Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ultra-high temperature ceramics for extreme environments

Abstract

Modern demands in clean energy and space exploration require materials scientists to develop materials that perform in the most extreme conditions in our universe. Recent advances in hypersonic travel and nuclear technology have brought a family of refractory transition metal carbides, nitrides and diborides, known as ultra-high temperature ceramics (UHTCs) to the forefront. These materials have extremely high melting points (>4,000 °C), high thermal conductivity (>140 W m1 K−1) and strong transition-metal-to-non-metal bonding (>600 GPa mechanical stiffness), which promise to enable their application in extreme environments. This Review covers the relation of metal–non-metal (M–X) chemistry to the high-temperature, thermal, mechanical and oxidation behaviour of UHTCs and discusses the effect of synthesis and potential additives on their properties. In addition, we present new areas of research, including advances in additive manufacturing, high-entropy compositions and 2D materials to improve the processing and performance of UHTCs. A focus on chemistry–synthesis–processing relationships will be key to enabling innovative designs to bring UHTCs to fruition as extreme environment materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemistry, definition and applications of UHTCs.
Fig. 2: Fundamental bonding and properties of diboride, nitride and carbide ultra-high temperature ceramics.
Fig. 3: High-temperature oxidation behaviour of UHTCs.
Fig. 4: Processing methods of UHTCs.
Fig. 5: Various reinforcing materials implemented in UHTC composite materials and their effect on properties.
Fig. 6: Future outlook for UHTC developments.

Similar content being viewed by others

References

  1. Moissan, H. A new zirconium carbide. C.R. Acad. Sci. 122, 651–654 (1896).

    CAS  Google Scholar 

  2. Tucker, S. A. & Moody, H. R. II. — The production of hitherto unknown metallic borides. J. Chem. Soc. Trans. 81, 14–17 (1902).

    Article  CAS  Google Scholar 

  3. National Aeronautics and Space Administration. Joint Conf. Lifting Manned Hypervelocity and Reentry Vehicle (NASA, 1960).

  4. Fahrenholtz, W. G. & Hilmas, G. E. Ultra-high temperature ceramics: materials for extreme environments. Scr. Mater. 129, 94–99 (2017).

    Article  CAS  Google Scholar 

  5. Williams, W. S. Transition-metal carbides. Prog. Solid State Chem. 6, 57–118 (1971).

    Article  CAS  Google Scholar 

  6. Matkovich, V. I., Samsonov, G.-V. & Hagenmuller, P. Boron and Refractory Borides (Springer, 1977).

  7. Clougherty, E. V., Wilkes, K. E. & Tye, R. P. Research and development of refractory oxidation-resistant diborides. Part 2, Volume 5: thermal, physical, electrical and optical properties (Air Force Materials Lab., 1968).

  8. Kalish, D. & Clougherty, E. V. Densification mechanisms in high‐pressure hot‐pressing of HfB2. J. Am. Ceram. Soc. 52, 26–30 (1969).

    Article  CAS  Google Scholar 

  9. Kalish, D., Clougherty, E. V. & Kreder, K. Strength, fracture mode, and thermal stress resistance of HfB2 and ZrB2. J. Am. Ceram. Soc. 52, 30–36 (1969).

    Article  CAS  Google Scholar 

  10. Clougherty, E. V., Peters, E. T. & Kalish, D. Diboride materials, candidates for aerospace applications. Sci. Advan. Mater. Process Eng. Proc. 15, 297–308 (1969).

    Google Scholar 

  11. Clougherty, E., Pober, R. & Kaufman, L. Synthesis of oxidation resistant metal diboride composites. Trans. Met. Soc. AIME 242, 1077–1082 (1968).

    CAS  Google Scholar 

  12. Kaufman, L., Clougherty, E. & Berkowitz-Mattuck, J. Oxidation characteristics of hafnium and zirconium diboride. Trans. Met. Soc. AIME 239, 458–466 (1967).

    CAS  Google Scholar 

  13. Kaufman, L. & Clougherty, E. V. Investigation of boride compounds for very high-temperature applications (ManLabs, 1963).

  14. Tripp, W. & Graham, H. Thermogravimetric study of the oxidation of ZrB2 in the temperature range of 800 to 1500 oC. J. Electrochem. Soc. 118, 1195 (1971).

    Article  CAS  Google Scholar 

  15. Hinze, J., Tripp, W. & Graham, H. The high‐temperature oxidation behavior of a HfB2 + 20 v/o SiC composite. J. Electrochem. Soc. 122, 1249 (1975).

    Article  CAS  Google Scholar 

  16. Lonergan, J. M., Fahrenholtz, W. G. & Hilmas, G. E. Zirconium diboride with high thermal conductivity. J. Am. Ceram. Soc. 97, 1689–1691 (2014).

    Article  CAS  Google Scholar 

  17. Deng, B. et al. Phase controlled synthesis of transition metal carbide nanocrystals by ultrafast flash Joule heating. Nat. Commun. 13, 262 (2022).

    Article  CAS  Google Scholar 

  18. Paul, A. et al. UHTC–carbon fibre composites: preparation, oxyacetylene torch testing and characterisation. J. Eur. Ceram. Soc. 33, 423–432 (2013).

    Article  CAS  Google Scholar 

  19. Thimmappa, S. K. & Golla, B. R. Oxidation behavior of silicon-based ceramics reinforced diboride UHTC: a review. Silicon 14, 12049–12074 (2022).

    Article  CAS  Google Scholar 

  20. Paul, A., Binner, J. & Vaidhyanathan, B. in Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications Ch. 7 (eds Fahrenholtz, W. G., Wuchina, E. J., Lee, W. E. & Zhou, Y.) 144–166 (Wiley, 2014).

  21. Castle, E., Csanádi, T., Grasso, S., Dusza, J. & Reece, M. Processing and properties of high-entropy ultra-high temperature carbides. Sci. Rep. 8, 1–12 (2018).

    Article  CAS  Google Scholar 

  22. Oses, C., Toher, C. & Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 4, 515–524 (2020).

    Google Scholar 

  23. Hossain, M. D. et al. Entropy landscaping of high‐entropy carbides. Adv. Mater. 33, 2102904 (2021).

    Article  CAS  Google Scholar 

  24. Naguib, M. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011).

    Article  CAS  Google Scholar 

  25. Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).

    Article  CAS  Google Scholar 

  26. Wuchina, E., Opila, E., Opeka, M., Fahrenholtz, W. & Talmy, I. UHTCs: ultra-high temperature ceramic materials for extreme environment applications. Electrochem. Soc. Interface 16, 30–36 (2007).

    Article  CAS  Google Scholar 

  27. Hong, Q.-J. & Van De Walle, A. Prediction of the material with highest known melting point from ab initio molecular dynamics calculations. Phys. Rev. B 92, 020104 (2015).

    Article  Google Scholar 

  28. Kral, C., Lengauer, W., Rafaja, D. & Ettmayer, P. Critical review on the elastic properties of transition metal carbides, nitrides and carbonitrides. J. Alloy Compd. 265, 215–233 (1998).

    Article  CAS  Google Scholar 

  29. Okamoto, N. L., Kusakari, M., Tanaka, K., Inui, H. & Otani, S. Anisotropic elastic constants and thermal expansivities in monocrystal CrB2, TiB2, and ZrB2. Acta Mater. 58, 76–84 (2010).

    Article  CAS  Google Scholar 

  30. Harrington, G. J. & Hilmas, G. E. in Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications Ch. 9 (eds Fahrenholtz, W. G., Wuchina, E. J., Lee, W. E. & Zhou, Y.) 197–235 (Wiley, 2014).

  31. Levine, S. R. et al. Evaluation of ultra-high temperature ceramics for aeropropulsion use. J. Eur. Ceram. Soc. 22, 2757–2767 (2002).

    Article  CAS  Google Scholar 

  32. Tang, S., Deng, J., Wang, S., Liu, W. & Yang, K. Ablation behaviors of ultra-high temperature ceramic composites. Mater. Sci. Eng. A 465, 1–7 (2007).

    Article  Google Scholar 

  33. Feng, L., Chen, W. T., Fahrenholtz, W. G. & Hilmas, G. E. Strength of single‐phase high‐entropy carbide ceramics up to 2300 °C. J. Am. Ceram. Soc. 104, 419–427 (2021).

    Article  CAS  Google Scholar 

  34. Lee, W. E., Giorgi, E., Harrison, R., Maitre, A. & Rapaud, O. in Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications Ch. 15 (eds Fahrenholtz, W. G., Wuchina, E. J., Lee, W. E. & Zhou, Y.) 391–415 (Wiley, 2014).

  35. Golla, B. R., Mukhopadhyay, A., Basu, B. & Thimmappa, S. K. Review on ultra-high temperature boride ceramics. Prog. Mater. Sci. 111, 100651 (2020).

    Article  CAS  Google Scholar 

  36. Tang, S. & Hu, C. Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: a review. J. Mater. Sci. Technol. 33, 117–130 (2017).

    Article  CAS  Google Scholar 

  37. Savino, R., Criscuolo, L., Di Martino, G. D. & Mungiguerra, S. Aero-thermo-chemical characterization of ultra-high-temperature ceramics for aerospace applications. J. Eur. Ceram. Soc. 38, 2937–2953 (2018).

    Article  CAS  Google Scholar 

  38. Monteverde, F., Bellosi, A. & Scatteia, L. Processing and properties of ultra-high temperature ceramics for space applications. Mater. Sci. Eng. A 485, 415–421 (2008).

    Article  Google Scholar 

  39. Sekhar, J., Liu, J. & de Nora, V. A porous titanium diboride composite cathode coating for Hall–Héroult cells: part I. Thin coatings. Metall. Mater. Trans. B 29, 59–67 (1998).

    Article  Google Scholar 

  40. Eswarappa Prameela, S. et al. Materials for extreme environments. Nat. Rev. Mater. 8, 81–88 (2023).

    Article  Google Scholar 

  41. Guo, S., Zhang, J., Wu, W. & Zhou, W. Corrosion in the molten fluoride and chloride salts and materials development for nuclear applications. Prog. Mater. Sci. 97, 448–487 (2018).

    Article  CAS  Google Scholar 

  42. Vajeeston, P., Ravindran, P., Ravi, C. & Asokamani, R. Electronic structure, bonding, and ground-state properties of AlB2-type transition-metal diborides. Phys. Rev. B 63, 045115 (2001).

    Article  Google Scholar 

  43. Haglund, J., Fernandez Guillermet, A., Grimvall, G. & Korling, M. Theory of bonding in transition-metal carbides and nitrides. Phys. Rev. B 48, 11685 (1993).

    Article  CAS  Google Scholar 

  44. Guillermet, A. F. & Grimvall, G. Cohesive properties and vibrational entropy of 3d transition-metal compounds: MX (NaCl) compounds (X = C, N, O, S), complex carbides, and nitrides. Phys. Rev. B 40, 10582 (1989).

    Article  CAS  Google Scholar 

  45. Khatri, I. et al. Correlating structure and orbital occupation with the stability and mechanical properties of 3d transition metal carbides. J. Alloy Compd. 891, 161866 (2022).

    Article  CAS  Google Scholar 

  46. Kaptay, G., Csicsovszki, G. & Yaghmaee, M. S. An absolute scale for the cohesion energy of pure metals. Mater. Sci. Forum 414415, 235–240 (2003).

    Article  Google Scholar 

  47. Zhou, Y., Xiang, H., Feng, Z. & Li, Z. General trends in electronic structure, stability, chemical bonding and mechanical properties of ultrahigh temperature ceramics TMB2 (TM = transition metal). J. Mater. Sci. Technol. 31, 285–294 (2015).

    Article  CAS  Google Scholar 

  48. Häglund, J., Grimvall, G., Jarlborg, T. & Guillermet, A. F. Band structure and cohesive properties of 3d-transition-metal carbides and nitrides with the NaCl-type structure. Phys. Rev. B 43, 14400 (1991).

    Article  Google Scholar 

  49. Fernandez Guillermet, A., Haglund, J. & Grimvall, G. Cohesive properties of 4d-transition-metal carbides and nitrides in the NaCl-type structure. Phys. Rev. B 45, 11557 (1992).

    Article  CAS  Google Scholar 

  50. Guillermet, A. F., Haglund, J. & Grimvall, G. Cohesive properties and electronic structure of 5d-transition-metal carbides and nitrides in the NaCl structure. Phys. Rev. B 48, 11673 (1993).

    Article  CAS  Google Scholar 

  51. Burdett, J. K., Canadell, E. & Miller, G. J. Electronic structure of transition-metal borides with the AlB2 structure. J. Am. Chem. Soc. 108, 6561–6568 (1986).

    Article  CAS  Google Scholar 

  52. Shein, I. R. & Ivanovskii, A. L. Elastic properties of mono- and polycrystalline hexagonal AlB2-like diborides of s, p and d metals from first-principles calculations. J. Phys. Condens. Matter 20, 415218 (2008).

    Article  Google Scholar 

  53. Li, H. et al. Structural, elastic and electronic properties of transition metal carbides TMC (TM = Ti, Zr, Hf and Ta) from first-principles calculations. Solid State Commun. 151, 602–606 (2011).

    Article  CAS  Google Scholar 

  54. Williams, W. S. The thermal conductivity of metallic ceramics. JOM 50, 62–66 (1998).

    Article  CAS  Google Scholar 

  55. Fukuichi, M. Computational insights into the relation between elements’ physical properties and mechanical properties of 3d, 4d, and 5d transition metal carbides via machine learning. Solid State Commun. 354, 114896 (2022).

    Article  CAS  Google Scholar 

  56. Pierson, H. O. Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Applications (William Andrew, 1996).

  57. Fahrenholtz, W. G., Hilmas, G. E., Talmy, I. G. & Zaykoski, J. A. Refractory diborides of zirconium and fafnium. J. Am. Ceram. Soc. 90, 1347–1364 (2007).

    Article  CAS  Google Scholar 

  58. Barsoum, M. W. Fundamentals of Ceramics Vol. 4 (Institute of Physics, 2003).

  59. Wyatt, B. C., Rosenkranz, A. & Anasori, B. 2D MXenes: tunable mechanical and tribological properties. Adv. Mater. 33, 2007973 (2021).

    Article  CAS  Google Scholar 

  60. Pyykko, P. & Atsumi, M. Molecular single-bond covalent radii for elements 1–118. Chemistry 15, 186-197 (2009).

    Article  Google Scholar 

  61. Neuman, E. W., Hilmas, G. E. & Fahrenholtz, W. G. Strength of zirconium diboride to 2300 °C. J. Am. Ceram. Soc. 96, 47–50 (2013).

    Article  CAS  Google Scholar 

  62. Hunter, B. et al. Investigations into the slip behavior of zirconium diboride. J. Mater. Res. 31, 2749–2756 (2016).

    Article  CAS  Google Scholar 

  63. Wuchina, E. et al. Designing for ultrahigh-temperature applications: the mechanical and thermal properties of HfB2, HfCx, HfNx and αHf(N). J. Mater. Sci. 39, 5939–5949 (2004).

    Article  CAS  Google Scholar 

  64. Justin, J. & Jankowiak, A. Ultra high temperature ceramics: densification, properties and thermal stability. J. Aerospace Lab 3, 1–11 (2011).

    Google Scholar 

  65. Ni, D. et al. Advances in ultra-high temperature ceramics, composites, and coatings. J. Adv. Ceram. 11, 1–56 (2022).

    Article  CAS  Google Scholar 

  66. Jacobson, N. S., Opila, E. J. & Lee, K. N. Oxidation and corrosion of ceramics and ceramic matrix composites. Curr. Opin. Solid State Mater. Sci. 5, 301–309 (2001).

    Article  CAS  Google Scholar 

  67. Hasegawa, M. in Treatise on Process Metallurgy Vol. 1 Ch. 3.3 (ed. Seetharaman, S.) 507–516 (Elsevier, 2014).

  68. Qin, M. et al. Dual-phase high-entropy ultra-high temperature ceramics. J. Eur. Ceram. Soc. 40, 5037–5050 (2020).

    Article  CAS  Google Scholar 

  69. Naraparaju, R., Maniya, K., Murchie, A., Fahrenholtz, W. G. & Hilmas, G. E. Effect of moisture on the oxidation behavior of ZrB2. J. Am. Ceram. Soc. 104, 1058–1066 (2021).

    Article  CAS  Google Scholar 

  70. Opeka, M. M., Talmy, I. G. & Zaykoski, J. Oxidation-based materials selection for 2,000 °C+ hypersonic aerosurfaces: theoretical considerations and historical experience. J. Mater. Sci. 39, 5887–5904 (2004).

    Article  CAS  Google Scholar 

  71. Parthasarathy, T., Rapp, R., Opeka, M. & Kerans, R. A model for the oxidation of ZrB2, HfB2 and TiB2. Acta Mater. 55, 5999–6010 (2007).

    Article  CAS  Google Scholar 

  72. Parthasarathy, T., Rapp, R., Opeka, M. & Cinibulk, M. Modeling oxidation kinetics of SiC‐containing refractory diborides. J. Am. Ceram. Soc. 95, 338–349 (2012).

    Article  CAS  Google Scholar 

  73. Glechner, T. et al. Influence of the non-metal species on the oxidation kinetics of Hf, HfN, HfC, and HfB2 coatings. Mater. Des. 211, 110136 (2021).

    Article  CAS  Google Scholar 

  74. Glechner, T. et al. Influence of Si on the oxidation behavior of TM-Si-Bz coatings (TM = Ti, Cr, Hf, Ta, W). Surf. Coat. Technol. 434, 128178 (2022).

    Article  CAS  Google Scholar 

  75. Katoh, Y., Vasudevamurthy, G., Nozawa, T. & Snead, L. L. Properties of zirconium carbide for nuclear fuel applications. J. Nucl. Mater. 441, 718–742 (2013).

    Article  CAS  Google Scholar 

  76. Agarwal, S. et al. Neutron irradiation-induced microstructure damage in ultra-high temperature ceramic TiC. Acta Mater. 186, 1–10 (2020).

    Article  CAS  Google Scholar 

  77. Bhattacharya, A. et al. Nano-scale microstructure damage by neutron irradiations in a novel boron-11 enriched TiB2 ultra-high temperature ceramic. Acta Mater. https://doi.org/10.1016/j.actamat.2018.11.030 (2019).

    Article  Google Scholar 

  78. Koyanagi, T. et al. Response of isotopically tailored titanium diboride to neutron irradiation. J. Am. Ceram. Soc. https://doi.org/10.1111/jace.16036 (2019).

    Article  Google Scholar 

  79. Naik, G. V., Kim, J. & Boltasseva, A. Oxides and nitrides as alternative plasmonic materials in the optical range. Optical Mater. Expr. 1, 1090–1099 (2011).

    Article  CAS  Google Scholar 

  80. Naik, G. V., Shalaev, V. M. & Boltasseva, A. Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013).

    Article  CAS  Google Scholar 

  81. Zhang, X. et al. Characterization of thermophysical and mechanical properties of hafnium carbonitride fabricated by hot pressing sintering. J. Mater. Res. Technol. https://doi.org/10.1016/j.jmrt.2023.02.099 (2023).

    Article  Google Scholar 

  82. Suvorova, V. et al. Fabrication and investigation of novel hafnium–zirconium carbonitride ultra-high temperature ceramics. Ceram. Int. https://doi.org/10.1016/j.ceramint.2023.04.222 (2023).

    Article  Google Scholar 

  83. Mei, Z.-G., Bhattacharya, S. & Yacout, A. M. First-principles study of fracture toughness enhancement in transition metal nitrides. Surf. Coat. Technol. https://doi.org/10.1016/j.surfcoat.2018.10.102 (2019).

    Article  Google Scholar 

  84. Hasegawa, Y. Preparation of polyorganoborosilazanes and conversion into ultra-high-temperature borosilicon carbonitrides. J. Ceram. Soc. Jpn. https://doi.org/10.2109/jcersj.114.480 (2006).

    Article  Google Scholar 

  85. Ji, X., Wang, S., Shao, C. & Wang, H.High-temperature corrosion behavior of SiBCN fibers for aerospace applications. ACS Appl. Mater. Interf. https://doi.org/10.1021/acsami.8b04497 (2018).

    Article  Google Scholar 

  86. Fahrenholtz, W. G., Binner, J. & Zou, J. Synthesis of ultra-refractory transition metal diboride compounds. J. Mater. Res. https://doi.org/10.1557/jmr.2016.210 (2016).

    Article  Google Scholar 

  87. Neuman, E. W., Thompson, M., Fahrenholtz, W. G. & Hilmas, G. E. Elevated temperature thermal properties of ZrB2-B4C ceramics. J. Eur. Ceram. Soc. https://doi.org/10.1016/j.jeurceramsoc.2022.03.029 (2022).

    Article  Google Scholar 

  88. Peshev, P. & Bliznakov, G. On the borothermic preparation of titanium, zirconium and hafnium diborides. J. Less Common. Met. https://doi.org/10.1016/0022-5088(68)90199-9 (1968).

    Article  Google Scholar 

  89. You, Y. et al. TaB2 powders synthesis by reduction of Ta2O5 with B4C. Ceram. Int. https://doi.org/10.1016/j.ceramint.2016.09.193 (2017).

    Article  Google Scholar 

  90. Rice, G. W. & Woodin, R. L. Zirconium borohydride as a zirconium boride precursor. J. Am. Ceram. Soc. https://doi.org/10.1111/j.1151-2916.1988.tb05867.x (1988).

    Article  Google Scholar 

  91. Kessling, R. The binary system of zirconium boron. Acta Chem. Scand. 3, 90 (1949).

    Article  CAS  Google Scholar 

  92. Storr, B. et al. Single-step synthesis process for high-entropy transition metal boride powders using microwave plasma. Ceramics 4, 257–264 (2021).

    Article  CAS  Google Scholar 

  93. Peshev, P., Leyarovska, L. & Bliznakov, G. On the borothermic preparation of some vanadium, niobium and tantalum borides. J. Less Common Met. 15, 259–267 (1968).

    Article  CAS  Google Scholar 

  94. Guo, W.-M. et al. Synthesis of TaB2 powders by borothermal reduction. J. Am. Ceram. Soc. https://doi.org/10.1111/jace.14824 (2017).

    Article  Google Scholar 

  95. Krishnarao, R. Preparation of ZrB2 and ZrB2-SiC powders in a single step reduction of zircon (ZrSiO4) with B4C. Ceram. Int. 43, 1205–1209 (2017).

    Article  CAS  Google Scholar 

  96. Wang, Z., Liu, X., Xu, B. & Wu, Z. Fabrication and properties of HfB2 ceramics based on micron and submicron HfB2 powders synthesized via carbo/borothermal reduction of HfO2 with B4C and carbon. Int. J. Refractory Met. Hard Mater. 51, 130–136 (2015).

    Article  CAS  Google Scholar 

  97. Chen, Z. et al. Synthesis of rod-like ZrB2 crystals by boro/carbothermal reduction. Ceram. Int. 45, 13726–13731 (2019).

    Article  CAS  Google Scholar 

  98. Guo, W.-M., Yang, Z.-G. & Zhang, G.-J. Synthesis of submicrometer HfB2 powder and its densification. Mater. Lett. https://doi.org/10.1016/j.matlet.2012.06.012 (2012).

    Article  Google Scholar 

  99. Ran, S., Van der Biest, O. & Vleugels, J. ZrB2 powders synthesis by borothermal reduction.J. Am. Ceram. Soc. https://doi.org/10.1111/j.1551-2916.2010.03747.x (2010).

    Article  Google Scholar 

  100. Levashov, E., Mukasyan, A., Rogachev, A. & Shtansky, D. Self-propagating high-temperature synthesis of advanced materials and coatings. Int. Mater. Rev. 62, 203–239 (2017).

    Article  CAS  Google Scholar 

  101. Kurbatkina, V., Patsera, E., Levashov, E. & Timofeev, A. Self-propagating high-temperature synthesis of refractory boride ceramics (Zr, Ta)B2 with superior properties. J. Eur. Ceram. Soc. 38, 1118–1127 (2018).

    Article  CAS  Google Scholar 

  102. Mishra, S. K. & Pathak, L. C. Self-propagating high-temperature synthesis (SHS) of advanced high-temperature ceramics. Key Eng. Mater. 395, 15–38 (2009).

    Article  CAS  Google Scholar 

  103. Chen, L. et al. Synthesis and oxidation of nanocrystalline HfB2. J. Alloy Compd. 368, 353–356 (2004).

    Article  CAS  Google Scholar 

  104. Karthiselva, N., Murty, B. & Bakshi, S. R. Low temperature synthesis of dense TiB2 compacts by reaction spark plasma sintering. Int. J. Refractory Met. Hard Mater. 48, 201–210 (2015).

    Article  CAS  Google Scholar 

  105. Sani, E. et al. Optical properties of dense zirconium and tantalum diborides for solar thermal absorbers. Renew. Energy 91, 340–346 (2016).

    Article  CAS  Google Scholar 

  106. Gürcan, K., Ayas, E. & Gaşan, H. Formation of TaB2 powders from high energy ball milling and borothermal reduction process. Mater. Chem. Phys. https://doi.org/10.1016/j.matchemphys.2019.121732 (2019).

    Article  Google Scholar 

  107. Chamberlain, A. L., Fahrenholtz, W. G. & Hilmas, G. E. Pressureless sintering of zirconium diboride. J. Am. Ceram. Soc. https://doi.org/10.1111/j.1551-2916.2005.00739.x (2006).

    Article  Google Scholar 

  108. Feng, L., Fahrenholtz, W. G. & Hilmas, G. E. Two‐step synthesis process for high‐entropy diboride powders. J. Am. Ceram. Soc. 103, 724–730 (2020).

    Article  CAS  Google Scholar 

  109. Kravchenko, S. E. et al. Preparation of ZrB2 by reacting ZrCl4 with NaBH4 in molten potassium bromide. Inorg. Mater. https://doi.org/10.1134/S0020168519050108 (2019).

    Article  Google Scholar 

  110. Chen, L. et al. Preparation and some properties of nanocrystalline ZrB2 powders. Scr. Mater. https://doi.org/10.1016/j.scriptamat.2004.01.018 (2004).

    Article  Google Scholar 

  111. Bača, Ľ. & Stelzer, N. Adapting of sol–gel process for preparation of TiB2 powder from low-cost precursors. J. Eur. Ceram. Soc. 28, 907–911 (2008).

    Article  Google Scholar 

  112. Zhang, H. & Li, F. Preparation and microstructure evolution of diboride ultrafine powder by sol–gel and microwave carbothermal reduction method. J. Solgel Sci. Technol. 45, 205–211 (2008).

    Article  CAS  Google Scholar 

  113. Forsthoefel, K. & Sneddon, L. Precursor routes to group 4 metal borides, and metal boride/carbide and metal boride/nitride composites. J. Mater. Sci. 39, 6043–6049 (2004).

    Article  CAS  Google Scholar 

  114. Yang, B. et al. Synthesis of hexagonal-prism-like ZrB2 by a sol–gel route. Powder Technol. 256, 522–528 (2014).

    Article  CAS  Google Scholar 

  115. Li, R., Zhang, Y., Lou, H., Li, J. & Feng, Z. Synthesis of ZrB2 nanoparticles by sol–gel method. J. Solgel Sci. Technol. 58, 580–585 (2011).

    Article  CAS  Google Scholar 

  116. Cao, Y., Zhang, H., Li, F., Lu, L. & Zhang, S. Preparation and characterization of ultrafine ZrB2–SiC composite powders by a combined sol–gel and microwave boro/carbothermal reduction method. Ceram. Int. 41, 7823–7829 (2015).

    Article  CAS  Google Scholar 

  117. Zhao, B. et al. Morphology and mechanism study for the synthesis of ZrB2–SiC powders by different methods. J. Solid State Chem. 207, 1–5 (2013).

    Article  CAS  Google Scholar 

  118. Wang, M., Huang, C. & Wang, Z. Polyzirconosilane preceramic resin as single source precursor of SiC–ZrC ceramics. J. Inorg. Organomet. Polym. Mater. 26, 24–31 (2016).

    Article  Google Scholar 

  119. Yan, Y., Huang, Z., Dong, S. & Jiang, D. New route to synthesize ultra‐fine zirconium diboride powders using inorganic–organic hybrid precursors. J. Am. Ceram. Soc. 89, 3585–3588 (2006).

    Article  CAS  Google Scholar 

  120. Yan, Y. J., Huang, Z. R., Dong, S. M. & Jiang, D. L. in Key Engineering Materials 944–947 (Trans Tech Publ., 2007)

  121. Sciti, D., Silvestroni, L., Medri, V. & Monteverde, F. in Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications Ch. 6 (eds Fahrenholtz, W. G., Wuchina, E. J., Lee, W. E. & Zhou, Y.) 112–143 (Wiley, 2014).

  122. Chlup, Z. et al. Effect of metallic dopants on the microstructure and mechanical properties of TiB2. J. Eur. Ceram. Soc. 35, 2745–2754 (2015).

    Article  CAS  Google Scholar 

  123. Wang, H., Chen, D., Wang, C.-A., Zhang, R. & Fang, D. Preparation and characterization of high-toughness ZrB2/Mo composites by hot-pressing process. Int. J. Refractory Met. Hard Mater. 27, 1024–1026 (2009).

    Article  CAS  Google Scholar 

  124. Sun, X., Han, W., Hu, P., Wang, Z. & Zhang, X. Microstructure and mechanical properties of ZrB2–Nb composite. Int. J. Refractory Met. Hard Mater. https://doi.org/10.1016/j.ijrmhm.2009.12.005 (2010).

    Article  Google Scholar 

  125. Meng, J. et al. Effects of refractory metal additives on diboride‐based ultra‐high temperature ceramics: a review. Int. J. Appl. Ceram. Technol. 20, 1350–1370 (2023).

    Article  CAS  Google Scholar 

  126. Silvestroni, L. & Sciti, D. Effects of MoSi2 additions on the properties of Hf- and Zr-B2 composites produced by pressureless sintering. Scr. Mater. 57, 165–168 (2007).

    Article  CAS  Google Scholar 

  127. Eakins, E., Jayaseelan, D. D. & Lee, W. E. Toward oxidation-resistant ZrB2-SiC ultra high temperature ceramics. Metall. Mater. Trans. A 42, 878–887 (2011).

    Article  CAS  Google Scholar 

  128. Simonenko, E., Simonenko, N., Sevastyanov, V. & Kuznetsov, N. ZrB2/HfB2–SiC ceramics modified by refractory carbides: an overview. Russ. J. Inorg. Chem. 64, 1697–1725 (2019).

    Article  CAS  Google Scholar 

  129. Basu, B., Raju, G. & Suri, A. Processing and properties of monolithic TiB2 based materials. Int. Mater. Rev. 51, 352–374 (2006).

    Article  CAS  Google Scholar 

  130. Johnson, S., Gasch, M., Stackpoole, M., Lawson, J. & Gusman, M. in 16th AIAA/DLR/DGLR Int. Space Planes Hypersonic Syst. Technol. Conf. (AIAA, 2009).

  131. Fahrenholtz, W. G., Hilmas, G. E., Zhang, S. C. & Zhu, S. Pressureless sintering of zirconium diboride: particle size and additive effects. J. Am. Ceram. Soc. https://doi.org/10.1111/j.1551-2916.2007.02169.x (2008).

    Article  Google Scholar 

  132. Jin, H., Meng, S., Xie, W., Xu, C. & Niu, J. ZrB2-CNTs nanocomposites fabricated by spark plasma sintering. Materials 9, 967 (2016).

    Article  Google Scholar 

  133. Tammana, S. R. C. M. et al. Ablation behaviour of Cf–ZrC-SiC with and without rare earth metal oxide dopants. Open Ceram. 10, 100270 (2022).

    Article  CAS  Google Scholar 

  134. Rebillat, F., Andreani, A.-S. & Poulon-Quintin, A. Novel rare earth-bearing ultra-high-temperature ceramics tested in a solar furnace above 2,200 °C in air. Oxid. Met. 80, 257–266 (2013).

    Article  CAS  Google Scholar 

  135. Tan, W., Adducci, M. & Trice, R. Evaluation of rare‐earth modified ZrB2–SiC ablation resistance using an oxyacetylene torch. J. Am. Ceram. Soc. 97, 2639–2645 (2014).

    Article  CAS  Google Scholar 

  136. Li, X. Y., Han, J. C., Zhang, X. H. & Luo, X. G. Effect of the rare earth oxides on sintering behavior and microstructure of ZrB2-SiC ceramics. Key Eng. Mater. 368-372, 1740–1742 (2008).

    Article  CAS  Google Scholar 

  137. Rueschhoff, L. M., Carney, C. M., Apostolov, Z. D. & Cinibulk, M. K. Processing of fiber‐reinforced ultra‐high temperature ceramic composites: a review. Int. J. Ceram. Eng. Sci. 2, 22–37 (2020).

    Article  CAS  Google Scholar 

  138. Arai, Y., Inoue, R., Goto, K. & Kogo, Y. Carbon fiber reinforced ultra-high temperature ceramic matrix composites: a review. Ceram. Int. 45, 14481–14489 (2019).

    Article  CAS  Google Scholar 

  139. Sciti, D. & Silvestroni, L. Processing, sintering and oxidation behavior of SiC fibers reinforced ZrB2 composites. J. Eur. Ceram. Soc. 32, 1933–1940 (2012).

    Article  CAS  Google Scholar 

  140. Galizia, P., Zoli, L. & Sciti, D. Impact of residual stress on thermal damage accumulation, and Young’s modulus of fiber-reinforced ultra-high temperature ceramics. Mater. Des. 160, 803–809 (2018).

    Article  CAS  Google Scholar 

  141. Hu, P. et al. Rolling compacted fabrication of carbon fiber reinforced ultra-high temperature ceramics with highly oriented architectures and exceptional mechanical feedback. Ceram. Int. 44, 14907–14912 (2018).

    Article  CAS  Google Scholar 

  142. Silvestroni, L., Sciti, D., Hilmas, G., Fahrenholtz, W. & Watts, J. Effect of a weak fiber interface coating in ZrB2 reinforced with long SiC fibers. Mater. Des. https://doi.org/10.1016/j.matdes.2015.08.105 (2015).

    Article  Google Scholar 

  143. Lamon, J. in Ceramic Matrix Composites: Fiber Reinforced Ceramics and their Applications (ed. Krenkel, W.) 49–68 (Wiley, 2008).

  144. Sciti, D., Zoli, L., Reimer, T., Vinci, A. & Galizia, P. A systematic approach for horizontal and vertical scale up of sintered ultra-high temperature ceramic matrix composites for aerospace — advances and perspectives. Compos. B Eng. 234, 109709 (2022).

    Article  CAS  Google Scholar 

  145. Hu, H. et al. Preparation and characterization of C/SiC–ZrB2 composites by precursor infiltration and pyrolysis process. Ceram. Int. 36, 1011–1016 (2010).

    Article  CAS  Google Scholar 

  146. Zoli, L. & Sciti, D. Efficacy of a ZrB2–SiC matrix in protecting C fibres from oxidation in novel UHTCMC materials. Mater. Des. 113, 207–213 (2017).

    Article  CAS  Google Scholar 

  147. Silvestroni, L., Fabbriche, D. D. & Sciti, D. Tyranno SA3 fiber–ZrB2 composites. Part I: microstructure and densification. Mater. Des. https://doi.org/10.1016/j.matdes.2014.08.068 (2015).

    Article  Google Scholar 

  148. Zoli, L. et al. Rapid spark plasma sintering to produce dense UHTCs reinforced with undamaged carbon fibres. Mater. Des. 130, 1–7 (2017).

    Article  CAS  Google Scholar 

  149. Li, W., Yang, F. & Fang, D. The temperature-dependent fracture strength model for ultra-high temperature ceramics. Acta Mech. Sin. https://doi.org/10.1007/s10409-009-0326-7 (2010).

    Article  Google Scholar 

  150. Wang, R., Li, W., Ji, B. & Fang, D. Fracture strength of the particulate-reinforced ultra-high temperature ceramics based on a temperature dependent fracture toughness model. J. Mech. Phys. Solids https://doi.org/10.1016/j.jmps.2017.07.012 (2017).

    Article  Google Scholar 

  151. Hu, P. & Wang, Z. Flexural strength and fracture behavior of ZrB2–SiC ultra-high temperature ceramic composites at 1800 °C. J. Eur. Ceram. Soc. 30, 1021–1026 (2010).

    Article  CAS  Google Scholar 

  152. Rodríguez-Sánchez, J., Sánchez-González, E., Guiberteau, F. & Ortiz, A. L. Contact-mechanical properties at intermediate temperatures of ZrB2 ultra-high-temperature ceramics pressureless sintered with Mo, Ta, or Zr disilicides. J. Eur. Ceram. Soc. https://doi.org/10.1016/j.jeurceramsoc.2015.04.023 (2015).

    Article  Google Scholar 

  153. Rubio, V. et al. Materials characterisation and mechanical properties of Cf-UHTC powder composites. J. Eur. Ceram. Soc. https://doi.org/10.1016/j.jeurceramsoc.2018.12.043 (2019).

    Article  Google Scholar 

  154. Neuman, E. W., Hilmas, G. E. & Fahrenholtz, W. G. Mechanical behavior of zirconium diboride–silicon carbide ceramics at elevated temperature in air. J. Eur. Ceram. Soc. 33, 2889–2899 (2013).

    Article  CAS  Google Scholar 

  155. Neuman, E. W., Thompson, M., Fahrenholtz, W. G. & Hilmas, G. E. Thermal properties of ZrB2-TiB2 solid solutions. J. Eur. Ceram. Soc. https://doi.org/10.1016/j.jeurceramsoc.2021.08.004 (2021).

    Article  Google Scholar 

  156. Asl, M. S., Nayebi, B., Ahmadi, Z., Zamharir, M. J. & Shokouhimehr, M. Effects of carbon additives on the properties of ZrB2-based composites: a review. Ceram. Int. 44, 7334–7348 (2018).

    Article  CAS  Google Scholar 

  157. Asl, M. S., Nayebi, B. & Shokouhimehr, M. TEM characterization of spark plasma sintered ZrB2–SiC–graphene nanocomposite. Ceram. Int. 44, 15269–15273 (2018).

    Article  Google Scholar 

  158. Bakshi, S. R. et al. Spark plasma sintered tantalum carbide–carbon nanotube composite: effect of pressure, carbon nanotube length and dispersion technique on microstructure and mechanical properties. Mater. Sci. Eng. A 528, 2538–2547 (2011).

    Article  Google Scholar 

  159. Jin, H., Shu, H., Bai, G., Chen, D. & Zeng, Q. In situ synthesis of CNTs in HfB2 powders by chemical vapor deposition of methane to fabricate reinforced HfB2 composites. J. Alloy Compd. 745, 1–7 (2018).

    Article  CAS  Google Scholar 

  160. Simonenko, E. et al. Modification of HfB2–30% SiC UHTC with graphene (1 Vol%) and its influence on the behavior in a supersonic air jet. Russ. J. Inorg. Chem. 66, 1405–1415 (2021).

    Article  CAS  Google Scholar 

  161. Dubey, S. et al. Domination of phononic scattering in solid solutioning and interfaces of HfB2–ZrB2–SiC-carbon nanotube based ultra high temperature composites. Scr. Mater. 218, 114776 (2022).

    Article  CAS  Google Scholar 

  162. Bai, Y., Zhang, B., Du, H. & Cheng, L. Efficient multiscale strategy for toughening HfB2 ceramics: a heterogeneous ceramic–metal layered architecture. J. Am. Ceram. Soc. https://doi.org/10.1111/jace.17610 (2021).

    Article  Google Scholar 

  163. Nieto, A. et al. Oxidation behavior of graphene nanoplatelet reinforced tantalum carbide composites in high temperature plasma flow. Carbon 67, 398–408 (2014).

    Article  CAS  Google Scholar 

  164. Neuman, E. W. & Hilmas, G. E. in Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications Ch. 8 (eds Fahrenholtz, W. G., Wuchina, E. J., Lee, W. E. & Zhou, Y.) 167–196 (Wiley, 2014).

  165. Feilden, E., Glymond, D., Saiz, E. & Vandeperre, L. High temperature strength of an ultra high temperature ceramic produced by additive manufacturing. Ceram. Int. 45, 18210–18214 (2019).

    Article  CAS  Google Scholar 

  166. Kemp, J. W. et al. Direct ink writing of ZrB2-SiC chopped fiber ceramic composites. Addit. Manuf. 44, 102049 (2021).

    CAS  Google Scholar 

  167. Liu, R., Wang, Z., Sparks, T., Liou, F. & Newkirk, J. in Laser Additive Manufacturing (ed. Brandt, M.) 351–371 (Elsevier, 2017).

  168. Peters, A. B. et al. Reactive laser synthesis of ultra-high-temperature ceramics HfC, ZrC, TiC, HfN, ZrN, and TiN for additive manufacturing. Ceram. Int. 49, 11204–11229 (2023).

    Article  CAS  Google Scholar 

  169. Prakash, K. S., Nancharaih, T. & Rao, V. S. Additive manufacturing techniques in manufacturing — an overview. Mater. Today Proc. 5, 3873–3882 (2018).

    Article  CAS  Google Scholar 

  170. Sesso, M. L., Slater, S., Thornton, J. & Franks, G. V. Direct ink writing of hierarchical porous ultra-high temperature ceramics (ZrB2). J. Am. Ceram. Soc. https://doi.org/10.1111/jace.17911 (2021).

    Article  Google Scholar 

  171. Hong, Q.-J., van de Walle, A., Ushakov, S. V. & Navrotsky, A. Integrating computational and experimental thermodynamics of refractory materials at high temperature. CALPHAD 79, 102500 (2022).

    Article  CAS  Google Scholar 

  172. Yang, M. & Sun, H. Early melting of tantalum carbide under anisotropic stresses: an ab-initio molecular dynamics study. Phys. Rev. B 107, 104101 (2023).

    Article  CAS  Google Scholar 

  173. Lawson, J. W., Bauschlicher, C. W. Jr & Daw, M. S. Ab initio computations of electronic, mechanical, and thermal properties of ZrB2 and HfB2. J. Am. Ceram. Soc. 94, 3494–3499 (2011).

    Article  CAS  Google Scholar 

  174. Vorotilo, S. et al. Ab-initio modeling and experimental investigation of properties of ultra-high temperature solid solutions TaxZr1−xC. J. Alloy Compd. 778, 480–486 (2019).

    Article  CAS  Google Scholar 

  175. Wang, Y. P., Gan, G. Y., Wang, W., Yang, Y. & Tang, B. Y. Ab initio prediction of mechanical and electronic properties of ultrahigh temperature high‐entropy ceramics (Hf0.2Zr0.2Ta0.2M0.2Ti0.2) B2 (M = Nb, Mo, Cr). Phys. Stat. Sol. 255, 1800011 (2018).

    Article  Google Scholar 

  176. Backman, L., Gild, J., Luo, J. & Opila, E. J. Part I: theoretical predictions of preferential oxidation in refractory high entropy materials. Acta Mater. 197, 20–27 (2020).

    Article  CAS  Google Scholar 

  177. Bongiorno, A. et al. A perspective on modeling materials in extreme environments: oxidation of ultrahigh-temperature ceramics. MRS Bull. 31, 410–418 (2006).

    Article  CAS  Google Scholar 

  178. Corral, E. L. An ablation model for ultrahigh temperature ceramics (Air Force Res. Lab., 2019).

  179. Petla, H., Renova, E. P., Bronson, A., Chessa, J. F. & Maheswaraiah, N. A computational analysis of a ZrO2–SiO2 scale for a ZrB2–ZrC–Zr ultrahigh temperature ceramic composite system. J. Eur. Ceram. Soc. 30, 2407–2418 (2010).

    Article  CAS  Google Scholar 

  180. Backman, L., Gild, J., Luo, J. & Opila, E. J. Part II: experimental verification of computationally predicted preferential oxidation of refractory high entropy ultra-high temperature ceramics. Acta Mater. 197, 81–90 (2020).

    Article  CAS  Google Scholar 

  181. Dong, X. & Shin, Y. C. Multi-scale genome modeling for predicting fracture strength of silicon carbide ceramics. Comput. Mater. Sci. 141, 10–18 (2018).

    Article  CAS  Google Scholar 

  182. Li, Z., Wang, B., Wang, K. & Zheng, L. A multi-scale model for predicting the thermal shock resistance of porous ceramics with temperature-dependent material properties. J. Eur. Ceram. Soc. 39, 2720–2730 (2019).

    Article  CAS  Google Scholar 

  183. Sarker, P. et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat. Commun. 9, 4980 (2018).

    Article  Google Scholar 

  184. Csanádi, T., Castle, E., Reece, M. J. & Dusza, J. Strength enhancement and slip behaviour of high-entropy carbide grains during micro-compression. Sci. Rep. 9, 10200 (2019).

    Article  Google Scholar 

  185. Feng, L., Fahrenholtz, W. G. & Brenner, D. W. High-entropy ultra-high-temperature borides and carbides: a new class of materials for extreme environments. Annu. Rev. Mater. Res. 51, 165–185 (2021).

    Article  CAS  Google Scholar 

  186. Feng, L., Fahrenholtz, W. G. & Hilmas, G. E. Low‐temperature sintering of single‐phase, high‐entropy carbide ceramics. J. Am. Ceram. Soc. 102, 7217–7224 (2019).

    Article  CAS  Google Scholar 

  187. Feng, L., Fahrenholtz, W. G., Hilmas, G. E. & Zhou, Y. Synthesis of single-phase high-entropy carbide powders. Scr. Mater. 162, 90–93 (2019).

    Article  CAS  Google Scholar 

  188. Feng, L., Monteverde, F., Fahrenholtz, W. G. & Hilmas, G. E. Superhard high-entropy AlB2-type diboride ceramics. Scr. Mater. 199, 113855 (2021).

    Article  CAS  Google Scholar 

  189. Gild, J. et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep. 6, 37946 (2016).

    Article  CAS  Google Scholar 

  190. Murchie, A. C., Watts, J. L., Fahrenholtz, W. G. & Hilmas, G. E. Room‐temperature mechanical properties of a high‐entropy diboride. Int. J. Appl. Ceram. Technol. 19, 2293–2299 (2022).

    Article  CAS  Google Scholar 

  191. Nisar, A., Zhang, C., Boesl, B. & Agarwal, A. A perspective on challenges and opportunities in developing high entropy-ultra high temperature ceramics. Ceram. Int. 46, 25845–25853 (2020).

    Article  CAS  Google Scholar 

  192. Schwind, E. C., Reece, M. J., Castle, E., Fahrenholtz, W. G. & Hilmas, G. E. Thermal and electrical properties of a high entropy carbide (Ta, Hf, Nb, Zr) at elevated temperatures. J. Am. Ceram. Soc. 105, 4426–4434 (2022).

    Article  CAS  Google Scholar 

  193. Smith, S. M., Feng, L., Fahrenholtz, W. G., Hilmas, G. E. & Huang, T. High‐entropy boride–carbide ceramics by sequential boro/carbothermal synthesis. J. Am. Ceram. Soc. 105, 5543–5547 (2022).

    Article  CAS  Google Scholar 

  194. Han, X. et al. Improved creep resistance of high entropy transition metal carbides. J. Eur. Ceram. Soc. 40, 2709–2715 (2020).

    Article  CAS  Google Scholar 

  195. Smith, C. J., Yu, X.-X., Guo, Q., Weinberger, C. R. & Thompson, G. B. Phase, hardness, and deformation slip behavior in mixed HfxTa1−xC. Acta Mater. 145, 142–153 (2018).

    Article  CAS  Google Scholar 

  196. Kane, K. A., Pint, B. A., Mitchell, D. & Haynes, J. A. Oxidation of ultrahigh temperature ceramics: kinetics, mechanisms, and applications. J. Eur. Ceram. Soc. 41, 6130–6150 (2021).

    Article  CAS  Google Scholar 

  197. Backman, L. & Opila, E. J. Non-protective oxide formation in high entropy carbide ultra-high temperature ceramics (Virginia Space Grant Consortium, 2019).

  198. Backman, L. & Opila, E. J. Thermodynamic assessment of the group IV, V and VI oxides for the design of oxidation resistant multi-principal component materials. J. Eur. Ceram. Soc. 39, 1796–1802 (2019).

    Article  CAS  Google Scholar 

  199. Wang, F., Monteverde, F. & Cui, B. Will high-entropy carbides and borides be enabling materials for extreme environments? Int. J. Ext. Manuf. 5, 022002 (2023).

    Article  Google Scholar 

  200. Maleski, K., Mochalin, V. N. & Gogotsi, Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem. Mater. https://doi.org/10.1021/acs.chemmater.6b04830 (2017).

    Article  Google Scholar 

  201. Anasori, B., Naguib, M. & Editors, G. Two-dimensional MXenes. MRS Bulletin 48, 238–244 (2023).

    Article  CAS  Google Scholar 

  202. Marian, M. et al. Ti3C2Tx solid lubricant coatings in rolling bearings with remarkable performance beyond state-of-the-art materials. Appl. Mater. Today 25, 101202 (2021).

    Article  Google Scholar 

  203. Lipatov, A. et al. Electrical and elastic properties of individual single‐layer Nb4C3Tx MXene flakes. Adv. Electron. Mater. 6, 1901382 (2020).

    Article  CAS  Google Scholar 

  204. Shayesteh Zeraati, A. et al. Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. Nanoscale https://doi.org/10.1039/d0nr06671k (2021).

    Article  Google Scholar 

  205. Amin, I. et al. Ti3C2Tx MXene polymer composites for anticorrosion: an overview and perspective. ACS Appl. Mater. Interfaces https://doi.org/10.1021/acsami.2c11953 (2022).

    Article  Google Scholar 

  206. Lim, K. R. G. et al. Fundamentals of MXene synthesis. Nat. Synth. https://doi.org/10.1038/s44160-022-00104-6 (2022).

  207. Wyatt, B. C., Nemani, S. K. & Anasori, B. 2D transition metal carbides (MXenes) in metal and ceramic matrix composites. Nano Convergence https://doi.org/10.1186/s40580-021-00266-7 (2021).

    Article  Google Scholar 

  208. Wyatt, B. C. & Anasori, B. Self-assembly and in-situ characterization of Ti3C2Tx in Al: a step toward additive manufacturing of MXene-metal composites. Appl. Mater. Today 27, 101451 (2022).

    Article  Google Scholar 

  209. Li, G. et al. 2D titanium carbide (MXene) based films: expanding the frontier of functional film materials. Adv. Funct. Mater. 31, 2105043 (2021).

    Article  CAS  Google Scholar 

  210. Wyatt, B. C. et al. High-temperature stability and phase transformations of titanium carbide (Ti3C2Tx) MXene. J. Phys. Condens. Matter 33, 224002 (2021).

    Article  CAS  Google Scholar 

  211. Sang, X. et al. In situ atomistic insight into the growth mechanisms of single layer 2D transition metal carbides. Nat. Commun. https://doi.org/10.1038/s41467-018-04610-0 (2018).

    Article  Google Scholar 

  212. Seredych, M. et al. High-temperature behavior and surface chemistry of carbide MXenes studied by thermal analysis. Chem. Mater. 31, 3324–3332 (2019).

    Article  CAS  Google Scholar 

  213. Li, M., Wang, S., Wang, Q., Ren, F. & Wang, Y. Preparation, microstructure and tensile properties of two dimensional MXene reinforced copper matrix composites. Mater. Sci. Eng. A 803, 140699 (2021).

    Article  CAS  Google Scholar 

  214. Jakubczak, M., Szuplewska, A., Rozmysłowska-Wojciechowska, A., Rosenkranz, A. & Jastrzębska, A. M. Novel 2D MBenes — synthesis, structure, and biotechnological potential. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202103048 (2021).

    Article  Google Scholar 

  215. Zhang, B., Zhou, J. & Sun, Z. MBenes: progress, challenges and future. J. Mater. Chem. A https://doi.org/10.1039/D2TA03482D (2022).

    Article  Google Scholar 

  216. Zhou, J. et al. Boridene: two-dimensional Mo4/3B2-x with ordered metal vacancies obtained by chemical exfoliation. Science 373, 801–805 (2021).

    Article  CAS  Google Scholar 

  217. Hart, J. L. et al. Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. https://doi.org/10.1038/s41467-018-08169-8 (2019).

    Article  Google Scholar 

  218. Ji, B. et al. Electromagnetic shielding behavior of heat-treated Ti3C2Tx MXene accompanied by structural and phase changes. Carbon https://doi.org/10.1016/j.carbon.2020.04.041 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

B.C.W., S.K.N. and B.A. acknowledge the Office of Naval Research for funding their work under award number N00014-21-1-2799. B.C.W. acknowledges support for his PhD studies from the National Defense Science and Engineering Graduate Fellowship programme from the Army Research Office. The authors acknowledge Y. Im and A. Vorhees for their assistance with compilation of the mechanical properties/oxidation tables for UHTCs.

Author information

Authors and Affiliations

Authors

Contributions

B.C.W., S.K.N. and B.A. researched data for the article and wrote it. All authors contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Babak Anasori.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Jan Dusza, Diletta Sciti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wyatt, B.C., Nemani, S.K., Hilmas, G.E. et al. Ultra-high temperature ceramics for extreme environments. Nat Rev Mater (2023). https://doi.org/10.1038/s41578-023-00619-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41578-023-00619-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing