Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding ligand-protected noble metal nanoclusters at work

Abstract

Ligand-protected noble metal nanoclusters, commonly termed ‘monolayer-protected metal clusters’ (MPCs), comprise a common set of structures with an inorganic core stabilized by an organic layer of ligand molecules. The choice of the metals in the inorganic core defines the clusters’ physical properties, such as the electronic, optical and magnetic properties, whereas the organic ligand shell defines their solubility and functionality with the surrounding environment. MPCs are currently provoking widespread interest as tunable nanomaterials because they can be engineered, in principle, with atomic precision. In this Review, we discuss the unique features of MPCs that make them ideal nanomaterials for applications in different fields, including catalysis and biological applications such as bioimaging, sensing and targeted drug delivery. We emphasize how understanding these atomically precise nanomaterials requires a tight connection between computational modelling and experimental characterization, which opens unique possibilities for iterative functionalization and tuning for applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of some key milestones in the field of atomically precise metal nanoclusters.
Fig. 2: Feedback loop between computational and experimental studies enabled by atomically precise metal nanoclusters.
Fig. 3: Schematic representation of the layered structure of atomically precise metal nanoclusters.
Fig. 4: Main strategies to enhance the catalytic properties of atomically precise metal nanoclusters.
Fig. 5: Atomically precise metal nanoclusters for bioimaging and biosensing.
Fig. 6: Atomically precise metal nanoclusters for targeted drug delivery.

Similar content being viewed by others

References

  1. Tsukuda, T. & Häkkinen, H. (eds) Protected Metal Clusters: From Fundamentals to Applications Vol. 9 (Elsevier, 2015).

  2. Häkkinen, H. The gold–sulfur interface at the nanoscale. Nat. Chem. 4, 443 (2012).

    Article  Google Scholar 

  3. Chakraborty, I. & Pradeep, T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem. Rev. 117, 8208–8271 (2017).

    Article  CAS  Google Scholar 

  4. Nasaruddin, R. R., Chen, T., Yan, N. & Xie, J. Roles of thiolate ligands in the synthesis, properties and catalytic application of gold nanoclusters. Coord. Chem. Rev. 368, 60–79 (2018).

    Article  CAS  Google Scholar 

  5. Kang, X., Li, Y., Zhu, M. & Jin, R. Atomically precise alloy nanoclusters: syntheses, structures, and properties. Chem. Soc. Rev. 49, 6443–6514 (2020).

    Article  Google Scholar 

  6. Du, Y., Sheng, H., Astruc, D. & Zhu, M. Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties. Chem. Rev. 120, 526–622 (2019).

    Article  Google Scholar 

  7. Fernando, A., Weerawardene, K. L. D. M., Karimova, N. V. & Aikens, C. M. Quantum mechanical studies of large metal, metal oxide, and metal chalcogenide nanoparticles and clusters. Chem. Rev. 115, 6112–6216 (2015).

    Article  CAS  Google Scholar 

  8. Matus, M. F. & Häkkinen, H. Atomically precise gold nanoclusters: towards an optimal biocompatible system from a theoretical–experimental strategy. Small 17, 2005499 (2021).

    Article  CAS  Google Scholar 

  9. Jin, R. Atomically precise metal nanoclusters: stable sizes and optical properties. Nanoscale 7, 1549–1565 (2015).

    Article  CAS  Google Scholar 

  10. Jin, R., Zeng, C., Zhou, M. & Chen, Y. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem. Rev. 116, 10346–10413 (2016).

    Article  CAS  Google Scholar 

  11. Heinecke, C. L. et al. Structural and theoretical basis for ligand exchange on thiolate monolayer protected gold nanoclusters. J. Am. Chem. Soc. 134, 13316–13322 (2012).

    Article  CAS  Google Scholar 

  12. Ackerson, C. J., Jadzinsky, P. D., Jensen, G. J. & Kornberg, R. D. Rigid, specific, and discrete gold nanoparticle/antibody conjugates. J. Am. Chem. Soc. 128, 2635–2640 (2006).

    Article  CAS  Google Scholar 

  13. Salorinne, K. et al. Conformation and dynamics of the ligand shell of a water-soluble Au102 nanoparticle. Nat. Commun. 7, 10401 (2016).

    Article  CAS  Google Scholar 

  14. Pearson, R. M., Juettner, V. V. & Hong, S. Biomolecular corona on nanoparticles: a survey of recent literature and its implications in targeted drug delivery. Front. Chem. 2, 108 (2014).

    Article  Google Scholar 

  15. Cao, Y. et al. Reversible isomerization of metal nanoclusters induced by intermolecular interaction. Chem 7, 2227–2244 (2021).

    Article  CAS  Google Scholar 

  16. Liu, Y. et al. Golden carbon nanotube membrane for continuous flow catalysis. Ind. Eng. Chem. Res. 56, 2999–3007 (2017).

    Article  CAS  Google Scholar 

  17. Wu, Z. et al. Thiolate ligands as a double-edged sword for CO oxidation on CeO2 supported Au25(SCH2CH2Ph)18 nanoclusters. J. Am. Chem. Soc. 136, 6111–6122 (2014).

    Article  CAS  Google Scholar 

  18. Ma, Z., Wang, P., Xiong, L. & Pei, Y. Thiolate‐protected gold nanoclusters: structural prediction and the understandings of electronic stability from first principles simulations. Wiley Interdiscip. Rev. Comput. Mol. Sci. 7, e1315 (2017).

    Article  Google Scholar 

  19. Xie, Y.-P. et al. Silver nanoclusters: synthesis, structures and photoluminescence. Mater. Chem. Front. 4, 2205–2222 (2020).

    Article  CAS  Google Scholar 

  20. Baghdasaryan, A. & Bürgi, T. Copper nanoclusters: designed synthesis, structural diversity, and multiplatform applications. Nanoscale 13, 6283–6340 (2021).

    Article  CAS  Google Scholar 

  21. Akola, J., Walter, M., Whetten, R. L., Häkkinen, H. & Grönbeck, H. On the structure of thiolate-protected Au25. J. Am. Chem. Soc. 130, 3756–3757 (2008).

    Article  CAS  Google Scholar 

  22. Pei, Y., Gao, Y. & Zeng, X. C. Structural prediction of thiolate-protected Au38: a face-fused bi-icosahedral Au core. J. Am. Chem. Soc. 130, 7830–7832 (2008).

    Article  CAS  Google Scholar 

  23. Lopez-Acevedo, O., Tsunoyama, H., Tsukuda, T., Häkkinen, H. & Aikens, C. M. Chirality and electronic structure of the thiolate-protected Au38 nanocluster. J. Am. Chem. Soc. 132, 8210–8218 (2010).

    Article  CAS  Google Scholar 

  24. Vergara, S. et al. MicroED structure of Au146(p-MBA)57 at subatomic resolution reveals a twinned FCC cluster. J. Phys. Chem. Lett. 8, 5523–5530 (2017).

    Article  CAS  Google Scholar 

  25. Liu, C. et al. Observation of body‐centered cubic gold nanocluster. Angew. Chem. 127, 9964–9967 (2015).

    Article  Google Scholar 

  26. Huang, X. et al. Synthesis of hexagonal close-packed gold nanostructures. Nat. Commun. 2, 292 (2011).

    Article  Google Scholar 

  27. Zhu, M., Aikens, C. M., Hollander, F. J., Schatz, G. C. & Jin, R. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 130, 5883–5885 (2008).

    Article  CAS  Google Scholar 

  28. Heaven, M. W., Dass, A., White, P. S., Holt, K. M. & Murray, R. W. Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc. 130, 3754–3755 (2008).

    Article  CAS  Google Scholar 

  29. Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318, 430–433 (2007).

    Article  CAS  Google Scholar 

  30. Wei, X., Xu, C., Li, H., Kang, X. & Zhu, M. Fabrication of a family of atomically precise silver nanoclusters via dual-level kinetic control. Chem. Sci. 13, 5531–5538 (2022).

    Article  CAS  Google Scholar 

  31. Aikens, C. M. Electronic and geometric structure, optical properties, and excited state behavior in atomically precise thiolate-stabilized noble metal nanoclusters. Acc. Chem. Res. 51, 3065–3073 (2018).

    Article  CAS  Google Scholar 

  32. Chen, T. et al. Crystallization-induced emission enhancement: a novel fluorescent Au–Ag bimetallic nanocluster with precise atomic structure. Sci. Adv. 3, e1700956 (2017).

    Article  Google Scholar 

  33. Xie, X. et al. The origin of the photoluminescence enhancement of gold‐doped silver nanoclusters: the importance of relativistic effects and heteronuclear gold–silver bonds. Angew. Chem. Int. Ed. 57, 9965–9969 (2018).

    Article  CAS  Google Scholar 

  34. Krishnadas, K. R. et al. Metal–ligand interface in the chemical reactions of ligand-protected noble metal clusters. Langmuir 35, 11243–11254 (2018).

    Article  Google Scholar 

  35. Baksi, A. et al. Isomerism in monolayer protected silver cluster ions: an ion mobility–mass spectrometry approach. J. Phys. Chem. C 121, 13421–13427 (2017).

    Article  CAS  Google Scholar 

  36. Matus, M. F. et al. A topological isomer of the Au25(SR)18 nanocluster. Chem. Commun. 56, 8087–8090 (2020).

    Article  CAS  Google Scholar 

  37. Kalenius, E. et al. Experimental confirmation of a topological isomer of the ubiquitous Au25(SR)18 cluster in the gas phase. J. Am. Chem. Soc. 143, 1273–1277 (2021).

    Article  CAS  Google Scholar 

  38. Krishnadas, K. R. et al. Intercluster reactions between Au25(SR)18 and Ag44(SR)30. J. Am. Chem. Soc. 138, 140–148 (2016).

    Article  CAS  Google Scholar 

  39. Zhang, B., Chen, J., Cao, Y., Chai, O. J. H. & Xie, J. Ligand design in ligand‐protected gold nanoclusters. Small 17, 2004381 (2021).

    Article  CAS  Google Scholar 

  40. Qian, H. et al. Conversion of polydisperse Au nanoparticles into monodisperse Au25 nanorods and nanospheres. J. Phys. Chem. C 113, 17599–17603 (2009).

    Article  CAS  Google Scholar 

  41. Yuan, X., Goswami, N., Mathews, I., Yu, Y. & Xie, J. Enhancing stability through ligand-shell engineering: a case study with Au25(SR)18 nanoclusters. Nano Res. 8, 3488–3495 (2015).

    Article  CAS  Google Scholar 

  42. Song, Y. et al. Crystal structure of Au25(SePh)18 nanoclusters and insights into their electronic, optical and catalytic properties. Nanoscale 6, 13977–13985 (2014).

    Article  CAS  Google Scholar 

  43. Wan, X.-K., Wang, J.-Q., Nan, Z.-A. & Wang, Q.-M. Ligand effects in catalysis by atomically precise gold nanoclusters. Sci. Adv. 3, e1701823 (2017).

    Article  Google Scholar 

  44. Wu, Z. & Jin, R. On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett. 10, 2568–2573 (2010).

    Article  CAS  Google Scholar 

  45. Deng, G. et al. From symmetry breaking to unraveling the origin of the chirality of ligated Au13Cu2 nanoclusters. Angew. Chem. 130, 3479–3483 (2018).

    Article  Google Scholar 

  46. Hostetler, M. J., Green, S. J., Stokes, J. J. & Murray, R. W. Monolayers in three dimensions: synthesis and electrochemistry of ω-functionalized alkanethiolate-stabilized gold cluster compounds. J. Am. Chem. Soc. 118, 4212–4213 (1996).

    Article  CAS  Google Scholar 

  47. Hostetler, M. J., Templeton, A. C. & Murray, R. W. Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules. Langmuir 15, 3782–3789 (1999).

    Article  CAS  Google Scholar 

  48. Wang, Y. & Bürgi, T. Ligand exchange reactions on thiolate-protected gold nanoclusters. Nanoscale Adv. 3, 2710–2727 (2021).

    Article  CAS  Google Scholar 

  49. Salassa, G., Sels, A., Mancin, F. & Burgi, T. Dynamic nature of thiolate monolayer in Au25(SR)18 nanoclusters. ACS Nano 11, 12609–12614 (2017).

    Article  CAS  Google Scholar 

  50. Suzuki, W. et al. Control over ligand-exchange positions of thiolate-protected gold nanoclusters using steric repulsion of protecting ligands. J. Am. Chem. Soc. 144, 12310–12320 (2022).

    Article  CAS  Google Scholar 

  51. Joshi, C. P., Bootharaju, M. S., Alhilaly, M. J. & Bakr, O. M. [Ag25(SR)18]: the ‘golden’ silver nanoparticle. J. Am. Chem. Soc. 137, 11578–11581 (2015).

    Article  CAS  Google Scholar 

  52. Harkness, K. M. et al. Ag44(SR)304−: a silver–thiolate superatom complex. Nanoscale 4, 4269–4274 (2012).

    Article  CAS  Google Scholar 

  53. Baksi, A. et al. Reactivity of monolayer protected silver clusters toward excess ligand: a calorimetric study. J. Phys. Chem. C 121, 26483–26492 (2017).

    Article  CAS  Google Scholar 

  54. Wan, X. et al. A near‐infrared‐emissive alkynyl‐protected Au24 nanocluster. Angew. Chem. Int. Ed. 54, 9683–9686 (2015).

    Article  CAS  Google Scholar 

  55. Wan, X.-K., Tang, Q., Yuan, S.-F., Jiang, D. & Wang, Q.-M. Au19 nanocluster featuring a V-shaped alkynyl–gold motif. J. Am. Chem. Soc. 137, 652–655 (2015).

    Article  CAS  Google Scholar 

  56. Wang, Y. et al. Atomically precise alkynyl-protected metal nanoclusters as a model catalyst: observation of promoting effect of surface ligands on catalysis by metal nanoparticles. J. Am. Chem. Soc. 138, 3278–3281 (2016).

    Article  CAS  Google Scholar 

  57. Kurashige, W., Yamazoe, S., Kanehira, K., Tsukuda, T. & Negishi, Y. Selenolate-protected Au38 nanoclusters: isolation and structural characterization. J. Phys. Chem. Lett. 4, 3181–3185 (2013).

    Article  CAS  Google Scholar 

  58. Kang, X. & Zhu, M. Metal nanoclusters stabilized by selenol ligands. Small 15, 1902703 (2019).

    Article  CAS  Google Scholar 

  59. Kawawaki, T. et al. Toward the creation of high-performance heterogeneous catalysts by controlled ligand desorption from atomically precise metal nanoclusters. Nanoscale Horiz. 6, 409–448 (2021).

    Article  CAS  Google Scholar 

  60. Malola, S. et al. A method for structure prediction of metal–ligand interfaces of hybrid nanoparticles. Nat. Commun. 10, 3973 (2019).

    Article  Google Scholar 

  61. Lopez-Acevedo, O., Kacprzak, K. A., Akola, J. & Häkkinen, H. Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters. Nat. Chem. 2, 329 (2010).

    Article  CAS  Google Scholar 

  62. Sanchez, A. et al. When gold is not noble: nanoscale gold catalysts. J. Phys. Chem. A 103, 9573–9578 (1999).

    Article  CAS  Google Scholar 

  63. Häkkinen, H., Abbet, S., Sanchez, A., Heiz, U. & Landman, U. Structural, electronic, and impurity‐doping effects in nanoscale chemistry: supported gold nanoclusters. Angew. Chem. Int. Ed. 42, 1297–1300 (2003).

    Article  Google Scholar 

  64. Socaciu, L. D. et al. Catalytic CO oxidation by free Au2: experiment and theory. J. Am. Chem. Soc. 125, 10437–10445 (2003).

    Article  CAS  Google Scholar 

  65. Yoon, B., Häkkinen, H. & Landman, U. Interaction of O2 with gold clusters: molecular and dissociative adsorption. J. Phys. Chem. A 107, 4066–4071 (2003).

    Article  CAS  Google Scholar 

  66. Yoon, B. et al. Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Sci 307, 403–407 (2005).

    Article  CAS  Google Scholar 

  67. Bezman, S. A., Churchill, M. R., Osborn, J. A. & Wormald, J. Preparation and crystallographic characterization of a hexameric triphenylphosphinecopper hydride cluster. J. Am. Chem. Soc. 93, 2063–2065 (1971).

    Article  Google Scholar 

  68. Brestensky, D. M., Huseland, D. E., McGettigan, C. & Stryker, J. M. Simplified, ‘one-pot’ procedure for the synthesis of [(Ph3P)CUH]6, a stable copper hydride for conjugate reductions. Tetrahedron Lett. 29, 3749–3752 (1988).

    Article  CAS  Google Scholar 

  69. Yuan, P. et al. Ether‐soluble Cu53 nanoclusters as an effective precursor of high‐quality CuI films for optoelectronic applications. Angew. Chem. 131, 845–849 (2019).

    Google Scholar 

  70. Nguyen, T.-A. D. et al. A Cu25 nanocluster with partial Cu(0) character. J. Am. Chem. Soc. 137, 13319–13324 (2015).

    Article  CAS  Google Scholar 

  71. Tang, Q. et al. Lattice-hydride mechanism in electrocatalytic CO2 reduction by structurally precise copper-hydride nanoclusters. J. Am. Chem. Soc. 139, 9728–9736 (2017).

    Article  CAS  Google Scholar 

  72. Dhayal, R. S. et al. Diselenophosphate‐induced conversion of an achiral [Cu20H11{S2P(OiPr)2}9] into a chiral [Cu20H11{Se2P(OiPr)2}9] polyhydrido nanocluster. Angew. Chem. Int. Ed. 54, 13604–13608 (2015).

    Article  CAS  Google Scholar 

  73. Sun, C. et al. Atomically precise, thiolated copper–hydride nanoclusters as single-site hydrogenation catalysts for ketones in mild conditions. ACS Nano 13, 5975–5986 (2019).

    Article  CAS  Google Scholar 

  74. Jiang, D. & Dai, S. From superatomic Au25(SR)18 to superatomic M@Au24(SR)18q core−shell clusters. Inorg. Chem. 48, 2720–2722 (2009).

    Article  CAS  Google Scholar 

  75. Kacprzak, K. A., Lehtovaara, L., Akola, J., Lopez-Acevedo, O. & Häkkinen, H. A density functional investigation of thiolate-protected bimetal PdAu24(SR)18z clusters: doping the superatom complex. Phys. Chem. Chem. Phys. 11, 7123–7129 (2009).

    Article  CAS  Google Scholar 

  76. Kwak, K. et al. A molecule-like PtAu24(SC6H13)18 nanocluster as an electrocatalyst for hydrogen production. Nat. Commun. 8, 1–8 (2017).

    Article  CAS  Google Scholar 

  77. Kumar, B. et al. Gold nanoclusters as electrocatalysts: size, ligands, heteroatom doping, and charge dependences. Nanoscale 12, 9969–9979 (2020).

    Article  CAS  Google Scholar 

  78. Hu, G., Tang, Q., Lee, D., Wu, Z. & Jiang, D. Metallic hydrogen in atomically precise gold nanoclusters. Chem. Mater. 29, 4840–4847 (2017).

    Article  CAS  Google Scholar 

  79. Sun, F., Deng, C., Tian, S. & Tang, Q. Oxygen electrocatalysis by [Au25(SR)18]: charge, doping, and ligand removal effect. ACS Catal. 11, 7957–7969 (2021).

    Article  CAS  Google Scholar 

  80. De Silva, N. et al. A bioinspired approach for controlling accessibility in calix[4]arene-bound metal cluster catalysts. Nat. Chem. 2, 1062–1068 (2010).

    Article  Google Scholar 

  81. Nigra, M. M. et al. Accessible gold clusters using calix[4]arene N-heterocyclic carbene and phosphine ligands. Dalton Trans. 42, 12762–12771 (2013).

    Article  CAS  Google Scholar 

  82. McPartlin, M., Mason, R. & Malatesta, L. Novel cluster complexes of gold (0)–gold (I). J. Chem. Soc. D 1969, 334 (1969).

    Article  Google Scholar 

  83. Chen, X. & Häkkinen, H. Protected but accessible: oxygen activation by a calixarene-stabilized undecagold cluster. J. Am. Chem. Soc. 135, 12944–12947 (2013).

    Article  CAS  Google Scholar 

  84. Yuan, S., Lei, Z., Guan, Z. & Wang, Q. Atomically precise preorganization of open metal sites on gold nanoclusters with high catalytic performance. Angew. Chem. Int. Ed. 60, 5225–5229 (2021).

    Article  CAS  Google Scholar 

  85. Shen, H. et al. N-heterocyclic carbene-stabilized gold nanoclusters with organometallic motifs for promoting catalysis. J. Am. Chem. Soc. 144, 10844–10853 (2022).

    Article  CAS  Google Scholar 

  86. Walter, M. et al. A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl Acad. Sci. USA 105, 9157–9162 (2008).

    Article  CAS  Google Scholar 

  87. Guan, Z. et al. Ligand engineering toward the trade‐off between stability and activity in cluster catalysis. Angew. Chem. 134, e202116965 (2022).

    Article  Google Scholar 

  88. Bertorelle, F. et al. Isomeric effect of mercaptobenzoic acids on the synthesis, stability, and optical properties of Au25(MBA)18 nanoclusters. ACS Omega 3, 15635–15642 (2018).

    Article  CAS  Google Scholar 

  89. Cox, B. D., Martin, C. R., Bertino, M. F. & Reiner, J. E. Biological nanopores elucidate the differences between isomers of mercaptobenzoic-capped gold clusters. Phys. Chem. Chem. Phys. 23, 7938–7947 (2021).

    Article  CAS  Google Scholar 

  90. Azubel, M. et al. Electron microscopy of gold nanoparticles at atomic resolution. Science 345, 909–912 (2014).

    Article  CAS  Google Scholar 

  91. Azubel, M. & Kornberg, R. D. Synthesis of water-soluble, thiolate-protected gold nanoparticles uniform in size. Nano Lett. 16, 3348–3351 (2016).

    Article  CAS  Google Scholar 

  92. Azubel, M., Koh, A. L., Koyasu, K., Tsukuda, T. & Kornberg, R. D. Structure determination of a water-soluble 144-gold atom particle at atomic resolution by aberration-corrected electron microscopy. ACS Nano 11, 11866–11871 (2017).

    Article  CAS  Google Scholar 

  93. Azubel, M. et al. FGF21 trafficking in intact human cells revealed by cryo-electron tomography with gold nanoparticles. Elife 8, e43146 (2019).

    Article  Google Scholar 

  94. Tero, T.-R. et al. Dynamic stabilization of the ligand–metal interface in atomically precise gold nanoclusters Au68 and Au144 protected by meta-mercaptobenzoic acid. ACS Nano 11, 11872–11879 (2017).

    Article  CAS  Google Scholar 

  95. Qian, H. & Jin, R. Controlling nanoparticles with atomic precision: the case of Au144(SCH2CH2Ph)60. Nano Lett. 9, 4083–4087 (2009).

    Article  CAS  Google Scholar 

  96. Lopez-Acevedo, O., Akola, J., Whetten, R. L., Grönbeck, H. & Häkkinen, H. Structure and bonding in the ubiquitous icosahedral metallic gold cluster Au144(SR)60. J. Phys. Chem. C. 113, 5035–5038 (2009).

    Article  CAS  Google Scholar 

  97. Yan, N. et al. Unraveling the long-pursued Au144 structure by X-ray crystallography. Sci. Adv. 4, eaat7259 (2018).

    Article  CAS  Google Scholar 

  98. Lei, Z., Li, J., Wan, X., Zhang, W. & Wang, Q. Isolation and total structure determination of an all‐alkynyl‐protected gold nanocluster Au144. Angew. Chem. 130, 8775–8779 (2018).

    Article  Google Scholar 

  99. Whetten, R. L. et al. Chiral-icosahedral (I) symmetry in ubiquitous metallic cluster compounds (145A, 60X): structure and bonding principles. Acc. Chem. Res. 52, 34–43 (2019).

    Article  CAS  Google Scholar 

  100. Mammen, N., Malola, S., Honkala, K. & Häkkinen, H. Dynamics of weak interactions in the ligand layer of meta-mercaptobenzoic acid protected gold nanoclusters Au68(m-MBA)32 and Au144(m-MBA)40. Nanoscale 12, 23859–23868 (2020).

    Article  CAS  Google Scholar 

  101. Mammen, N., Malola, S., Honkala, K. & Häkkinen, H. Selective acrolein hydrogenation over ligand-protected gold clusters: a Venus flytrap mechanism. ACS Catal. 12, 2365–2374 (2022).

    Article  CAS  Google Scholar 

  102. Ma, G. et al. Stabilizing gold clusters by heterostructured transition-metal oxide–mesoporous silica supports for enhanced catalytic activities for CO oxidation. Chem. Commun. 48, 11413–11415 (2012).

    Article  CAS  Google Scholar 

  103. Li, W. et al. Mild activation of CeO2-supported gold nanoclusters and insight into the catalytic behavior in CO oxidation. Nanoscale 8, 2378–2385 (2016).

    Article  CAS  Google Scholar 

  104. Liu, Y. M., Tsunoyama, H., Akita, T., Xie, S. H. & Tsukuda, T. Aerobic oxidation of cyclohexane catalyzed by size-conrolled au clusters on hydroxyapatite: size effect in the sub-2 nm regime. ACS Catal. 1, 2–6 (2011).

    Article  CAS  Google Scholar 

  105. Zhang, B. et al. Modulation of active sites in supported Au38(SC2H4Ph)24 cluster catalysts: effect of atmosphere and support material. J. Phys. Chem. C 119, 11193–11199 (2015).

    Article  CAS  Google Scholar 

  106. Yoskamtorn, T. et al. Thiolate-mediated selectivity control in aerobic alcohol oxidation by porous carbon-supported Au25 clusters. ACS Catal. 4, 3696–3700 (2014).

    Article  CAS  Google Scholar 

  107. Turner, M. et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454, 981–983 (2008).

    Article  CAS  Google Scholar 

  108. Liu, J. et al. Ligand‐stabilized and atomically precise gold nanocluster catalysis: a case study for correlating fundamental electronic properties with catalysis. Chem. Eur. J. 19, 10201–10208 (2013).

    Article  CAS  Google Scholar 

  109. Zhang, B. et al. Ligand migration from cluster to support: a crucial factor for catalysis by thiolate‐protected gold clusters. ChemCatChem 10, 5372–5376 (2018).

    Article  CAS  Google Scholar 

  110. Longo, A. et al. Towards atomically precise supported catalysts from monolayer‐protected clusters: the critical role of the support. Chem. Eur. J. 26, 7051–7058 (2020).

    Article  CAS  Google Scholar 

  111. Shang, L., Dong, S. & Nienhaus, G. U. Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today 6, 401–418 (2011).

    Article  CAS  Google Scholar 

  112. Levi-Kalisman, Y. et al. Synthesis and characterization of Au102(p-MBA)44 nanoparticles. J. Am. Chem. Soc. 133, 2976–2982 (2011).

    Article  CAS  Google Scholar 

  113. Sokołowska, K. et al. Towards controlled synthesis of water-soluble gold nanoclusters: synthesis and analysis. J. Phys. Chem. C 123, 2602–2612 (2019).

    Article  Google Scholar 

  114. Auría-Soro, C. et al. Interactions of nanoparticles and biosystems: microenvironment of nanoparticles and biomolecules in nanomedicine. Nanomaterials 9, 1365 (2019).

    Article  Google Scholar 

  115. Gupta, A. et al. Ultrastable and biofunctionalizable gold nanoparticles. ACS Appl. Mater. Interfaces 8, 14096–14101 (2016).

    Article  CAS  Google Scholar 

  116. Hong, R. et al. Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J. Am. Chem. Soc. 128, 1078–1079 (2006).

    Article  CAS  Google Scholar 

  117. Rana, S., Bajaj, A., Mout, R. & Rotello, V. M. Monolayer coated gold nanoparticles for delivery applications. Adv. Drug Deliv. Rev. 64, 200–216 (2012).

    Article  CAS  Google Scholar 

  118. Ghosh, P., Han, G., De, M., Kim, C. K. & Rotello, V. M. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 60, 1307–1315 (2008).

    Article  CAS  Google Scholar 

  119. Carnovale, C., Bryant, G., Shukla, R. & Bansal, V. Identifying trends in gold nanoparticle toxicity and uptake: size, shape, capping ligand, and biological corona. ACS Omega 4, 242–256 (2019).

    Article  CAS  Google Scholar 

  120. Zheng, K. & Xie, J. Engineering ultrasmall metal nanoclusters as promising theranostic agents. Trends Chem. 2, 665–679 (2020).

    Article  CAS  Google Scholar 

  121. Porret, E., Le Guével, X. & Coll, J.-L. Gold nanoclusters for biomedical applications: toward in vivo studies. J. Mater. Chem. B 8, 2216–2232 (2020).

    Article  CAS  Google Scholar 

  122. Koivisto, J. et al. Acid–base properties and surface charge distribution of the water-soluble Au102(pMBA)44 nanocluster. J. Phys. Chem. C 120, 10041–10050 (2016).

    Article  CAS  Google Scholar 

  123. Lipka, J. J., Hainfeld, J. F. & Wall, J. S. Undecagold labeling of a glycoprotein: STEM visualization of an undecagoldphosphine cluster labeling the carbohydrate sites of human haptoglobin–hemoglobin complex. J. Ultrastruct. Res. 84, 120–129 (1983).

    Article  CAS  Google Scholar 

  124. Hainfeld, J. F. & Powell, R. D. New frontiers in gold labeling. J. Histochem. Cytochem. 48, 471–480 (2000).

    Article  CAS  Google Scholar 

  125. Hainfeld, J. F. A small gold-conjugated antibody label: improved resolution for electron microscopy. Science 236, 450–453 (1987).

    Article  CAS  Google Scholar 

  126. Hainfeld, J. F. & Furuya, F. R. A 1.4-nm gold cluster covalently attached to antibodies improves immunolabeling. J. Histochem. Cytochem. 40, 177–184 (1992).

    Article  CAS  Google Scholar 

  127. Yang, Y., Wang, L., Wan, B. & Gu, Y. Optical active nanomaterials for bioimaging and targeted therapy. Front. Bioeng. Biotechnol. 7, 320 (2019).

    Article  Google Scholar 

  128. Marjomäki, V. et al. Site-specific targeting of enterovirus capsid by functionalized monodisperse gold nanoclusters. Proc. Natl Acad. Sci. USA 111, 1277–1281 (2014).

    Article  Google Scholar 

  129. Martikainen, M. et al. Hydrophobic pocket targeting probes for enteroviruses. Nanoscale 7, 17457–17467 (2015).

    Article  CAS  Google Scholar 

  130. Pohjolainen, E., Malola, S., Groenhof, G. & Häkkinen, H. Exploring strategies for labeling viruses with gold nanoclusters through non-equilibrium molecular dynamics simulations. Bioconjug. Chem. 28, 2327–2339 (2017).

    Article  CAS  Google Scholar 

  131. Hulkko, E. et al. Covalent and non-covalent coupling of a Au102 nanocluster with a fluorophore: energy transfer, quenching and intracellular pH sensing. Nanoscale Adv. 3, 6649–6658 (2021).

    Article  CAS  Google Scholar 

  132. Weerawardene, K. L. D. M., Guidez, E. B. & Aikens, C. M. Photoluminescence origin of Au38(SR)24 and Au22(SR)18 nanoparticles: a theoretical perspective. J. Phys. Chem. C 121, 15416–15423 (2017).

    Article  CAS  Google Scholar 

  133. Luo, Z., Zheng, K. & Xie, J. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications. Chem. Commun. 50, 5143–5155 (2014).

    Article  CAS  Google Scholar 

  134. Chevrier, D. M. et al. Molecular-scale ligand effects in small gold–thiolate nanoclusters. J. Am. Chem. Soc. 140, 15430–15436 (2018).

    Article  CAS  Google Scholar 

  135. Pyo, K. et al. Ultrabright luminescence from gold nanoclusters: rigidifying the Au(I)–thiolate shell. J. Am. Chem. Soc. 137, 8244–8250 (2015).

    Article  CAS  Google Scholar 

  136. Yu, Y. et al. Identification of a highly luminescent Au22(SG)18 nanocluster. J. Am. Chem. Soc. 136, 1246–1249 (2014).

    Article  CAS  Google Scholar 

  137. Pei, Y., Tang, J., Tang, X., Huang, Y. & Zeng, X. C. New structure model of Au22(SR)18: bitetrahederon golden kernel enclosed by [Au6(SR)6] Au(I) complex. J. Phys. Chem. Lett. 6, 1390–1395 (2015).

    Article  CAS  Google Scholar 

  138. Bertorelle, F. et al. Tailoring the NIR‐II photoluminescence of single thiolated Au25 nanoclusters by selective binding to proteins. Chem. Eur. J. 28, e202200570 (2022).

    CAS  Google Scholar 

  139. Xie, J., Zheng, Y. & Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 131, 888–889 (2009).

    Article  CAS  Google Scholar 

  140. Chevrier, D. M. et al. Structure and formation of highly luminescent protein-stabilized gold clusters. Chem. Sci. 9, 2782–2790 (2018).

    Article  CAS  Google Scholar 

  141. Song, X. et al. A new class of NIR‐II gold nanocluster‐based protein biolabels for in vivo tumor‐targeted imaging. Angew. Chem. Int. Ed. 60, 1306–1312 (2021).

    Article  CAS  Google Scholar 

  142. Kang, X. & Zhu, M. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 48, 2422–2457 (2019).

    Article  CAS  Google Scholar 

  143. Patra, J. K. et al. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16, 71 (2018).

    Article  Google Scholar 

  144. Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007).

    Article  CAS  Google Scholar 

  145. He, H., Liu, L., Morin, E. E., Liu, M. & Schwendeman, A. Survey of clinical translation of cancer nanomedicines — lessons learned from successes and failures. Acc. Chem. Res. 52, 2445–2461 (2019).

    Article  CAS  Google Scholar 

  146. Adhipandito, C. F., Cheung, S.-H., Lin, Y.-H. & Wu, S.-H. Atypical renal clearance of nanoparticles larger than the kidney filtration threshold. Int. J. Mol. Sci. 22, 11182 (2021).

    Article  CAS  Google Scholar 

  147. Van Hong Nguyen, B.-J. L. Protein corona: a new approach for nanomedicine design. Int. J. Nanomed. 12, 3137 (2017).

    Article  Google Scholar 

  148. Tang, L. et al. Advanced and innovative nano-systems for anticancer targeted drug delivery. Pharmaceutics 13, 1151 (2021).

    Article  CAS  Google Scholar 

  149. Singh, A. P., Biswas, A., Shukla, A. & Maiti, P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal. Transduct. Target. Ther. 4, 1–21 (2019).

    CAS  Google Scholar 

  150. Alkilany, A. M. et al. Ligand density on nanoparticles: a parameter with critical impact on nanomedicine. Adv. Drug Deliv. Rev. 143, 22–36 (2019).

    Article  CAS  Google Scholar 

  151. Colombo, M. et al. Tumour homing and therapeutic effect of colloidal nanoparticles depend on the number of attached antibodies. Nat. Commun. 7, 13818 (2016).

    Article  CAS  Google Scholar 

  152. Matus, M. F., Malola, S. & Häkkinen, H. Ligand ratio plays a critical role in the design of optimal multifunctional gold nanoclusters for targeted gastric cancer therapy. ACS Nanosci. Au 1, 47–60 (2021).

    Article  CAS  Google Scholar 

  153. Walkey, C. D. & Chan, W. C. W. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 41, 2780–2799 (2012).

    Article  CAS  Google Scholar 

  154. Müller, J. et al. Beyond the protein corona — lipids matter for biological response of nanocarriers. Acta Biomater. 71, 420–431 (2018).

    Article  Google Scholar 

  155. Lee, J. Y. et al. Analysis of lipid adsorption on nanoparticles by nanoflow liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 410, 6155–6164 (2018).

    Article  CAS  Google Scholar 

  156. Griffith, D. M., Jayaram, D. T., Spencer, D. M., Pisetsky, D. S. & Payne, C. K. DNA–nanoparticle interactions: formation of a DNA corona and its effects on a protein corona. Biointerphases 15, 51006 (2020).

    Article  CAS  Google Scholar 

  157. Hadjidemetriou, M. & Kostarelos, K. Evolution of the nanoparticle corona. Nat. Nanotechnol. 12, 288–290 (2017).

    Article  CAS  Google Scholar 

  158. Xiao, W. & Gao, H. The impact of protein corona on the behavior and targeting capability of nanoparticle-based delivery system. Int. J. Pharm. 552, 328–339 (2018).

    Article  CAS  Google Scholar 

  159. Bai, X., Wang, J., Mu, Q. & Su, G. In vivo protein corona formation: characterizations, effects on engineered nanoparticles’ biobehaviors, and applications. Front. Bioeng. Biotechnol. 9, 263 (2021).

    Article  Google Scholar 

  160. Jain, P. et al. In-vitro in-vivo correlation (IVIVC) in nanomedicine: is protein corona the missing link? Biotechnol. Adv. 35, 889–904 (2017).

    Article  CAS  Google Scholar 

  161. Desireddy, A. et al. Ultrastable silver nanoparticles. Nature 501, 399–402 (2013).

    Article  CAS  Google Scholar 

  162. Wong, O. A., Heinecke, C. L., Simone, A. R., Whetten, R. L. & Ackerson, C. J. Ligand symmetry-equivalence on thiolate protected gold nanoclusters determined by NMR spectroscopy. Nanoscale 4, 4099–4102 (2012).

    Article  CAS  Google Scholar 

  163. Berman, H. M. & Gierasch, L. M. How the protein data bank changed biology: an introduction to the JBC reviews thematic series, part 1. J. Biol. Chem. 296, 100748 (2021).

    Article  Google Scholar 

  164. Lee, H. Molecular modeling of protein corona formation and its interactions with nanoparticles and cell membranes for nanomedicine applications. Pharmaceutics 13, 637 (2021).

    Article  CAS  Google Scholar 

  165. Chetwynd, A. J. & Lynch, I. The rise of the nanomaterial metabolite corona, and emergence of the complete corona. Environ. Sci. Nano 7, 1041–1060 (2020).

    Article  CAS  Google Scholar 

  166. Pohjolainen, E., Chen, X., Malola, S., Groenhof, G. & Häkkinen, H. A unified AMBER-compatible molecular mechanics force field for thiolate-protected gold nanoclusters. J. Chem. Theory Comput. 12, 1342–1350 (2016).

    Article  CAS  Google Scholar 

  167. Manaia, E. B. et al. Physicochemical characterization of drug nanocarriers. Int. J. Nanomed. 12, 4991 (2017).

    Article  CAS  Google Scholar 

  168. Mahmoudi, M. The need for robust characterization of nanomaterials for nanomedicine applications. Nat. Commun. 12, 5246 (2021).

    Article  CAS  Google Scholar 

  169. Comby-Zerbino, C., Dagany, X., Chirot, F., Dugourd, P. & Antoine, R. The emergence of mass spectrometry for characterizing nanomaterials. Atomically precise nanoclusters and beyond. Mater. Adv. 2, 4896–4913 (2021).

    Article  CAS  Google Scholar 

  170. Ge, C. et al. Towards understanding of nanoparticle–protein corona. Arch. Toxicol. 89, 519–539 (2015).

    Article  CAS  Google Scholar 

  171. Lai, Z. W., Yan, Y., Caruso, F. & Nice, E. C. Emerging techniques in proteomics for probing nano–bio interactions. ACS Nano 6, 10438–10448 (2012).

    Article  CAS  Google Scholar 

  172. Soleilhac, A. et al. Size characterization of glutathione-protected gold nanoclusters in the solid, liquid and gas phases. J. Phys. Chem. C 121, 27733–27740 (2017).

    Article  CAS  Google Scholar 

  173. Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    Article  CAS  Google Scholar 

  174. Zeng, C., Chen, Y., Das, A. & Jin, R. Transformation chemistry of gold nanoclusters: from one stable size to another. J. Phys. Chem. Lett. 6, 2976–2986 (2015).

    Article  CAS  Google Scholar 

  175. Du, B. et al. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 12, 1096 (2017).

    Article  CAS  Google Scholar 

  176. Hua, S., De Matos, M. B. C., Metselaar, J. M. & Storm, G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front. Pharmacol. 9, 790 (2018).

    Article  Google Scholar 

  177. Varnavski, O., Ramakrishna, G., Kim, J., Lee, D. & Goodson, T. Critical size for the observation of quantum confinement in optically excited gold clusters. J. Am. Chem. Soc. 132, 16–17 (2010).

    Article  CAS  Google Scholar 

  178. Häkkinen, H. Electronic shell structures in bare and protected metal nanoclusters. Adv. Phys. X 1, 467–491 (2016).

    Google Scholar 

  179. Ho-Wu, R., Yau, S. H. & Goodson, T. I. I. I. Efficient singlet oxygen generation in metal nanoclusters for two-photon photodynamic therapy applications. J. Phys. Chem. B 121, 10073–10080 (2017).

    Article  CAS  Google Scholar 

  180. Srinivasulu, Y. G., Mozhi, A., Goswami, N., Yao, Q. & Xie, J. Traceable nanocluster–prodrug conjugate for chemo-photodynamic combinatorial therapy of non-small cell lung cancer. ACS Appl. Bio Mater. 4, 3232–3245 (2021).

    Article  CAS  Google Scholar 

  181. Liu, P. et al. Concurrent photothermal therapy and photodynamic therapy for cutaneous squamous cell carcinoma by gold nanoclusters under a single NIR laser irradiation. J. Mater. Chem. B 7, 6924–6933 (2019).

    Article  CAS  Google Scholar 

  182. Yu, Y., Geng, J., Ong, E. Y. X., Chellappan, V. & Tan, Y. N. Bovine serum albulmin protein‐templated silver nanocluster (BSA‐Ag13): an effective singlet oxygen generator for photodynamic cancer therapy. Adv. Healthc. Mater. 5, 2528–2535 (2016).

    Article  CAS  Google Scholar 

  183. Jiang, X., Du, B., Huang, Y., Yu, M. & Zheng, J. Cancer photothermal therapy with ICG-conjugated gold nanoclusters. Bioconjug. Chem. 31, 1522–1528 (2020).

    Article  CAS  Google Scholar 

  184. Kawasaki, H. et al. Generation of singlet oxygen by photoexcited Au25(SR)18 clusters. Chem. Mater. 26, 2777–2788 (2014).

    Article  CAS  Google Scholar 

  185. Moosavi, S. M., Jablonka, K. M. & Smit, B. The role of machine learning in the understanding and design of materials. J. Am. Chem. Soc. 142, 20273–20287 (2020).

    Article  CAS  Google Scholar 

  186. Fanourgakis, G. S., Gkagkas, K., Tylianakis, E. & Froudakis, G. E. A universal machine learning algorithm for large-scale screening of materials. J. Am. Chem. Soc. 142, 3814–3822 (2020).

    Article  CAS  Google Scholar 

  187. Xie, Y. et al. Machine learning assisted synthesis of metal–organic nanocapsules. J. Am. Chem. Soc. 142, 1475–1481 (2019).

    Article  Google Scholar 

  188. Unke, O. T. et al. Machine learning force fields. Chem. Rev. 121, 10142–10186 (2021).

    Article  CAS  Google Scholar 

  189. Li, J. et al. Deep learning accelerated gold nanocluster synthesis. Adv. Intell. Syst. 1, 1900029 (2019).

    Article  Google Scholar 

  190. Mastracco, P., Gonzàlez-Rosell, A., Evans, J., Bogdanov, P. & Copp, S. M. Chemistry-informed machine learning enables discovery of DNA-stabilized silver nanoclusters with near-infrared fluorescence. ACS Nano 16, 16322–16331 (2022).

    Article  CAS  Google Scholar 

  191. Zhou, Q. et al. Real-space imaging with pattern recognition of a ligand-protected Ag374 nanocluster at sub-molecular resolution. Nat. Commun. 9, 2948 (2018).

    Article  Google Scholar 

  192. Yao, Q. et al. Supercrystal engineering of atomically precise gold nanoparticles promoted by surface dynamics. Nat. Chem. https://doi.org/10.1038/s41557-022-01079-9 (2022).

    Article  Google Scholar 

  193. Wang, S., Liu, T. & Jiang, D. Locating hydrides in ligand-protected copper nanoclusters by deep learning. ACS Appl. Mater. Interfaces 13, 53468–53474 (2021).

    Article  CAS  Google Scholar 

  194. Pihlajamäki, A. et al. Monte Carlo simulations of Au38(SCH3)24 nanocluster using distance-based machine learning methods. J. Phys. Chem. A 124, 4827–4836 (2020).

    Article  Google Scholar 

  195. Pihlajamäki, A. Machine Learning Approach to Atomic Simulations of Protected Gold Nanoclusters. PhD thesis, Univ. Jyväskylä http://urn.fi/URN:ISBN:978-951-39-9309-2 (2022).

  196. Pihlajamäki, A., Malola, S., Kärkkäinen, T. & Häkkinen, H. Orientation adaptive minimal learning machine: application to thiolate-protected gold nanoclusters and gold-thiolate rings. Preprint at https://arxiv.org/abs/2203.09788 (2022).

  197. Panapitiya, G. et al. Machine-learning prediction of CO adsorption in thiolated, Ag-alloyed Au nanoclusters. J. Am. Chem. Soc. 140, 17508–17514 (2018).

    Article  CAS  Google Scholar 

  198. Cha, M. et al. Unifying structural descriptors for biological and bioinspired nanoscale complexes. Nat. Comput. Sci. 2, 243–252 (2022).

    Article  Google Scholar 

  199. Malola, S. & Häkkinen, H. Prospects and challenges for computer simulations of monolayer-protected metal clusters. Nat. Commun. 12, 2197 (2021).

    Article  CAS  Google Scholar 

  200. Teo, B. K. & Keating, K. Novel triicosahedral structure of the largest metal alloy cluster: hexachlorododecakis (triphenylphosphine)-gold-silver cluster [(Ph3P)12Au13Ag12Cl6]m+. J. Am. Chem. Soc. 106, 2224–2226 (1984).

    Article  CAS  Google Scholar 

  201. Teo, B. K., Hong, M. C., Zhang, H. & Huang, D. B. Cluster of clusters: structure of the 37‐atom cluster [(p‐Tol3P)12Au18Ag19Br11]2 and a novel series of supraclusters based on vertex‐sharing icosahedra. Angew. Chem. Int. Ed. Engl. 26, 897–900 (1987).

    Article  Google Scholar 

  202. Teo, B. K. Cluster of clusters: a new series of high nuclearity Au–Ag clusters. Polyhedron 7, 2317–2320 (1988).

    Article  CAS  Google Scholar 

  203. Nuzzo, R. G. & Allara, D. L. Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc. 105, 4481–4483 (1983).

    Article  CAS  Google Scholar 

  204. Nuzzo, R. G., Zegarski, B. R. & Dubois, L. H. Fundamental studies of the chemisorption of organosulfur compounds on gold(111). Implications for molecular self-assembly on gold surfaces. J. Am. Chem. Soc. 109, 733–740 (1987).

    Article  CAS  Google Scholar 

  205. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1170 (2005).

    Article  CAS  Google Scholar 

  206. Brust, M., Walker, M., Bethell, D., Schiffrin, D. J. & Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/C39940000801 (1994).

    Article  Google Scholar 

  207. Whetten, R. L. et al. Nanocrystal gold molecules. Adv. Mater. 8, 428–433 (1996).

    Article  CAS  Google Scholar 

  208. Hostetler, M. J. et al. Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14, 17–30 (1998).

    Article  CAS  Google Scholar 

  209. Chen, S. et al. Gold nanoelectrodes of varied size: transition to molecule-like charging. Science 280, 2098–2101 (1998).

    Article  CAS  Google Scholar 

  210. Schaaff, T. G. & Whetten, R. L. Giant gold−glutathione cluster compounds: intense optical activity in metal-based transitions. J. Phys. Chem. B 104, 2630–2641 (2000).

    Article  CAS  Google Scholar 

  211. De Heer, W. A. The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. 65, 611 (1993).

    Article  Google Scholar 

  212. Negishi, Y., Nobusada, K. & Tsukuda, T. Glutathione-protected gold clusters revisited: bridging the gap between gold(I)−thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 127, 5261–5270 (2005).

    Article  CAS  Google Scholar 

  213. Häkkinen, H., Barnett, R. N. & Landman, U. Electronic structure of passivated Au38(SCH3)24 nanocrystal. Phys. Rev. Lett. 82, 3264 (1999).

    Article  Google Scholar 

  214. Garzón, I. L. et al. Do thiols merely passivate gold nanoclusters? Phys. Rev. Lett. 85, 5250 (2000).

    Article  Google Scholar 

  215. Häkkinen, H., Walter, M. & Grönbeck, H. Divide and protect: capping gold nanoclusters with molecular gold−thiolate rings. J. Phys. Chem. B 110, 9927–9931 (2006).

    Article  Google Scholar 

  216. Qian, H., Eckenhoff, W. T., Zhu, Y., Pintauer, T. & Jin, R. Total structure determination of thiolate-protected Au38 nanoparticles. J. Am. Chem. Soc. 132, 8280–8281 (2010).

    Article  CAS  Google Scholar 

  217. Jena, P. & Sun, Q. (eds) Superatoms: Principles, Synthesis and Applications (Wiley, 2021).

  218. Mingos, D. M. P. Molecular-orbital calculations on cluster compounds of gold. J. Chem. Soc. Dalton Trans. https://doi.org/10.1039/DT9760001163 (1976).

    Article  Google Scholar 

  219. Narouz, M. R. et al. N-heterocyclic carbene-functionalized magic-number gold nanoclusters. Nat. Chem. 11, 419–425 (2019).

    Article  CAS  Google Scholar 

  220. Heikkilä, E. et al. Atomistic simulations of functional Au144(SR)60 gold nanoparticles in aqueous environment. J. Phys. Chem. C 116, 9805–9815 (2012).

    Article  CAS  Google Scholar 

  221. Heikkilä, E. et al. Cationic Au nanoparticle binding with plasma membrane-like lipid bilayers: potential mechanism for spontaneous permeation to cells revealed by atomistic simulations. J. Phys. Chem. C 118, 11131–11141 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Academy of Finland (grants 318905 and 319208, and H.H.’s Academy Professorship).

Author information

Authors and Affiliations

Authors

Contributions

M.F.M. and H.H. developed and discussed the framework of the article, and wrote and edited the manuscript.

Corresponding author

Correspondence to Hannu Häkkinen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Christopher Ackerson, Dongil Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matus, M.F., Häkkinen, H. Understanding ligand-protected noble metal nanoclusters at work. Nat Rev Mater 8, 372–389 (2023). https://doi.org/10.1038/s41578-023-00537-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00537-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing