Abstract
Ligand-protected noble metal nanoclusters, commonly termed ‘monolayer-protected metal clusters’ (MPCs), comprise a common set of structures with an inorganic core stabilized by an organic layer of ligand molecules. The choice of the metals in the inorganic core defines the clusters’ physical properties, such as the electronic, optical and magnetic properties, whereas the organic ligand shell defines their solubility and functionality with the surrounding environment. MPCs are currently provoking widespread interest as tunable nanomaterials because they can be engineered, in principle, with atomic precision. In this Review, we discuss the unique features of MPCs that make them ideal nanomaterials for applications in different fields, including catalysis and biological applications such as bioimaging, sensing and targeted drug delivery. We emphasize how understanding these atomically precise nanomaterials requires a tight connection between computational modelling and experimental characterization, which opens unique possibilities for iterative functionalization and tuning for applications.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Tsukuda, T. & Häkkinen, H. (eds) Protected Metal Clusters: From Fundamentals to Applications Vol. 9 (Elsevier, 2015).
Häkkinen, H. The gold–sulfur interface at the nanoscale. Nat. Chem. 4, 443 (2012).
Chakraborty, I. & Pradeep, T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem. Rev. 117, 8208–8271 (2017).
Nasaruddin, R. R., Chen, T., Yan, N. & Xie, J. Roles of thiolate ligands in the synthesis, properties and catalytic application of gold nanoclusters. Coord. Chem. Rev. 368, 60–79 (2018).
Kang, X., Li, Y., Zhu, M. & Jin, R. Atomically precise alloy nanoclusters: syntheses, structures, and properties. Chem. Soc. Rev. 49, 6443–6514 (2020).
Du, Y., Sheng, H., Astruc, D. & Zhu, M. Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties. Chem. Rev. 120, 526–622 (2019).
Fernando, A., Weerawardene, K. L. D. M., Karimova, N. V. & Aikens, C. M. Quantum mechanical studies of large metal, metal oxide, and metal chalcogenide nanoparticles and clusters. Chem. Rev. 115, 6112–6216 (2015).
Matus, M. F. & Häkkinen, H. Atomically precise gold nanoclusters: towards an optimal biocompatible system from a theoretical–experimental strategy. Small 17, 2005499 (2021).
Jin, R. Atomically precise metal nanoclusters: stable sizes and optical properties. Nanoscale 7, 1549–1565 (2015).
Jin, R., Zeng, C., Zhou, M. & Chen, Y. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem. Rev. 116, 10346–10413 (2016).
Heinecke, C. L. et al. Structural and theoretical basis for ligand exchange on thiolate monolayer protected gold nanoclusters. J. Am. Chem. Soc. 134, 13316–13322 (2012).
Ackerson, C. J., Jadzinsky, P. D., Jensen, G. J. & Kornberg, R. D. Rigid, specific, and discrete gold nanoparticle/antibody conjugates. J. Am. Chem. Soc. 128, 2635–2640 (2006).
Salorinne, K. et al. Conformation and dynamics of the ligand shell of a water-soluble Au102 nanoparticle. Nat. Commun. 7, 10401 (2016).
Pearson, R. M., Juettner, V. V. & Hong, S. Biomolecular corona on nanoparticles: a survey of recent literature and its implications in targeted drug delivery. Front. Chem. 2, 108 (2014).
Cao, Y. et al. Reversible isomerization of metal nanoclusters induced by intermolecular interaction. Chem 7, 2227–2244 (2021).
Liu, Y. et al. Golden carbon nanotube membrane for continuous flow catalysis. Ind. Eng. Chem. Res. 56, 2999–3007 (2017).
Wu, Z. et al. Thiolate ligands as a double-edged sword for CO oxidation on CeO2 supported Au25(SCH2CH2Ph)18 nanoclusters. J. Am. Chem. Soc. 136, 6111–6122 (2014).
Ma, Z., Wang, P., Xiong, L. & Pei, Y. Thiolate‐protected gold nanoclusters: structural prediction and the understandings of electronic stability from first principles simulations. Wiley Interdiscip. Rev. Comput. Mol. Sci. 7, e1315 (2017).
Xie, Y.-P. et al. Silver nanoclusters: synthesis, structures and photoluminescence. Mater. Chem. Front. 4, 2205–2222 (2020).
Baghdasaryan, A. & Bürgi, T. Copper nanoclusters: designed synthesis, structural diversity, and multiplatform applications. Nanoscale 13, 6283–6340 (2021).
Akola, J., Walter, M., Whetten, R. L., Häkkinen, H. & Grönbeck, H. On the structure of thiolate-protected Au25. J. Am. Chem. Soc. 130, 3756–3757 (2008).
Pei, Y., Gao, Y. & Zeng, X. C. Structural prediction of thiolate-protected Au38: a face-fused bi-icosahedral Au core. J. Am. Chem. Soc. 130, 7830–7832 (2008).
Lopez-Acevedo, O., Tsunoyama, H., Tsukuda, T., Häkkinen, H. & Aikens, C. M. Chirality and electronic structure of the thiolate-protected Au38 nanocluster. J. Am. Chem. Soc. 132, 8210–8218 (2010).
Vergara, S. et al. MicroED structure of Au146(p-MBA)57 at subatomic resolution reveals a twinned FCC cluster. J. Phys. Chem. Lett. 8, 5523–5530 (2017).
Liu, C. et al. Observation of body‐centered cubic gold nanocluster. Angew. Chem. 127, 9964–9967 (2015).
Huang, X. et al. Synthesis of hexagonal close-packed gold nanostructures. Nat. Commun. 2, 292 (2011).
Zhu, M., Aikens, C. M., Hollander, F. J., Schatz, G. C. & Jin, R. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 130, 5883–5885 (2008).
Heaven, M. W., Dass, A., White, P. S., Holt, K. M. & Murray, R. W. Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc. 130, 3754–3755 (2008).
Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318, 430–433 (2007).
Wei, X., Xu, C., Li, H., Kang, X. & Zhu, M. Fabrication of a family of atomically precise silver nanoclusters via dual-level kinetic control. Chem. Sci. 13, 5531–5538 (2022).
Aikens, C. M. Electronic and geometric structure, optical properties, and excited state behavior in atomically precise thiolate-stabilized noble metal nanoclusters. Acc. Chem. Res. 51, 3065–3073 (2018).
Chen, T. et al. Crystallization-induced emission enhancement: a novel fluorescent Au–Ag bimetallic nanocluster with precise atomic structure. Sci. Adv. 3, e1700956 (2017).
Xie, X. et al. The origin of the photoluminescence enhancement of gold‐doped silver nanoclusters: the importance of relativistic effects and heteronuclear gold–silver bonds. Angew. Chem. Int. Ed. 57, 9965–9969 (2018).
Krishnadas, K. R. et al. Metal–ligand interface in the chemical reactions of ligand-protected noble metal clusters. Langmuir 35, 11243–11254 (2018).
Baksi, A. et al. Isomerism in monolayer protected silver cluster ions: an ion mobility–mass spectrometry approach. J. Phys. Chem. C 121, 13421–13427 (2017).
Matus, M. F. et al. A topological isomer of the Au25(SR)18− nanocluster. Chem. Commun. 56, 8087–8090 (2020).
Kalenius, E. et al. Experimental confirmation of a topological isomer of the ubiquitous Au25(SR)18 cluster in the gas phase. J. Am. Chem. Soc. 143, 1273–1277 (2021).
Krishnadas, K. R. et al. Intercluster reactions between Au25(SR)18 and Ag44(SR)30. J. Am. Chem. Soc. 138, 140–148 (2016).
Zhang, B., Chen, J., Cao, Y., Chai, O. J. H. & Xie, J. Ligand design in ligand‐protected gold nanoclusters. Small 17, 2004381 (2021).
Qian, H. et al. Conversion of polydisperse Au nanoparticles into monodisperse Au25 nanorods and nanospheres. J. Phys. Chem. C 113, 17599–17603 (2009).
Yuan, X., Goswami, N., Mathews, I., Yu, Y. & Xie, J. Enhancing stability through ligand-shell engineering: a case study with Au25(SR)18 nanoclusters. Nano Res. 8, 3488–3495 (2015).
Song, Y. et al. Crystal structure of Au25(SePh)18 nanoclusters and insights into their electronic, optical and catalytic properties. Nanoscale 6, 13977–13985 (2014).
Wan, X.-K., Wang, J.-Q., Nan, Z.-A. & Wang, Q.-M. Ligand effects in catalysis by atomically precise gold nanoclusters. Sci. Adv. 3, e1701823 (2017).
Wu, Z. & Jin, R. On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett. 10, 2568–2573 (2010).
Deng, G. et al. From symmetry breaking to unraveling the origin of the chirality of ligated Au13Cu2 nanoclusters. Angew. Chem. 130, 3479–3483 (2018).
Hostetler, M. J., Green, S. J., Stokes, J. J. & Murray, R. W. Monolayers in three dimensions: synthesis and electrochemistry of ω-functionalized alkanethiolate-stabilized gold cluster compounds. J. Am. Chem. Soc. 118, 4212–4213 (1996).
Hostetler, M. J., Templeton, A. C. & Murray, R. W. Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules. Langmuir 15, 3782–3789 (1999).
Wang, Y. & Bürgi, T. Ligand exchange reactions on thiolate-protected gold nanoclusters. Nanoscale Adv. 3, 2710–2727 (2021).
Salassa, G., Sels, A., Mancin, F. & Burgi, T. Dynamic nature of thiolate monolayer in Au25(SR)18 nanoclusters. ACS Nano 11, 12609–12614 (2017).
Suzuki, W. et al. Control over ligand-exchange positions of thiolate-protected gold nanoclusters using steric repulsion of protecting ligands. J. Am. Chem. Soc. 144, 12310–12320 (2022).
Joshi, C. P., Bootharaju, M. S., Alhilaly, M. J. & Bakr, O. M. [Ag25(SR)18]−: the ‘golden’ silver nanoparticle. J. Am. Chem. Soc. 137, 11578–11581 (2015).
Harkness, K. M. et al. Ag44(SR)304−: a silver–thiolate superatom complex. Nanoscale 4, 4269–4274 (2012).
Baksi, A. et al. Reactivity of monolayer protected silver clusters toward excess ligand: a calorimetric study. J. Phys. Chem. C 121, 26483–26492 (2017).
Wan, X. et al. A near‐infrared‐emissive alkynyl‐protected Au24 nanocluster. Angew. Chem. Int. Ed. 54, 9683–9686 (2015).
Wan, X.-K., Tang, Q., Yuan, S.-F., Jiang, D. & Wang, Q.-M. Au19 nanocluster featuring a V-shaped alkynyl–gold motif. J. Am. Chem. Soc. 137, 652–655 (2015).
Wang, Y. et al. Atomically precise alkynyl-protected metal nanoclusters as a model catalyst: observation of promoting effect of surface ligands on catalysis by metal nanoparticles. J. Am. Chem. Soc. 138, 3278–3281 (2016).
Kurashige, W., Yamazoe, S., Kanehira, K., Tsukuda, T. & Negishi, Y. Selenolate-protected Au38 nanoclusters: isolation and structural characterization. J. Phys. Chem. Lett. 4, 3181–3185 (2013).
Kang, X. & Zhu, M. Metal nanoclusters stabilized by selenol ligands. Small 15, 1902703 (2019).
Kawawaki, T. et al. Toward the creation of high-performance heterogeneous catalysts by controlled ligand desorption from atomically precise metal nanoclusters. Nanoscale Horiz. 6, 409–448 (2021).
Malola, S. et al. A method for structure prediction of metal–ligand interfaces of hybrid nanoparticles. Nat. Commun. 10, 3973 (2019).
Lopez-Acevedo, O., Kacprzak, K. A., Akola, J. & Häkkinen, H. Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters. Nat. Chem. 2, 329 (2010).
Sanchez, A. et al. When gold is not noble: nanoscale gold catalysts. J. Phys. Chem. A 103, 9573–9578 (1999).
Häkkinen, H., Abbet, S., Sanchez, A., Heiz, U. & Landman, U. Structural, electronic, and impurity‐doping effects in nanoscale chemistry: supported gold nanoclusters. Angew. Chem. Int. Ed. 42, 1297–1300 (2003).
Socaciu, L. D. et al. Catalytic CO oxidation by free Au2−: experiment and theory. J. Am. Chem. Soc. 125, 10437–10445 (2003).
Yoon, B., Häkkinen, H. & Landman, U. Interaction of O2 with gold clusters: molecular and dissociative adsorption. J. Phys. Chem. A 107, 4066–4071 (2003).
Yoon, B. et al. Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Sci 307, 403–407 (2005).
Bezman, S. A., Churchill, M. R., Osborn, J. A. & Wormald, J. Preparation and crystallographic characterization of a hexameric triphenylphosphinecopper hydride cluster. J. Am. Chem. Soc. 93, 2063–2065 (1971).
Brestensky, D. M., Huseland, D. E., McGettigan, C. & Stryker, J. M. Simplified, ‘one-pot’ procedure for the synthesis of [(Ph3P)CUH]6, a stable copper hydride for conjugate reductions. Tetrahedron Lett. 29, 3749–3752 (1988).
Yuan, P. et al. Ether‐soluble Cu53 nanoclusters as an effective precursor of high‐quality CuI films for optoelectronic applications. Angew. Chem. 131, 845–849 (2019).
Nguyen, T.-A. D. et al. A Cu25 nanocluster with partial Cu(0) character. J. Am. Chem. Soc. 137, 13319–13324 (2015).
Tang, Q. et al. Lattice-hydride mechanism in electrocatalytic CO2 reduction by structurally precise copper-hydride nanoclusters. J. Am. Chem. Soc. 139, 9728–9736 (2017).
Dhayal, R. S. et al. Diselenophosphate‐induced conversion of an achiral [Cu20H11{S2P(OiPr)2}9] into a chiral [Cu20H11{Se2P(OiPr)2}9] polyhydrido nanocluster. Angew. Chem. Int. Ed. 54, 13604–13608 (2015).
Sun, C. et al. Atomically precise, thiolated copper–hydride nanoclusters as single-site hydrogenation catalysts for ketones in mild conditions. ACS Nano 13, 5975–5986 (2019).
Jiang, D. & Dai, S. From superatomic Au25(SR)18− to superatomic M@Au24(SR)18q core−shell clusters. Inorg. Chem. 48, 2720–2722 (2009).
Kacprzak, K. A., Lehtovaara, L., Akola, J., Lopez-Acevedo, O. & Häkkinen, H. A density functional investigation of thiolate-protected bimetal PdAu24(SR)18z clusters: doping the superatom complex. Phys. Chem. Chem. Phys. 11, 7123–7129 (2009).
Kwak, K. et al. A molecule-like PtAu24(SC6H13)18 nanocluster as an electrocatalyst for hydrogen production. Nat. Commun. 8, 1–8 (2017).
Kumar, B. et al. Gold nanoclusters as electrocatalysts: size, ligands, heteroatom doping, and charge dependences. Nanoscale 12, 9969–9979 (2020).
Hu, G., Tang, Q., Lee, D., Wu, Z. & Jiang, D. Metallic hydrogen in atomically precise gold nanoclusters. Chem. Mater. 29, 4840–4847 (2017).
Sun, F., Deng, C., Tian, S. & Tang, Q. Oxygen electrocatalysis by [Au25(SR)18]: charge, doping, and ligand removal effect. ACS Catal. 11, 7957–7969 (2021).
De Silva, N. et al. A bioinspired approach for controlling accessibility in calix[4]arene-bound metal cluster catalysts. Nat. Chem. 2, 1062–1068 (2010).
Nigra, M. M. et al. Accessible gold clusters using calix[4]arene N-heterocyclic carbene and phosphine ligands. Dalton Trans. 42, 12762–12771 (2013).
McPartlin, M., Mason, R. & Malatesta, L. Novel cluster complexes of gold (0)–gold (I). J. Chem. Soc. D 1969, 334 (1969).
Chen, X. & Häkkinen, H. Protected but accessible: oxygen activation by a calixarene-stabilized undecagold cluster. J. Am. Chem. Soc. 135, 12944–12947 (2013).
Yuan, S., Lei, Z., Guan, Z. & Wang, Q. Atomically precise preorganization of open metal sites on gold nanoclusters with high catalytic performance. Angew. Chem. Int. Ed. 60, 5225–5229 (2021).
Shen, H. et al. N-heterocyclic carbene-stabilized gold nanoclusters with organometallic motifs for promoting catalysis. J. Am. Chem. Soc. 144, 10844–10853 (2022).
Walter, M. et al. A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl Acad. Sci. USA 105, 9157–9162 (2008).
Guan, Z. et al. Ligand engineering toward the trade‐off between stability and activity in cluster catalysis. Angew. Chem. 134, e202116965 (2022).
Bertorelle, F. et al. Isomeric effect of mercaptobenzoic acids on the synthesis, stability, and optical properties of Au25(MBA)18 nanoclusters. ACS Omega 3, 15635–15642 (2018).
Cox, B. D., Martin, C. R., Bertino, M. F. & Reiner, J. E. Biological nanopores elucidate the differences between isomers of mercaptobenzoic-capped gold clusters. Phys. Chem. Chem. Phys. 23, 7938–7947 (2021).
Azubel, M. et al. Electron microscopy of gold nanoparticles at atomic resolution. Science 345, 909–912 (2014).
Azubel, M. & Kornberg, R. D. Synthesis of water-soluble, thiolate-protected gold nanoparticles uniform in size. Nano Lett. 16, 3348–3351 (2016).
Azubel, M., Koh, A. L., Koyasu, K., Tsukuda, T. & Kornberg, R. D. Structure determination of a water-soluble 144-gold atom particle at atomic resolution by aberration-corrected electron microscopy. ACS Nano 11, 11866–11871 (2017).
Azubel, M. et al. FGF21 trafficking in intact human cells revealed by cryo-electron tomography with gold nanoparticles. Elife 8, e43146 (2019).
Tero, T.-R. et al. Dynamic stabilization of the ligand–metal interface in atomically precise gold nanoclusters Au68 and Au144 protected by meta-mercaptobenzoic acid. ACS Nano 11, 11872–11879 (2017).
Qian, H. & Jin, R. Controlling nanoparticles with atomic precision: the case of Au144(SCH2CH2Ph)60. Nano Lett. 9, 4083–4087 (2009).
Lopez-Acevedo, O., Akola, J., Whetten, R. L., Grönbeck, H. & Häkkinen, H. Structure and bonding in the ubiquitous icosahedral metallic gold cluster Au144(SR)60. J. Phys. Chem. C. 113, 5035–5038 (2009).
Yan, N. et al. Unraveling the long-pursued Au144 structure by X-ray crystallography. Sci. Adv. 4, eaat7259 (2018).
Lei, Z., Li, J., Wan, X., Zhang, W. & Wang, Q. Isolation and total structure determination of an all‐alkynyl‐protected gold nanocluster Au144. Angew. Chem. 130, 8775–8779 (2018).
Whetten, R. L. et al. Chiral-icosahedral (I) symmetry in ubiquitous metallic cluster compounds (145A, 60X): structure and bonding principles. Acc. Chem. Res. 52, 34–43 (2019).
Mammen, N., Malola, S., Honkala, K. & Häkkinen, H. Dynamics of weak interactions in the ligand layer of meta-mercaptobenzoic acid protected gold nanoclusters Au68(m-MBA)32 and Au144(m-MBA)40. Nanoscale 12, 23859–23868 (2020).
Mammen, N., Malola, S., Honkala, K. & Häkkinen, H. Selective acrolein hydrogenation over ligand-protected gold clusters: a Venus flytrap mechanism. ACS Catal. 12, 2365–2374 (2022).
Ma, G. et al. Stabilizing gold clusters by heterostructured transition-metal oxide–mesoporous silica supports for enhanced catalytic activities for CO oxidation. Chem. Commun. 48, 11413–11415 (2012).
Li, W. et al. Mild activation of CeO2-supported gold nanoclusters and insight into the catalytic behavior in CO oxidation. Nanoscale 8, 2378–2385 (2016).
Liu, Y. M., Tsunoyama, H., Akita, T., Xie, S. H. & Tsukuda, T. Aerobic oxidation of cyclohexane catalyzed by size-conrolled au clusters on hydroxyapatite: size effect in the sub-2 nm regime. ACS Catal. 1, 2–6 (2011).
Zhang, B. et al. Modulation of active sites in supported Au38(SC2H4Ph)24 cluster catalysts: effect of atmosphere and support material. J. Phys. Chem. C 119, 11193–11199 (2015).
Yoskamtorn, T. et al. Thiolate-mediated selectivity control in aerobic alcohol oxidation by porous carbon-supported Au25 clusters. ACS Catal. 4, 3696–3700 (2014).
Turner, M. et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454, 981–983 (2008).
Liu, J. et al. Ligand‐stabilized and atomically precise gold nanocluster catalysis: a case study for correlating fundamental electronic properties with catalysis. Chem. Eur. J. 19, 10201–10208 (2013).
Zhang, B. et al. Ligand migration from cluster to support: a crucial factor for catalysis by thiolate‐protected gold clusters. ChemCatChem 10, 5372–5376 (2018).
Longo, A. et al. Towards atomically precise supported catalysts from monolayer‐protected clusters: the critical role of the support. Chem. Eur. J. 26, 7051–7058 (2020).
Shang, L., Dong, S. & Nienhaus, G. U. Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today 6, 401–418 (2011).
Levi-Kalisman, Y. et al. Synthesis and characterization of Au102(p-MBA)44 nanoparticles. J. Am. Chem. Soc. 133, 2976–2982 (2011).
Sokołowska, K. et al. Towards controlled synthesis of water-soluble gold nanoclusters: synthesis and analysis. J. Phys. Chem. C 123, 2602–2612 (2019).
Auría-Soro, C. et al. Interactions of nanoparticles and biosystems: microenvironment of nanoparticles and biomolecules in nanomedicine. Nanomaterials 9, 1365 (2019).
Gupta, A. et al. Ultrastable and biofunctionalizable gold nanoparticles. ACS Appl. Mater. Interfaces 8, 14096–14101 (2016).
Hong, R. et al. Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J. Am. Chem. Soc. 128, 1078–1079 (2006).
Rana, S., Bajaj, A., Mout, R. & Rotello, V. M. Monolayer coated gold nanoparticles for delivery applications. Adv. Drug Deliv. Rev. 64, 200–216 (2012).
Ghosh, P., Han, G., De, M., Kim, C. K. & Rotello, V. M. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 60, 1307–1315 (2008).
Carnovale, C., Bryant, G., Shukla, R. & Bansal, V. Identifying trends in gold nanoparticle toxicity and uptake: size, shape, capping ligand, and biological corona. ACS Omega 4, 242–256 (2019).
Zheng, K. & Xie, J. Engineering ultrasmall metal nanoclusters as promising theranostic agents. Trends Chem. 2, 665–679 (2020).
Porret, E., Le Guével, X. & Coll, J.-L. Gold nanoclusters for biomedical applications: toward in vivo studies. J. Mater. Chem. B 8, 2216–2232 (2020).
Koivisto, J. et al. Acid–base properties and surface charge distribution of the water-soluble Au102(pMBA)44 nanocluster. J. Phys. Chem. C 120, 10041–10050 (2016).
Lipka, J. J., Hainfeld, J. F. & Wall, J. S. Undecagold labeling of a glycoprotein: STEM visualization of an undecagoldphosphine cluster labeling the carbohydrate sites of human haptoglobin–hemoglobin complex. J. Ultrastruct. Res. 84, 120–129 (1983).
Hainfeld, J. F. & Powell, R. D. New frontiers in gold labeling. J. Histochem. Cytochem. 48, 471–480 (2000).
Hainfeld, J. F. A small gold-conjugated antibody label: improved resolution for electron microscopy. Science 236, 450–453 (1987).
Hainfeld, J. F. & Furuya, F. R. A 1.4-nm gold cluster covalently attached to antibodies improves immunolabeling. J. Histochem. Cytochem. 40, 177–184 (1992).
Yang, Y., Wang, L., Wan, B. & Gu, Y. Optical active nanomaterials for bioimaging and targeted therapy. Front. Bioeng. Biotechnol. 7, 320 (2019).
Marjomäki, V. et al. Site-specific targeting of enterovirus capsid by functionalized monodisperse gold nanoclusters. Proc. Natl Acad. Sci. USA 111, 1277–1281 (2014).
Martikainen, M. et al. Hydrophobic pocket targeting probes for enteroviruses. Nanoscale 7, 17457–17467 (2015).
Pohjolainen, E., Malola, S., Groenhof, G. & Häkkinen, H. Exploring strategies for labeling viruses with gold nanoclusters through non-equilibrium molecular dynamics simulations. Bioconjug. Chem. 28, 2327–2339 (2017).
Hulkko, E. et al. Covalent and non-covalent coupling of a Au102 nanocluster with a fluorophore: energy transfer, quenching and intracellular pH sensing. Nanoscale Adv. 3, 6649–6658 (2021).
Weerawardene, K. L. D. M., Guidez, E. B. & Aikens, C. M. Photoluminescence origin of Au38(SR)24 and Au22(SR)18 nanoparticles: a theoretical perspective. J. Phys. Chem. C 121, 15416–15423 (2017).
Luo, Z., Zheng, K. & Xie, J. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications. Chem. Commun. 50, 5143–5155 (2014).
Chevrier, D. M. et al. Molecular-scale ligand effects in small gold–thiolate nanoclusters. J. Am. Chem. Soc. 140, 15430–15436 (2018).
Pyo, K. et al. Ultrabright luminescence from gold nanoclusters: rigidifying the Au(I)–thiolate shell. J. Am. Chem. Soc. 137, 8244–8250 (2015).
Yu, Y. et al. Identification of a highly luminescent Au22(SG)18 nanocluster. J. Am. Chem. Soc. 136, 1246–1249 (2014).
Pei, Y., Tang, J., Tang, X., Huang, Y. & Zeng, X. C. New structure model of Au22(SR)18: bitetrahederon golden kernel enclosed by [Au6(SR)6] Au(I) complex. J. Phys. Chem. Lett. 6, 1390–1395 (2015).
Bertorelle, F. et al. Tailoring the NIR‐II photoluminescence of single thiolated Au25 nanoclusters by selective binding to proteins. Chem. Eur. J. 28, e202200570 (2022).
Xie, J., Zheng, Y. & Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 131, 888–889 (2009).
Chevrier, D. M. et al. Structure and formation of highly luminescent protein-stabilized gold clusters. Chem. Sci. 9, 2782–2790 (2018).
Song, X. et al. A new class of NIR‐II gold nanocluster‐based protein biolabels for in vivo tumor‐targeted imaging. Angew. Chem. Int. Ed. 60, 1306–1312 (2021).
Kang, X. & Zhu, M. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 48, 2422–2457 (2019).
Patra, J. K. et al. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16, 71 (2018).
Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007).
He, H., Liu, L., Morin, E. E., Liu, M. & Schwendeman, A. Survey of clinical translation of cancer nanomedicines — lessons learned from successes and failures. Acc. Chem. Res. 52, 2445–2461 (2019).
Adhipandito, C. F., Cheung, S.-H., Lin, Y.-H. & Wu, S.-H. Atypical renal clearance of nanoparticles larger than the kidney filtration threshold. Int. J. Mol. Sci. 22, 11182 (2021).
Van Hong Nguyen, B.-J. L. Protein corona: a new approach for nanomedicine design. Int. J. Nanomed. 12, 3137 (2017).
Tang, L. et al. Advanced and innovative nano-systems for anticancer targeted drug delivery. Pharmaceutics 13, 1151 (2021).
Singh, A. P., Biswas, A., Shukla, A. & Maiti, P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal. Transduct. Target. Ther. 4, 1–21 (2019).
Alkilany, A. M. et al. Ligand density on nanoparticles: a parameter with critical impact on nanomedicine. Adv. Drug Deliv. Rev. 143, 22–36 (2019).
Colombo, M. et al. Tumour homing and therapeutic effect of colloidal nanoparticles depend on the number of attached antibodies. Nat. Commun. 7, 13818 (2016).
Matus, M. F., Malola, S. & Häkkinen, H. Ligand ratio plays a critical role in the design of optimal multifunctional gold nanoclusters for targeted gastric cancer therapy. ACS Nanosci. Au 1, 47–60 (2021).
Walkey, C. D. & Chan, W. C. W. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 41, 2780–2799 (2012).
Müller, J. et al. Beyond the protein corona — lipids matter for biological response of nanocarriers. Acta Biomater. 71, 420–431 (2018).
Lee, J. Y. et al. Analysis of lipid adsorption on nanoparticles by nanoflow liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 410, 6155–6164 (2018).
Griffith, D. M., Jayaram, D. T., Spencer, D. M., Pisetsky, D. S. & Payne, C. K. DNA–nanoparticle interactions: formation of a DNA corona and its effects on a protein corona. Biointerphases 15, 51006 (2020).
Hadjidemetriou, M. & Kostarelos, K. Evolution of the nanoparticle corona. Nat. Nanotechnol. 12, 288–290 (2017).
Xiao, W. & Gao, H. The impact of protein corona on the behavior and targeting capability of nanoparticle-based delivery system. Int. J. Pharm. 552, 328–339 (2018).
Bai, X., Wang, J., Mu, Q. & Su, G. In vivo protein corona formation: characterizations, effects on engineered nanoparticles’ biobehaviors, and applications. Front. Bioeng. Biotechnol. 9, 263 (2021).
Jain, P. et al. In-vitro in-vivo correlation (IVIVC) in nanomedicine: is protein corona the missing link? Biotechnol. Adv. 35, 889–904 (2017).
Desireddy, A. et al. Ultrastable silver nanoparticles. Nature 501, 399–402 (2013).
Wong, O. A., Heinecke, C. L., Simone, A. R., Whetten, R. L. & Ackerson, C. J. Ligand symmetry-equivalence on thiolate protected gold nanoclusters determined by NMR spectroscopy. Nanoscale 4, 4099–4102 (2012).
Berman, H. M. & Gierasch, L. M. How the protein data bank changed biology: an introduction to the JBC reviews thematic series, part 1. J. Biol. Chem. 296, 100748 (2021).
Lee, H. Molecular modeling of protein corona formation and its interactions with nanoparticles and cell membranes for nanomedicine applications. Pharmaceutics 13, 637 (2021).
Chetwynd, A. J. & Lynch, I. The rise of the nanomaterial metabolite corona, and emergence of the complete corona. Environ. Sci. Nano 7, 1041–1060 (2020).
Pohjolainen, E., Chen, X., Malola, S., Groenhof, G. & Häkkinen, H. A unified AMBER-compatible molecular mechanics force field for thiolate-protected gold nanoclusters. J. Chem. Theory Comput. 12, 1342–1350 (2016).
Manaia, E. B. et al. Physicochemical characterization of drug nanocarriers. Int. J. Nanomed. 12, 4991 (2017).
Mahmoudi, M. The need for robust characterization of nanomaterials for nanomedicine applications. Nat. Commun. 12, 5246 (2021).
Comby-Zerbino, C., Dagany, X., Chirot, F., Dugourd, P. & Antoine, R. The emergence of mass spectrometry for characterizing nanomaterials. Atomically precise nanoclusters and beyond. Mater. Adv. 2, 4896–4913 (2021).
Ge, C. et al. Towards understanding of nanoparticle–protein corona. Arch. Toxicol. 89, 519–539 (2015).
Lai, Z. W., Yan, Y., Caruso, F. & Nice, E. C. Emerging techniques in proteomics for probing nano–bio interactions. ACS Nano 6, 10438–10448 (2012).
Soleilhac, A. et al. Size characterization of glutathione-protected gold nanoclusters in the solid, liquid and gas phases. J. Phys. Chem. C 121, 27733–27740 (2017).
Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).
Zeng, C., Chen, Y., Das, A. & Jin, R. Transformation chemistry of gold nanoclusters: from one stable size to another. J. Phys. Chem. Lett. 6, 2976–2986 (2015).
Du, B. et al. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 12, 1096 (2017).
Hua, S., De Matos, M. B. C., Metselaar, J. M. & Storm, G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front. Pharmacol. 9, 790 (2018).
Varnavski, O., Ramakrishna, G., Kim, J., Lee, D. & Goodson, T. Critical size for the observation of quantum confinement in optically excited gold clusters. J. Am. Chem. Soc. 132, 16–17 (2010).
Häkkinen, H. Electronic shell structures in bare and protected metal nanoclusters. Adv. Phys. X 1, 467–491 (2016).
Ho-Wu, R., Yau, S. H. & Goodson, T. I. I. I. Efficient singlet oxygen generation in metal nanoclusters for two-photon photodynamic therapy applications. J. Phys. Chem. B 121, 10073–10080 (2017).
Srinivasulu, Y. G., Mozhi, A., Goswami, N., Yao, Q. & Xie, J. Traceable nanocluster–prodrug conjugate for chemo-photodynamic combinatorial therapy of non-small cell lung cancer. ACS Appl. Bio Mater. 4, 3232–3245 (2021).
Liu, P. et al. Concurrent photothermal therapy and photodynamic therapy for cutaneous squamous cell carcinoma by gold nanoclusters under a single NIR laser irradiation. J. Mater. Chem. B 7, 6924–6933 (2019).
Yu, Y., Geng, J., Ong, E. Y. X., Chellappan, V. & Tan, Y. N. Bovine serum albulmin protein‐templated silver nanocluster (BSA‐Ag13): an effective singlet oxygen generator for photodynamic cancer therapy. Adv. Healthc. Mater. 5, 2528–2535 (2016).
Jiang, X., Du, B., Huang, Y., Yu, M. & Zheng, J. Cancer photothermal therapy with ICG-conjugated gold nanoclusters. Bioconjug. Chem. 31, 1522–1528 (2020).
Kawasaki, H. et al. Generation of singlet oxygen by photoexcited Au25(SR)18 clusters. Chem. Mater. 26, 2777–2788 (2014).
Moosavi, S. M., Jablonka, K. M. & Smit, B. The role of machine learning in the understanding and design of materials. J. Am. Chem. Soc. 142, 20273–20287 (2020).
Fanourgakis, G. S., Gkagkas, K., Tylianakis, E. & Froudakis, G. E. A universal machine learning algorithm for large-scale screening of materials. J. Am. Chem. Soc. 142, 3814–3822 (2020).
Xie, Y. et al. Machine learning assisted synthesis of metal–organic nanocapsules. J. Am. Chem. Soc. 142, 1475–1481 (2019).
Unke, O. T. et al. Machine learning force fields. Chem. Rev. 121, 10142–10186 (2021).
Li, J. et al. Deep learning accelerated gold nanocluster synthesis. Adv. Intell. Syst. 1, 1900029 (2019).
Mastracco, P., Gonzàlez-Rosell, A., Evans, J., Bogdanov, P. & Copp, S. M. Chemistry-informed machine learning enables discovery of DNA-stabilized silver nanoclusters with near-infrared fluorescence. ACS Nano 16, 16322–16331 (2022).
Zhou, Q. et al. Real-space imaging with pattern recognition of a ligand-protected Ag374 nanocluster at sub-molecular resolution. Nat. Commun. 9, 2948 (2018).
Yao, Q. et al. Supercrystal engineering of atomically precise gold nanoparticles promoted by surface dynamics. Nat. Chem. https://doi.org/10.1038/s41557-022-01079-9 (2022).
Wang, S., Liu, T. & Jiang, D. Locating hydrides in ligand-protected copper nanoclusters by deep learning. ACS Appl. Mater. Interfaces 13, 53468–53474 (2021).
Pihlajamäki, A. et al. Monte Carlo simulations of Au38(SCH3)24 nanocluster using distance-based machine learning methods. J. Phys. Chem. A 124, 4827–4836 (2020).
Pihlajamäki, A. Machine Learning Approach to Atomic Simulations of Protected Gold Nanoclusters. PhD thesis, Univ. Jyväskylä http://urn.fi/URN:ISBN:978-951-39-9309-2 (2022).
Pihlajamäki, A., Malola, S., Kärkkäinen, T. & Häkkinen, H. Orientation adaptive minimal learning machine: application to thiolate-protected gold nanoclusters and gold-thiolate rings. Preprint at https://arxiv.org/abs/2203.09788 (2022).
Panapitiya, G. et al. Machine-learning prediction of CO adsorption in thiolated, Ag-alloyed Au nanoclusters. J. Am. Chem. Soc. 140, 17508–17514 (2018).
Cha, M. et al. Unifying structural descriptors for biological and bioinspired nanoscale complexes. Nat. Comput. Sci. 2, 243–252 (2022).
Malola, S. & Häkkinen, H. Prospects and challenges for computer simulations of monolayer-protected metal clusters. Nat. Commun. 12, 2197 (2021).
Teo, B. K. & Keating, K. Novel triicosahedral structure of the largest metal alloy cluster: hexachlorododecakis (triphenylphosphine)-gold-silver cluster [(Ph3P)12Au13Ag12Cl6]m+. J. Am. Chem. Soc. 106, 2224–2226 (1984).
Teo, B. K., Hong, M. C., Zhang, H. & Huang, D. B. Cluster of clusters: structure of the 37‐atom cluster [(p‐Tol3P)12Au18Ag19Br11]2⊕ and a novel series of supraclusters based on vertex‐sharing icosahedra. Angew. Chem. Int. Ed. Engl. 26, 897–900 (1987).
Teo, B. K. Cluster of clusters: a new series of high nuclearity Au–Ag clusters. Polyhedron 7, 2317–2320 (1988).
Nuzzo, R. G. & Allara, D. L. Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc. 105, 4481–4483 (1983).
Nuzzo, R. G., Zegarski, B. R. & Dubois, L. H. Fundamental studies of the chemisorption of organosulfur compounds on gold(111). Implications for molecular self-assembly on gold surfaces. J. Am. Chem. Soc. 109, 733–740 (1987).
Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1170 (2005).
Brust, M., Walker, M., Bethell, D., Schiffrin, D. J. & Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/C39940000801 (1994).
Whetten, R. L. et al. Nanocrystal gold molecules. Adv. Mater. 8, 428–433 (1996).
Hostetler, M. J. et al. Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14, 17–30 (1998).
Chen, S. et al. Gold nanoelectrodes of varied size: transition to molecule-like charging. Science 280, 2098–2101 (1998).
Schaaff, T. G. & Whetten, R. L. Giant gold−glutathione cluster compounds: intense optical activity in metal-based transitions. J. Phys. Chem. B 104, 2630–2641 (2000).
De Heer, W. A. The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. 65, 611 (1993).
Negishi, Y., Nobusada, K. & Tsukuda, T. Glutathione-protected gold clusters revisited: bridging the gap between gold(I)−thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 127, 5261–5270 (2005).
Häkkinen, H., Barnett, R. N. & Landman, U. Electronic structure of passivated Au38(SCH3)24 nanocrystal. Phys. Rev. Lett. 82, 3264 (1999).
Garzón, I. L. et al. Do thiols merely passivate gold nanoclusters? Phys. Rev. Lett. 85, 5250 (2000).
Häkkinen, H., Walter, M. & Grönbeck, H. Divide and protect: capping gold nanoclusters with molecular gold−thiolate rings. J. Phys. Chem. B 110, 9927–9931 (2006).
Qian, H., Eckenhoff, W. T., Zhu, Y., Pintauer, T. & Jin, R. Total structure determination of thiolate-protected Au38 nanoparticles. J. Am. Chem. Soc. 132, 8280–8281 (2010).
Jena, P. & Sun, Q. (eds) Superatoms: Principles, Synthesis and Applications (Wiley, 2021).
Mingos, D. M. P. Molecular-orbital calculations on cluster compounds of gold. J. Chem. Soc. Dalton Trans. https://doi.org/10.1039/DT9760001163 (1976).
Narouz, M. R. et al. N-heterocyclic carbene-functionalized magic-number gold nanoclusters. Nat. Chem. 11, 419–425 (2019).
Heikkilä, E. et al. Atomistic simulations of functional Au144(SR)60 gold nanoparticles in aqueous environment. J. Phys. Chem. C 116, 9805–9815 (2012).
Heikkilä, E. et al. Cationic Au nanoparticle binding with plasma membrane-like lipid bilayers: potential mechanism for spontaneous permeation to cells revealed by atomistic simulations. J. Phys. Chem. C 118, 11131–11141 (2014).
Acknowledgements
This work is supported by the Academy of Finland (grants 318905 and 319208, and H.H.’s Academy Professorship).
Author information
Authors and Affiliations
Contributions
M.F.M. and H.H. developed and discussed the framework of the article, and wrote and edited the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Materials thanks Christopher Ackerson, Dongil Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Matus, M.F., Häkkinen, H. Understanding ligand-protected noble metal nanoclusters at work. Nat Rev Mater 8, 372–389 (2023). https://doi.org/10.1038/s41578-023-00537-1
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41578-023-00537-1
This article is cited by
-
Mapping a sustainable approach: biosynthesis of lactobacilli-silver nanocomposites using whey-based medium for antimicrobial and bioactivity applications
Microbial Cell Factories (2024)
-
Biomimetic nanocluster photoreceptors for adaptative circular polarization vision
Nature Communications (2024)
-
Single thiolate replacement of metal nanoclusters
Science China Chemistry (2024)
-
Recent Trends and Perspectives in Palladium Nanocatalysis: From Nanoparticles to Frameworks, Atomically Precise Nanoclusters and Single-Atom Catalysts
Journal of Inorganic and Organometallic Polymers and Materials (2024)