci. Rev. 10, nwad085 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lin, R. et al. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature 620, 994–1000 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  158. Li, C. et al. Low-bandgap mixed tin–lead iodide perovskites with reduced methylammonium for simultaneous enhancement of solar cell efficiency and stability. Nat. Energy 5, 768–776 (2020).

    Article  ADS  CAS  Google Scholar 

  159. Gu, S. et al. Tin and mixed lead–tin halide perovskite solar cells: progress and their application in tandem solar cells. Adv. Mater. 32, 1907392 (2020). Overview of the perspectives and challenges of leadtin halide perovskite solar cells.

    Article  CAS  Google Scholar 

  160. Prasanna, R. et al. Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability. Nat. Energy 4, 939–947 (2019).

    Article  ADS  CAS  Google Scholar 

  161. Hu, S., Smith, J. A., Snaith, H. J. & Wakamiya, A. Prospects for tin-containing halide perovskite photovoltaics. Precis. Chem. 1, 69–82 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Pascual, J. et al. Origin of Sn(ii) oxidation in tin halide perovskites. Mater. Adv. 1, 1066–1070 (2020).

    Article  CAS  Google Scholar 

  163. Joy, S. et al. How additives for tin halide perovskites influence the Sn4+ concentration. J. Mater. Chem. A 10, 13278–13285 (2022).

    Article  CAS  Google Scholar 

  164. Wang, S. et al. Stabilization of perovskite lattice and suppression of S2+/Sn4+ oxidation via formamidine acetate for high efficiency tin perovskite solar cells. Adv. Funct. Mater. 33, 2215041 (2023).

    Article  CAS  Google Scholar 

  165. Tong, J. et al. Carrier control in Sn–Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability. Nat. Energy 7, 642–651 (2022).

    Article  ADS  CAS  Google Scholar 

  166. Hou, J., Inganäs, O., Friend, R. H. & Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 17, 119–128 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  167. Yuan, J. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140–1151 (2019).

    Article  CAS  Google Scholar 

  168. Li, C. et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 6, 605–613 (2021).

    Article  ADS  CAS  Google Scholar 

  169. de Wild-Scholten, M. J. Energy payback time and carbon footprint of commercial photovoltaic systems. Sol. Energy Mater. Sol. Cell 119, 296–305 (2013).

    Article  Google Scholar 

  170. Hengevoss, D., Baumgartner, C., Nisato, G. & Hugi, C. Life cycle assessment and eco-efficiency of prospective, flexible, tandem organic photovoltaic module. Sol. Energy 137, 317–327 (2016).

    Article  ADS  CAS  Google Scholar 

  171. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  ADS  CAS  Google Scholar 

  172. Lin, Y. et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 27, 1170–1174 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. Zhang, G. et al. Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells. Nat. Commun. 11, 3943 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  174. Firdaus, Y. et al. Long-range exciton diffusion in molecular non-fullerene acceptors. Nat. Commun. 11, 5220 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  175. Tokmoldin, N. et al. Extraordinarily long diffusion length in PM6:Y6 organic solar cells. J. Mater. Chem. A 8, 7854–7860 (2020).

    Article  CAS  Google Scholar 

  176. Zhu, L. et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 21, 656–663 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  177. Wang, J. et al. Binary organic solar cells with 19.2% efficiency enabled by solid additive. Adv. Mater. 35, e2301583 (2023).

    Article  PubMed  Google Scholar 

  178. Zhang, G. et al. Renewed prospects for organic photovoltaics. Chem. Rev. 122, 14180–14274 (2022).

    Article  CAS  PubMed  Google Scholar 

  179. Meng, D. et al. Near‐infrared materials: the turning point of organic photovoltaics. Adv. Mater. 34, 2107330 (2022). A review article highlighting the emergence of narrow-gap NFAs.

    Article  CAS  Google Scholar 

  180. Yan, C. et al. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3, 18003 (2018).

    Article  ADS  CAS  Google Scholar 

  181. Wang, J. & Zhan, X. Fused-ring electron acceptors for photovoltaics and beyond. Acc. Chem. Res. 54, 132–143 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Wang, J., Xue, P., Jiang, Y., Huo, Y. & Zhan, X. The principles, design and applications of fused-ring electron acceptors. Nat. Rev. Chem. 6, 614–634 (2022).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

K.O.B., P.W., F.Z. and T.R. acknowledge the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) (within the SPP 2196: grant numbers RI 1551/15-2, RI 1551/12-2 and RI1551/22-1) and the Bundesministerium für Bildung und Forschung (BMBF) (grant number 01DP20008) for financial support. The research leading to these results has received partial funding from the European Union’s Horizon 2020 Programme under grant agreement number 951774 (FOXES). P.W. further thanks the Alexander von Humboldt foundation for his postdoctoral fellowship. A.D. acknowledges support from Hong Kong Research Grants Council (RGC), CRF grants C5037-18G and C7018-20G. X.G. and Y.H acknowledge the Solar Energy Research Institute of Singapore (SERIS) at the National University of Singapore (NUS). SERIS is supported by NUS, the National Research Foundation Singapore (NRF), the Energy Market Authority of Singapore (EMA) and the Singapore Economic Development Board (EDB). T.W. and W.L. acknowledge financial supports from the National Natural Science Foundation of China (Grant numbers 52273196, 52073221 and 52203238) and the Key Research and Development Program of Hubei Province (2023BAB116). F.L. and M.S. acknowledge the DFG (project number 423749265–SPP 2196 (SURPRISE II)) for funding. M.S. further acknowledges the Heisenberg programme from the DFG as well as the Vice Chancellor Early Career Professorship Scheme from the Chinese University of Hong Kong for funding (project number 498155101). F.L. acknowledges the Volkswagen Foundation for funding via the Freigeist Program.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the article.

Corresponding authors

Correspondence to Kai O. Brinkmann, Pang Wang, Tao Wang or Thomas Riedl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Anita Ho-Baillie/Arafat Mahmud, Hin Lap Yip and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

The efficiency of perovskite solar cells: https://www.nrel.gov/pv/cell-efficiency.html

Supplementary information

Glossary

IT-4F

3,9-Bis(2-methylene-((3-(1,1-dicyanomethylene)-6,7-difluoro)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]dithiophene.

IT family

Small molecular non-fullerene electron acceptors with indacenodithiophene as the central core.

ITIC

3,9-Bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]dithiophene.

L8-BO

2,2′-((2Z,2′Z)-((12,13-Bis(2-ethylhexyl)-3,9-(2-butyloctyl)-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2′′,3′′:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2-g]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile.

PC61BM

Phenyl-C61-butyric acid methyl ester.

PC71BM

Phenyl-C71-butyric acid methyl ester.

PCDTBT

Poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)].

PEDOT:PSS

Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate.

PffBT4T-2OD

Poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3‴-di(2-octyldodecyl)-2,2′;5′,2″;5″,2‴-quaterthiophen-5,5‴-diyl)].

PM6

Poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b′]dithiophene))-alt-(5,5-(1′,3′-di-2-thienyl-5′,7′-bis(2-ethylhexyl)benzo[1′,2′-c:4′,5′-c′]dithiophene-4,8-dione)].

Y6

2,2′-((2Z,2′Z)-((12,13-Bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2′′,3′′:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2-g]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile.

Y family

Small molecular non-fullerene electron acceptors with dithienothiophen [3,2-b]-pyrrolobenzothiadiazole as the central core.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brinkmann, K.O., Wang, P., Lang, F. et al. Perovskite–organic tandem solar cells. Nat Rev Mater 9, 202–217 (2024). https://doi.org/10.1038/s41578-023-00642-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00642-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing