Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Photonic van der Waals integration from 2D materials to 3D nanomembranes

Abstract

The integration of functional nanomaterials and heterostructures with photonic architectures has laid the foundation for important photonic and optoelectronic applications. The advent of epitaxy and layer lift-off techniques has enabled a wide spectrum of two-dimensional materials and three-dimensional single-crystalline freestanding thin films with diverse optical functionalities, featuring van der Waals (vdW) interfaces suitable for photonic vdW integration. Physical assembly leveraging vdW interactions eliminates the constraints of epitaxial lattice-matching, introducing unprecedented freedom to combine dissimilar materials with appealing optoelectronic properties but radically distinct crystal structures. Various prefabricated vdW building blocks can be combined in novel hetero-integrated photonic architectures and hybrid vdW heterostructures to prototype new devices and explore exotic nanophotonic phenomena at mixed-dimensional vdW interfaces. The ultrathin nature of these freestanding nanomembranes also enables flexible and lightweight photonic devices for low-cost wearable and multifunctional health-care applications. In this Review, we survey the recent progress in photonic nanomembranes with vdW interfaces, discussing a broad range of delaminated freestanding nanomembranes from film preparation to device implementation. We also analyse the remaining challenges and highlight emerging opportunities for advanced vdW hetero-integration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Freestanding functional nanomembranes for photonic vdW integration.
Fig. 2: Fundamental properties of photonic vdW films.
Fig. 3: Preparation of freestanding optical films.
Fig. 4: Applications of 2D photonic vdW films.
Fig. 5: Applications of 3D photonic vdW films.
Fig. 6: Photonic applications of vdW heterostructures.
Fig. 7: Perspectives for freestanding nanomembranes for photonic vdW integration.

Similar content being viewed by others

References

  1. Zhang, Q. et al. Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021).

    CAS  Google Scholar 

  2. Kaur, P. et al. Hybrid and heterogeneous photonic integration. APL Photon. 6, 061102 (2021).

    Google Scholar 

  3. Marpaung, D., Yao, J. & Capmany, J. Integrated microwave photonics. Nat. Photon. 13, 80–90 (2019).

    CAS  Google Scholar 

  4. Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).

    CAS  Google Scholar 

  5. Kim, I. et al. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol. 16, 508–524 (2021).

    CAS  Google Scholar 

  6. Altug, H., Oh, S.-H., Maier, S. A. & Homola, J. Advances and applications of nanophotonic biosensors. Nat. Nanotechnol. 17, 5–16 (2022).

    CAS  Google Scholar 

  7. Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photon. 14, 285–298 (2020).

    CAS  Google Scholar 

  8. Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020). This paper reports the fabrication of novel artificial heterostructures by stacking freestanding 3D complex oxide nanomembranes.

    CAS  Google Scholar 

  9. Castellanos-Gomez, A. et al. Van der Waals heterostructures. Nat. Rev. Methods Primers 2, 58 (2022).

    CAS  Google Scholar 

  10. Matthews, J. & Blakeslee, A. Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth 27, 118–125 (1974).

    CAS  Google Scholar 

  11. Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019). This review outlines the progress of vdW integration beyond 2D materials for electronic applications.

    CAS  Google Scholar 

  12. Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    CAS  Google Scholar 

  13. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  Google Scholar 

  14. Novoselov, K., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    CAS  Google Scholar 

  15. Wilson, N. P., Yao, W., Shan, J. & Xu, X. Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature 599, 383–392 (2021).

    CAS  Google Scholar 

  16. Liu, C. et al. Silicon/2D-material photodetectors: from near-infrared to mid-infrared. Light Sci. Appl. 10, 123 (2021).

    CAS  Google Scholar 

  17. Regan, E. C. et al. Emerging exciton physics in transition metal dichalcogenide heterobilayers. Nat. Rev. Mater. 7, 778–795 (2022).

    CAS  Google Scholar 

  18. Turunen, M. et al. Quantum photonics with layered 2D materials. Nat. Rev. Phys. 4, 219–236 (2022).

    Google Scholar 

  19. Kong, W. et al. Path towards graphene commercialization from lab to market. Nat. Nanotechnol. 14, 927–938 (2019).

    CAS  Google Scholar 

  20. Bae, S.-H. et al. Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nat. Mater. 18, 550–560 (2019). This review describes the advent of 3D freestanding nanomembranes and their electronic and optoelectronic applications with 2D materials.

    CAS  Google Scholar 

  21. Carlson, A., Bowen, A. M., Huang, Y., Nuzzo, R. G. & Rogers, J. A. Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 24, 5284–5318 (2012).

    CAS  Google Scholar 

  22. Kum, H. et al. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nat. Electron. 2, 439–450 (2019). A comprehensive review on advanced thin-film epitaxy, layer lift-off and nanomembrane transfer techniques towards applications.

    CAS  Google Scholar 

  23. Kim, H. et al. Remote epitaxy. Nat. Rev. Methods Primers 2, 40 (2022).

    CAS  Google Scholar 

  24. Yoon, J. et al. Heterogeneously integrated optoelectronic devices enabled by micro‐transfer printing. Adv. Opt. Mater. 3, 1313–1335 (2015).

    CAS  Google Scholar 

  25. Ning, C.-Z., Dou, L. & Yang, P. Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater. 2, 17070 (2017).

    CAS  Google Scholar 

  26. Qu, G. et al. Property–activity relationship of black phosphorus at the nano–bio interface: from molecules to organisms. Chem. Rev. 120, 2288–2346 (2020).

    CAS  Google Scholar 

  27. Castellanos-Gomez, A. Why all the fuss about 2D semiconductors? Nat. Photon. 10, 202–204 (2016).

    CAS  Google Scholar 

  28. Tran, M. et al. Extending the spectrum of fully integrated photonics. Nature 610, 54–60 (2022). This paper demonstrates essential integrated photonic circuit building blocks by hetero-integrating III–V materials with SiN waveguides.

    CAS  Google Scholar 

  29. Liang, D. & Bowers, J. E. Recent progress in heterogeneous III–V-on-silicon photonic integration. Light Adv. Manuf. 2, 59–83 (2021).

    Google Scholar 

  30. Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    CAS  Google Scholar 

  31. Sun, D. et al. Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications. Light Sci. Appl. 9, 197 (2020).

    CAS  Google Scholar 

  32. Dai, Z. et al. Artificial metaphotonics born naturally in two dimensions. Chem. Rev. 120, 6197–6246 (2020).

    CAS  Google Scholar 

  33. Lin, H. et al. Engineering van der Waals materials for advanced metaphotonics. Chem. Rev. 122, 15204–15355 (2022).

    CAS  Google Scholar 

  34. Najafi, F. et al. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat. Commun. 6, 5873 (2015).

    CAS  Google Scholar 

  35. Shulaker, M. M. et al. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547, 74–78 (2017).

    CAS  Google Scholar 

  36. Choi, C. et al. Reconfigurable heterogeneous integration using stackable chips with embedded artificial intelligence. Nat. Electron. 5, 386–393 (2022). This paper reports a hetero-integrated optoelectronic system by vertically stacking different freestanding nanomembranes with embedded memristors.

    Google Scholar 

  37. Lee, G.-H. et al. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 5, 149–165 (2020).

    Google Scholar 

  38. Geiger, S. et al. Flexible and stretchable photonics: the next stretch of opportunities. ACS Photon. 7, 2618–2635 (2020).

    CAS  Google Scholar 

  39. Rickman, A. The commercialization of silicon photonics. Nat. Photon. 8, 579–582 (2014).

    CAS  Google Scholar 

  40. Ren, F. et al. Van der Waals epitaxy of nearly single-crystalline nitride films on amorphous graphene–glass wafer. Sci. Adv. 7, eabf5011 (2021).

    CAS  Google Scholar 

  41. Kim, H. et al. High-throughput manufacturing of epitaxial membranes from a single wafer by 2D materials-based layer transfer. Nat. Nanotechnol. https://doi.org/10.1038/s41565-023-01340-3 (2023).

    Article  Google Scholar 

  42. Kim, H. et al. Graphene nanopattern as a universal epitaxy platform for single-crystal membrane production and defect reduction. Nat. Nanotechnol. 17, 1054–1059 (2022).

    CAS  Google Scholar 

  43. Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017).

    CAS  Google Scholar 

  44. Yang, A. J. et al. Van der Waals integration of high-κ perovskite oxides and two-dimensional semiconductors. Nat. Electron. 5, 233–240 (2022).

    CAS  Google Scholar 

  45. Neto, A. C., Guinea, F., Peres, N. M., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).

    Google Scholar 

  46. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    CAS  Google Scholar 

  47. Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).

    CAS  Google Scholar 

  48. Kim, Y. et al. Chip-less wireless electronic skins by remote epitaxial freestanding compound semiconductors. Science 377, 859–864 (2022).

    CAS  Google Scholar 

  49. Sun, Z., Martinez, A. & Wang, F. Optical modulators with 2D layered materials. Nat. Photon. 10, 227–238 (2016).

    CAS  Google Scholar 

  50. Aspar, B. et al. The generic nature of the Smart-Cut® process for thin film transfer. J. Electron. Mater. 30, 834–840 (2001).

    CAS  Google Scholar 

  51. Tanaka, A. et al. Smart-cut-like laser slicing of GaN substrate using its own nitrogen. Sci. Rep. 11, 17949 (2021).

    CAS  Google Scholar 

  52. Bedell, S. W. et al. Layer transfer by controlled spalling. J. Phys. D 46, 152002 (2013).

    Google Scholar 

  53. Bedell, S. W. et al. Kerf-less removal of Si, Ge, and III–V layers by controlled spalling to enable low-cost PV technologies. IEEE J. Photovolt. 2, 141–147 (2012).

    Google Scholar 

  54. Park, H. et al. Layer-resolved release of epitaxial layers in III–V heterostructure via a buffer-free mechanical separation technique. Sci. Adv. 8, eabl6406 (2022).

    CAS  Google Scholar 

  55. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    CAS  Google Scholar 

  56. Yu, S., Wu, X., Wang, Y., Guo, X. & Tong, L. 2D materials for optical modulation: challenges and opportunities. Adv. Mater. 29, 1606128 (2017).

    Google Scholar 

  57. Guo, Q. et al. Ultrathin quantum light source with van der Waals NbOCl2 crystal. Nature 613, 53–59 (2023). To our knowledge, this study reports for the first time spontaneous parametric downconversion from quantum sources based on 2D layered materials with vanishing interlayer electronic coupling.

    CAS  Google Scholar 

  58. Abdelwahab, I. et al. Giant second-harmonic generation in ferroelectric NbOI2. Nat. Photon. 16, 644–650 (2022).

    CAS  Google Scholar 

  59. Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018). This study reports the first observation of in-plane hyperbolic phonon polaritons in α-MoO3.

    CAS  Google Scholar 

  60. Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020). This study reports twisted α-MoO3 bilayers with topological transitions of polariton dispersion.

    CAS  Google Scholar 

  61. Zhang, Q. et al. Unidirectionally excited phonon polaritons in high-symmetry orthorhombic crystals. Sci. Adv. 8, eabn9774 (2022).

    CAS  Google Scholar 

  62. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    CAS  Google Scholar 

  63. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    CAS  Google Scholar 

  64. Zhang, D., Schoenherr, P., Sharma, P. & Seidel, J. Ferroelectric order in van der Waals layered materials. Nat. Rev. Mater. 8, 25–40 (2023).

    Google Scholar 

  65. Kong, W. et al. Polarity governs atomic interaction through two-dimensional materials. Nat. Mater. 17, 999–1004 (2018).

    CAS  Google Scholar 

  66. Chu, Y.-H. Van der Waals oxide heteroepitaxy. npj Quantum Mater. 2, 67 (2017).

    Google Scholar 

  67. Zakharian, A. R., Moloney, J. V. & Mansuripur, M. Surface plasmon polaritons on metallic surfaces. Opt. Express 15, 183–197 (2007).

    Google Scholar 

  68. Wu, Y. et al. Manipulating polaritons at the extreme scale in van der Waals materials. Nat. Rev. Phys. 4, 578–594 (2022).

    Google Scholar 

  69. Hu, Y. et al. On-chip electro-optic frequency shifters and beam splitters. Nature 599, 587–593 (2021).

    CAS  Google Scholar 

  70. Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photon. 13, 242–352 (2021). A comprehensive review of LiNbO3 thin-films-based integrated photonics.

    Google Scholar 

  71. Wang, C., Zhang, M., Stern, B., Lipson, M. & Lončar, M. Nanophotonic lithium niobate electro-optic modulators. Opt. Express 26, 1547–1555 (2018).

    Google Scholar 

  72. He, M. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photon. 13, 359–364 (2019).

    CAS  Google Scholar 

  73. Li, M. et al. Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun. 11, 4123 (2020).

    CAS  Google Scholar 

  74. Guarino, A., Poberaj, G., Rezzonico, D., Degl’Innocenti, R. & Günter, P. Electro-optically tunable microring resonators in lithium niobate. Nat. Photon. 1, 407–410 (2007).

    CAS  Google Scholar 

  75. Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019).

    CAS  Google Scholar 

  76. Rueda, A., Sedlmeir, F., Kumari, M., Leuchs, G. & Schwefel, H. G. Resonant electro-optic frequency comb. Nature 568, 378–381 (2019).

    CAS  Google Scholar 

  77. Pohl, D. et al. An integrated broadband spectrometer on thin-film lithium niobate. Nat. Photon. 14, 24–29 (2020).

    CAS  Google Scholar 

  78. Arrangoiz-Arriola, P. et al. Resolving the energy levels of a nanomechanical oscillator. Nature 571, 537–540 (2019).

    CAS  Google Scholar 

  79. Dong, G. et al. Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation. Science 366, 475–479 (2019).

    CAS  Google Scholar 

  80. Karvounis, A., Timpu, F., Vogler‐Neuling, V. V., Savo, R. & Grange, R. BaTiO3: barium titanate nanostructures and thin films for photonics. Adv. Opt. Mater. 8, 2070094 (2020).

    CAS  Google Scholar 

  81. Xiong, C. et al. Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices. Nano Lett. 14, 1419–1425 (2014).

    CAS  Google Scholar 

  82. Abel, S. et al. Large Pockels effect in micro-and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42–47 (2019).

    CAS  Google Scholar 

  83. Geler-Kremer, J. et al. A ferroelectric multilevel non-volatile photonic phase shifter. Nat. Photon. 16, 491–497 (2022).

    CAS  Google Scholar 

  84. Bi, L. et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photon. 5, 758–762 (2011).

    CAS  Google Scholar 

  85. Pintus, P. et al. An integrated magneto-optic modulator for cryogenic applications. Nat. Electron. 5, 604–610 (2022).

    Google Scholar 

  86. Merbouche, H. et al. Giant nonlinear self-phase modulation of large-amplitude spin waves in microscopic YIG waveguides. Sci. Rep. 12, 7246 (2022).

    CAS  Google Scholar 

  87. Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008).

    CAS  Google Scholar 

  88. Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

    CAS  Google Scholar 

  89. Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630–634 (2011).

    CAS  Google Scholar 

  90. Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    CAS  Google Scholar 

  91. Koppens, F. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014).

    CAS  Google Scholar 

  92. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Google Scholar 

  93. Wang, G. et al. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).

    CAS  Google Scholar 

  94. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012).

    CAS  Google Scholar 

  95. Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).

    CAS  Google Scholar 

  96. Xia, F., Wang, H., Hwang, J., Neto, A. & Yang, L. Black phosphorus and its isoelectronic materials. Nat. Rev. Phys. 1, 306–317 (2019).

    CAS  Google Scholar 

  97. Yuan, H. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 10, 707–713 (2015).

    CAS  Google Scholar 

  98. Kim, H. et al. Actively variable-spectrum optoelectronics with black phosphorus. Nature 596, 232–237 (2021).

    CAS  Google Scholar 

  99. Kim, C.-J. et al. Stacking order dependent second harmonic generation and topological defects in h-BN bilayers. Nano Lett. 13, 5660–5665 (2013).

    CAS  Google Scholar 

  100. Yoxall, E. et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photon. 9, 674–678 (2015).

    CAS  Google Scholar 

  101. Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).

    CAS  Google Scholar 

  102. Ricciardulli, A. G., Yang, S., Smet, J. H. & Saliba, M. Emerging perovskite monolayers. Nat. Mater. 20, 1325–1336 (2021).

    CAS  Google Scholar 

  103. Leng, K., Fu, W., Liu, Y., Chhowalla, M. & Loh, K. P. From bulk to molecularly thin hybrid perovskites. Nat. Rev. Mater. 5, 482–500 (2020).

    CAS  Google Scholar 

  104. Blancon, J.-C., Even, J., Stoumpos, C., Kanatzidis, M. & Mohite, A. D. Semiconductor physics of organic–inorganic 2D halide perovskites. Nat. Nanotechnol. 15, 969–985 (2020).

    CAS  Google Scholar 

  105. Su, R. et al. Perovskite semiconductors for room-temperature exciton-polaritonics. Nat. Mater. 20, 1315–1324 (2021).

    CAS  Google Scholar 

  106. Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).

    CAS  Google Scholar 

  107. Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon. 10, 699–704 (2016).

    CAS  Google Scholar 

  108. Quan, L. N., García de Arquer, F. P., Sabatini, R. P. & Sargent, E. H. Perovskites for light emission. Adv. Mater. 30, 1801996 (2018).

    Google Scholar 

  109. Feng, J. et al. Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nat. Electron. 1, 404–410 (2018).

    CAS  Google Scholar 

  110. Long, G. et al. Spin control in reduced-dimensional chiral perovskites. Nat. Photon. 12, 528–533 (2018).

    CAS  Google Scholar 

  111. Xu, J. et al. Halide perovskites for nonlinear optics. Adv. Mater. 32, 1806736 (2020).

    CAS  Google Scholar 

  112. Li, L. et al. Tailored engineering of an unusual (C4H9NH3)2(CH3NH3)2Pb3Br10 two‐dimensional multilayered perovskite ferroelectric for a high‐performance photodetector. Angew. Chem. Int. Ed. 129, 12318–12322 (2017).

    Google Scholar 

  113. Derry, G. N., Kern, M. E. & Worth, E. H. Recommended values of clean metal surface work functions. J. Vac. Sci. Technol. A 33, 060801 (2015).

    Google Scholar 

  114. Wang, Y. et al. Probing photoelectrical transport in lead halide perovskites with van der Waals contacts. Nat. Nanotechnol. 15, 768–775 (2020).

    CAS  Google Scholar 

  115. Kong, L. et al. Doping-free complementary WSe2 circuit via van der Waals metal integration. Nat. Commun. 11, 1866 (2020).

    CAS  Google Scholar 

  116. Yoon, J. et al. Ultrathin Silicon Solar Microcells For Semitransparent, Mechanically Flexible And Microconcentrator Module Designs (World Scientific/Nature Publishing Group, 2011).

  117. Yoon, J. et al. Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides. Nat. Commun. 2, 343 (2011).

    Google Scholar 

  118. Cheng, Y.-B., Pascoe, A., Huang, F. & Peng, Y. Print flexible solar cells. Nature 539, 488–489 (2016).

    CAS  Google Scholar 

  119. Zhang, J. et al. III–V-on-Si photonic integrated circuits realized using micro-transfer-printing. APL Photon. 4, 110803 (2019).

    Google Scholar 

  120. Dietrich, C. P., Fiore, A., Thompson, M. G., Kamp, M. & Höfling, S. GaAs integrated quantum photonics: towards compact and multi‐functional quantum photonic integrated circuits. Laser Photon. Rev. 10, 870–894 (2016).

    CAS  Google Scholar 

  121. Smit, M., Williams, K. & Van Der Tol, J. Past, present, and future of InP-based photonic integration. APL Photon. 4, 050901 (2019).

    Google Scholar 

  122. Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014).

    CAS  Google Scholar 

  123. Jin, C. et al. Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol. 13, 994–1003 (2018).

    CAS  Google Scholar 

  124. Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

    CAS  Google Scholar 

  125. Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

    CAS  Google Scholar 

  126. Ciarrocchi, A. et al. Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nat. Photon. 13, 131–136 (2019).

    CAS  Google Scholar 

  127. Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019).

    CAS  Google Scholar 

  128. Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

    CAS  Google Scholar 

  129. Huang, D., Choi, J., Shih, C.-K. & Li, X. Excitons in semiconductor moiré superlattices. Nat. Nanotechnol. 17, 227–238 (2022).

    CAS  Google Scholar 

  130. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS  Google Scholar 

  131. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    CAS  Google Scholar 

  132. Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    CAS  Google Scholar 

  133. Novoselov, K. A roadmap for graphene. Nature 490, 192–200 (2012).

    CAS  Google Scholar 

  134. Shim, J. et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 362, 665–670 (2018).

    CAS  Google Scholar 

  135. Kim, K. S. et al. Non-epitaxial single-crystal 2D material growth by geometrical confinement. Nature 614, 88–94 (2023). This study reports high-quality wafer-scale 2D TMD monolayers and bilayer heterostructures on industrial wafers with predefined growth pockets.

    CAS  Google Scholar 

  136. Lee, K., Zimmerman, J. D., Xiao, X., Sun, K. & Forrest, S. R. Reuse of GaAs substrates for epitaxial lift-off by employing protection layers. J. Appl. Phys. 111, 033527 (2012).

    Google Scholar 

  137. Yablonovitch, E., Gmitter, T., Harbison, J. & Bhat, R. Extreme selectivity in the lift‐off of epitaxial GaAs films. Appl. Phys. Lett. 51, 2222–2224 (1987).

    CAS  Google Scholar 

  138. Wong, W. et al. Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off. Appl. Phys. Lett. 75, 1360–1362 (1999).

    CAS  Google Scholar 

  139. Wong, W., Sands, T. & Cheung, N. Damage-free separation of GaN thin films from sapphire substrates. Appl. Phys. Lett. 72, 599–601 (1998).

    CAS  Google Scholar 

  140. Kim, J. et al. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene. Nat. Commun. 5, 4836 (2014).

    CAS  Google Scholar 

  141. Meng, Y. et al. Waveguide engineering of graphene optoelectronics — modulators and polarizers. IEEE Photon. J. 10, 6600217 (2018).

    Google Scholar 

  142. Shao, L. et al. Non-reciprocal transmission of microwave acoustic waves in nonlinear parity–time symmetric resonators. Nat. Electron. 3, 267–272 (2020).

    Google Scholar 

  143. Meng, Y. et al. Optical meta-waveguides for integrated photonics and beyond. Light Sci. Appl. 10, 235 (2021).

    CAS  Google Scholar 

  144. Zhang, L. et al. High-performance quasi-2D perovskite light-emitting diodes: from materials to devices. Light Sci. Appl. 10, 61 (2021).

    CAS  Google Scholar 

  145. Jiang, T. et al. Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene. Nat. Photon. 12, 430–436 (2018).

    CAS  Google Scholar 

  146. Grigorenko, A. N., Polini, M. & Novoselov, K. Graphene plasmonics. Nat. Photon. 6, 749–758 (2012).

    CAS  Google Scholar 

  147. Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    CAS  Google Scholar 

  148. Kim, K., Choi, J.-Y., Kim, T., Cho, S.-H. & Chung, H.-J. J. N. A role for graphene in silicon-based semiconductor devices. Nature 479, 338–344 (2011).

    CAS  Google Scholar 

  149. Lin, H. et al. Chalcogenide glass-on-graphene photonics. Nat. Photon. 11, 798–805 (2017).

    CAS  Google Scholar 

  150. Gan, S. et al. A highly efficient thermo-optic microring modulator assisted by graphene. Nanoscale 7, 20249–20255 (2015).

    CAS  Google Scholar 

  151. Sorianello, V. et al. Graphene–silicon phase modulators with gigahertz bandwidth. Nat. Photon. 12, 40–44 (2018).

    CAS  Google Scholar 

  152. Woessner, A. et al. Electrical 2π phase control of infrared light in a 350-nm footprint using graphene plasmons. Nat. Photon. 11, 421–424 (2017).

    CAS  Google Scholar 

  153. Ono, M. et al. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat. Photon. 14, 37–43 (2020).

    CAS  Google Scholar 

  154. Xu, R. et al. Strain-induced room-temperature ferroelectricity in SrTiO3 membranes. Nat. Commun. 11, 3141 (2020).

    CAS  Google Scholar 

  155. Wei, J., Xu, C., Dong, B., Qiu, C.-W. & Lee, C. Mid-infrared semimetal polarization detectors with configurable polarity transition. Nat. Photon. 15, 614–621 (2021).

    CAS  Google Scholar 

  156. Xiong, L. et al. Photonic crystal for graphene plasmons. Nat. Commun. 10, 4780 (2019).

    CAS  Google Scholar 

  157. Buscema, M. et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 44, 3691–3718 (2015).

    CAS  Google Scholar 

  158. Chen, Y. et al. Unipolar barrier photodetectors based on van der Waals heterostructures. Nat. Electron. 4, 357–363 (2021).

    CAS  Google Scholar 

  159. Alonso Calafell, I. et al. Giant enhancement of third-harmonic generation in graphene–metal heterostructures. Nat. Nanotechnol. 16, 318–324 (2021).

    CAS  Google Scholar 

  160. Yao, B. et al. Gate-tunable frequency combs in graphene–nitride microresonators. Nature 558, 410–414 (2018).

    CAS  Google Scholar 

  161. Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007).

    CAS  Google Scholar 

  162. Nikitin, A. et al. Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators. Nat. Photon. 10, 239–243 (2016).

    CAS  Google Scholar 

  163. Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291–1294 (2011).

    CAS  Google Scholar 

  164. Jiang, T., Kravtsov, V., Tokman, M., Belyanin, A. & Raschke, M. B. Ultrafast coherent nonlinear nanooptics and nanoimaging of graphene. Nat. Nanotechnol. 14, 838–843 (2019).

    CAS  Google Scholar 

  165. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    CAS  Google Scholar 

  166. Young, S. M. & Kane, C. Dirac semimetals in two dimensions. Phys. Rev. Lett. 115, 126803 (2015).

    Google Scholar 

  167. Chaves, A. et al. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater. Appl. 4, 29 (2020).

    CAS  Google Scholar 

  168. Du, W. et al. Nanolasers based on 2D materials. Laser Photon. Rev. 14, 2000271 (2020).

    CAS  Google Scholar 

  169. Yuan, S., Naveh, D., Watanabe, K., Taniguchi, T. & Xia, F. A wavelength-scale black phosphorus spectrometer. Nat. Photon. 15, 601–607 (2021).

    CAS  Google Scholar 

  170. Shen, W. et al. Wavelength tunable polarizer based on layered black phosphorus on Si/SiO2 substrate. Opt. Lett. 43, 1255–1258 (2018).

    CAS  Google Scholar 

  171. Whitney, W. S. et al. Field effect optoelectronic modulation of quantum-confined carriers in black phosphorus. Nano Lett. 17, 78–84 (2017).

    CAS  Google Scholar 

  172. van de Groep, J. et al. Exciton resonance tuning of an atomically thin lens. Nat. Photon. 14, 426–430 (2020).

    Google Scholar 

  173. Yang, S. et al. CMOS-compatible WS2-based all-optical modulator. ACS Photon. 5, 342–346 (2018).

    CAS  Google Scholar 

  174. Knopf, H. et al. Integration of atomically thin layers of transition metal dichalcogenides into high-Q, monolithic Bragg-cavities: an experimental platform for the enhancement of the optical interaction in 2D-materials. Opt. Mater. Express 9, 598–610 (2019).

    CAS  Google Scholar 

  175. Trovatello, C. et al. Optical parametric amplification by monolayer transition metal dichalcogenides. Nat. Photon. 15, 6–10 (2021).

    CAS  Google Scholar 

  176. Li, Y. et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat. Nanotechnol. 12, 987–992 (2017).

    CAS  Google Scholar 

  177. Peyskens, F., Chakraborty, C., Muneeb, M., Van Thourhout, D. & Englund, D. Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip. Nat. Commun. 10, 4435 (2019).

    Google Scholar 

  178. Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).

    CAS  Google Scholar 

  179. Liu, G. et al. Graphene-assisted metal transfer printing for wafer-scale integration of metal electrodes and two-dimensional materials. Nat. Electron. 5, 275–280 (2022).

    CAS  Google Scholar 

  180. Li, P. et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science 359, 892–896 (2018).

    CAS  Google Scholar 

  181. Bourrellier, R. et al. Bright UV single photon emission at point defects in h-BN. Nano Lett. 16, 4317–4321 (2016).

    CAS  Google Scholar 

  182. Li, Y. et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 13, 3329–3333 (2013).

    CAS  Google Scholar 

  183. Shahrjerdi, D. & Bedell, S. W. Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic. Nano Lett. 13, 315–320 (2013).

    CAS  Google Scholar 

  184. Cheng, C.-W. et al. Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics. Nat. Commun. 4, 1577 (2013).

    Google Scholar 

  185. Lee, Y., Yang, I., Tan, H. H., Jagadish, C. & Karuturi, S. K. Monocrystalline InP thin films with tunable surface morphology and energy band gap. ACS Appl. Mater. Interf. 12, 36380–36388 (2020).

    CAS  Google Scholar 

  186. Khandelwal, A. et al. Self-rolled-up aluminum nitride-based 3D architectures enabled by record-high differential stress. ACS Appl. Mater. Interf. 14, 29014–29024 (2022).

    CAS  Google Scholar 

  187. Poberaj, G., Hu, H., Sohler, W. & Guenter, P. Lithium niobate on insulator (LNOI) for micro‐photonic devices. Laser Photon. Rev. 6, 488–503 (2012).

    CAS  Google Scholar 

  188. Dai, L. et al. Highly heterogeneous epitaxy of flexoelectric BaTiO3-δ membrane on Ge. Nat. Commun. 13, 2990 (2022).

    CAS  Google Scholar 

  189. Boroviks, S. et al. Extremely confined gap plasmon modes: when nonlocality matters. Nat. Commun. 13, 3105 (2022).

    CAS  Google Scholar 

  190. Munkhbat, B., Canales, A., Küçüköz, B., Baranov, D. G. & Shegai, T. O. Tunable self-assembled Casimir microcavities and polaritons. Nature 597, 214–219 (2021).

    CAS  Google Scholar 

  191. Sarkar, A., Lee, Y. & Ahn, J.-H. Si nanomebranes: material properties and applications. Nano Res. 14, 3010–3032 (2021).

    CAS  Google Scholar 

  192. Ko, H. C. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748–753 (2008).

    CAS  Google Scholar 

  193. Zhang, K. et al. Origami silicon optoelectronics for hemispherical electronic eye systems. Nat. Commun. 8, 1782 (2017).

    Google Scholar 

  194. Sim, K. et al. Three-dimensional curvy electronics created using conformal additive stamp printing. Nat. Electron. 2, 471–479 (2019).

    CAS  Google Scholar 

  195. Aharonovich, I., Greentree, A. D. & Prawer, S. Diamond photonics. Nat. Photon. 5, 397–405 (2011).

    CAS  Google Scholar 

  196. Guo, X. et al. Tunable and transferable diamond membranes for integrated quantum technologies. Nano Lett. 21, 10392–10399 (2021).

    CAS  Google Scholar 

  197. Kreuzer, C., Riedrich-Möller, J., Neu, E. & Becher, C. Design of photonic crystal microcavities in diamond films. Opt. Express 16, 1632–1644 (2008).

    Google Scholar 

  198. Castelletto, S., Rosa, L., Blackledge, J., Al Abri, M. Z. & Boretti, A. Advances in diamond nanofabrication for ultrasensitive devices. Microsyst. Nanoeng. 3, 17061 (2017).

    Google Scholar 

  199. Wan, N. H. et al. Large-scale integration of artificial atoms in hybrid photonic circuits. Nature 583, 226–231 (2020). This study reports the high-yield hetero-integration of diamond nanomembranes with quantum photonic integrated circuits.

    CAS  Google Scholar 

  200. Xia, Z. et al. Single-crystalline germanium nanomembrane photodetectors on foreign nanocavities. Sci. Adv. 3, e1602783 (2017).

    Google Scholar 

  201. Nam, D. et al. Strained germanium thin film membrane on silicon substrate for optoelectronics. Opt. Express 19, 25866–25872 (2011).

    CAS  Google Scholar 

  202. Liu, S., Shah, D. S. & Kramer-Bottiglio, R. Highly stretchable multilayer electronic circuits using biphasic gallium–indium. Nat. Mater. 20, 851–858 (2021).

    CAS  Google Scholar 

  203. Nam, D. et al. Demonstration of electroluminescence from strained Ge membrane LED. in 2012 International Silicon-Germanium Technology and Device Meeting (ISTDM) 98 (IEEE, 2012).

  204. Sheng, X. et al. Transfer printing of fully formed thin‐film microscale GaAs lasers on silicon with a thermally conductive interface material. Laser Photon. Rev. 9, L17–L22 (2015).

    CAS  Google Scholar 

  205. Justice, J. et al. Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers. Nat. Photon. 6, 610–614 (2012).

    Google Scholar 

  206. Haq, B. et al. Micro‐transfer‐printed III–V‐on‐silicon C‐band semiconductor optical amplifiers. Laser Photon. Rev. 14, 1900364 (2020).

    CAS  Google Scholar 

  207. Baumgartner, Y. et al. High-speed CMOS-compatible III–V on Si membrane photodetectors. Opt. Express 29, 509–516 (2021).

    CAS  Google Scholar 

  208. Goyvaerts, J. et al. Transfer-print integration of GaAs pin photodiodes onto silicon nitride waveguides for near-infrared applications. Opt. Express 28, 21275–21285 (2020).

    CAS  Google Scholar 

  209. Yang, H. et al. Transfer-printed stacked nanomembrane lasers on silicon. Nat. Photon. 6, 615–620 (2012).

    Google Scholar 

  210. Bae, S.-H. et al. Graphene-assisted spontaneous relaxation towards dislocation-free heteroepitaxy. Nat. Nanotechnol. 15, 272–276 (2020).

    CAS  Google Scholar 

  211. Shin, J. et al. Vertical full-colour micro-LEDs via 2D materials-based layer transfer. Nature 614, 81–87 (2023). This study reports a vertically stacked photonic nanomembrane system for full-colour microLEDs with ultrahigh pixel density.

    CAS  Google Scholar 

  212. Yoon, J. et al. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies. Nature 465, 329–333 (2010).

    CAS  Google Scholar 

  213. Kim, M., Seo, J.-H., Singisetti, U. & Ma, Z. Recent advances in free-standing single crystalline wide band-gap semiconductors and their applications: GaN, SiC, ZnO, β-Ga2O3, and diamond. J. Mater. Chem. C 5, 8338–8354 (2017).

    CAS  Google Scholar 

  214. Liu, Q. et al. Design of micro-nano grooves incorporated into suspended GaN membrane for active integrated optics. AIP Adv. 8, 115118 (2018).

    Google Scholar 

  215. Han, X., Fu, W., Zou, C.-L., Jiang, L. & Tang, H. X. Microwave-optical quantum frequency conversion. Optica 8, 1050–1064 (2021).

    Google Scholar 

  216. Dong, M. et al. High-speed programmable photonic circuits in a cryogenically compatible, visible–near-infrared 200 mm CMOS architecture. Nat. Photon. 16, 59–65 (2022).

    CAS  Google Scholar 

  217. Thompson, J. et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008).

    CAS  Google Scholar 

  218. Lin, Y. et al. Optimized performances in InGaN/GaN quantum-well membrane based vertical optoelectronics by the piezo-phototronic effect. Nano Energy 89, 106454 (2021).

    CAS  Google Scholar 

  219. Ji, D. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 570, 87–90 (2019).

    CAS  Google Scholar 

  220. Srinivasan, K. & Stadler, B. J. Magneto-optical materials and designs for integrated TE-and TM-mode planar waveguide isolators: a review. Optical Mater. Express 8, 3307–3318 (2018).

    CAS  Google Scholar 

  221. Saravi, S., Pertsch, T. & Setzpfandt, F. Lithium niobate on insulator: an emerging platform for integrated quantum photonics. Adv. Optical Mater. 9, 2100789 (2021).

    CAS  Google Scholar 

  222. Satzinger, K. J. et al. Quantum control of surface acoustic-wave phonons. Nature 563, 661–665 (2018).

    CAS  Google Scholar 

  223. Koechlin, M., Sulser, F., Sitar, Z., Poberaj, G. & Gunter, P. Free-standing lithium niobate microring resonators for hybrid integrated optics. IEEE Photon. Technol. Lett. 22, 251–253 (2010).

    CAS  Google Scholar 

  224. Jia, R. et al. Van der Waals epitaxy and remote epitaxy of LiNbO3 thin films by pulsed laser deposition. J. Vac. Sci. Technol. A 39, 040405 (2021).

    CAS  Google Scholar 

  225. Lu, Q. et al. Engineering magnetic anisotropy and emergent multidirectional soft ferromagnetism in ultrathin freestanding LaMnO3 films. ACS Nano 16, 7580–7588 (2022).

    CAS  Google Scholar 

  226. Erdem, D. et al. CoFe2O4 and CoFe2O4–SiO2 nanoparticle thin films with perpendicular magnetic anisotropy for magnetic and magneto‐optical applications. Adv. Funct. Mater. 26, 1954–1963 (2016).

    CAS  Google Scholar 

  227. Wang, Z. et al. Piezo-phototronic UV/visible photosensing with optical-fiber–nanowire hybridized structures. Adv. Mater. 27, 1553–1560 (2015).

    CAS  Google Scholar 

  228. Zhang, Y. et al. Piezo-phototronic effect-induced dual-mode light and ultrasound emissions from ZnS:Mn/PMN–PT thin-film structures. Adv. Mater. 24, 1729–1735 (2012).

    Google Scholar 

  229. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012).

    CAS  Google Scholar 

  230. Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9, 262–267 (2014).

    CAS  Google Scholar 

  231. Kumar, P. et al. Light–matter coupling in large-area van der Waals superlattices. Nat. Nanotechnol. 17, 182–189 (2022).

    CAS  Google Scholar 

  232. Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

    CAS  Google Scholar 

  233. Wen, B. et al. Ferroelectric-driven exciton and trion modulation in monolayer molybdenum and tungsten diselenides. ACS Nano 13, 5335–5343 (2019).

    CAS  Google Scholar 

  234. Xiao, Z., Song, J., Ferry, D. K., Ducharme, S. & Hong, X. Ferroelectric-domain-patterning-controlled Schottky junction state in monolayer MoS2. Phys. Rev. Lett. 118, 236801 (2017).

    Google Scholar 

  235. Li, D. et al. Polar coupling enabled nonlinear optical filtering at MoS2/ferroelectric heterointerfaces. Nat. Commun. 11, 1422 (2020).

    CAS  Google Scholar 

  236. Ye, Y. et al. Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide. Nat. Nanotechnol. 11, 598–602 (2016).

    CAS  Google Scholar 

  237. Li, J.-X. et al. Electric control of valley polarization in monolayer WSe2 using a van der Waals magnet. Nat. Nanotechnol. 17, 721–728 (2022).

    CAS  Google Scholar 

  238. Zhao, C. et al. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field. Nat. Nanotechnol. 12, 757–762 (2017).

    CAS  Google Scholar 

  239. Norden, T. et al. Giant valley splitting in monolayer WS2 by magnetic proximity effect. Nat. Commun. 10, 4163 (2019).

    Google Scholar 

  240. Hu, G. et al. Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface. Nat. Photon. 13, 467–472 (2019).

    CAS  Google Scholar 

  241. Hong, X. et al. Structuring nonlinear wavefront emitted from monolayer transition-metal dichalcogenides. Research https://doi.org/10.34133/2020/9085782 (2020).

    Article  Google Scholar 

  242. Chen, Y. et al. Chirality-dependent unidirectional routing of WS2 valley photons in a nanocircuit. Nat. Nanotechnol. 17, 1178–1182 (2022).

    CAS  Google Scholar 

  243. Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Google Scholar 

  244. Hu, G., Krasnok, A., Mazor, Y., Qiu, C.-W. & Alù, A. Moiré hyperbolic metasurfaces. Nano Lett. 20, 3217–3224 (2020).

    CAS  Google Scholar 

  245. Dai, S. et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nanotechnol. 10, 682–686 (2015).

    CAS  Google Scholar 

  246. Ruta, F. L. et al. Surface plasmons induce topological transition in graphene/α-MoO3 heterostructures. Nat. Commun. 13, 3719 (2022).

    CAS  Google Scholar 

  247. Dubrovkin, A. M., Qiang, B., Krishnamoorthy, H. N. S., Zheludev, N. I. & Wang, Q. J. Ultra-confined surface phonon polaritons in molecular layers of van der Waals dielectrics. Nat. Commun. 9, 1762 (2018).

    Google Scholar 

  248. Zhang, Q. et al. Hybridized hyperbolic surface phonon polaritons at α-MoO3 and polar dielectric interfaces. Nano Lett. 21, 3112–3119 (2021).

    CAS  Google Scholar 

  249. Li, P. et al. Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material. Nat. Mater. 15, 870–875 (2016).

    CAS  Google Scholar 

  250. Aghamiri, N. A. et al. Reconfigurable hyperbolic polaritonics with correlated oxide metasurfaces. Nat. Commun. 13, 4511 (2022).

    CAS  Google Scholar 

  251. Massicotte, M. et al. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 11, 42–46 (2016).

    CAS  Google Scholar 

  252. Gao, A. et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat. Nanotechnol. 14, 217–222 (2019).

    CAS  Google Scholar 

  253. Lukman, S. et al. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nat. Nanotechnol. 15, 675–682 (2020).

    CAS  Google Scholar 

  254. Jiao, H. et al. HgCdTe/black phosphorus van der Waals heterojunction for high-performance polarization-sensitive midwave infrared photodetector. Sci. Adv. 8, eabn1811 (2022).

    CAS  Google Scholar 

  255. Sarker, B. K. et al. Position-dependent and millimetre-range photodetection in phototransistors with micrometre-scale graphene on SiC. Nat. Nanotechnol. 12, 668–674 (2017).

    CAS  Google Scholar 

  256. Jiang, H. et al. Enhanced photogating effect in graphene photodetectors via potential fluctuation engineering. ACS Nano 16, 4458–4466 (2022).

    CAS  Google Scholar 

  257. Jiang, Y. et al. Coexistence of photoelectric conversion and storage in van der Waals heterojunctions. Phys. Rev. Lett. 127, 217401 (2021).

    CAS  Google Scholar 

  258. Wei, J. et al. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection. Nat. Commun. 11, 6404 (2020).

    CAS  Google Scholar 

  259. Wei, J. et al. Geometric filterless photodetectors for mid-infrared spin light. Nat. Photon. 17, 171–178 (2023). This study reports geometric filterless photodetectors for circularly polarized light; a specific circularly polarized light response was realized using a plasmonic nanostructure array with designed symmetry.

    CAS  Google Scholar 

  260. Wang, S. et al. Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 21, 1225–1239 (2022).

    CAS  Google Scholar 

  261. Xiong, L. et al. Programmable Bloch polaritons in graphene. Sci. Adv. 7, eabe8087 (2021).

    CAS  Google Scholar 

  262. Song, J. et al. Efficient excitation of multiple plasmonic modes on three-dimensional graphene: an unexplored dimension. ACS Photon. 3, 1986–1992 (2016).

    CAS  Google Scholar 

  263. Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020).

    CAS  Google Scholar 

  264. Jiang, J. et al. Carrier lifetime enhancement in halide perovskite via remote epitaxy. Nat. Commun. 10, 4145 (2019).

    Google Scholar 

  265. Shu, H. et al. Microcomb-driven silicon photonic systems. Nature 605, 457–463 (2022).

    CAS  Google Scholar 

Download references

Acknowledgements

S.-H.B. thanks the Institute of Materials Science and Engineering (IMSE), Washington University in St Louis, for support. C.-W.Q. acknowledges support from the National Research Foundation Singapore (CRP26-2021-0004). D.-H.K. thanks support from Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0017305, Human Resource Development Program for Industrial Innovation (Global)).

Author information

Authors and Affiliations

Authors

Contributions

Y.M., J.F., S.H., Z.X., T.Z., W.M., Y.Z., J.S.K., I.R., D.-H.K., C.-W.Q. and S.-H.B. researched data for the article. Y.M., J.F., S.-H.B., C.-W.Q. and L.Y. contributed substantially to discussion of the content. Y.M., J.F., S.-H.B., C.-W.Q., L.Y., J.-W.L., S.H., Z.X. and W.M. wrote the article. Y.M., S.-H.B., C.-W.Q., L.Y., J.-W.L. and Y.Y. reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Jin-Wook Lee, Lan Yang, Cheng-Wei Qiu or Sang-Hoon Bae.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Feng, J., Han, S. et al. Photonic van der Waals integration from 2D materials to 3D nanomembranes. Nat Rev Mater 8, 498–517 (2023). https://doi.org/10.1038/s41578-023-00558-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00558-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing