Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Semitransparent organic photovoltaics for building-integrated photovoltaic applications

Abstract

The narrow and intense absorption spectra of organic materials open up the opportunity to develop efficient organic photovoltaic devices that are qualitatively different from other, incumbent solar cell technologies. Their selective absorption spectra make them attractive for applications in power-generating windows that are semitransparent in the visible spectral range, yet absorb strongly in the invisible ultraviolet and infrared spectral bands, thereby providing a viable solution for the generation of clean energy. Here, we review recent progress in semitransparent organic photovoltaics for power windows and other building-applied uses, and discuss the potential strategies to endow them with a combination of high efficiency, visible transparency, neutral colour appearance, prolonged operational lifetime and low efficiency loss when scaled into modules. We also discuss the issues that need to be addressed to achieve further progress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Energetics of semiconductors and the spectral properties of materials used in semitransparent organic solar cells.
Fig. 2: Structure of a semitransparent solar cell and comparison of the performances of semitransparent cells based on different materials.
Fig. 3: Photocurrent generation in organic solar cells.
Fig. 4: Electronic orbital properties of high-performance non-fullerene acceptors used in semitransparent organic photovoltaics.
Fig. 5: Crystal stackings of example non-fullerene acceptors used in semitransparent organic photovoltaics.
Fig. 6: Optical design of ST-OPVs.
Fig. 7: Design of highly stable semitransparent OPVs.
Fig. 8: Design and construction of semitransparent organic photovoltaics.

Similar content being viewed by others

References

  1. Forrest, S. R. Organic Electronics: Foundations to Applications (Oxford Univ. Press, 2020).

  2. Lee, K. et al. The development of transparent photovoltaics. Cell Rep. Phys. Sci. 1, 100143 (2020).

    Article  CAS  Google Scholar 

  3. Traverse, C. J., Pandey, R., Barr, M. C. & Lunt, R. R. Emergence of highly transparent photovoltaics for distributed applications. Nat. Energy 2, 849–860 (2017).

    Article  Google Scholar 

  4. Gasparini, N., Salleo, A., McCulloch, I. & Baran, D. The role of the third component in ternary organic solar cells. Nat. Rev. Mater. 4, 229–242 (2019).

    Article  Google Scholar 

  5. Hou, J., Inganäs, O., Friend, R. H. & Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 17, 119–128 (2018).

    Article  CAS  Google Scholar 

  6. Yan, C. et al. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3, 18003 (2018).

    Article  CAS  Google Scholar 

  7. Meng, D. et al. Near-infrared materials: the turning point of organic photovoltaics. Adv. Mater. 34, e2107330 (2022).

    Article  Google Scholar 

  8. Li, G., Zhu, R. & Yang, Y. Polymer solar cells. Nat. Photonics 6, 153–161 (2012).

    Article  CAS  Google Scholar 

  9. Inganäs, O. Organic photovoltaics over three decades. Adv. Mater. 30, 1800388 (2018).

    Article  Google Scholar 

  10. Zheng, Z. et al. Tandem organic solar cell with 20.2% efficiency. Joule 6, 171–184 (2022).

    Article  CAS  Google Scholar 

  11. Burgués-Ceballos, I. et al. Transparent organic photovoltaics: a strategic niche to advance commercialization. Joule 5, 2261–2272 (2021).

    Article  Google Scholar 

  12. Riede, M., Spoltore, D. & Leo, K. Organic solar cells — the path to commercial success. Adv. Energy Mater. 11, 2002653 (2021).

    Article  CAS  Google Scholar 

  13. Silinsh, E. A. Organic Molecular Crystals (Springer, 1980).

  14. Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    Article  CAS  Google Scholar 

  15. Tai, Q. & Yan, F. Emerging semitransparent solar cells: materials and device design. Adv. Mater. 29, 1700192 (2017).

    Article  Google Scholar 

  16. Duan, L., Hoex, B. & Uddin, A. Progress in semitransparent organic solar cells. Sol. RRL 5, 2100041 (2021).

    Article  CAS  Google Scholar 

  17. Li, Y. et al. Enhanced light utilization in semitransparent organic photovoltaics using an optical outcoupling architecture. Adv. Mater. 31, 1903173 (2019).

    Article  CAS  Google Scholar 

  18. Giebink, N. C., Wiederrecht, G. P., Wasielewski, M. R. & Forrest, S. R. Ideal diode equation for organic heterojunctions. I. Derivation and application. Phys. Rev. B 82, 1–12 (2010).

    Google Scholar 

  19. Li, Y. et al. Color-neutral, semitransparent organic photovoltaics for power window applications. Proc. Natl Acad. Sci. USA 117, 21147–21154 (2020).

    Article  CAS  Google Scholar 

  20. Grancini, G. et al. Hot exciton dissociation in polymer solar cells. Nat. Mater. 12, 29–33 (2013).

    Article  CAS  Google Scholar 

  21. Vandewal, K. et al. Efficient charge generation by relaxed charge-transfer states at organic interfaces. Nat. Mater. 13, 63–68 (2014).

    Article  CAS  Google Scholar 

  22. Lin, Y. L., Fusella, M. A. & Rand, B. P. The impact of local morphology on organic donor/acceptor charge transfer states. Adv. Energy Mater. 8, 1702816 (2018).

    Article  Google Scholar 

  23. Vandewal, K. et al. The relation between open-circuit voltage and the onset of photocurrent generation by charge-transfer absorption in polymer: fullerene bulk heterojunction solar cells. Adv. Funct. Mater. 18, 2064–2070 (2008).

    Article  CAS  Google Scholar 

  24. Vandewal, K., Tvingstedt, K., Gadisa, A., Inganäs, O. & Manca, J. V. On the origin of the open-circuit voltage of polymer–fullerene solar cells. Nat. Mater. 8, 904–909 (2009).

    Article  CAS  Google Scholar 

  25. Liu, X., Li, Y., Ding, K. & Forrest, S. Energy loss in organic photovoltaics: nonfullerene versus fullerene acceptors. Phys. Rev. Appl. 11, 24060 (2019).

    Article  CAS  Google Scholar 

  26. Janssen, R. A. J. & Nelson, J. Factors limiting device efficiency in organic photovoltaics. Adv. Mater. 25, 1847–1858 (2013).

    Article  CAS  Google Scholar 

  27. Azzouzi, M., Kirchartz, T. & Nelson, J. Factors controlling open-circuit voltage losses in organic solar cells. Trends Chem. 1, 49–62 (2019).

    Article  CAS  Google Scholar 

  28. Li, W., Hendriks, K. H., Furlan, A., Wienk, M. M. & Janssen, R. A. J. High quantum efficiencies in polymer solar cells at energy losses below 0.6 eV. J. Am. Chem. Soc. 137, 2231–2234 (2015).

    Article  CAS  Google Scholar 

  29. Wang, M. et al. High open circuit voltage in regioregular narrow band gap polymer solar cells. J. Am. Chem. Soc. 136, 12576–12579 (2014).

    Article  CAS  Google Scholar 

  30. Menke, S. M., Ran, N. A., Bazan, G. C. & Friend, R. H. Understanding energy loss in organic solar cells: toward a new efficiency regime. Joule 2, 25–35 (2018).

    Article  CAS  Google Scholar 

  31. Qian, D. et al. Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nat. Mater. 17, 703–709 (2018).

    Article  CAS  Google Scholar 

  32. Zhang, J., Shuan Tan, H., Guo, X., Facchetti, A. & Yan, H. Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat. Energy 3, 720–731 (2018).

    Article  CAS  Google Scholar 

  33. Liu, X., Rand, B. P. & Forrest, S. R. Engineering charge-transfer states for efficient, low-energy-loss organic photovoltaics. Trends Chem. 1, 815–829 (2019).

    Article  CAS  Google Scholar 

  34. Liu, J. et al. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 1, 16089 (2016).

    Article  CAS  Google Scholar 

  35. Lin, Y. et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 27, 1170–1174 (2015).

    Article  CAS  Google Scholar 

  36. Li, Y. et al. Non-fullerene acceptor with low energy loss and high external quantum efficiency: towards high performance polymer solar cells. J. Mater. Chem. A 4, 5890–5897 (2016).

    Article  CAS  Google Scholar 

  37. Li, Y. et al. A near-infrared non-fullerene electron acceptor for high performance polymer solar cells. Energy Environ. Sci. 10, 1610–1620 (2017).

    Article  CAS  Google Scholar 

  38. Li, Y. et al. High efficiency near-infrared and semitransparent non-fullerene acceptor organic photovoltaic cells. J. Am. Chem. Soc. 139, 17114–17119 (2017).

    Article  CAS  Google Scholar 

  39. Tu, Z., Han, G. & Yi, Y. Barrier-free charge separation enabled by electronic polarization in high-efficiency non-fullerene organic solar cells. J. Phys. Chem. Lett. 11, 2585–2591 (2020).

    Article  CAS  Google Scholar 

  40. Chen, X.-K., Coropceanu, V. & Brédas, J.-L. Assessing the nature of the charge-transfer electronic states in organic solar cells. Nat. Commun. 9, 5295 (2018).

    Article  CAS  Google Scholar 

  41. Eisner, F. D. et al. Hybridization of local exciton and charge-transfer states reduces nonradiative voltage losses in organic solar cells. J. Am. Chem. Soc. 141, 6362–6374 (2019).

    Article  CAS  Google Scholar 

  42. Panhans, M. et al. Molecular vibrations reduce the maximum achievable photovoltage in organic solar cells. Nat. Commun. 11, 1488 (2020).

    Article  CAS  Google Scholar 

  43. Yao, H. et al. 14.7% efficiency organic photovoltaic cells enabled by active materials with a large electrostatic potential difference. J. Am. Chem. Soc. 141, 7743–7750 (2019).

    Article  CAS  Google Scholar 

  44. Markina, A. et al. Chemical design rules for non-fullerene acceptors in organic solar cells. Adv. Energy Mater. 11, 2102363 (2021).

    Article  CAS  Google Scholar 

  45. Li, Y. et al. Vacuum-deposited biternary organic photovoltaics. J. Am. Chem. Soc. 141, 18204–18210 (2019).

    Article  CAS  Google Scholar 

  46. Zhang, G. et al. Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells. Nat. Commun. 11, 3943 (2020).

    Article  CAS  Google Scholar 

  47. Yuan, J. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140–1151 (2019).

    Article  CAS  Google Scholar 

  48. Li, G. et al. Systematic merging of nonfullerene acceptor π-extension and tetrafluorination strategies affords polymer solar cells with >16% efficiency. J. Am. Chem. Soc. 143, 6123–6139 (2021).

    Article  CAS  Google Scholar 

  49. Zhu, L. et al. Small exciton binding energies enabling direct charge photogeneration towards low-driving-force organic solar cells. Angew. Chem. Int. Ed. 60, 15348–15353 (2021).

    Article  CAS  Google Scholar 

  50. Cheng, H.-W., Zhao, Y. & Yang, Y. Toward high-performance semitransparent organic photovoltaics with narrow-bandgap donors and non-fullerene acceptors. Adv. Energy Mater. 12, 2102908 (2022).

    Article  CAS  Google Scholar 

  51. Chang, S.-Y., Cheng, P., Li, G. & Yang, Y. Transparent polymer photovoltaics for solar energy harvesting and beyond. Joule 2, 1039–1054 (2018).

    Article  CAS  Google Scholar 

  52. Li, G., Chang, W.-H. & Yang, Y. Low-bandgap conjugated polymers enabling solution-processable tandem solar cells. Nat. Rev. Mater. 2, 17043 (2017).

    Article  CAS  Google Scholar 

  53. Huang, X. et al. Narrow band-gap materials with overlapping absorption simultaneously increase the open circuit voltage and average visible transmittance of semitransparent organic solar cells. J. Mater. Chem. A 9, 5711–5719 (2021).

    Article  CAS  Google Scholar 

  54. Zhang, S., Qin, Y., Zhu, J. & Hou, J. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv. Mater. 30, 1800868 (2018).

    Article  Google Scholar 

  55. Xu, Y., Yao, H., Ma, L., Wang, J. & Hou, J. Efficient charge generation at low energy losses in organic solar cells: a key issues review. Rep. Prog. Phys. 83, 82601 (2020).

    Article  CAS  Google Scholar 

  56. Venkateswararao, A. & Wong, K.-T. Small molecules for vacuum-processed organic photovoltaics: past, current status, and prospect. Bull. Chem. Soc. Jpn 94, 812–838 (2021).

    Article  CAS  Google Scholar 

  57. Lin, L.-Y. et al. A low-energy-gap organic dye for high-performance small-molecule organic solar cells. J. Am. Chem. Soc. 133, 15822–15825 (2011).

    Article  CAS  Google Scholar 

  58. Caspar, J. V. & Meyer, T. J. Application of the energy gap law to nonradiative, excited-state decay. J. Phys. Chem. 87, 952–957 (1983).

    Article  CAS  Google Scholar 

  59. Lunt, R. R. & Bulovic, V. Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications. Appl. Phys. Lett. 98, 113305 (2011).

    Article  Google Scholar 

  60. Sergeant, N. P., Pincon, O., Agrawal, M. & Peumans, P. Design of wide-angle solar-selective absorbers using aperiodic metal–dielectric stacks. Opt. Express 17, 22800–22812 (2009).

    Article  CAS  Google Scholar 

  61. Liu, Q. et al. Light harvesting at oblique incidence decoupled from transmission in organic solar cells exhibiting 9.8% efficiency and 50% visible light transparency. Adv. Energy Mater. 10, 1904196 (2020).

    Article  CAS  Google Scholar 

  62. Pastorelli, F. et al. Enhanced light harvesting in semitransparent organic solar cells using an optical metal cavity configuration. Adv. Energy Mater. 5, 1400614 (2015).

    Article  Google Scholar 

  63. Betancur, R. et al. Transparent polymer solar cells employing a layered light-trapping architecture. Nat. Photonics 7, 995–1000 (2013).

    Article  CAS  Google Scholar 

  64. Zhang, J. et al. Highly efficient semitransparent organic solar cells with color rendering index approaching 100. Adv. Mater. 31, 1807159 (2019).

    Article  Google Scholar 

  65. Wang, D. et al. High-performance semitransparent organic solar cells with excellent infrared reflection and see-through functions. Adv. Mater. 32, 2001621 (2020).

    Article  CAS  Google Scholar 

  66. Xia, R. et al. Optical analysis for semitransparent organic solar cells. Sol. RRL 3, 1800270 (2019).

    Article  Google Scholar 

  67. Sheriff, H. K. M., Li, Y., Qu, B. & Forrest, S. R. Aperiodic optical coatings for neutral-color semi-transparent organic photovoltaics. Appl. Phys. Lett. 118, 033302 (2021).

    Article  CAS  Google Scholar 

  68. Wang, Y. et al. Recent progress and challenges toward highly stable nonfullerene acceptor-based organic solar cells. Adv. Energy Mater. 11, 2003002 (2021).

    Article  CAS  Google Scholar 

  69. Karuthedath, S. et al. Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells. Nat. Mater. 20, 378–384 (2021).

    Article  CAS  Google Scholar 

  70. Forrest, S. R. Waiting for Act 2: what lies beyond organic light-emitting diode (OLED) displays for organic electronics? Nanophotonics 10, 31–40 (2021).

    Article  CAS  Google Scholar 

  71. Burlingame, Q., Ball, M. & Loo, Y. L. It’s time to focus on organic solar cell stability. Nat. Energy 5, 947–949 (2020).

    Article  Google Scholar 

  72. Xu, X. et al. Interface-enhanced organic solar cells with extrapolated T80 lifetimes of over 20 years. Sci. Bull. 65, 208–216 (2020).

    Article  CAS  Google Scholar 

  73. Du, X. et al. Efficient polymer solar cells based on non-fullerene acceptors with potential device lifetime approaching 10 years. Joule 3, 215–226 (2019).

    Article  CAS  Google Scholar 

  74. Voroshazi, E. in Organic Solar Cells: Fundamentals, Devices and Upscaling (eds Rand, B. P. & Richter, H.) Ch. 15 (Pan Stanford, 2014).

  75. Grossiord, N., Kroon, J. M., Andriessen, R. & Blom, P. W. M. Degradation mechanisms in organic photovoltaic devices. Org. Electron. 13, 432–456 (2012).

    Article  CAS  Google Scholar 

  76. Cheng, P. & Zhan, X. Stability of organic solar cells: challenges and strategies. Chem. Soc. Rev. 45, 2544–2582 (2016).

    Article  CAS  Google Scholar 

  77. Norrman, K., Madsen, M. V., Gevorgyan, S. A. & Krebs, F. C. Degradation patterns in water and oxygen of an inverted polymer solar cell. J. Am. Chem. Soc. 132, 16883–16892 (2010).

    Article  CAS  Google Scholar 

  78. Hermenau, M. et al. Water and oxygen induced degradation of small molecule organic solar cells. Sol. Energy Mater. Sol. Cell 95, 1268–1277 (2011).

    Article  CAS  Google Scholar 

  79. Rivaton, A. et al. Photostability of organic materials used in polymer solar cells. Polym. Int. 63, 1335–1345 (2014).

    Article  CAS  Google Scholar 

  80. Liu, F. et al. Efficient polymer solar cells based on a low bandgap semi-crystalline DPP polymer-PCBM blends. Adv. Mater. 24, 3947–3951 (2012).

    Article  CAS  Google Scholar 

  81. Scurlock, R. D., Wang, B., Ogilby, P. R., Sheats, J. R. & Clough, R. L. Singlet oxygen as a reactive intermediate in the photodegradation of an electroluminescent polymer. J. Am. Chem. Soc. 117, 10194–10202 (1995).

    Article  CAS  Google Scholar 

  82. Manceau, M. et al. Further insights into the photodegradation of poly(3-hexylthiophene) by means of X-ray photoelectron spectroscopy. Thin Solid Films 518, 7113–7118 (2010).

    Article  CAS  Google Scholar 

  83. Chambon, S. et al. Photo-oxidation in an 18O2 atmosphere: a powerful tool to elucidate the mechanism of UV–visible light oxidation of polymers–application to the photodegradation of MDMO-PPV. Polymer 49, 3288–3294 (2008).

    Article  CAS  Google Scholar 

  84. Liu, Z.-X. et al. Molecular insights of exceptionally photostable electron acceptors for organic photovoltaics. Nat. Commun. 12, 3049 (2021).

    Article  CAS  Google Scholar 

  85. Li, Y. et al. Non-fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years. Nat. Commun. 12, 5419 (2021).

    Article  CAS  Google Scholar 

  86. Che, Y., Niazi, M. R., Izquierdo, R. & Perepichka, D. F. Mechanism of the photodegradation of A-D-A acceptors for organic photovoltaics. Angew. Chem. 60, 24833–24837 (2021).

    Article  CAS  Google Scholar 

  87. Guo, J. et al. Suppressing photo-oxidation of non-fullerene acceptors and their blends in organic solar cells by exploring material design and employing friendly stabilizers. J. Mater. Chem. A 7, 25088–25101 (2019).

    Article  CAS  Google Scholar 

  88. Manceau, M. et al. Photochemical stability of π-conjugated polymers for polymer solar cells: a rule of thumb. J. Mater. Chem. 21, 4132–4141 (2011).

    Article  CAS  Google Scholar 

  89. Jeong, C. et al. Understanding molecular fragmentation in blue phosphorescent organic light-emitting devices. Org. Electron. 64, 15–21 (2019).

    Article  CAS  Google Scholar 

  90. Doumon, N. Y., Wang, G., Chiechi, R. C. & Koster, L. J. A. Relating polymer chemical structure to the stability of polymer:fullerene solar cells. J. Mater. Chem. C 5, 6611–6619 (2017).

    Article  CAS  Google Scholar 

  91. Doumon, N. Y. et al. 1,8-diiodooctane acts as a photo-acid in organic solar cells. Sci. Rep. 9, 4350 (2019).

    Article  Google Scholar 

  92. Hu, H. et al. The role of demixing and crystallization kinetics on the stability of non-fullerene organic solar cells. Adv. Mater. 32, 2005348 (2020).

    Article  CAS  Google Scholar 

  93. Ye, L. et al. Miscibility–function relations in organic solar cells: significance of optimal miscibility in relation to percolation. Adv. Energy Mater. 8, 1703058 (2018).

    Article  Google Scholar 

  94. Vandenbergh, J. et al. Thermal stability of poly[2-methoxy-5-(2′-phenylethoxy)-1,4-phenylenevinylene] (MPE-PPV): fullerene bulk heterojunction solar cells.Macromolecules 44, 8470–8478 (2011).

    Article  CAS  Google Scholar 

  95. Bertho, S. et al. Influence of thermal ageing on the stability of polymer bulk heterojunction solar cells. Sol. Energy Mater. Sol. Cell 91, 385–389 (2007).

    Article  CAS  Google Scholar 

  96. Conings, B. et al. Modeling the temperature induced degradation kinetics of the short circuit current in organic bulk heterojunction solar cells. Appl. Phys. Lett. 96, 163301 (2010).

    Article  Google Scholar 

  97. Yu, L. et al. Diffusion-limited crystallization: a rationale for the thermal stability of non-fullerene solar cells. ACS Appl. Mater. Interfaces 11, 21766–21774 (2019).

    Article  CAS  Google Scholar 

  98. Zhao, W. et al. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 28, 4734–4739 (2016).

    Article  CAS  Google Scholar 

  99. Xiao, J. et al. An operando study on the photostability of nonfullerene organic solar cells. Sol. RRL 3, 1900077 (2019).

    Article  Google Scholar 

  100. Mori, D. et al. Polymer/polymer blend solar cells with 2.0% efficiency developed by thermal purification of nanoscale-phase-separated morphology. ACS Appl. Mater. Interfaces 3, 2924–2927 (2011).

    Article  CAS  Google Scholar 

  101. Bavel, S. S., van, Sourty, E., With, Gde & Loos, J. Three-dimensional nanoscale organization of bulk heterojunction polymer solar cells. Nano Lett. 9, 507–513 (2009).

    Article  Google Scholar 

  102. Peet, J. et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 6, 497–500 (2007).

    Article  CAS  Google Scholar 

  103. Sharenko, A., Gehrig, D., Laquai, F. & Nguyen, T.-Q. The effect of solvent additive on the charge generation and photovoltaic performance of a solution-processed small molecule: perylene diimide bulk heterojunction solar cell. Chem. Mater. 26, 4109–4118 (2014).

    Article  CAS  Google Scholar 

  104. Ghasemi, M. et al. Delineation of thermodynamic and kinetic factors that control stability in non-fullerene organic solar cells. Joule 3, 1328–1348 (2019).

    Article  CAS  Google Scholar 

  105. Yu, R. et al. Design and application of volatilizable solid additives in non-fullerene organic solar cells. Nat. Commun. 9, 4645 (2018).

    Article  Google Scholar 

  106. Lee, J. et al. Study of burn-in loss in green solvent-processed ternary blended organic photovoltaics derived from UV-crosslinkable semiconducting polymers and nonfullerene acceptors. Adv. Energy Mater. 9, 1901829 (2019).

    Article  Google Scholar 

  107. Park, S. & Son, H. J. Intrinsic photo-degradation and mechanism of polymer solar cells: the crucial role of non-fullerene acceptors. J. Mater. Chem. A 7, 25830–25837 (2019).

    Article  CAS  Google Scholar 

  108. Jiang, Y. et al. Photocatalytic effect of ZnO on the stability of nonfullerene acceptors and its mitigation by SnO2 for nonfullerene organic solar cells. Mater. Horiz. 6, 1438–1443 (2019).

    Article  CAS  Google Scholar 

  109. Manor, A., Katz, E. A., Tromholt, T. & Krebs, F. C. Electrical and photo-induced degradation of ZnO layers in organic photovoltaics. Adv. Energy Mater. 1, 836–843 (2011).

    Article  CAS  Google Scholar 

  110. Seo, J., Nam, S., Kim, H., Bradley, D. D. C. & Kim, Y. Nano-crater morphology in hybrid electron-collecting buffer layers for high efficiency polymer:nonfullerene solar cells with enhanced stability. Nanoscale Horiz. 4, 464–471 (2019).

    Article  CAS  Google Scholar 

  111. Soultati, A. et al. Lithium doping of ZnO for high efficiency and stability fullerene and non-fullerene organic solar cells. ACS Appl. Energy Mater. 2, 1663–1675 (2019).

    Article  CAS  Google Scholar 

  112. Cui, M. et al. A cost-effective, aqueous-solution-processed cathode interlayer based on organosilica nanodots for highly efficient and stable organic solar cells. Adv. Mater. 32, 2002973 (2020).

    Article  CAS  Google Scholar 

  113. Liu, H. et al. Boosting organic–metal oxide heterojunction via conjugated small molecules for efficient and stable nonfullerene polymer solar cells. Adv. Energy Mater. 9, 1900887 (2019).

    Article  Google Scholar 

  114. de Jong, M. P., van IJzendoorn, L. J. & de Voigt, M. J. A. Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes. Appl. Phys. Lett. 77, 2255–2257 (2000).

    Article  Google Scholar 

  115. Wijeyasinghe, N. et al. Copper(i) thiocyanate (CuSCN) hole-transport layers processed from aqueous precursor solutions and their application in thin-film transistors and highly efficient organic and organometal halide perovskite solar cells. Adv. Funct. Mater. 27, 1701818 (2017).

    Article  Google Scholar 

  116. Lin, Y. et al. Self-assembled monolayer enables hole transport layer-free organic solar cells with 18% efficiency and improved operational stability. ACS Energy Lett. 5, 2935–2944 (2020).

    Article  CAS  Google Scholar 

  117. Hermerschmidt, F. et al. Influence of the hole transporting layer on the thermal stability of inverted organic photovoltaics using accelerated-heat lifetime protocols. ACS Appl. Mater. Interfaces 9, 14136–14144 (2017).

    Article  CAS  Google Scholar 

  118. Griffin, J. et al. The influence of MoOx anode stoicheometry on the performance of bulk heterojunction polymer solar cells. Adv. Energy Mater. 3, 903–908 (2013).

    Article  CAS  Google Scholar 

  119. Ding, K., Li, Y. & Forrest, S. R. Characterizing and improving the thermal stability of organic photovoltaics based on halogen-rich non-fullerene acceptors. ACS Appl. Mater. Interfaces 14, 5692–5698 (2022).

    Article  CAS  Google Scholar 

  120. Bender, M. et al. Dependence of oxygen flow on optical and electrical properties of DC-magnetron sputtered ITO films. Thin Solid Films 326, 72–77 (1998).

    Article  CAS  Google Scholar 

  121. Kang, J.-W. et al. Reduction of series resistance in organic photovoltaic using low sheet resistance of ITO electrode. Electrochem. Solid State Lett. 12, H64 (2008).

    Article  Google Scholar 

  122. Barnes, T. M. et al. Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides. Adv. Energy Mater. 2, 353–360 (2012).

    Article  CAS  Google Scholar 

  123. Park, H. J., Park, J. W., Jeong, S. Y. & Ha, C. S. Transparent flexible substrates based on polyimides with aluminum doped zinc oxide (AZO) thin films. Proc. IEEE 93, 1447–1449 (2005).

    Article  CAS  Google Scholar 

  124. Xu, D. et al. An anode with aluminum doped on zinc oxide thin films for organic light emitting devices. Phys. Lett. A 346, 148–152 (2005).

    Article  CAS  Google Scholar 

  125. Cao, W., Li, J., Chen, H. & Xue, J. Transparent electrodes for organic optoelectronic devices: a review. J. Photonics Energy 4, 1–28 (2014).

    Article  Google Scholar 

  126. Lynch, D. W. & Hunter, W. R. in Handbook of Optical Constants of Solids (ed. Palik, E. D.) 341–419 (Academic, 1997).

  127. Zhang, C. et al. An ultrathin, smooth, and low-loss Al-doped Ag film and its application as a transparent electrode in organic photovoltaics. Adv. Mater. 26, 5696–5701 (2014).

    Article  CAS  Google Scholar 

  128. Han, H., Theodore, N. D. & Alford, T. L. Improved conductivity and mechanism of carrier transport in zinc oxide with embedded silver layer. J. Appl. Phys. 103, 13708 (2008).

    Article  Google Scholar 

  129. Yu, W. et al. Effects of the optical microcavity on the performance of ITO-free polymer solar cells with WO3/Ag/WO3 transparent electrode. Sol. Energy Mater. Sol. Cells 100, 226–230 (2012).

    Article  CAS  Google Scholar 

  130. Sergeant, N. P. et al. Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells. Adv. Mater. 24, 728–732 (2012).

    Article  CAS  Google Scholar 

  131. Dhar, A. & Alford, T. L. Optimization of Nb2O5/Ag/Nb2O5 multilayers as transparent composite electrode on flexible substrate with high figure of merit. J. Appl. Phys. 112, 103113 (2012).

    Article  Google Scholar 

  132. Barrows, A. T., Masters, R., Pearson, A. J., Rodenburg, C. & Lidzey, D. G. Indium-free multilayer semi-transparent electrodes for polymer solar cells. Sol. Energy Mater. Sol. Cells 144, 600–607 (2016).

    Article  CAS  Google Scholar 

  133. Schubert, S., Meiss, J., Müller-Meskamp, L. & Leo, K. Improvement of transparent metal top electrodes for organic solar cells by introducing a high surface energy seed layer. Adv. Energy Mater. 3, 438–443 (2013).

    Article  CAS  Google Scholar 

  134. Meiss, J., Riede, M. K. & Leo, K. Optimizing the morphology of metal multilayer films for indium tin oxide (ITO)-free inverted organic solar cells. J. Appl. Phys. 105, 63108 (2009).

    Article  Google Scholar 

  135. Stefaniuk, T., Wróbel, P., Trautman, P. & Szoplik, T. Ultrasmooth metal nanolayers for plasmonic applications: surface roughness and specific resistivity. Appl. Opt. 53, B237–B241 (2014).

    Article  CAS  Google Scholar 

  136. Formica, N. et al. Ultrastable and atomically smooth ultrathin silver films grown on a copper seed layer. ACS Appl. Mater. Interfaces 5, 3048–3053 (2013).

    Article  CAS  Google Scholar 

  137. Zhao, D., Zhang, C., Kim, H. & Guo, L. J. High-performance Ta2O5/Al-doped Ag electrode for resonant light harvesting in efficient organic solar cells. Adv. Energy Mater. 5, 1500768 (2015).

    Article  Google Scholar 

  138. Ji, C., Liu, D., Zhang, C. & Jay Guo, L. Ultrathin-metal-film-based transparent electrodes with relative transmittance surpassing 100%. Nat. Commun. 11, 3367 (2020).

    Article  Google Scholar 

  139. Stec, H. M., Williams, R. J., Jones, T. S. & Hatton, R. A. Ultrathin transparent Au electrodes for organic photovoltaics fabricated using a mixed mono-molecular nucleation layer. Adv. Funct. Mater. 21, 1709–1716 (2011).

    Article  CAS  Google Scholar 

  140. Zou, J., Li, C.-Z., Chang, C.-Y., Yip, H.-L. & Jen, A. K.-Y. Interfacial engineering of ultrathin metal film transparent electrode for flexible organic photovoltaic cells. Adv. Mater. 26, 3618–3623 (2014).

    Article  CAS  Google Scholar 

  141. Bi, Y.-G. et al. Ultrathin and ultrasmooth Au films as transparent electrodes in ITO-free organic light-emitting devices. Nanoscale 8, 10010–10015 (2016).

    Article  CAS  Google Scholar 

  142. Chueh, C.-C. et al. Toward high-performance semi-transparent polymer solar cells: optimization of ultra-thin light absorbing layer and transparent cathode architecture. Adv. Energy Mater. 3, 417–423 (2013).

    Article  CAS  Google Scholar 

  143. Lim, D. C. et al. Semi-transparent plastic solar cell based on oxide-metal-oxide multilayer electrodes. Prog. Photovolt. Res. Appl. 26, 188–195 (2018).

    Article  CAS  Google Scholar 

  144. Sahu, D. R., Lin, S. Y. & Huang, J. L. ZnO/Ag/ZnO multilayer films for the application of a very low resistance transparent electrode. Appl. Surf. Sci. 252, 7509–7514 (2006).

    Article  CAS  Google Scholar 

  145. Guo, X. et al. Highly conductive transparent organic electrodes with multilayer structures for rigid and flexible optoelectronics. Sci. Rep. 5, 1–9 (2015).

    Google Scholar 

  146. Cho, C. K. et al. Mechanical flexibility of transparent PEDOT:PSS electrodes prepared by gravure printing for flexible organic solar cells. Sol. Energy Mater. Sol. Cells 95, 3269–3275 (2011).

    Article  CAS  Google Scholar 

  147. Vosgueritchian, M., Lipomi, D. J. & Bao, Z. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 22, 421–428 (2012).

    Article  CAS  Google Scholar 

  148. Park, H., Rowehl, J. A., Kim, K. K., Bulovic, V. & Kong, J. Doped graphene electrodes for organic solar cells. Nanotechnology 21, 505204 (2010).

    Article  Google Scholar 

  149. De, S. et al. Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small 6, 458–464 (2010).

    Article  CAS  Google Scholar 

  150. Lee, J.-Y., Connor, S. T., Cui, Y. & Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 8, 689–692 (2008).

    Article  CAS  Google Scholar 

  151. Guo, F. et al. Nanowire interconnects for printed large-area semitransparent organic photovoltaic modules. Adv. Energy Mater. 5, 1401779 (2015).

    Article  Google Scholar 

  152. Lucera, L. et al. Printed semi-transparent large area organic photovoltaic modules with power conversion efficiencies of close to 5%. Org. Electron. 45, 209–214 (2017).

    Article  CAS  Google Scholar 

  153. Ajuria, J. et al. Insights on the working principles of flexible and efficient ITO-free organic solar cells based on solution processed Ag nanowire electrodes. Sol. Energy Mater. Sol. Cells 102, 148–152 (2012).

    Article  CAS  Google Scholar 

  154. Lucera, L. et al. Guidelines for closing the efficiency gap between hero solar cells and roll-to-roll printed modules. Energy Technol. 3, 373–384 (2015).

    Article  Google Scholar 

  155. Rowell, M. W. & McGehee, M. D. Transparent electrode requirements for thin film solar cell modules. Energy Environ. Sci. 4, 131–134 (2011).

    Article  CAS  Google Scholar 

  156. Xiao, X., Lee, K. & Forrest, S. R. Scalability of multi-junction organic solar cells for large area organic solar modules. Appl. Phys. Lett. 106, 213301 (2015).

    Article  Google Scholar 

  157. Dong, S., Jia, T., Zhang, K., Jing, J. & Huang, F. Single-component non-halogen solvent-processed high-performance organic solar cell module with efficiency over 14%. Joule 4, 2004–2016 (2020).

    Article  CAS  Google Scholar 

  158. Hong, S. et al. A series connection architecture for large-area organic photovoltaic modules with a 7.5% module efficiency. Nat. Commun. 7, 10279 (2016).

    Article  CAS  Google Scholar 

  159. Kubis, P. et al. Patterning of organic photovoltaic modules by ultrafast laser. Prog. Photovolt. Res. Appl. 23, 238–246 (2015).

    Article  CAS  Google Scholar 

  160. Distler, A., Brabec, C. J. & Egelhaaf, H. J. Organic photovoltaic modules with new world record efficiencies. Prog. Photovolt. Res. Appl. 29, 24–31 (2021).

    Article  Google Scholar 

  161. Pascual-San-José, E. et al. Towards photovoltaic windows: scalable fabrication of semitransparent modules based on non-fullerene acceptors via laser-patterning. J. Mater. Chem. A 8, 9882–9895 (2020).

    Article  Google Scholar 

  162. Strohm, S. et al. P3HT: Non-fullerene acceptor based large area, semi-transparent PV modules with power conversion efficiencies of 5%, processed by industrially scalable methods. Energy Environ. Sci. 11, 2225–2234 (2018).

    Article  CAS  Google Scholar 

  163. Lucera, L. et al. Highly efficient, large area, roll coated flexible and rigid OPV modules with geometric fill factors up to 98.5% processed with commercially available materials. Energy Environ. Sci. 9, 89–94 (2016).

    Article  Google Scholar 

  164. Ilic, B. & Craighead, H. G. Topographical patterning of chemically sensitive biological materials using a polymer-based dry lift off. Biomed. Microdevices 2, 317–322 (2000).

    Article  CAS  Google Scholar 

  165. DeFranco, J. A., Schmidt, B. S., Lipson, M. & Malliaras, G. G. Photolithographic patterning of organic electronic materials. Org. Electron. 7, 22–28 (2006).

    Article  CAS  Google Scholar 

  166. Huang, X., Fan, D., Li, Y. & Forrest, S. R. Multilevel peel-off patterning of a prototype semitransparent organic photovoltaic module. Joule 6, 1581–1589 (2022).

    Article  CAS  Google Scholar 

  167. Sun, C. et al. Heat-insulating multifunctional semitransparent polymer solar cells. Joule 2, 1816–1826 (2018).

    Article  CAS  Google Scholar 

  168. Reb, L. K. et al. Perovskite and organic solar cells on a rocket flight. Joule 4, 1880–1892 (2020).

    Article  CAS  Google Scholar 

  169. Cui, Y. et al. Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications. Nat. Energy 4, 768–775 (2019).

    Article  CAS  Google Scholar 

  170. Ravishankar, E. et al. Achieving net zero energy greenhouses by integrating semitransparent organic solar cells. Joule 4, 490–506 (2020).

    Article  CAS  Google Scholar 

  171. Wang, D. et al. High-performance and eco-friendly semitransparent organic solar cells for greenhouse applications. Joule 5, 945–957 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y.L., X.H. and H.K.M.S. acknowledge the support of the US Department of Energy’s Office of Energy Efficiency and Renewable Energy under Solar Energy Technologies Office Agreement no. DE-EE0008561. This report was prepared as an account of work sponsored by an agency of the US Government. Neither the US Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the US Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the US Government or any agency thereof. Y.L. and S.R.F. were also supported by the Department of the Navy, Office of Naval Research under award no. N00014-17-1-2211, and Universal Display Corp. The authors thank K. Ding for discussions.

Author information

Authors and Affiliations

Authors

Contributions

Y.L., X.H. and H.K.M.S. researched data for the article. Y.L., X.H., H.K.M.S. and S.R.F. wrote the article. All authors made a substantial contribution to the discussion of the content and edited the manuscript before submission.

Corresponding author

Correspondence to Stephen R. Forrest.

Ethics declarations

Competing interests

S.R.F. has an ownership interest in one of the sponsors of this research (Universal Display Corporation). This apparent conflict is under management by the University of Michigan’s Office of Research. The University of Michigan also has a licence agreement with Universal Display Corporation. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

BT-CIC

(8,15-dihexyloxyl-tetrakis(4-hexylphenyl)-4,4,10,10-tetrakis(4-hexylphenyl)-5,11-(2-ethylhexyloxy)-4,10-dihydrodithienyl[1,2-b:4,5b′]benzodithiophene-2,8-diyl)bis(2-(3-oxo-2,3-dihydroinden-5,6-dichloro-1-ylidene)malononitrile).

BT-IC

(8,15-dihexyloxyl-tetrakis(4-hexylphenyl)-(5,5,12,12-tetrakis(4-hexylphenyl)-dithienyl[1,2-b:4,5-b′]benzodithiophene-2,7-diyl)bis(2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile).

DTDCTB

2-[[7-[5-[bis(4-methylphenyl)amino]-2-thienyl]-2,1,3-benzothiadiazol-4-yl]methylene]propanedinitrile.

IDTIDT-IC

(3,8,11,16-tetrakis(4-hexylphenyl)-thieno[2,3-d:5,6-d′]-di-s-indaceno[1,2-b:5,6-b′]dithiophene)bis(2-(3-oxo-2,3-dihydroinden-1-ylidene) malononitrile).

IT-IC

3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]dithiophene).

IT-4F

(2-(3-oxo-2,3-dihydroinden-5,6-difluoro-1-ylidene)malononitrile)-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]dithiophene).

PBDBT

Poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b′]dithiophene))-alt-(5,5-(1′,3′-di-2-thienyl-5′,7′-bis(2-ethylhexyl)benzo[1′,2′-c:4′,5′-c′]dithiophene-4,8-dione))].

PCE-10

Poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b′]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)].

PEDOT:PSS

Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Huang, X., Sheriff, H.K.M. et al. Semitransparent organic photovoltaics for building-integrated photovoltaic applications. Nat Rev Mater 8, 186–201 (2023). https://doi.org/10.1038/s41578-022-00514-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-022-00514-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing