Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Models and mechanisms of ternary organic solar cells

Abstract

In ternary organic solar cells (TOSCs), three different components are mixed to form the photoactive layer, opening up opportunities to boost the power conversion efficiency — for example, by broadening the absorption range, improving the blend morphology or tuning the exciton splitting and charge extraction. Because of these possibilities, ternary systems are among the best performing OSCs and will have a crucial role in the future of organic photovoltaics. Owing to the interplay of three different components, the mechanisms in TOSCs are complex. Multiple models for those mechanisms currently exist, which differ mainly in the description of the composition dependence of the open-circuit voltage. However, these models are not defined precisely, they are based on narrow presuppositions and they frequently contradict each other. Moreover, although the state of knowledge has evolved since the development of models, new TOSCs are still assigned to them. This Review describes the existing models and concepts, highlights their inconsistencies and summarizes newer results on electronic and morphological properties of TOSCs. Subsequently, the conventional models are revisited in the light of these new insights, with the aim of pointing out existing gaps and providing the stimulus for challenging old concepts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Energetic and morphological picture in the cascade model.
Fig. 2: Electronic and morphological picture in the alloy model.
Fig. 3: Electronic and morphological picture in the parallel-like model.
Fig. 4: Electronic picture in the state-filling model.
Fig. 5: Electronic and morphological picture in the quadrupole model.
Fig. 6: Schematic Jablonski-type diagram depicting the revised understanding of mechanisms in binary organic solar cells.
Fig. 7: Comparison of different charge transfer state perceptions of the same ternary system P3HT:PCBM:ICBA.

Similar content being viewed by others

References

  1. Wang, J. et al. A tandem organic photovoltaic cell with 19.6% efficiency enabled by light distribution control. Adv. Mater. 33, 2102787 (2021).

    Article  CAS  Google Scholar 

  2. Cui, Y. et al. Single-junction organic photovoltaic cell with 19% efficiency. Adv. Mater. 33, 2102420 (2021).

    Article  CAS  Google Scholar 

  3. Sun, R. et al. Single-junction organic solar cells with 19.17% efficiency enabled by introducing one asymmetric guest acceptor. Adv. Mater. 34, e2110147 (2022).

    Article  Google Scholar 

  4. Sariciftci, N. S., Smilowitz, L., Heeger, A. J. & Wudl, F. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258, 1474–1476 (1992).

    Article  CAS  Google Scholar 

  5. Coropceanu, V., Chen, X.-K., Wang, T., Zheng, Z. & Brédas, J.-L. Charge-transfer electronic states in organic solar cells. Nat. Rev. Mater. 4, 689–707 (2019).

    Article  Google Scholar 

  6. Halls, J. J. M. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).

    Article  CAS  Google Scholar 

  7. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  CAS  Google Scholar 

  8. Elumalai, N. K. & Uddin, A. Open circuit voltage of organic solar cells: an in-depth review. Energy Environ. Sci. 9, 391–410 (2016).

    Article  CAS  Google Scholar 

  9. Xue, R., Zhang, J., Li, Y. & Li, Y. Organic solar cell materials toward commercialization. Small 14, 1801793 (2018).

    Article  Google Scholar 

  10. Brabec, C. J. et al. A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting diodes. Adv. Funct. Mater. 12, 709–712 (2002).

    Article  CAS  Google Scholar 

  11. Ameri, T., Khoram, P., Min, J. & Brabec, C. J. Organic ternary solar cells: a review. Adv. Mater. 25, 4245–4266 (2013).

    Article  CAS  Google Scholar 

  12. An, Q. et al. Versatile ternary organic solar cells: a critical review. Energy Environ. Sci. 9, 281–322 (2016).

    Article  Google Scholar 

  13. Gasparini, N., Salleo, A., McCulloch, I. & Baran, D. The role of the third component in ternary organic solar cells. Nat. Rev. Mater. 9, 145 (2019).

    Google Scholar 

  14. Yan, C. et al. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3, 18003 (2018).

    Article  CAS  Google Scholar 

  15. Ameri, T. et al. Performance enhancement of the P3HT/PCBM solar cells through NIR sensitization using a small-bandgap polymer. Adv. Energy Mater. 2, 1198–1202 (2012).

    Article  CAS  Google Scholar 

  16. Koppe, M. et al. Near IR sensitization of organic bulk heterojunction solar cells: towards optimization of the spectral response of organic solar cells. Adv. Funct. Mater. 20, 338–346 (2010).

    Article  CAS  Google Scholar 

  17. Lu, L., Xu, T., Chen, W., Landry, E. S. & Yu, L. Ternary blend polymer solar cells with enhanced power conversion efficiency. Nat. Photon 8, 716–722 (2014).

    Article  CAS  Google Scholar 

  18. Ye, L. et al. Ternary bulk heterojunction photovoltaic cells composed of small molecule donor additive as cascade material. J. Phys. Chem. C 118, 20094–20099 (2014).

    Article  CAS  Google Scholar 

  19. An, Q. et al. Simultaneous improvement in short circuit current, open circuit voltage, and fill factor of polymer solar cells through ternary strategy. ACS Appl. Mater. Interfaces 7, 3691–3698 (2015).

    Article  CAS  Google Scholar 

  20. Soltani, R. et al. Improved charge carrier dynamics in polymer/perovskite nanocrystal based hybrid ternary solar cells. Phys. Chem. Chem. Phys. 20, 23674–23683 (2018).

    Article  CAS  Google Scholar 

  21. Soltani, R. et al. Light harvesting enhancement upon incorporating alloy structured CdSeXTe1−X quantum dots in DPP:PC61BM bulk heterojunction solar cells. J. Mater. Chem. C 5, 654–662 (2017).

    Article  CAS  Google Scholar 

  22. Koppe, M. et al. Charge carrier dynamics in a ternary bulk heterojunction system consisting of P3HT, fullerene, and a low bandgap polymer. Adv. Energy Mater. 3, 949–958 (2013).

    Article  CAS  Google Scholar 

  23. Huang, J.-S. et al. Polymer bulk heterojunction solar cells employing Förster resonance energy transfer. Nat. Photon 7, 479–485 (2013).

    Article  CAS  Google Scholar 

  24. Gupta, V., Bharti, V., Kumar, M., Chand, S. & Heeger, A. J. Polymer–polymer Förster resonance energy transfer significantly boosts the power conversion efficiency of Bulk-Heterojunction solar cells. Adv. Mater. 27, 4398–4404 (2015).

    Article  CAS  Google Scholar 

  25. Gasparini, N. et al. Favorable mixing thermodynamics in ternary polymer blends for realizing high efficiency plastic solar cells. Adv. Energy Mater. 9, 1803394 (2019).

    Article  Google Scholar 

  26. Karuthedath, S. et al. Impact of fullerene on the photophysics of ternary small molecule organic solar cells. Adv. Energy Mater. 9, 1901443 (2019).

    Article  Google Scholar 

  27. Mohapatra, A. A., Tiwari, V. & Patil, S. Energy transfer in ternary blend organic solar cells: recent insights and future directions. Energy Environ. Sci. 14, 302–319 (2021).

    Article  CAS  Google Scholar 

  28. Huang, J.-H., Velusamy, M., Ho, K.-C., Lin, J.-T. & Chu, C.-W. A ternary cascade structure enhances the efficiency of polymer solar cells. J. Mater. Chem. 20, 2820 (2010).

    Article  CAS  Google Scholar 

  29. An, Q. et al. Enhanced performance of polymer solar cells through sensitization by a narrow band gap polymer. Sol. Energy Mater. Sol. Cell 118, 30–35 (2013).

    Article  CAS  Google Scholar 

  30. Su, W. et al. Efficient ternary blend all-polymer solar cells with a polythiophene derivative as a hole-cascade material. J. Mater. Chem. A 4, 14752–14760 (2016).

    Article  CAS  Google Scholar 

  31. Yang, C. et al. Nonfullerene ternary organic solar cell with effective charge transfer between two acceptors. J. Phys. Chem. Lett. 11, 927–934 (2020).

    Article  CAS  Google Scholar 

  32. Gasparini, N. et al. Designing ternary blend bulk heterojunction solar cells with reduced carrier recombination and a fill factor of 77%. Nat. Energy 1, 16118 (2016).

    Article  CAS  Google Scholar 

  33. Groves, C. Suppression of geminate charge recombination in organic photovoltaic devices with a cascaded energy heterojunction. Energy Environ. Sci. 6, 1546 (2013).

    Article  CAS  Google Scholar 

  34. Gasparini, N. et al. High-performance ternary organic solar cells with thick active layer exceeding 11% efficiency. Energy Environ. Sci. 10, 885–892 (2017).

    Article  CAS  Google Scholar 

  35. Zhu, C. et al. Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell. Energy Environ. Sci. 13, 2459–2466 (2020).

    Article  CAS  Google Scholar 

  36. Felekidis, N., Wang, E. & Kemerink, M. Open circuit voltage and efficiency in ternary organic photovoltaic blends. Energy Environ. Sci. 9, 257–266 (2016).

    Article  CAS  Google Scholar 

  37. Li, M.-Y., Pan, Y.-Q., Sun, G.-Y. & Geng, Y. Charge transfer mechanisms regulated by the third component in ternary organic solar cells. J. Phys. Chem. Lett. 12, 8982–8990 (2021).

    Article  CAS  Google Scholar 

  38. Zhang, R. et al. Optimized domain size and enlarged D/A interface by tuning intermolecular interaction in all-polymer ternary solar cells. J. Polym. Sci. Part B Polym. Phys. 54, 1811–1819 (2016).

    Article  CAS  Google Scholar 

  39. Jiang, W. et al. Ternary nonfullerene polymer solar cells with 12.16% efficiency by introducing one acceptor with cascading energy level and complementary absorption. Adv. Mater. https://doi.org/10.1002/adma.201703005 (2018).

    Article  Google Scholar 

  40. Fan, B. et al. Improved performance of ternary polymer solar cells based on a nonfullerene electron cascade acceptor. Adv. Energy Mater. 7, 1602127 (2017).

    Article  Google Scholar 

  41. Zhou, Z. et al. High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors. Nat. Energy 3, 952–959 (2018).

    Article  CAS  Google Scholar 

  42. Löslein, H. et al. Transient absorption spectroscopy studies on polythiophene-fullerene bulk heterojunction organic blend films sensitized with a low-bandgap polymer. Macromol. Rapid Commun. 34, 1090–1097 (2013).

    Article  Google Scholar 

  43. Honda, S., Nogami, T., Ohkita, H., Benten, H. & Ito, S. Improvement of the light-harvesting efficiency in polymer/fullerene bulk heterojunction solar cells by interfacial dye modification. ACS Appl. Mater. Interfaces 1, 804–810 (2009).

    Article  CAS  Google Scholar 

  44. Honda, S., Ohkita, H., Benten, H. & Ito, S. Selective dye loading at the heterojunction in polymer/fullerene solar cells. Adv. Energy Mater. 1, 588–598 (2011).

    Article  CAS  Google Scholar 

  45. Honda, S., Yokoya, S., Ohkita, H., Benten, H. & Ito, S. Light-harvesting mechanism in polymer/fullerene/dye ternary blends studied by transient absorption spectroscopy. J. Phys. Chem. C 115, 11306–11317 (2011).

    Article  CAS  Google Scholar 

  46. Upreti, T., Wang, Y., Gao, F. & Kemerink, M. On the device physics of high‐efficiency ternary solar cells. Sol. RRL 6, 2200450 (2022).

    Article  CAS  Google Scholar 

  47. Cheng, P., Li, Y. & Zhan, X. Efficient ternary blend polymer solar cells with indene-C60 bisadduct as an electron-cascade acceptor. Energy Environ. Sci. 7, 2005 (2014).

    Article  CAS  Google Scholar 

  48. Davis, R. J. et al. Determination of energy level alignment at interfaces of hybrid and organic solar cells under ambient environment. J. Mater. Chem. 21, 1721–1729 (2011).

    Article  CAS  Google Scholar 

  49. Bi, P. et al. Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency. Joule 5, 2408–2419 (2021).

    Article  CAS  Google Scholar 

  50. Khlyabich, P. P., Burkhart, B. & Thompson, B. C. Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage. J. Am. Chem. Soc. 133, 14534–14537 (2011).

    Article  CAS  Google Scholar 

  51. Street, R. A., Davies, D., Khlyabich, P. P., Burkhart, B. & Thompson, B. C. Origin of the tunable open-circuit voltage in ternary blend bulk heterojunction organic solar cells. J. Am. Chem. Soc. 135, 986–989 (2013).

    Article  CAS  Google Scholar 

  52. Street, R. A., Khlyabich, P. P., Rudenko, A. E. & Thompson, B. C. Electronic states in dilute ternary blend organic bulk heterojunction solar cells. J. Phys. Chem. C 118, 26569–26576 (2014).

    Article  CAS  Google Scholar 

  53. Angmo, D., Bjerring, M., Nielsen, N. C., Thompson, B. C. & Krebs, F. C. Fullerene alloy formation and the benefits for efficient printing of ternary blend organic solar cells. J. Mater. Chem. C 3, 5541–5548 (2015).

    Article  CAS  Google Scholar 

  54. Khlyabich, P. P., Burkhart, B. & Thompson, B. C. Compositional dependence of the open-circuit voltage in ternary blend bulk heterojunction solar cells based on two donor polymers. J. Am. Chem. Soc. 134, 9074–9077 (2012).

    Article  CAS  Google Scholar 

  55. Khlyabich, P. P., Rudenko, A. E., Thompson, B. C. & Loo, Y.-L. Structural origins for tunable open-circuit voltage in ternary-blend organic solar cells. Adv. Funct. Mater. 25, 5557–5563 (2015).

    Article  CAS  Google Scholar 

  56. Shen, W. et al. High-performance ternary polymer solar cells from a structurally similar polymer alloy. J. Mater. Chem. A 5, 12400–12406 (2017).

    Article  CAS  Google Scholar 

  57. Kim, M. et al. Nonfullerene/fullerene acceptor blend with a tunable energy state for high-performance ternary organic solar cells. ACS Appl. Mater. Interfaces 10, 25570–25579 (2018).

    Article  CAS  Google Scholar 

  58. Gao, J. et al. Over 14.5% efficiency and 71.6% fill factor of ternary organic solar cells with 300 nm thick active layers. Energy Environ. Sci. 13, 958–967 (2020).

    Article  CAS  Google Scholar 

  59. Street, R. A., Song, K. W., Northrup, J. E. & Cowan, S. Photoconductivity measurements of the electronic structure of organic solar cells. Phys. Rev. B 83, 211 (2011).

    Article  Google Scholar 

  60. Street, R. A. et al. Electronic structure and transition energies in polymer–fullerene bulk heterojunctions. J. Phys. Chem. C 118, 21873–21883 (2014).

    Article  CAS  Google Scholar 

  61. Gu, H. et al. Simultaneous performance and stability improvement of ternary polymer solar cells enabled by modulating the molecular packing of acceptors. Sol. RRL 4, 2000374 (2020).

    Article  CAS  Google Scholar 

  62. Yang, Y. et al. High-performance multiple-donor bulk heterojunction solar cells. Nat. Photon 9, 190–198 (2015).

    Article  CAS  Google Scholar 

  63. Oh, S. et al. Enhanced efficiency and stability of PTB7-Th-based multi-non-fullerene solar cells enabled by the working mechanism of the coexisting alloy-like structure and energy transfer model. J. Mater. Chem. A 7, 22044–22053 (2019).

    Article  CAS  Google Scholar 

  64. Gobalasingham, N. S., Noh, S., Howard, J. B. & Thompson, B. C. Influence of surface energy on organic alloy formation in ternary blend solar cells based on two donor polymers. ACS Appl. Mater. Interfaces 8, 27931–27941 (2016).

    Article  CAS  Google Scholar 

  65. Kouijzer, S., Li, W., Wienk, M. M. & Janssen, R. A. J. Charge transfer state energy in ternary bulk-heterojunction polymer–fullerene solar cells. J. Photon. Energy 5, 57203 (2015).

    Article  CAS  Google Scholar 

  66. Huang, X., Liu, X., Ding, K. & Forrest, S. R. Is there such a thing as a molecular organic alloy? Mater. Horiz. 7, 244–251 (2020).

    Article  CAS  Google Scholar 

  67. Ojala, A. et al. Parallel bulk-heterojunction solar cell by electrostatically driven phase separation. Adv. Mater. 23, 5398–5403 (2011).

    Article  CAS  Google Scholar 

  68. Yang, L., Zhou, H., Price, S. C. & You, W. Parallel-like bulk heterojunction polymer solar cells. J. Am. Chem. Soc. 134, 5432–5435 (2012).

    Article  CAS  Google Scholar 

  69. Savoie, B. M., Dunaisky, S., Marks, T. J. & Ratner, M. A. The scope and limitations of ternary blend organic photovoltaics. Adv. Energy Mater. 5, 1400891 (2015).

    Article  Google Scholar 

  70. Mok, J. W. et al. Parallel bulk heterojunction photovoltaics based on all-conjugated block copolymer additives. J. Mater. Chem. A 4, 14804–14813 (2016).

    Article  CAS  Google Scholar 

  71. Liu, T. et al. Highly efficient parallel-like ternary organic solar cells. Chem. Mater. 29, 2914–2920 (2017).

    Article  CAS  Google Scholar 

  72. Kelly, M. A. et al. The finale of a trilogy: comparing terpolymers and ternary blends with structurally similar backbones for use in organic bulk heterojunction solar cells. J. Mater. Chem. A 6, 19190–19200 (2018).

    Article  CAS  Google Scholar 

  73. Hadmojo, W. T. et al. Performance optimization of parallel-like ternary organic solar cells through simultaneous improvement in charge generation and transport. Adv. Funct. Mater. 27, 1808731 (2019).

    Article  Google Scholar 

  74. Zhang, W. et al. Phthalimide polymer donor guests enable over 17% efficient organic solar cells via parallel‐like ternary and quaternary strategies. Adv. Energy Mater. 10, 2001436 (2020).

    Article  CAS  Google Scholar 

  75. Zhang, M., Zhang, F., Wang, J., An, Q. & Sun, Q. Efficient ternary polymer solar cells with a parallel-linkage structure. J. Mater. Chem. C 3, 11930–11936 (2015).

    Article  CAS  Google Scholar 

  76. Ke, L. et al. Panchromatic ternary/quaternary polymer/fullerene BHJ solar cells based on novel silicon naphthalocyanine and silicon phthalocyanine dye sensitizers. J. Mater. Chem. A 5, 2550–2562 (2017).

    Article  CAS  Google Scholar 

  77. Lee, T. H. et al. Investigation of charge carrier behavior in high performance ternary blend polymer solar cells. Adv. Energy Mater. 6, 1600637 (2016).

    Article  Google Scholar 

  78. Bässler, H. Charge transport in disordered organic photoconductors a Monte Carlo simulation study. Phys. Stat. Sol. 175, 15–56 (1993).

    Article  Google Scholar 

  79. Blakesley, J. C. & Neher, D. Relationship between energetic disorder and open-circuit voltage in bulk heterojunction organic solar cells. Phys. Rev. B 84, 075210 (2011).

    Article  Google Scholar 

  80. Felekidis, N., Melianas, A. & Kemerink, M. Design rule for improved open-circuit voltage in binary and ternary organic solar cells. ACS Appl. Mater. Interfaces 9, 37070–37077 (2017).

    Article  CAS  Google Scholar 

  81. Jain, N. et al. Light induced quasi-Fermi level splitting in molecular semiconductor alloys. Mater. Adv. 3, 5344–5349 (2022).

    Article  CAS  Google Scholar 

  82. Poelking, C. et al. Impact of mesoscale order on open-circuit voltage in organic solar cells. Nat. Mater. 14, 434–439 (2015).

    Article  CAS  Google Scholar 

  83. Schwarze, M. et al. Band structure engineering in organic semiconductors. Science 352, 1446–1449 (2016).

    Article  CAS  Google Scholar 

  84. Schwarze, M. et al. Impact of molecular quadrupole moments on the energy levels at organic heterojunctions. Nat. Commun. 10, 2466 (2019).

    Article  Google Scholar 

  85. Dong, Y. et al. Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells. Nat. Commun. 11, 4617 (2020).

    Article  Google Scholar 

  86. Warren, R. et al. Controlling energy levels and Fermi level en route to fully tailored energetics in organic semiconductors. Nat. Commun. 10, 5538 (2019).

    Article  CAS  Google Scholar 

  87. Scharber, M. C. et al. Design rules for donors in bulk-heterojunction solar cells — towards 10% energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006).

    Article  CAS  Google Scholar 

  88. Deibel, C. & Dyakonov, V. Polymer–fullerene bulk heterojunction solar cells. Rep. Prog. Phys. 73, 96401 (2010).

    Article  Google Scholar 

  89. Brabec, C. J. et al. Polymer–fullerene bulk-heterojunction solar cells. Adv. Mater. 22, 3839–3856 (2010).

    Article  CAS  Google Scholar 

  90. Proctor, C. M., Kuik, M. & Nguyen, T.-Q. Charge carrier recombination in organic solar cells. Prog. Polym. Sci. 38, 1941–1960 (2013).

    Article  CAS  Google Scholar 

  91. Armin, A. et al. A history and perspective of non‐fullerene electron acceptors for organic solar cells. Adv. Energy Mater. 11, 2003570 (2021).

    Article  CAS  Google Scholar 

  92. Karki, A., Gillett, A. J., Friend, R. H. & Nguyen, T.-Q. The path to 20% power conversion efficiencies in nonfullerene acceptor organic solar cells. Adv. Energy Mater. 11, 2003441 (2021).

    Article  CAS  Google Scholar 

  93. He, D., Zhao, F., Wang, C. & Lin, Y. Non‐radiative recombination energy losses in non‐fullerene organic solar cells. Adv. Funct. Mater. 32, 2111855 (2022).

    Article  CAS  Google Scholar 

  94. Karuthedath, S. et al. Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells. Nat. Mater. 20, 378–384 (2021).

    Article  CAS  Google Scholar 

  95. Liu, J. et al. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 1, 16089 (2016).

    Article  CAS  Google Scholar 

  96. Chen, S. et al. Efficient nonfullerene organic solar cells with small driving forces for both hole and electron transfer. Adv. Mater. 30, e1804215 (2018).

    Article  Google Scholar 

  97. Li, S. et al. Highly efficient fullerene-free organic solar cells operate at near zero highest occupied molecular orbital offsets. J. Am. Chem. Soc. 141, 3073–3082 (2019).

    Article  CAS  Google Scholar 

  98. Zhang, J. et al. Accurate determination of the minimum HOMO offset for efficient charge generation using organic semiconducting alloys. Adv. Energy Mater. 10, 1903298 (2020).

    Article  CAS  Google Scholar 

  99. Classen, A. et al. The role of exciton lifetime for charge generation in organic solar cells at negligible energy-level offsets. Nat. Energy 5, 711–719 (2020).

    Article  CAS  Google Scholar 

  100. Perdigón-Toro, L. et al. Barrierless free charge generation in the high-performance PM6:Y6 bulk heterojunction non-fullerene solar cell. Adv. Mater. 32, e1906763 (2020).

    Article  Google Scholar 

  101. Allen, T. G. et al. Reconciling the driving force and the barrier to charge separation in donor–nonfullerene acceptor films. ACS Energy Lett. 6, 3572–3581 (2021).

    Article  CAS  Google Scholar 

  102. Bertrandie, J. et al. The energy level conundrum of organic semiconductors in solar cells. Adv. Mater. 34, e2202575 (2022).

    Article  Google Scholar 

  103. Zhang, G. et al. Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells. Nat. Commun. 11, 3943 (2020).

    Article  CAS  Google Scholar 

  104. Hood, S. N. & Kassal, I. Entropy and disorder enable charge separation in organic solar cells. J. Phys. Chem. Lett. 7, 4495–4500 (2016).

    Article  CAS  Google Scholar 

  105. Few, S., Frost, J. M. & Nelson, J. Models of charge pair generation in organic solar cells. Phys. Chem. Chem. Phys. 17, 2311–2325 (2015).

    Article  CAS  Google Scholar 

  106. Burke, T. M., Sweetnam, S., Vandewal, K. & McGehee, M. D. Beyond Langevin recombination: how equilibrium between free carriers and charge transfer states determines the open-circuit voltage of organic solar cells. Adv. Energy Mater. 5, 1500123 (2015).

    Article  Google Scholar 

  107. Armin, A., Durrant, J. R. & Shoaee, S. Interplay between triplet-, singlet-charge transfer states and free charge carriers defining bimolecular recombination rate constant of organic solar cells. J. Phys. Chem. C 121, 13969–13976 (2017).

    Article  CAS  Google Scholar 

  108. Hinrichsen, T. F. et al. Long-lived and disorder-free charge transfer states enable endothermic charge separation in efficient non-fullerene organic solar cells. Nat. Commun. 11, 5617 (2020).

    Article  CAS  Google Scholar 

  109. Shivhare, R. et al. Short excited-state lifetimes mediate charge-recombination losses in organic solar cell blends with low charge-transfer driving force. Adv. Mater. 34, e2101784 (2022).

    Article  Google Scholar 

  110. Perdigón-Toro, L. et al. Excitons dominate the emission from PM6:Y6 solar cells, but this does not help the open-circuit voltage of the device. ACS Energy Lett. 6, 557–564 (2021).

    Article  Google Scholar 

  111. Vandewal, K., Benduhn, J. & Nikolis, V. C. How to determine optical gaps and voltage losses in organic photovoltaic materials. Sustain. Energy Fuels 2, 538–544 (2018).

    Article  CAS  Google Scholar 

  112. Jungbluth, A., Kaienburg, P. & Riede, M. Charge transfer state characterization and voltage losses of organic solar cells. J. Phys. Mater. 5, 24002 (2022).

    Article  Google Scholar 

  113. Benduhn, J. et al. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nat. Energy 2, 17053 (2017).

    Article  CAS  Google Scholar 

  114. Azzouzi, M. et al. Nonradiative energy losses in bulk-heterojunction organic photovoltaics. Phys. Rev. X 8, 031055 (2018).

    CAS  Google Scholar 

  115. Chen, X.-K., Coropceanu, V. & Brédas, J.-L. Assessing the nature of the charge-transfer electronic states in organic solar cells. Nat. Commun. 9, 5295 (2018).

    Article  CAS  Google Scholar 

  116. Deping, Q. et al. Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nat. Mater. 17, 703–709 (2018).

    Article  Google Scholar 

  117. Eisner, F. D. et al. Hybridization of local exciton and charge-transfer states reduces nonradiative voltage losses in organic solar cells. J. Am. Chem. Soc. 141, 6362–6374 (2019).

    Article  CAS  Google Scholar 

  118. Chen, X.-K. et al. A unified description of non-radiative voltage losses in organic solar cells. Nat. Energy 6, 799–806 (2021).

    Article  CAS  Google Scholar 

  119. Melianas, A. & Kemerink, M. Photogenerated charge transport in organic electronic materials: experiments confirmed by simulations. Adv. Mater. 31, e1806004 (2019).

    Article  Google Scholar 

  120. Upreti, T., Wilken, S., Zhang, H. & Kemerink, M. Slow relaxation of photogenerated charge carriers boosts open-circuit voltage of organic solar cells. J. Phys. Chem. Lett. 12, 9874–9881 (2021).

    Article  CAS  Google Scholar 

  121. Vandewal, K., Tvingstedt, K., Gadisa, A., Inganäs, O. & Manca, J. V. Relating the open-circuit voltage to interface molecular properties of donor:acceptor bulk heterojunction solar cells. Phys. Rev. B 81, 125204 (2010).

    Article  Google Scholar 

  122. Graham, K. R. et al. Re-evaluating the role of sterics and electronic coupling in determining the open-circuit voltage of organic solar cells. Adv. Mater. 25, 6076–6082 (2013).

    Article  CAS  Google Scholar 

  123. Wang, Y. et al. Optical gaps of organic solar cells as a reference for comparing voltage losses. Adv. Energy Mater. 8, 1801352 (2018).

    Article  Google Scholar 

  124. Vandewal, K. Interfacial charge transfer states in condensed phase systems. Annu. Rev. Phys. Chem. 67, 113–133 (2016).

    Article  CAS  Google Scholar 

  125. Lin, Y. L., Fusella, M. A. & Rand, B. P. The impact of local morphology on organic donor/acceptor charge transfer states. Adv. Energy Mater. 8, 1702816 (2018).

    Article  Google Scholar 

  126. Marcus, R. A. Relation between charge transfer absorption and fluorescence spectra and the inverted region. J. Phys. Chem. C 93, 3078–3086 (1989).

    Article  CAS  Google Scholar 

  127. Jortner, J. Temperature dependent activation energy for electron transfer between biological molecules. J. Chem. Phys. 64, 4860–4867 (1976).

    Article  CAS  Google Scholar 

  128. Göhler, C. et al. Temperature-dependent charge-transfer-state absorption and emission reveal the dominant role of dynamic disorder in organic solar cells. Phys. Rev. Appl. 15, 064009 (2021).

    Article  Google Scholar 

  129. List, M. et al. Correct determination of charge transfer state energy from luminescence spectra in organic solar cells. Nat. Commun. 9, 3631 (2018).

    Article  Google Scholar 

  130. Armin, A. et al. Limitations of charge transfer state parameterization using photovoltaic external quantum efficiency. Adv. Energy Mater. 10, 2001828 (2020).

    Article  CAS  Google Scholar 

  131. Göhler, C. & Deibel, C. The role of dynamic and static disorder for charge-transfer states in organic bulk heterojunction solar cells. ACS Energy Lett. 7, 2156–2164 (2022).

    Article  Google Scholar 

  132. Belova, V. et al. Evidence for anisotropic electronic coupling of charge transfer states in weakly interacting organic semiconductor mixtures. J. Am. Chem. Soc. 139, 8474–8486 (2017).

    Article  CAS  Google Scholar 

  133. Broch, K. et al. Time-resolved photoluminescence spectroscopy of charge transfer states in blends of pentacene and perfluoropentacene. Phys. Stat. Sol. RRL 11, 1700064 (2017).

    Article  Google Scholar 

  134. Lami, V., Hofstetter, Y. J., Butscher, J. F. & Vaynzof, Y. Energy level alignment in ternary organic solar cells. Adv. Electron. Mater. 6, 2000213 (2020).

    Article  CAS  Google Scholar 

  135. Li, Y. et al. A facile strategy for third-component selection in non-fullerene acceptor-based ternary organic solar cells. Energy Environ. Sci. 14, 5009–5016 (2021).

    Article  CAS  Google Scholar 

  136. Liu, T. et al. Use of two structurally similar small molecular acceptors enabling ternary organic solar cells with high efficiencies and fill factors. Energy Environ. Sci. 11, 3275–3282 (2018).

    Article  CAS  Google Scholar 

  137. Cai, Y. et al. A well-mixed phase formed by two compatible non-fullerene acceptors enables ternary organic solar cells with efficiency over 18.6%. Adv. Mater. 33, 2101733 (2021).

    Article  CAS  Google Scholar 

  138. Karuthedath, S. et al. Rationalizing the influence of tunable energy levels on quantum efficiency to design optimal non-fullerene acceptor-based ternary organic solar cells. Preprint at https://arxiv.org/abs/2112.06245 (2022).

  139. Qi, B., Zhou, Q. & Wang, J. Exploring the open-circuit voltage of organic solar cells under low temperature. Sci. Rep. 5, 11363 (2015).

    Article  Google Scholar 

  140. Fritsch, T. et al. On the interplay between CT and singlet exciton emission in organic solar cells with small driving force and its impact on voltage loss. Adv. Energy Mater. 12, 202200641 (2022).

    Article  Google Scholar 

  141. Xie, Y. et al. Ternary organic solar cells with small nonradiative recombination loss. ACS Energy Lett. 4, 1196–1203 (2019).

    Article  CAS  Google Scholar 

  142. Yu, R. et al. Improved charge transport and reduced nonradiative energy loss enable over 16% efficiency in ternary polymer solar cells. Adv. Mater. 31, e1902302 (2019).

    Article  Google Scholar 

  143. Li, Y., Zhang, Y., Zuo, X. & Lin, Y. Organic photovoltaic electron acceptors showing aggregation-induced emission for reduced nonradiative recombination. Chem. Comm. 57, 5135–5138 (2021).

    Article  CAS  Google Scholar 

  144. Liu, X. et al. Reducing non-radiative recombination energy loss via a fluorescence intensifier for efficient and stable ternary organic solar cells. Mater. Horiz. 8, 2335–2342 (2021).

    Article  CAS  Google Scholar 

  145. Zhan, L. et al. Desired open-circuit voltage increase enables efficiencies approaching 19% in symmetric–asymmetric molecule ternary organic photovoltaics. Joule 6, 662–675 (2022).

    Article  CAS  Google Scholar 

  146. Wang, C. et al. Ternary organic solar cells with enhanced open circuit voltage. Nano Energy 37, 24–31 (2017).

    Article  CAS  Google Scholar 

  147. Zhao, F., Wang, C. & Zhan, X. Morphology control in organic solar cells. Adv. Energy Mater. 8, 1703147 (2018).

    Article  Google Scholar 

  148. Zhu, L. et al. Progress and prospects of the morphology of non-fullerene acceptor based high-efficiency organic solar cells. Energy Environ. Sci. 14, 4341–4357 (2021).

    Article  CAS  Google Scholar 

  149. Westacott, P. et al. On the role of intermixed phases in organic photovoltaic blends. Energy Environ. Sci. 6, 2756 (2013).

    Article  CAS  Google Scholar 

  150. Ma, W. et al. Quantification of nano- and mesoscale phase separation and relation to donor and acceptor quantum efficiency, J(sc), and FF in polymer:fullerene solar cells. Adv. Mater. 26, 4234–4241 (2014).

    Article  CAS  Google Scholar 

  151. Xu, X., Li, Y. & Peng, Q. Ternary blend organic solar cells: understanding the morphology from recent progress. Adv. Mater. 34, e2107476 (2021).

    Article  Google Scholar 

  152. Müller-Buschbaum, P. The active layer morphology of organic solar cells probed with grazing incidence scattering techniques. Adv. Mater. 26, 7692–7709 (2014).

    Article  Google Scholar 

  153. Ameri, T. et al. Morphology analysis of near IR sensitized polymer/fullerene organic solar cells by implementing low bandgap heteroanalogue C-/Si-PCPDTBT. J. Mater. Chem. A 2, 19461–19472 (2014).

    Article  CAS  Google Scholar 

  154. Flory, P. J. Principles of Polymer Chemistry (Cornell Univ. Press, 1953).

  155. Yang, C. et al. Molecular design of a non-fullerene acceptor enables a P3HT-based organic solar cell with 9.46% efficiency. Energy Environ. Sci. 13, 2864–2869 (2020).

    Article  CAS  Google Scholar 

  156. Ai, Q. et al. Ternary organic solar cells: compatibility controls for morphology evolution of active layers. J. Mater. Chem. C 5, 10801–10812 (2017).

    Article  CAS  Google Scholar 

  157. Ghasemi, M. et al. Panchromatic sequentially cast ternary polymer solar cells. Adv. Mater. 29, 201604603 (2017).

    Google Scholar 

  158. Pan, L. et al. Efficient organic ternary solar cells employing narrow band gap diketopyrrolopyrrole polymers and nonfullerene acceptors. Chem. Mater. 32, 7309–7317 (2020).

    Article  CAS  Google Scholar 

  159. Wu, S. Calculation of interfacial tension in polymer systems. J. Polym. Sci. 34, 19–30 (1971).

    Google Scholar 

  160. Du, X. et al. Crystallization of sensitizers controls morphology and performance in Si-/C-PCPDTBT-sensitized P3HT:ICBA ternary blends. Macromolecules 50, 2415–2423 (2017).

    Article  CAS  Google Scholar 

  161. Perea, J. D. et al. Combined computational approach based on density functional theory and artificial neural networks for predicting the solubility parameters of fullerenes. J. Phys. Chem. B 120, 4431–4438 (2016).

    Article  CAS  Google Scholar 

  162. Perea, J. D. et al. Introducing a new potential figure of merit for evaluating microstructure stability in photovoltaic polymer–fullerene blends. J. Phys. Chem. C 121, 18153–18161 (2017).

    Article  CAS  Google Scholar 

  163. Wang, Z. et al. From alloy-like to cascade blended structure: designing high-performance all-small-molecule ternary solar cells. J. Am. Chem. Soc. 140, 1549–1556 (2018).

    Article  CAS  Google Scholar 

  164. Khlyabich, P. P., Rudenko, A. E., Street, R. A. & Thompson, B. C. Influence of polymer compatibility on the open-circuit voltage in ternary blend bulk heterojunction solar cells. ACS Appl. Mater. Interfaces 6, 9913–9919 (2014).

    Article  CAS  Google Scholar 

  165. Mai, J. et al. Understanding morphology compatibility for high-performance ternary organic solar cells. Chem. Mater. 28, 6186–6195 (2016).

    Article  CAS  Google Scholar 

  166. An, Q. et al. Two compatible polymer donors contribute synergistically for ternary organic solar cells with 17.53% efficiency. Energy Environ. Sci. 13, 5039–5047 (2020).

    Article  CAS  Google Scholar 

  167. Xie, G., Zhang, Z., Su, Z., Zhang, X. & Zhang, J. 16.5% Efficiency ternary organic photovoltaics with two polymer donors by optimizing molecular arrangement and phase separation. Nano Energy 69, 104447 (2020).

    Article  CAS  Google Scholar 

  168. Liu, T. et al. Ternary organic solar cells based on two compatible nonfullerene acceptors with power conversion efficiency >10%. Adv. Mater. 28, 10008–10015 (2016).

    Article  CAS  Google Scholar 

  169. Ma, X. et al. Achieving 17.4% efficiency of ternary organic photovoltaics with two well‐compatible nonfullerene acceptors for minimizing energy loss. Adv. Energy Mater. 10, 2001404 (2020).

    Article  CAS  Google Scholar 

  170. Liu, F. et al. Organic solar cells with 18% efficiency enabled by an alloy acceptor: a two-in-one strategy. Adv. Mater. 33, 2100830 (2021).

    Article  CAS  Google Scholar 

  171. Jiang, M. et al. Rational compatibility in a ternary matrix enables all-small-molecule organic solar cells with over 16% efficiency. Energy Environ. Sci. 14, 3945–3953 (2021).

    Article  CAS  Google Scholar 

  172. Zhan, L. et al. Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy Environ. Sci. 13, 635–645 (2020).

    Article  CAS  Google Scholar 

  173. Luo, Y. et al. A large-bandgap copolymer donor for efficient ternary organic solar cells. Mater. Chem. Front. 5, 6139–6144 (2021).

    Article  CAS  Google Scholar 

  174. Privado, M. et al. Fullerene/non-fullerene alloy for high-performance all-small-molecule organic solar cells. ACS Appl. Mater. Interfaces 13, 6461–6469 (2021).

    Article  CAS  Google Scholar 

  175. Fukagawa, H. et al. Origin of the highest occupied band position in pentacene films from ultraviolet photoelectron spectroscopy: hole stabilization versus band dispersion. Phys. Rev. B 73, 245310 (2006).

    Article  Google Scholar 

  176. Chen, W. et al. Molecular orientation-dependent ionization potential of organic thin films. Chem. Mater. 20, 7017–7021 (2008).

    Article  CAS  Google Scholar 

  177. Zhong, Y. et al. Crystallization-induced energy level change of [6,6]-phenyl-C 61-butyric acid methyl ester (PCBM) film: impact of electronic polarization energy. J. Phys. Chem. C 119, 23–28 (2015).

    Article  CAS  Google Scholar 

  178. Tietze, M. L. et al. Correlation of open-circuit voltage and energy levels in zinc-phthalocyanine: C 60 bulk heterojunction solar cells with varied mixing ratio. Phys. Rev. B 88, 085119 (2013).

    Article  Google Scholar 

  179. Mollinger, S. A., Vandewal, K. & Salleo, A. Microstructural and electronic origins of open-circuit voltage tuning in organic solar cells based on ternary blends. Adv. Energy Mater. 5, 1501335 (2015).

    Article  Google Scholar 

  180. Kästner, C., Vandewal, K., Egbe, D. A. M. & Hoppe, H. Revelation of interfacial energetics in organic multiheterojunctions. Adv. Sci. 4, 1600331 (2017).

    Article  Google Scholar 

  181. Yuan, J. et al. Effects of energetic disorder in bulk heterojunction organic solar cells. Energy Environ. Sci. 15, 2806–2818 (2022).

    Article  CAS  Google Scholar 

  182. Sharma, A. & Sheinman, M. Analytical approximation for chemical potential in organic materials with Gaussian density of states. J. Phys. D Appl. Phys. 46, 125106 (2013).

    Article  Google Scholar 

  183. Lv, J. et al. Energetic disorder and activation energy in efficient ternary organic solar cells with nonfullerene acceptor Eh‐IDTBR as the third component. Sol. RRL 4, 1900403 (2020).

    Article  CAS  Google Scholar 

  184. Zeng, Y. et al. Exploring the charge dynamics and energy loss in ternary organic solar cells with a fill factor exceeding 80%. Adv. Energy Mater. 11, 2101338 (2021).

    Article  CAS  Google Scholar 

  185. Fu, H. et al. Efficient ternary organic solar cells enabled by the integration of nonfullerene and fullerene acceptors with a broad composition tolerance. Adv. Funct. Mater. 29, 1807006 (2019).

    Article  Google Scholar 

  186. Lu, H. et al. Ternary-blend polymer solar cells combining fullerene and nonfullerene acceptors to synergistically boost the photovoltaic performance. Adv. Mater. 28, 9559–9566 (2016).

    Article  CAS  Google Scholar 

  187. Dai, S. et al. Enhancing the performance of polymer solar cells via core engineering of NIR-absorbing electron acceptors. Adv. Mater. 30, e1706571 (2018).

    Article  Google Scholar 

  188. Kumari, T., Lee, S. M., Kang, S.-H., Chen, S. & Yang, C. Ternary solar cells with a mixed face-on and edge-on orientation enable an unprecedented efficiency of 12.1%. Energy Environ. Sci. 10, 258–265 (2017).

    Article  CAS  Google Scholar 

  189. Lee, H., Mun, J., Nguyen, N. N., Rho, J. & Cho, K. Open-circuit voltage of organic solar cells: effect of energetically and spatially nonuniform distribution of molecular energy levels in the photoactive layer. Nano Energy 78, 105336 (2020).

    Article  CAS  Google Scholar 

  190. Chen, Y. et al. Achieving high-performance ternary organic solar cells through tuning acceptor alloy. Adv. Mater. 29, 201603154 (2017).

    Google Scholar 

Download references

Acknowledgements

The authors thank M. Kemerink, A. Aspuru-Guzik and A. Weis for the fruitful discussions. The authors acknowledge funding of this work by the RSE International Joint Project (1787), the National Science Foundation (CBET-1803063), SolTech, and DFG Clusters of Excellence e-conversion (EXC 2089/1 – 390776260).

Author information

Authors and Affiliations

Authors

Contributions

M.G. and N.K. researched data and wrote the main part of the manuscript. D.B. wrote the introduction. J.D.P. wrote the sections related to computational aspects. T.A. and B.C.T. supervised the work and corrected the manuscript. All authors discussed, edited and reviewed the manuscript before submission.

Corresponding authors

Correspondence to Barry C. Thompson or Tayebeh Ameri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Bulk heterojunction

(BHJ). Term describing the morphology of an absorbing layer that consists of a nanoscopic blend of donor and acceptor, allowing simultaneously a maximized interface area and continuous charge transport pathways.

Fill factor

Ratio of the maximum power output of a solar cell and the product of short-circuit current and open-circuit voltage.

Frenkel excitons

Electron–hole pair with strong Coulomb interaction, with a typical binding energy of 0.1–1 eV.

Marcus theory

Theory for the description of electron transfer reaction rates established by Rudolph A. Marcus.

Non-fullerene acceptors

(NFAs). Organic molecules with electron-accepting properties that do not belong to the group of fullerenes, which have long been the dominating acceptor materials. Non-fullerene materials usually have a higher absorption capability than fullerenes.

Open-circuit voltage

(VOC). Maximum voltage of a solar cell that occurs at zero current.

Power conversion efficiencies

(PCEs). Ratio of the electrical power output and optical power input of a solar cell.

Short-circuit current

Current through the solar cell when the applied voltage is zero.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Günther, M., Kazerouni, N., Blätte, D. et al. Models and mechanisms of ternary organic solar cells. Nat Rev Mater 8, 456–471 (2023). https://doi.org/10.1038/s41578-023-00545-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00545-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing