Abstract
Modern demands in clean energy and space exploration require materials scientists to develop materials that perform in the most extreme conditions in our universe. Recent advances in hypersonic travel and nuclear technology have brought a family of refractory transition metal carbides, nitrides and diborides, known as ultra-high temperature ceramics (UHTCs) to the forefront. These materials have extremely high melting points (>4,000 °C), high thermal conductivity (>140 W m−1 K−1) and strong transition-metal-to-non-metal bonding (>600 GPa mechanical stiffness), which promise to enable their application in extreme environments. This Review covers the relation of metal–non-metal (M–X) chemistry to the high-temperature, thermal, mechanical and oxidation behaviour of UHTCs and discusses the effect of synthesis and potential additives on their properties. In addition, we present new areas of research, including advances in additive manufacturing, high-entropy compositions and 2D materials to improve the processing and performance of UHTCs. A focus on chemistry–synthesis–processing relationships will be key to enabling innovative designs to bring UHTCs to fruition as extreme environment materials.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Moissan, H. A new zirconium carbide. C.R. Acad. Sci. 122, 651–654 (1896).
Tucker, S. A. & Moody, H. R. II. — The production of hitherto unknown metallic borides. J. Chem. Soc. Trans. 81, 14–17 (1902).
National Aeronautics and Space Administration. Joint Conf. Lifting Manned Hypervelocity and Reentry Vehicle (NASA, 1960).
Fahrenholtz, W. G. & Hilmas, G. E. Ultra-high temperature ceramics: materials for extreme environments. Scr. Mater. 129, 94–99 (2017).
Williams, W. S. Transition-metal carbides. Prog. Solid State Chem. 6, 57–118 (1971).
Matkovich, V. I., Samsonov, G.-V. & Hagenmuller, P. Boron and Refractory Borides (Springer, 1977).
Clougherty, E. V., Wilkes, K. E. & Tye, R. P. Research and development of refractory oxidation-resistant diborides. Part 2, Volume 5: thermal, physical, electrical and optical properties (Air Force Materials Lab., 1968).
Kalish, D. & Clougherty, E. V. Densification mechanisms in high‐pressure hot‐pressing of HfB2. J. Am. Ceram. Soc. 52, 26–30 (1969).
Kalish, D., Clougherty, E. V. & Kreder, K. Strength, fracture mode, and thermal stress resistance of HfB2 and ZrB2. J. Am. Ceram. Soc. 52, 30–36 (1969).
Clougherty, E. V., Peters, E. T. & Kalish, D. Diboride materials, candidates for aerospace applications. Sci. Advan. Mater. Process Eng. Proc. 15, 297–308 (1969).
Clougherty, E., Pober, R. & Kaufman, L. Synthesis of oxidation resistant metal diboride composites. Trans. Met. Soc. AIME 242, 1077–1082 (1968).
Kaufman, L., Clougherty, E. & Berkowitz-Mattuck, J. Oxidation characteristics of hafnium and zirconium diboride. Trans. Met. Soc. AIME 239, 458–466 (1967).
Kaufman, L. & Clougherty, E. V. Investigation of boride compounds for very high-temperature applications (ManLabs, 1963).
Tripp, W. & Graham, H. Thermogravimetric study of the oxidation of ZrB2 in the temperature range of 800 to 1500 oC. J. Electrochem. Soc. 118, 1195 (1971).
Hinze, J., Tripp, W. & Graham, H. The high‐temperature oxidation behavior of a HfB2 + 20 v/o SiC composite. J. Electrochem. Soc. 122, 1249 (1975).
Lonergan, J. M., Fahrenholtz, W. G. & Hilmas, G. E. Zirconium diboride with high thermal conductivity. J. Am. Ceram. Soc. 97, 1689–1691 (2014).
Deng, B. et al. Phase controlled synthesis of transition metal carbide nanocrystals by ultrafast flash Joule heating. Nat. Commun. 13, 262 (2022).
Paul, A. et al. UHTC–carbon fibre composites: preparation, oxyacetylene torch testing and characterisation. J. Eur. Ceram. Soc. 33, 423–432 (2013).
Thimmappa, S. K. & Golla, B. R. Oxidation behavior of silicon-based ceramics reinforced diboride UHTC: a review. Silicon 14, 12049–12074 (2022).
Paul, A., Binner, J. & Vaidhyanathan, B. in Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications Ch. 7 (eds Fahrenholtz, W. G., Wuchina, E. J., Lee, W. E. & Zhou, Y.) 144–166 (Wiley, 2014).
Castle, E., Csanádi, T., Grasso, S., Dusza, J. & Reece, M. Processing and properties of high-entropy ultra-high temperature carbides. Sci. Rep. 8, 1–12 (2018).
Oses, C., Toher, C. & Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 4, 515–524 (2020).
Hossain, M. D. et al. Entropy landscaping of high‐entropy carbides. Adv. Mater. 33, 2102904 (2021).
Naguib, M. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011).
Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).
Wuchina, E., Opila, E., Opeka, M., Fahrenholtz, W. & Talmy, I. UHTCs: ultra-high temperature ceramic materials for extreme environment applications. Electrochem. Soc. Interface 16, 30–36 (2007).
Hong, Q.-J. & Van De Walle, A. Prediction of the material with highest known melting point from ab initio molecular dynamics calculations. Phys. Rev. B 92, 020104 (2015).
Kral, C., Lengauer, W., Rafaja, D. & Ettmayer, P. Critical review on the elastic properties of transition metal carbides, nitrides and carbonitrides. J. Alloy Compd. 265, 215–233 (1998).
Okamoto, N. L., Kusakari, M., Tanaka, K., Inui, H. & Otani, S. Anisotropic elastic constants and thermal expansivities in monocrystal CrB2, TiB2, and ZrB2. Acta Mater. 58, 76–84 (2010).
Harrington, G. J. & Hilmas, G. E. in Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications Ch. 9 (eds Fahrenholtz, W. G., Wuchina, E. J., Lee, W. E. & Zhou, Y.) 197–235 (Wiley, 2014).
Levine, S. R. et al. Evaluation of ultra-high temperature ceramics for aeropropulsion use. J. Eur. Ceram. Soc. 22, 2757–2767 (2002).
Tang, S., Deng, J., Wang, S., Liu, W. & Yang, K. Ablation behaviors of ultra-high temperature ceramic composites. Mater. Sci. Eng. A 465, 1–7 (2007).
Feng, L., Chen, W. T., Fahrenholtz, W. G. & Hilmas, G. E. Strength of single‐phase high‐entropy carbide ceramics up to 2300 °C. J. Am. Ceram. Soc. 104, 419–427 (2021).
Lee, W. E., Giorgi, E., Harrison, R., Maitre, A. & Rapaud, O. in Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications Ch. 15 (eds Fahrenholtz, W. G., Wuchina, E. J., Lee, W. E. & Zhou, Y.) 391–415 (Wiley, 2014).
Golla, B. R., Mukhopadhyay, A., Basu, B. & Thimmappa, S. K. Review on ultra-high temperature boride ceramics. Prog. Mater. Sci. 111, 100651 (2020).
Tang, S. & Hu, C. Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: a review. J. Mater. Sci. Technol. 33, 117–130 (2017).
Savino, R., Criscuolo, L., Di Martino, G. D. & Mungiguerra, S. Aero-thermo-chemical characterization of ultra-high-temperature ceramics for aerospace applications. J. Eur. Ceram. Soc. 38, 2937–2953 (2018).
Monteverde, F., Bellosi, A. & Scatteia, L. Processing and properties of ultra-high temperature ceramics for space applications. Mater. Sci. Eng. A 485, 415–421 (2008).
Sekhar, J., Liu, J. & de Nora, V. A porous titanium diboride composite cathode coating for Hall–Héroult cells: part I. Thin coatings. Metall. Mater. Trans. B 29, 59–67 (1998).
Eswarappa Prameela, S. et al. Materials for extreme environments. Nat. Rev. Mater. 8, 81–88 (2023).
Guo, S., Zhang, J., Wu, W. & Zhou, W. Corrosion in the molten fluoride and chloride salts and materials development for nuclear applications. Prog. Mater. Sci. 97, 448–487 (2018).
Vajeeston, P., Ravindran, P., Ravi, C. & Asokamani, R. Electronic structure, bonding, and ground-state properties of AlB2-type transition-metal diborides. Phys. Rev. B 63, 045115 (2001).
Haglund, J., Fernandez Guillermet, A., Grimvall, G. & Korling, M. Theory of bonding in transition-metal carbides and nitrides. Phys. Rev. B 48, 11685 (1993).
Guillermet, A. F. & Grimvall, G. Cohesive properties and vibrational entropy of 3d transition-metal compounds: MX (NaCl) compounds (X = C, N, O, S), complex carbides, and nitrides. Phys. Rev. B 40, 10582 (1989).
Khatri, I. et al. Correlating structure and orbital occupation with the stability and mechanical properties of 3d transition metal carbides. J. Alloy Compd. 891, 161866 (2022).
Kaptay, G., Csicsovszki, G. & Yaghmaee, M. S. An absolute scale for the cohesion energy of pure metals. Mater. Sci. Forum 414–415, 235–240 (2003).
Zhou, Y., Xiang, H., Feng, Z. & Li, Z. General trends in electronic structure, stability, chemical bonding and mechanical properties of ultrahigh temperature ceramics TMB2 (TM = transition metal). J. Mater. Sci. Technol. 31, 285–294 (2015).
Häglund, J., Grimvall, G., Jarlborg, T. & Guillermet, A. F. Band structure and cohesive properties of 3d-transition-metal carbides and nitrides with the NaCl-type structure. Phys. Rev. B 43, 14400 (1991).
Fernandez Guillermet, A., Haglund, J. & Grimvall, G. Cohesive properties of 4d-transition-metal carbides and nitrides in the NaCl-type structure. Phys. Rev. B 45, 11557 (1992).
Guillermet, A. F., Haglund, J. & Grimvall, G. Cohesive properties and electronic structure of 5d-transition-metal carbides and nitrides in the NaCl structure. Phys. Rev. B 48, 11673 (1993).
Burdett, J. K., Canadell, E. & Miller, G. J. Electronic structure of transition-metal borides with the AlB2 structure. J. Am. Chem. Soc. 108, 6561–6568 (1986).
Shein, I. R. & Ivanovskii, A. L. Elastic properties of mono- and polycrystalline hexagonal AlB2-like diborides of s, p and d metals from first-principles calculations. J. Phys. Condens. Matter 20, 415218 (2008).
Li, H. et al. Structural, elastic and electronic properties of transition metal carbides TMC (TM = Ti, Zr, Hf and Ta) from first-principles calculations. Solid State Commun. 151, 602–606 (2011).
Williams, W. S. The thermal conductivity of metallic ceramics. JOM 50, 62–66 (1998).
Fukuichi, M. Computational insights into the relation between elements’ physical properties and mechanical properties of 3d, 4d, and 5d transition metal carbides via machine learning. Solid State Commun. 354, 114896 (2022).
Pierson, H. O. Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Applications (William Andrew, 1996).
Fahrenholtz, W. G., Hilmas, G. E., Talmy, I. G. & Zaykoski, J. A. Refractory diborides of zirconium and fafnium. J. Am. Ceram. Soc. 90, 1347–1364 (2007).
Barsoum, M. W. Fundamentals of Ceramics Vol. 4 (Institute of Physics, 2003).
Wyatt, B. C., Rosenkranz, A. & Anasori, B. 2D MXenes: tunable mechanical and tribological properties. Adv. Mater. 33, 2007973 (2021).
Pyykko, P. & Atsumi, M. Molecular single-bond covalent radii for elements 1–118. Chemistry 15, 186-197 (2009).
Neuman, E. W., Hilmas, G. E. & Fahrenholtz, W. G. Strength of zirconium diboride to 2300 °C. J. Am. Ceram. Soc. 96, 47–50 (2013).
Hunter, B. et al. Investigations into the slip behavior of zirconium diboride. J. Mater. Res. 31, 2749–2756 (2016).
Wuchina, E. et al. Designing for ultrahigh-temperature applications: the mechanical and thermal properties of HfB2, HfCx, HfNx and αHf(N). J. Mater. Sci. 39, 5939–5949 (2004).
Justin, J. & Jankowiak, A. Ultra high temperature ceramics: densification, properties and thermal stability. J. Aerospace Lab 3, 1–11 (2011).
Ni, D. et al. Advances in ultra-high temperature ceramics, composites, and coatings. J. Adv. Ceram. 11, 1–56 (2022).
Jacobson, N. S., Opila, E. J. & Lee, K. N. Oxidation and corrosion of ceramics and ceramic matrix composites. Curr. Opin. Solid State Mater. Sci. 5, 301–309 (2001).
Hasegawa, M. in Treatise on Process Metallurgy Vol. 1 Ch. 3.3 (ed. Seetharaman, S.) 507–516 (Elsevier, 2014).
Qin, M. et al. Dual-phase high-entropy ultra-high temperature ceramics. J. Eur. Ceram. Soc. 40, 5037–5050 (2020).
Naraparaju, R., Maniya, K., Murchie, A., Fahrenholtz, W. G. & Hilmas, G. E. Effect of moisture on the oxidation behavior of ZrB2. J. Am. Ceram. Soc. 104, 1058–1066 (2021).
Opeka, M. M., Talmy, I. G. & Zaykoski, J. Oxidation-based materials selection for 2,000 °C+ hypersonic aerosurfaces: theoretical considerations and historical experience. J. Mater. Sci. 39, 5887–5904 (2004).
Parthasarathy, T., Rapp, R., Opeka, M. & Kerans, R. A model for the oxidation of ZrB2, HfB2 and TiB2. Acta Mater. 55, 5999–6010 (2007).
Parthasarathy, T., Rapp, R., Opeka, M. & Cinibulk, M. Modeling oxidation kinetics of SiC‐containing refractory diborides. J. Am. Ceram. Soc. 95, 338–349 (2012).
Glechner, T. et al. Influence of the non-metal species on the oxidation kinetics of Hf, HfN, HfC, and HfB2 coatings. Mater. Des. 211, 110136 (2021).
Glechner, T. et al. Influence of Si on the oxidation behavior of TM-Si-B2±z coatings (TM = Ti, Cr, Hf, Ta, W). Surf. Coat. Technol. 434, 128178 (2022).
Katoh, Y., Vasudevamurthy, G., Nozawa, T. & Snead, L. L. Properties of zirconium carbide for nuclear fuel applications. J. Nucl. Mater. 441, 718–742 (2013).
Agarwal, S. et al. Neutron irradiation-induced microstructure damage in ultra-high temperature ceramic TiC. Acta Mater. 186, 1–10 (2020).
Bhattacharya, A. et al. Nano-scale microstructure damage by neutron irradiations in a novel boron-11 enriched TiB2 ultra-high temperature ceramic. Acta Mater. https://doi.org/10.1016/j.actamat.2018.11.030 (2019).
Koyanagi, T. et al. Response of isotopically tailored titanium diboride to neutron irradiation. J. Am. Ceram. Soc. https://doi.org/10.1111/jace.16036 (2019).
Naik, G. V., Kim, J. & Boltasseva, A. Oxides and nitrides as alternative plasmonic materials in the optical range. Optical Mater. Expr. 1, 1090–1099 (2011).
Naik, G. V., Shalaev, V. M. & Boltasseva, A. Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013).
Zhang, X. et al. Characterization of thermophysical and mechanical properties of hafnium carbonitride fabricated by hot pressing sintering. J. Mater. Res. Technol. https://doi.org/10.1016/j.jmrt.2023.02.099 (2023).
Suvorova, V. et al. Fabrication and investigation of novel hafnium–zirconium carbonitride ultra-high temperature ceramics. Ceram. Int. https://doi.org/10.1016/j.ceramint.2023.04.222 (2023).
Mei, Z.-G., Bhattacharya, S. & Yacout, A. M. First-principles study of fracture toughness enhancement in transition metal nitrides. Surf. Coat. Technol. https://doi.org/10.1016/j.surfcoat.2018.10.102 (2019).
Hasegawa, Y. Preparation of polyorganoborosilazanes and conversion into ultra-high-temperature borosilicon carbonitrides. J. Ceram. Soc. Jpn. https://doi.org/10.2109/jcersj.114.480 (2006).
Ji, X., Wang, S., Shao, C. & Wang, H.High-temperature corrosion behavior of SiBCN fibers for aerospace applications. ACS Appl. Mater. Interf. https://doi.org/10.1021/acsami.8b04497 (2018).
Fahrenholtz, W. G., Binner, J. & Zou, J. Synthesis of ultra-refractory transition metal diboride compounds. J. Mater. Res. https://doi.org/10.1557/jmr.2016.210 (2016).
Neuman, E. W., Thompson, M., Fahrenholtz, W. G. & Hilmas, G. E. Elevated temperature thermal properties of ZrB2-B4C ceramics. J. Eur. Ceram. Soc. https://doi.org/10.1016/j.jeurceramsoc.2022.03.029 (2022).
Peshev, P. & Bliznakov, G. On the borothermic preparation of titanium, zirconium and hafnium diborides. J. Less Common. Met. https://doi.org/10.1016/0022-5088(68)90199-9 (1968).
You, Y. et al. TaB2 powders synthesis by reduction of Ta2O5 with B4C. Ceram. Int. https://doi.org/10.1016/j.ceramint.2016.09.193 (2017).
Rice, G. W. & Woodin, R. L. Zirconium borohydride as a zirconium boride precursor. J. Am. Ceram. Soc. https://doi.org/10.1111/j.1151-2916.1988.tb05867.x (1988).
Kessling, R. The binary system of zirconium boron. Acta Chem. Scand. 3, 90 (1949).
Storr, B. et al. Single-step synthesis process for high-entropy transition metal boride powders using microwave plasma. Ceramics 4, 257–264 (2021).
Peshev, P., Leyarovska, L. & Bliznakov, G. On the borothermic preparation of some vanadium, niobium and tantalum borides. J. Less Common Met. 15, 259–267 (1968).
Guo, W.-M. et al. Synthesis of TaB2 powders by borothermal reduction. J. Am. Ceram. Soc. https://doi.org/10.1111/jace.14824 (2017).
Krishnarao, R. Preparation of ZrB2 and ZrB2-SiC powders in a single step reduction of zircon (ZrSiO4) with B4C. Ceram. Int. 43, 1205–1209 (2017).
Wang, Z., Liu, X., Xu, B. & Wu, Z. Fabrication and properties of HfB2 ceramics based on micron and submicron HfB2 powders synthesized via carbo/borothermal reduction of HfO2 with B4C and carbon. Int. J. Refractory Met. Hard Mater. 51, 130–136 (2015).
Chen, Z. et al. Synthesis of rod-like ZrB2 crystals by boro/carbothermal reduction. Ceram. Int. 45, 13726–13731 (2019).
Guo, W.-M., Yang, Z.-G. & Zhang, G.-J. Synthesis of submicrometer HfB2 powder and its densification. Mater. Lett. https://doi.org/10.1016/j.matlet.2012.06.012 (2012).
Ran, S., Van der Biest, O. & Vleugels, J. ZrB2 powders synthesis by borothermal reduction.J. Am. Ceram. Soc. https://doi.org/10.1111/j.1551-2916.2010.03747.x (2010).
Levashov, E., Mukasyan, A., Rogachev, A. & Shtansky, D. Self-propagating high-temperature synthesis of advanced materials and coatings. Int. Mater. Rev. 62, 203–239 (2017).
Kurbatkina, V., Patsera, E., Levashov, E. & Timofeev, A. Self-propagating high-temperature synthesis of refractory boride ceramics (Zr, Ta)B2 with superior properties. J. Eur. Ceram. Soc. 38, 1118–1127 (2018).
Mishra, S. K. & Pathak, L. C. Self-propagating high-temperature synthesis (SHS) of advanced high-temperature ceramics. Key Eng. Mater. 395, 15–38 (2009).
Chen, L. et al. Synthesis and oxidation of nanocrystalline HfB2. J. Alloy Compd. 368, 353–356 (2004).
Karthiselva, N., Murty, B. & Bakshi, S. R. Low temperature synthesis of dense TiB2 compacts by reaction spark plasma sintering. Int. J. Refractory Met. Hard Mater. 48, 201–210 (2015).
Sani, E. et al. Optical properties of dense zirconium and tantalum diborides for solar thermal absorbers. Renew. Energy 91, 340–346 (2016).
Gürcan, K., Ayas, E. & Gaşan, H. Formation of TaB2 powders from high energy ball milling and borothermal reduction process. Mater. Chem. Phys. https://doi.org/10.1016/j.matchemphys.2019.121732 (2019).
Chamberlain, A. L., Fahrenholtz, W. G. & Hilmas, G. E. Pressureless sintering of zirconium diboride. J. Am. Ceram. Soc. https://doi.org/10.1111/j.1551-2916.2005.00739.x (2006).
Feng, L., Fahrenholtz, W. G. & Hilmas, G. E. Two‐step synthesis process for high‐entropy diboride powders. J. Am. Ceram. Soc. 103, 724–730 (2020).
Kravchenko, S. E. et al. Preparation of ZrB2 by reacting ZrCl4 with NaBH4 in molten potassium bromide. Inorg. Mater. https://doi.org/10.1134/S0020168519050108 (2019).
Chen, L. et al. Preparation and some properties of nanocrystalline ZrB2 powders. Scr. Mater. https://doi.org/10.1016/j.scriptamat.2004.01.018 (2004).
Bača, Ľ. & Stelzer, N. Adapting of sol–gel process for preparation of TiB2 powder from low-cost precursors. J. Eur. Ceram. Soc. 28, 907–911 (2008).
Zhang, H. & Li, F. Preparation and microstructure evolution of diboride ultrafine powder by sol–gel and microwave carbothermal reduction method. J. Solgel Sci. Technol. 45, 205–211 (2008).
Forsthoefel, K. & Sneddon, L. Precursor routes to group 4 metal borides, and metal boride/carbide and metal boride/nitride composites. J. Mater. Sci. 39, 6043–6049 (2004).
Yang, B. et al. Synthesis of hexagonal-prism-like ZrB2 by a sol–gel route. Powder Technol. 256, 522–528 (2014).
Li, R., Zhang, Y., Lou, H., Li, J. & Feng, Z. Synthesis of ZrB2 nanoparticles by sol–gel method. J. Solgel Sci. Technol. 58, 580–585 (2011).
Cao, Y., Zhang, H., Li, F., Lu, L. & Zhang, S. Preparation and characterization of ultrafine ZrB2–SiC composite powders by a combined sol–gel and microwave boro/carbothermal reduction method. Ceram. Int. 41, 7823–7829 (2015).
Zhao, B. et al. Morphology and mechanism study for the synthesis of ZrB2–SiC powders by different methods. J. Solid State Chem. 207, 1–5 (2013).
Wang, M., Huang, C. & Wang, Z. Polyzirconosilane preceramic resin as single source precursor of SiC–ZrC ceramics. J. Inorg. Organomet. Polym. Mater. 26, 24–31 (2016).
Yan, Y., Huang, Z., Dong, S. & Jiang, D. New route to synthesize ultra‐fine zirconium diboride powders using inorganic–organic hybrid precursors. J. Am. Ceram. Soc. 89, 3585–3588 (2006).
Yan, Y. J., Huang, Z. R., Dong, S. M. & Jiang, D. L. in Key Engineering Materials 944–947 (Trans Tech Publ., 2007)
Sciti, D., Silvestroni, L., Medri, V. & Monteverde, F. in Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications Ch. 6 (eds Fahrenholtz, W. G., Wuchina, E. J., Lee, W. E. & Zhou, Y.) 112–143 (Wiley, 2014).
Chlup, Z. et al. Effect of metallic dopants on the microstructure and mechanical properties of TiB2. J. Eur. Ceram. Soc. 35, 2745–2754 (2015).
Wang, H., Chen, D., Wang, C.-A., Zhang, R. & Fang, D. Preparation and characterization of high-toughness ZrB2/Mo composites by hot-pressing process. Int. J. Refractory Met. Hard Mater. 27, 1024–1026 (2009).
Sun, X., Han, W., Hu, P., Wang, Z. & Zhang, X. Microstructure and mechanical properties of ZrB2–Nb composite. Int. J. Refractory Met. Hard Mater. https://doi.org/10.1016/j.ijrmhm.2009.12.005 (2010).
Meng, J. et al. Effects of refractory metal additives on diboride‐based ultra‐high temperature ceramics: a review. Int. J. Appl. Ceram. Technol. 20, 1350–1370 (2023).
Silvestroni, L. & Sciti, D. Effects of MoSi2 additions on the properties of Hf- and Zr-B2 composites produced by pressureless sintering. Scr. Mater. 57, 165–168 (2007).
Eakins, E., Jayaseelan, D. D. & Lee, W. E. Toward oxidation-resistant ZrB2-SiC ultra high temperature ceramics. Metall. Mater. Trans. A 42, 878–887 (2011).
Simonenko, E., Simonenko, N., Sevastyanov, V. & Kuznetsov, N. ZrB2/HfB2–SiC ceramics modified by refractory carbides: an overview. Russ. J. Inorg. Chem. 64, 1697–1725 (2019).
Basu, B., Raju, G. & Suri, A. Processing and properties of monolithic TiB2 based materials. Int. Mater. Rev. 51, 352–374 (2006).
Johnson, S., Gasch, M., Stackpoole, M., Lawson, J. & Gusman, M. in 16th AIAA/DLR/DGLR Int. Space Planes Hypersonic Syst. Technol. Conf. (AIAA, 2009).
Fahrenholtz, W. G., Hilmas, G. E., Zhang, S. C. & Zhu, S. Pressureless sintering of zirconium diboride: particle size and additive effects. J. Am. Ceram. Soc. https://doi.org/10.1111/j.1551-2916.2007.02169.x (2008).
Jin, H., Meng, S., Xie, W., Xu, C. & Niu, J. ZrB2-CNTs nanocomposites fabricated by spark plasma sintering. Materials 9, 967 (2016).
Tammana, S. R. C. M. et al. Ablation behaviour of Cf–ZrC-SiC with and without rare earth metal oxide dopants. Open Ceram. 10, 100270 (2022).
Rebillat, F., Andreani, A.-S. & Poulon-Quintin, A. Novel rare earth-bearing ultra-high-temperature ceramics tested in a solar furnace above 2,200 °C in air. Oxid. Met. 80, 257–266 (2013).
Tan, W., Adducci, M. & Trice, R. Evaluation of rare‐earth modified ZrB2–SiC ablation resistance using an oxyacetylene torch. J. Am. Ceram. Soc. 97, 2639–2645 (2014).
Li, X. Y., Han, J. C., Zhang, X. H. & Luo, X. G. Effect of the rare earth oxides on sintering behavior and microstructure of ZrB2-SiC ceramics. Key Eng. Mater. 368-372, 1740–1742 (2008).
Rueschhoff, L. M., Carney, C. M., Apostolov, Z. D. & Cinibulk, M. K. Processing of fiber‐reinforced ultra‐high temperature ceramic composites: a review. Int. J. Ceram. Eng. Sci. 2, 22–37 (2020).
Arai, Y., Inoue, R., Goto, K. & Kogo, Y. Carbon fiber reinforced ultra-high temperature ceramic matrix composites: a review. Ceram. Int. 45, 14481–14489 (2019).
Sciti, D. & Silvestroni, L. Processing, sintering and oxidation behavior of SiC fibers reinforced ZrB2 composites. J. Eur. Ceram. Soc. 32, 1933–1940 (2012).
Galizia, P., Zoli, L. & Sciti, D. Impact of residual stress on thermal damage accumulation, and Young’s modulus of fiber-reinforced ultra-high temperature ceramics. Mater. Des. 160, 803–809 (2018).
Hu, P. et al. Rolling compacted fabrication of carbon fiber reinforced ultra-high temperature ceramics with highly oriented architectures and exceptional mechanical feedback. Ceram. Int. 44, 14907–14912 (2018).
Silvestroni, L., Sciti, D., Hilmas, G., Fahrenholtz, W. & Watts, J. Effect of a weak fiber interface coating in ZrB2 reinforced with long SiC fibers. Mater. Des. https://doi.org/10.1016/j.matdes.2015.08.105 (2015).
Lamon, J. in Ceramic Matrix Composites: Fiber Reinforced Ceramics and their Applications (ed. Krenkel, W.) 49–68 (Wiley, 2008).
Sciti, D., Zoli, L., Reimer, T., Vinci, A. & Galizia, P. A systematic approach for horizontal and vertical scale up of sintered ultra-high temperature ceramic matrix composites for aerospace — advances and perspectives. Compos. B Eng. 234, 109709 (2022).
Hu, H. et al. Preparation and characterization of C/SiC–ZrB2 composites by precursor infiltration and pyrolysis process. Ceram. Int. 36, 1011–1016 (2010).
Zoli, L. & Sciti, D. Efficacy of a ZrB2–SiC matrix in protecting C fibres from oxidation in novel UHTCMC materials. Mater. Des. 113, 207–213 (2017).
Silvestroni, L., Fabbriche, D. D. & Sciti, D. Tyranno SA3 fiber–ZrB2 composites. Part I: microstructure and densification. Mater. Des. https://doi.org/10.1016/j.matdes.2014.08.068 (2015).
Zoli, L. et al. Rapid spark plasma sintering to produce dense UHTCs reinforced with undamaged carbon fibres. Mater. Des. 130, 1–7 (2017).
Li, W., Yang, F. & Fang, D. The temperature-dependent fracture strength model for ultra-high temperature ceramics. Acta Mech. Sin. https://doi.org/10.1007/s10409-009-0326-7 (2010).
Wang, R., Li, W., Ji, B. & Fang, D. Fracture strength of the particulate-reinforced ultra-high temperature ceramics based on a temperature dependent fracture toughness model. J. Mech. Phys. Solids https://doi.org/10.1016/j.jmps.2017.07.012 (2017).
Hu, P. & Wang, Z. Flexural strength and fracture behavior of ZrB2–SiC ultra-high temperature ceramic composites at 1800 °C. J. Eur. Ceram. Soc. 30, 1021–1026 (2010).
Rodríguez-Sánchez, J., Sánchez-González, E., Guiberteau, F. & Ortiz, A. L. Contact-mechanical properties at intermediate temperatures of ZrB2 ultra-high-temperature ceramics pressureless sintered with Mo, Ta, or Zr disilicides. J. Eur. Ceram. Soc. https://doi.org/10.1016/j.jeurceramsoc.2015.04.023 (2015).
Rubio, V. et al. Materials characterisation and mechanical properties of Cf-UHTC powder composites. J. Eur. Ceram. Soc. https://doi.org/10.1016/j.jeurceramsoc.2018.12.043 (2019).
Neuman, E. W., Hilmas, G. E. & Fahrenholtz, W. G. Mechanical behavior of zirconium diboride–silicon carbide ceramics at elevated temperature in air. J. Eur. Ceram. Soc. 33, 2889–2899 (2013).
Neuman, E. W., Thompson, M., Fahrenholtz, W. G. & Hilmas, G. E. Thermal properties of ZrB2-TiB2 solid solutions. J. Eur. Ceram. Soc. https://doi.org/10.1016/j.jeurceramsoc.2021.08.004 (2021).
Asl, M. S., Nayebi, B., Ahmadi, Z., Zamharir, M. J. & Shokouhimehr, M. Effects of carbon additives on the properties of ZrB2-based composites: a review. Ceram. Int. 44, 7334–7348 (2018).
Asl, M. S., Nayebi, B. & Shokouhimehr, M. TEM characterization of spark plasma sintered ZrB2–SiC–graphene nanocomposite. Ceram. Int. 44, 15269–15273 (2018).
Bakshi, S. R. et al. Spark plasma sintered tantalum carbide–carbon nanotube composite: effect of pressure, carbon nanotube length and dispersion technique on microstructure and mechanical properties. Mater. Sci. Eng. A 528, 2538–2547 (2011).
Jin, H., Shu, H., Bai, G., Chen, D. & Zeng, Q. In situ synthesis of CNTs in HfB2 powders by chemical vapor deposition of methane to fabricate reinforced HfB2 composites. J. Alloy Compd. 745, 1–7 (2018).
Simonenko, E. et al. Modification of HfB2–30% SiC UHTC with graphene (1 Vol%) and its influence on the behavior in a supersonic air jet. Russ. J. Inorg. Chem. 66, 1405–1415 (2021).
Dubey, S. et al. Domination of phononic scattering in solid solutioning and interfaces of HfB2–ZrB2–SiC-carbon nanotube based ultra high temperature composites. Scr. Mater. 218, 114776 (2022).
Bai, Y., Zhang, B., Du, H. & Cheng, L. Efficient multiscale strategy for toughening HfB2 ceramics: a heterogeneous ceramic–metal layered architecture. J. Am. Ceram. Soc. https://doi.org/10.1111/jace.17610 (2021).
Nieto, A. et al. Oxidation behavior of graphene nanoplatelet reinforced tantalum carbide composites in high temperature plasma flow. Carbon 67, 398–408 (2014).
Neuman, E. W. & Hilmas, G. E. in Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications Ch. 8 (eds Fahrenholtz, W. G., Wuchina, E. J., Lee, W. E. & Zhou, Y.) 167–196 (Wiley, 2014).
Feilden, E., Glymond, D., Saiz, E. & Vandeperre, L. High temperature strength of an ultra high temperature ceramic produced by additive manufacturing. Ceram. Int. 45, 18210–18214 (2019).
Kemp, J. W. et al. Direct ink writing of ZrB2-SiC chopped fiber ceramic composites. Addit. Manuf. 44, 102049 (2021).
Liu, R., Wang, Z., Sparks, T., Liou, F. & Newkirk, J. in Laser Additive Manufacturing (ed. Brandt, M.) 351–371 (Elsevier, 2017).
Peters, A. B. et al. Reactive laser synthesis of ultra-high-temperature ceramics HfC, ZrC, TiC, HfN, ZrN, and TiN for additive manufacturing. Ceram. Int. 49, 11204–11229 (2023).
Prakash, K. S., Nancharaih, T. & Rao, V. S. Additive manufacturing techniques in manufacturing — an overview. Mater. Today Proc. 5, 3873–3882 (2018).
Sesso, M. L., Slater, S., Thornton, J. & Franks, G. V. Direct ink writing of hierarchical porous ultra-high temperature ceramics (ZrB2). J. Am. Ceram. Soc. https://doi.org/10.1111/jace.17911 (2021).
Hong, Q.-J., van de Walle, A., Ushakov, S. V. & Navrotsky, A. Integrating computational and experimental thermodynamics of refractory materials at high temperature. CALPHAD 79, 102500 (2022).
Yang, M. & Sun, H. Early melting of tantalum carbide under anisotropic stresses: an ab-initio molecular dynamics study. Phys. Rev. B 107, 104101 (2023).
Lawson, J. W., Bauschlicher, C. W. Jr & Daw, M. S. Ab initio computations of electronic, mechanical, and thermal properties of ZrB2 and HfB2. J. Am. Ceram. Soc. 94, 3494–3499 (2011).
Vorotilo, S. et al. Ab-initio modeling and experimental investigation of properties of ultra-high temperature solid solutions TaxZr1−xC. J. Alloy Compd. 778, 480–486 (2019).
Wang, Y. P., Gan, G. Y., Wang, W., Yang, Y. & Tang, B. Y. Ab initio prediction of mechanical and electronic properties of ultrahigh temperature high‐entropy ceramics (Hf0.2Zr0.2Ta0.2M0.2Ti0.2) B2 (M = Nb, Mo, Cr). Phys. Stat. Sol. 255, 1800011 (2018).
Backman, L., Gild, J., Luo, J. & Opila, E. J. Part I: theoretical predictions of preferential oxidation in refractory high entropy materials. Acta Mater. 197, 20–27 (2020).
Bongiorno, A. et al. A perspective on modeling materials in extreme environments: oxidation of ultrahigh-temperature ceramics. MRS Bull. 31, 410–418 (2006).
Corral, E. L. An ablation model for ultrahigh temperature ceramics (Air Force Res. Lab., 2019).
Petla, H., Renova, E. P., Bronson, A., Chessa, J. F. & Maheswaraiah, N. A computational analysis of a ZrO2–SiO2 scale for a ZrB2–ZrC–Zr ultrahigh temperature ceramic composite system. J. Eur. Ceram. Soc. 30, 2407–2418 (2010).
Backman, L., Gild, J., Luo, J. & Opila, E. J. Part II: experimental verification of computationally predicted preferential oxidation of refractory high entropy ultra-high temperature ceramics. Acta Mater. 197, 81–90 (2020).
Dong, X. & Shin, Y. C. Multi-scale genome modeling for predicting fracture strength of silicon carbide ceramics. Comput. Mater. Sci. 141, 10–18 (2018).
Li, Z., Wang, B., Wang, K. & Zheng, L. A multi-scale model for predicting the thermal shock resistance of porous ceramics with temperature-dependent material properties. J. Eur. Ceram. Soc. 39, 2720–2730 (2019).
Sarker, P. et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat. Commun. 9, 4980 (2018).
Csanádi, T., Castle, E., Reece, M. J. & Dusza, J. Strength enhancement and slip behaviour of high-entropy carbide grains during micro-compression. Sci. Rep. 9, 10200 (2019).
Feng, L., Fahrenholtz, W. G. & Brenner, D. W. High-entropy ultra-high-temperature borides and carbides: a new class of materials for extreme environments. Annu. Rev. Mater. Res. 51, 165–185 (2021).
Feng, L., Fahrenholtz, W. G. & Hilmas, G. E. Low‐temperature sintering of single‐phase, high‐entropy carbide ceramics. J. Am. Ceram. Soc. 102, 7217–7224 (2019).
Feng, L., Fahrenholtz, W. G., Hilmas, G. E. & Zhou, Y. Synthesis of single-phase high-entropy carbide powders. Scr. Mater. 162, 90–93 (2019).
Feng, L., Monteverde, F., Fahrenholtz, W. G. & Hilmas, G. E. Superhard high-entropy AlB2-type diboride ceramics. Scr. Mater. 199, 113855 (2021).
Gild, J. et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep. 6, 37946 (2016).
Murchie, A. C., Watts, J. L., Fahrenholtz, W. G. & Hilmas, G. E. Room‐temperature mechanical properties of a high‐entropy diboride. Int. J. Appl. Ceram. Technol. 19, 2293–2299 (2022).
Nisar, A., Zhang, C., Boesl, B. & Agarwal, A. A perspective on challenges and opportunities in developing high entropy-ultra high temperature ceramics. Ceram. Int. 46, 25845–25853 (2020).
Schwind, E. C., Reece, M. J., Castle, E., Fahrenholtz, W. G. & Hilmas, G. E. Thermal and electrical properties of a high entropy carbide (Ta, Hf, Nb, Zr) at elevated temperatures. J. Am. Ceram. Soc. 105, 4426–4434 (2022).
Smith, S. M., Feng, L., Fahrenholtz, W. G., Hilmas, G. E. & Huang, T. High‐entropy boride–carbide ceramics by sequential boro/carbothermal synthesis. J. Am. Ceram. Soc. 105, 5543–5547 (2022).
Han, X. et al. Improved creep resistance of high entropy transition metal carbides. J. Eur. Ceram. Soc. 40, 2709–2715 (2020).
Smith, C. J., Yu, X.-X., Guo, Q., Weinberger, C. R. & Thompson, G. B. Phase, hardness, and deformation slip behavior in mixed HfxTa1−xC. Acta Mater. 145, 142–153 (2018).
Kane, K. A., Pint, B. A., Mitchell, D. & Haynes, J. A. Oxidation of ultrahigh temperature ceramics: kinetics, mechanisms, and applications. J. Eur. Ceram. Soc. 41, 6130–6150 (2021).
Backman, L. & Opila, E. J. Non-protective oxide formation in high entropy carbide ultra-high temperature ceramics (Virginia Space Grant Consortium, 2019).
Backman, L. & Opila, E. J. Thermodynamic assessment of the group IV, V and VI oxides for the design of oxidation resistant multi-principal component materials. J. Eur. Ceram. Soc. 39, 1796–1802 (2019).
Wang, F., Monteverde, F. & Cui, B. Will high-entropy carbides and borides be enabling materials for extreme environments? Int. J. Ext. Manuf. 5, 022002 (2023).
Maleski, K., Mochalin, V. N. & Gogotsi, Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem. Mater. https://doi.org/10.1021/acs.chemmater.6b04830 (2017).
Anasori, B., Naguib, M. & Editors, G. Two-dimensional MXenes. MRS Bulletin 48, 238–244 (2023).
Marian, M. et al. Ti3C2Tx solid lubricant coatings in rolling bearings with remarkable performance beyond state-of-the-art materials. Appl. Mater. Today 25, 101202 (2021).
Lipatov, A. et al. Electrical and elastic properties of individual single‐layer Nb4C3Tx MXene flakes. Adv. Electron. Mater. 6, 1901382 (2020).
Shayesteh Zeraati, A. et al. Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. Nanoscale https://doi.org/10.1039/d0nr06671k (2021).
Amin, I. et al. Ti3C2Tx MXene polymer composites for anticorrosion: an overview and perspective. ACS Appl. Mater. Interfaces https://doi.org/10.1021/acsami.2c11953 (2022).
Lim, K. R. G. et al. Fundamentals of MXene synthesis. Nat. Synth. https://doi.org/10.1038/s44160-022-00104-6 (2022).
Wyatt, B. C., Nemani, S. K. & Anasori, B. 2D transition metal carbides (MXenes) in metal and ceramic matrix composites. Nano Convergence https://doi.org/10.1186/s40580-021-00266-7 (2021).
Wyatt, B. C. & Anasori, B. Self-assembly and in-situ characterization of Ti3C2Tx in Al: a step toward additive manufacturing of MXene-metal composites. Appl. Mater. Today 27, 101451 (2022).
Li, G. et al. 2D titanium carbide (MXene) based films: expanding the frontier of functional film materials. Adv. Funct. Mater. 31, 2105043 (2021).
Wyatt, B. C. et al. High-temperature stability and phase transformations of titanium carbide (Ti3C2Tx) MXene. J. Phys. Condens. Matter 33, 224002 (2021).
Sang, X. et al. In situ atomistic insight into the growth mechanisms of single layer 2D transition metal carbides. Nat. Commun. https://doi.org/10.1038/s41467-018-04610-0 (2018).
Seredych, M. et al. High-temperature behavior and surface chemistry of carbide MXenes studied by thermal analysis. Chem. Mater. 31, 3324–3332 (2019).
Li, M., Wang, S., Wang, Q., Ren, F. & Wang, Y. Preparation, microstructure and tensile properties of two dimensional MXene reinforced copper matrix composites. Mater. Sci. Eng. A 803, 140699 (2021).
Jakubczak, M., Szuplewska, A., Rozmysłowska-Wojciechowska, A., Rosenkranz, A. & Jastrzębska, A. M. Novel 2D MBenes — synthesis, structure, and biotechnological potential. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202103048 (2021).
Zhang, B., Zhou, J. & Sun, Z. MBenes: progress, challenges and future. J. Mater. Chem. A https://doi.org/10.1039/D2TA03482D (2022).
Zhou, J. et al. Boridene: two-dimensional Mo4/3B2-x with ordered metal vacancies obtained by chemical exfoliation. Science 373, 801–805 (2021).
Hart, J. L. et al. Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. https://doi.org/10.1038/s41467-018-08169-8 (2019).
Ji, B. et al. Electromagnetic shielding behavior of heat-treated Ti3C2Tx MXene accompanied by structural and phase changes. Carbon https://doi.org/10.1016/j.carbon.2020.04.041 (2020).
Acknowledgements
B.C.W., S.K.N. and B.A. acknowledge the Office of Naval Research for funding their work under award number N00014-21-1-2799. B.C.W. acknowledges support for his PhD studies from the National Defense Science and Engineering Graduate Fellowship programme from the Army Research Office. The authors acknowledge Y. Im and A. Vorhees for their assistance with compilation of the mechanical properties/oxidation tables for UHTCs.
Author information
Authors and Affiliations
Contributions
B.C.W., S.K.N. and B.A. researched data for the article and wrote it. All authors contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Materials thanks Jan Dusza, Diletta Sciti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wyatt, B.C., Nemani, S.K., Hilmas, G.E. et al. Ultra-high temperature ceramics for extreme environments. Nat Rev Mater (2023). https://doi.org/10.1038/s41578-023-00619-0
Accepted:
Published:
DOI: https://doi.org/10.1038/s41578-023-00619-0
This article is cited by
-
Alkali cation stabilization of defects in 2D MXenes at ambient and elevated temperatures
Nature Communications (2024)
-
Materials design for hypersonics
Nature Communications (2024)
-
Optoelectronic tuning of two-dimensional engineered nanomaterials for enhanced photothermal therapy: opportunities and challenges
Graphene and 2D Materials (2024)