Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Knowledge-integrated machine learning for materials: lessons from gameplaying and robotics

Abstract

As materials researchers increasingly embrace machine-learning (ML) methods, it is natural to wonder what lessons can be learned from other fields undergoing similar developments. In this Review, we comparatively assess the evolution of applied ML in materials research, gameplaying and robotics. We observe ML being integrated into each field in three phases: first into discrete hardware and software tools (toolset integration); second across different steps in a workflow (workflow integration); and third through the incorporation, generation and representation of generalizable knowledge beyond any one study (knowledge integration). We identify transferrable lessons from gameplaying and robotics to materials research, including adaptive and accessible automation, the gamification of grand challenges to focus community efforts on specific workflow integrations and motivate benchmarks and canonical datasets, and the adoption of hybrid (data-based and model-based) algorithms that combine domain expertise and current learning to economically address high-complexity tasks. We identify opportunities for researchers from different fields to collaborate, including novel ways to represent and integrate a rich but heterogeneous corpus of knowledge (such as heuristics, physical laws, literature or data) with ML algorithms to create new knowledge, and safe and equitable deployment of technologies with societally beneficial outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Three integration challenges to enable the application of machine learning to materials research.
Fig. 2: Two kinds of workflow integration for materials research.
Fig. 3: Comparison of data availability in materials research and gameplaying and robotics.
Fig. 4: The evolution of solution methodologies in computer gameplaying, and the factors that influence the transitions.
Fig. 5: The evolution of robotics methodologies and the factors that influence the transitions.
Fig. 6: Learning algorithms are evolving towards hybrid approaches.
Fig. 7: Modelling approaches in materials research.

Similar content being viewed by others

Data availability

The code to extract the data for Fig. 3b can be found at https://github.com/jserecatala/Scripts-for-data-driven-projects/tree/main/NRevMat_3b_Materials_Data_Sparsity.

References

  1. Olivetti, E. A. et al. Data-driven materials research enabled by natural language processing and information extraction. Appl. Phys. Rev. 7, 041317 (2020).

    Article  CAS  Google Scholar 

  2. Friederich, P., Krenn, M., Tamblyn, I. & Aspuru-Guzik, A. Scientific intuition inspired by machine learning generated hypotheses. Mach. Learn. Sci. Technol. 2, 025027 (2020).

    Article  Google Scholar 

  3. Bash, D. et al. Accelerated automated screening of viscous graphene suspensions with various surfactants for optimal electrical conductivity. Digit. Discov. 1, 139–146 (2022).

    Article  Google Scholar 

  4. Choubisa, H. et al. Crystal site feature embedding enables exploration of large chemical spaces. Matter 3, 433–448 (2020).

    Article  Google Scholar 

  5. Mrdjenovich, D. et al. propnet: a knowledge graph for materials science. Matter 2, 464–480 (2020).

    Article  Google Scholar 

  6. Chen, C., Zuo, Y., Ye, W., Li, X. & Ong, S. P. Learning properties of ordered and disordered materials from multi-fidelity data. Nat. Comput. Sci. 1, 46–53 (2021).

    Article  Google Scholar 

  7. Ren, Z. et al. An invertible crystallographic representation for general inverse design of inorganic crystals with targeted properties. Matter 5, 314–335 (2020).

    Article  Google Scholar 

  8. Allahyari, Z. & Oganov, A. R. Coevolutionary search for optimal materials in the space of all possible compounds. npj Comput. Mater. 6, 55 (2020).

    Article  Google Scholar 

  9. Nouira, A., Sokolovska, N. & Crivello, J. C. CrystalGAN: learning to discover crystallographic structures with generative adversarial networks. Preprint at https://doi.org/10.48550/arXiv.1810.11203 (2018).

  10. Kim, S., Noh, J., Gu, G. H., Aspuru-Guzik, A. & Jung, Y. Generative adversarial networks for crystal structure prediction. ACS Cent. Sci. 6, 1412–1420 (2020).

    Article  CAS  Google Scholar 

  11. Hoffmann, J. et al. Data-driven approach to encoding and decoding 3-D crystal structures. Preprint at https://doi.org/10.48550/arXiv.1909.00949 (2019).

  12. Zhang, L., Lin, D. Y., Wang, H., Car, R. & E, W. Active learning of uniformly accurate interatomic potentials for materials simulation. Phys. Rev. Mater. 3, 023804 (2019).

    Article  CAS  Google Scholar 

  13. Zhang, L., Han, J., Wang, H., Car, R. & E, W. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 120, 143001 (2018).

    Article  CAS  Google Scholar 

  14. Tabor, D. P. et al. Accelerating the discovery of materials for clean energy in the era of smart automation. Nat. Rev. Mater. 3, 5–20 (2018).

    Article  CAS  Google Scholar 

  15. Chang, J. et al. Efficient closed-loop maximization of carbon nanotube growth rate using Bayesian optimization. Sci. Rep. 10, 9040 (2020).

    Article  CAS  Google Scholar 

  16. Nikolaev, P. et al. Autonomy in materials research: a case study in carbon nanotube growth. npj Comput. Mater. 2, 16031 (2016).

    Article  Google Scholar 

  17. Gongora, A. E. et al. A Bayesian experimental autonomous researcher for mechanical design. Sci. Adv. 6, eaaz1708 (2020).

    Article  Google Scholar 

  18. Masubuchi, S. et al. Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices. Nat. Commun. 9, 4–6 (2018).

    Article  Google Scholar 

  19. Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).

    Article  CAS  Google Scholar 

  20. Ren, F. et al. Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments. Sci. Adv. 4, eaaq1566 (2018).

    Article  Google Scholar 

  21. Yu, H., Tian, X., Weinan, E. & Li, Q. OnsagerNet: learning stable and interpretable dynamics using a generalized Onsager principle. Phys. Rev. Fluids 6, 114402 (2021).

    Article  Google Scholar 

  22. Raissi, M., Yazdani, A. & Karniadakis, G. E. Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 367, 1026–1030 (2020).

    Article  CAS  Google Scholar 

  23. Lu, L. et al. Extraction of mechanical properties of materials through deep learning from instrumented indentation. Proc. Natl Acad. Sci. USA 117, 7052–7062 (2020).

    Article  CAS  Google Scholar 

  24. Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).

    Article  Google Scholar 

  25. Yan, Y. et al. Diagnosing coronal magnetic fields with radio imaging-spectroscopy technique. Proc. Int. Astron. Union https://doi.org/10.1017/S1743921320000629 (2020).

    Article  Google Scholar 

  26. Raissi, M., Perdikaris, P. & Karniadakis, G. E. Machine learning of linear differential equations using Gaussian processes. J. Comput. Phys. 348, 683–693 (2017).

    Article  Google Scholar 

  27. Atkinson, S. et al. Data-driven discovery of free-form governing differential equations. Preprint at https://doi.org/10.48550/arXiv.1910.05117 (2019).

  28. Champion, K., Lusch, B., Nathan Kutz, J. & Brunton, S. L. Data-driven discovery of coordinates and governing equations. Proc. Natl Acad. Sci. USA 116, 22445–22451 (2019).

    Article  CAS  Google Scholar 

  29. Iten, R., Metger, T., Wilming, H., Del Rio, L. & Renner, R. Discovering physical concepts with neural networks. Phys. Rev. Lett. 124, 10508 (2020).

    Article  CAS  Google Scholar 

  30. Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559, 547–555 (2018).

    Article  CAS  Google Scholar 

  31. Correa-Baena, J. P. et al. Accelerating materials development via automation, machine learning, and high-performance computing. Joule 2, 1410–1420 (2018).

    Article  CAS  Google Scholar 

  32. Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).

    Article  CAS  Google Scholar 

  33. Montavon, G. et al. Machine learning of molecular electronic properties in chemical compound space. N. J. Phys. 15, 095003 (2013).

    Article  CAS  Google Scholar 

  34. Bartók, A. P., Payne, M. C., Kondor, R. & Csányi, G. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 46 (2010).

    Article  Google Scholar 

  35. Pun, G. P. P., Batra, R., Ramprasad, R. & Mishin, Y. Physically informed artificial neural networks for atomistic modeling of materials. Nat. Commun. 10, 2339 (2019).

    Article  Google Scholar 

  36. Dolgirev, P. E., Kruglov, I. A. & Oganov, A. R. Machine learning scheme for fast extraction of chemically interpretable interatomic potentials. AIP Adv. 6, 085318 (2016).

    Article  Google Scholar 

  37. Behler, J. Perspective: Machine learning potentials for atomistic simulations. J. Chem. Phys. 145, 170901 (2016).

    Article  Google Scholar 

  38. Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

    Article  Google Scholar 

  39. Novikov, I. S., Gubaev, K., Podryabinkin, E. V. & Shapeev, A. V. The MLIP package: moment tensor potentials with MPI and active learning. Mach. Learn. Sci. Technol. 2, 025002 (2021).

    Article  Google Scholar 

  40. Brandt, R. E. et al. Rapid photovoltaic device characterization through Bayesian parameter estimation. Joule 1, 843–856 (2017).

    Article  Google Scholar 

  41. MacLeod, B. P. et al. Self-driving laboratory for accelerated discovery of thin-film materials. Sci. Adv. 6, eaaz8867 (2020).

    Article  CAS  Google Scholar 

  42. Irwin, B. W. J., Levell, J. R., Whitehead, T. M., Segall, M. D. & Conduit, G. J. Practical applications of deep learning to impute heterogeneous drug discovery data. J. Chem. Inf. Model. 60, 2848–2857 (2020).

    Article  CAS  Google Scholar 

  43. Irwin, B. W. J., Mahmoud, S., Whitehead, T. M., Conduit, G. J. & Segall, M. D. Imputation versus prediction: applications in machine learning for drug discovery. Futur. Drug Discov. 2, FDD38 (2020).

    Article  Google Scholar 

  44. Jia, X. et al. Anthropogenic biases in chemical reaction data hinder exploratory inorganic synthesis. Nature 573, 251–255 (2019).

    Article  CAS  Google Scholar 

  45. Oviedo, F. et al. Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks. npj Comput. Mater. 5, 60 (2019).

    Article  Google Scholar 

  46. Crossland, E. J. W. et al. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 495, 215–219 (2013).

    Article  CAS  Google Scholar 

  47. Zagorac, D., Muller, H., Ruehl, S., Zagorac, J. & Rehme, S. Recent developments in the Inorganic Crystal Structure Database: theoretical crystal structure data and related features. J. Appl. Crystallogr. 52, 918–925 (2019).

    Article  CAS  Google Scholar 

  48. Ye, W. et al. Harnessing the Materials Project for machine-learning and accelerated discovery. MRS Bull. 43, 664–669 (2018).

    Article  Google Scholar 

  49. Curtarolo, S. et al. AFLOW: an automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 58, 218–226 (2012).

    Article  CAS  Google Scholar 

  50. Kirklin, S. et al. The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies. npj Comput. Mater. 1, 15010 (2015).

    Article  CAS  Google Scholar 

  51. Zitnick, C. L. et al. An introduction to electrocatalyst design using machine learning for renewable energy storage. Preprint at https://doi.org/10.48550/arXiv.2010.09435 (2020).

  52. Ulissi, Z. The Open Catalyst 2020 (OC20) dataset and community challenges. ACS Catal. 11, 6059–6072 (2021).

    Article  Google Scholar 

  53. Draxl, C. & Scheffler, M. NOMAD: the FAIR concept for big data-driven materials science. MRS Bull. 43, 676–682 (2018).

    Article  Google Scholar 

  54. Xu, Y., Yamazaki, M. & Villars, P. Inorganic materials database for exploring the nature of material. Jpn. J. Appl. Phys. 50, 11RH02 (2011).

    Article  Google Scholar 

  55. Kim, C., Chandrasekaran, A., Huan, T. D., Das, D. & Ramprasad, R. Polymer genome: a data-powered polymer informatics platform for property predictions. J. Phys. Chem. C 122, 17575–17585 (2018).

    Article  CAS  Google Scholar 

  56. Bhat, T. N., Bartolo, L. M., Kattner, U. R., Campbell, C. E. & Elliott, J. T. Strategy for extensible, evolving terminology for the materials genome initiative efforts. JOM 67, 1866–1875 (2015).

    Article  Google Scholar 

  57. Zakutayev, A. et al. An open experimental database for exploring inorganic materials. Sci. Data 5, 180053 (2018).

    Article  Google Scholar 

  58. Kim, E. et al. Inorganic materials synthesis planning with literature-trained neural networks. J. Chem. Inf. Model. 60, 1194–1201 (2020).

    Article  CAS  Google Scholar 

  59. Andersen, C. W. et al. OPTIMADE, an API for exchanging materials data. Sci. Data 8, 217 (2021).

    Article  Google Scholar 

  60. Brandt, R. E., Stevanović, V., Ginley, D. S. & Buonassisi, T. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Commun. 5, 265–275 (2015).

    Article  CAS  Google Scholar 

  61. Gaultois, M. W. et al. Perspective: Web-based machine learning models for real-time screening of thermoelectric materials properties. APL Mater. 4, 4952607 (2016).

    Article  Google Scholar 

  62. Gómez-Bombarelli, R. et al. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat. Mater. 15, 1120–1127 (2016).

    Article  Google Scholar 

  63. Noh, J., Gu, G. H., Kim, S. & Jung, Y. Machine-enabled inverse design of inorganic solid materials: promises and challenges. Chem. Sci. 11, 4871–4881 (2020).

    Article  CAS  Google Scholar 

  64. Twyman, N. M., Walsh, A. & Buonassisi, T. Environmental stability of crystals: a greedy screening. Chem. Mater. 34, 2545–2552 (2022).

    Article  CAS  Google Scholar 

  65. Jang, J., Gu, G. H., Noh, J., Kim, J. & Jung, Y. Structure-based synthesizability prediction of crystals using partially supervised learning. J. Am. Chem. Soc. 142, 18836–18843 (2020).

    Article  CAS  Google Scholar 

  66. Aykol, M., Montoya, J. H. & Hummelshøj, J. Rational solid-state synthesis routes for inorganic materials. J. Am. Chem. Soc. 143, 9244–9259 (2021).

    Article  CAS  Google Scholar 

  67. Lee, A. et al. Machine learned synthesizability predictions aided by density functional theory. Commun. Mater. 3, 73 (2022).

    Article  Google Scholar 

  68. MacLeod, B. P., Parlane, F. G. L., Brown, A. K., Hein, J. E. & Berlinguette, C. P. Flexible automation accelerates materials discovery. Nat. Mater. 21, 722–726 (2022).

    Article  CAS  Google Scholar 

  69. Christensen, M. et al. Automation isn’t automatic. Chem. Sci. 12, 15473-15490 (2021).

    Article  CAS  Google Scholar 

  70. King, R. D. et al. Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427, 247–252 (2004).

    Article  CAS  Google Scholar 

  71. King, R. D. et al. The automation of science. Science 324, 85–89 (2009).

    Article  CAS  Google Scholar 

  72. Li, C. et al. Rapid Bayesian optimisation for synthesis of short polymer fiber materials. Sci. Rep. 7, 5683 (2017).

    Article  Google Scholar 

  73. Mijalis, A. J. et al. A fully automated flow-based approach for accelerated peptide synthesis. Nat. Chem. Biol. 13, 464–466 (2017).

    Article  CAS  Google Scholar 

  74. Junkers, T. Precise macromolecular engineering via continuous-flow synthesis techniques. J. Flow. Chem. 7, 106–110 (2017).

    Article  CAS  Google Scholar 

  75. Rubens, M., Vrijsen, J. H., Laun, J. & Junkers, T. Precise polymer synthesis by autonomous self-optimizing flow reactors. Angew. Chem. Int. Ed. 58, 3183–3187 (2019).

    Article  CAS  Google Scholar 

  76. Lin, B., Hedrick, J. L., Park, N. H. & Waymouth, R. M. Programmable high-throughput platform for the rapid and scalable synthesis of polyester and polycarbonate libraries. J. Am. Chem. Soc. 141, 8921–8927 (2019).

    Article  CAS  Google Scholar 

  77. Shields, B. J. et al. Bayesian reaction optimization as a tool for chemical synthesis. Nature 590, 89–96 (2021).

    Article  CAS  Google Scholar 

  78. Doyle, A. G. & Cernak, T. Automation and computer-assisted planning for chemical synthesis. Nat. Rev. Methods Primers 1, 23 (2021).

    Article  Google Scholar 

  79. Rohr, B. et al. Benchmarking the acceleration of materials discovery by sequential learning. Chem. Sci. 11, 2696–2706 (2020).

    Article  Google Scholar 

  80. Lookman, T., Balachandran, P. V., Xue, D. & Yuan, R. Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design. npj Comput. Mater. 5, 21 (2019).

    Article  Google Scholar 

  81. Ueno, T., Rhone, T. D., Hou, Z., Mizoguchi, T. & Tsuda, K. COMBO: an efficient Bayesian optimization library for materials science. Mater. Discov. 4, 18–21 (2016).

    Article  Google Scholar 

  82. Shahriari, B., Swersky, K., Wang, Z., Adams, R. P. & De Freitas, N. Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104, 148–175 (2016).

    Article  Google Scholar 

  83. Greenhill, S., Rana, S., Gupta, S., Vellanki, P. & Venkatesh, S. Bayesian optimization for adaptive experimental design: a review. IEEE Access. 8, 13937–13948 (2020).

    Article  Google Scholar 

  84. Li, J. et al. AI applications through the whole life cycle of material discovery. Matter 3, 393–432 (2020).

    Article  Google Scholar 

  85. Roch, L. M. et al. ChemOS: an orchestration software to democratize autonomous discovery. PLoS ONE 15, e0229862 (2020).

    Article  CAS  Google Scholar 

  86. Pendleton, I. M. et al. Experiment specification, capture and laboratory automation technology (ESCALATE): a software pipeline for automated chemical experimentation and data management. MRS Commun. 9, 846–859 (2019).

    Article  CAS  Google Scholar 

  87. Hung, M. H., Lin, T. H., Cheng, F. T. & Lin, R. C. A novel virtual metrology scheme for predicting CVD thickness in semiconductor manufacturing. IEEE/ASME Trans. Mechatron. 12, 308–316 (2007).

    Article  Google Scholar 

  88. Tian, S. I. P. et al. Rapid and accurate thin film thickness extraction via UV-Vis and machine learning. Conf. Rec. IEEE Photovolt. Spec. Conf. https://doi.org/10.1109/PVSC45281.2020.9300634 (2020).

    Article  Google Scholar 

  89. Li, C. et al. High dimensional Bayesian optimization using dropout. In Proc. Twenty-Sixth Int. Joint Conf. on Artificial Intelligence (IJCAI) 2096–2102 (IJCAI, 2017).

  90. Wang, Z., Li, C., Jegelka, S. & Kohli, P. Batched high-dimensional Bayesian optimization via structural kernel learning. 34th Int. Conf. Mach. Learn. 8, 5590–5603 (2017).

    Google Scholar 

  91. Siemenn, A. E., Ren, Z., Li, Q. & Buonassisi, T. Fast Bayesian optimization of needle-in-a-haystack problems using zooming memory-based initialization. Preprint at https://doi.org/10.48550/arXiv.2208.13771 (2022).

  92. Lim, Y.-F., Ng, C. K., Vaitesswar, U. S. & Hippalgaonkar, K. Extrapolative Bayesian optimization with Gaussian process and neural network ensemble surrogate models. Adv. Intell. Syst. 3, 2100101 (2021).

    Article  Google Scholar 

  93. Long, Z., Lu, Y., Ma, X. & Dong, B. PDE-Net: learning PDEs from data. Proc. 35th Int. Conf. Mach. Learn. https://proceedings.mlr.press/v80/long18a.html (2018).

  94. Long, Z., Lu, Y. & Dong, B. PDE-Net 2.0: learning PDEs from data with a numeric-symbolic hybrid deep network. J. Comput. Phys. 399, 108925 (2019).

    Article  Google Scholar 

  95. Kulkarni, C. S., Gupta, A. & Lermusiaux, P. F. J. Sparse regression and adaptive feature generation for the discovery of dynamical systems. in Dynamic Data Driven Applications Systems. DDDAS 2020. Lecture Notes in Computer Science (eds Darema, F., Blasch, E., Ravela, S. & Aved, A.) Vol. 12312 (Springer, 2020).

  96. Lakshminarayanan, M. et al. Comparing data driven and physics inspired models for hopping transport in organic field effect transistors. Sci. Rep. 11, 23621 (2021).

    Article  CAS  Google Scholar 

  97. Naik, R. R. et al. Discovering equations that govern experimental materials stability under environmental stress using scientific machine learning. npj Comput. Mater. 8, 72 (2022).

    Article  Google Scholar 

  98. Udrescu, S. M. & Tegmark, M. AI Feynman: a physics-inspired method for symbolic regression. Sci. Adv. https://doi.org/10.1126/sciadv.aay2631 (2020).

    Article  Google Scholar 

  99. Arndt, K., Hazara, M., Ghadirzadeh, A. & Kyrki, V. Meta reinforcement learning for sim-to-real domain adaptation. Proc. IEEE Int. Conf. Robot. Autom. https://doi.org/10.1109/ICRA40945.2020.9196540 (2020).

    Article  Google Scholar 

  100. Li, X. et al. A transfer learning approach for microstructure reconstruction and structure–property predictions. Sci. Rep. 8, 13461 (2018).

    Article  Google Scholar 

  101. Liu, Z., Jiang, M. & Luo, T. Leverage electron properties to predict phonon properties via transfer learning for semiconductors. Sci. Adv. 6, 32–34 (2020).

    Article  Google Scholar 

  102. Wu, S. et al. Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm. npj Comput. Mater. 5, 66 (2019).

    Article  Google Scholar 

  103. Yamada, H. et al. Predicting materials properties with little data using shotgun transfer learning. ACS Cent. Sci. 5, 1717–1730 (2019).

    Article  CAS  Google Scholar 

  104. Kong, S., Guevarra, D., Gomes, C. P. & Gregoire, J. M. Materials representation and transfer learning for multi-property prediction. Appl. Phys. Rev. 8, 021409 (2021).

    Article  CAS  Google Scholar 

  105. Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).

    Article  CAS  Google Scholar 

  106. Perez-Liebana, D., Samothrakis, S., Togelius, J., Schaul, T. & Lucas, S. M. General video game AI: competition, challenges and opportunities. IEEE Trans. Comput. Intell. AI Games 8, 229–243 (2016).

    Article  Google Scholar 

  107. Arulkumaran, K., Deisenroth, M. P., Brundage, M. & Bharath, A. A. Deep reinforcement learning: a brief survey. IEEE Signal. Process. Mag. 34, 26–38 (2017).

    Article  Google Scholar 

  108. Mandziuk, J. Knowledge-Free And Learning-based Methods In Intelligent Game Playing (Springer, 2010).

  109. Ontanon, S. et al. A survey of real-time strategy game AI research and competition in StarCraft. IEEE Trans. Comput. Intell. AI Games 5, 293–311 (2013).

    Article  Google Scholar 

  110. Beck, J. Combinatorial Games: Tic-tac-toe Theory (Cambridge Univ. Press, 2008).

  111. John Nash Non-cooperative games. Ann. Math. 54, 286–295 (1951).

    Article  Google Scholar 

  112. Martin, D. A. Borel determinacy. Ann. Math. 102, 363–271 (1975).

    Article  Google Scholar 

  113. Allen, J. A note on the computer solution of Connect-Four. in Heuristic Programming in Artificial Intelligence: The First Computer Olympiad 134–135 (Ellis Horwood, 1989).

  114. Allis, L. V. A knowledge-based approach of Connect-Four. J. Int. Comput. Games Assoc. 11, 165 (1988).

    Google Scholar 

  115. Schaeffer, J. & Lake, R. Solving the game of checkers. World 29, 119–133 (1996).

    Google Scholar 

  116. Schaeffer, J. One Jump Ahead: Challenging Human Supremacy In Checkers (Springer Science & Business Media, 2013).

  117. Van den Herik, H. J., Uiterwijk, J. W. H. M. & Van Rijswijck, J. Games solved: now and in the future. Artif. Intell. 134, 277–311 (2002).

    Article  Google Scholar 

  118. Knuth, D. E. & Moore, R. W. An analysis of alpha-beta pruning. Artif. Intell. 6, 293–326 (1975).

    Article  Google Scholar 

  119. Manning, C. D., Raghavan, P. & Schütze, H. An Introduction to Information Retrieval (Cambridge Univ. Press, 2009).

  120. Schaeffer, J. et al. Building the checkers 10-piece endgame databases. In Advances In Computer Games: Many Games, Many Challenges (eds Van Den Herik, H. J., Iida, H. & Heinz, E. A.) 193–210 (Springer, 2004).

  121. Thompson, K. Retrograde analysis of certain endgames. ICCA J. 9, 131 (1986).

    Google Scholar 

  122. Ferrucci, D. A. Introduction to “This is Watson”. IBM J. Res. Dev. 56, 1 (2012).

    Article  Google Scholar 

  123. Ferrucci, D., Levas, A., Bagchi, S., Gondek, D. & Mueller, E. T. Watson: beyond jeopardy! Artif. Intell. 199–200, 93–105 (2013).

    Article  Google Scholar 

  124. Campbell, M., Hoane, A. J. & Hsu, F. H. Deep blue. Artif. Intell. 134, 57–83 (2002).

    Article  Google Scholar 

  125. Lenat, D. B., Guha, R. V., Pittman, K., Prat, D. & Shepherd, M. CYC: toward programs with common sense. Comun. ACM 33, 30–49 (1990).

    Google Scholar 

  126. Sutton, R. S. & Barto, A. G. Reinforcement learning, second edition: an introduction Vol. 135, 21–22 (MIT Press, 2018).

  127. Ding, Z. in Deep Reinforcement Learning (eds Dong, H., Ding, Z. & Zhang, S.) 273–306 (Springer, 2020).

  128. Ng, A. Y. & Russell, S. Algorithms for inverse reinforcement learning. In Proc. Seventeenth Int. Conf. on Machine Learning (ICML '00) 663–670 (2000).

  129. Silver, D. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016).

    Article  CAS  Google Scholar 

  130. Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).

    Article  CAS  Google Scholar 

  131. Schrittwieser, J. et al. Mastering Atari, Go, chess and shogi by planning with a learned model. Nature 588, 604–609 (2020).

    Article  CAS  Google Scholar 

  132. Mousavi, S. S., Schukat, M. & Howley, E. Deep reinforcement learning: an overview. Lect. Notes Netw. Syst. 16, 426–440 (2018).

    Article  Google Scholar 

  133. Silver, D. et al. Mastering the game of Go without human knowledge. Nature 550, 354–359 (2017).

    Article  CAS  Google Scholar 

  134. Berner, C. et al. Dota 2 with large scale deep reinforcement learning. Preprint at https://arxiv.org/abs/1912.06680 (2019).

  135. Thrun, S. B. Efficient Exploration in Reinforcement Learning. Technical Report 1–44 (Carnegie Mellon University, 1992).

  136. Vinyals, O. et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 575, 350–354 (2019).

    Article  CAS  Google Scholar 

  137. McCarthy, J., Minsky, M. L., Rochester, N. & Shannon, C. E. A proposal for the Dartmouth summer research project on artificial intelligence. AI Mag. 27, 12–14 (2006).

    Google Scholar 

  138. Buehler, M., Iagnemma, K. & Singh, S. (eds) The DARPA Urban Challenge: Autonomous Vehicles In City Traffic Vol. 56 STAR (Springer, 2009).

  139. Bellman, R. Dynamic programming. Science 153, 34–37 (1966).

    Article  CAS  Google Scholar 

  140. Kuipers, B., Feigenbaum, E. A., Hart, P. E. & Nilsson, N. J. Shakey: from conception to history. AI Mag. 38, 88–103 (2017).

    Google Scholar 

  141. Moravec, H. P. The Stanford Cart and the CMU Rover. Proc. IEEE 71, 872–884 (1983).

    Article  Google Scholar 

  142. Buşoniu, L., Babuska, R. & De Schutter, B. Multi-agent reinforcement learning: an overview. In Innovations In Multi-agent Systems And Applications. I. (eds Srinivasan, D. & Jain, L.) Vol. 310 Studies In Computational Intelligence 183–221 (Springer, 2010).

  143. Buşoniu, L., Babuška, R. & De Schutter, B. A comprehensive survey of multiagent reinforcement learning. IEEE Trans. Syst. Man. Cybern. C 38, 156–172 (2008).

    Article  Google Scholar 

  144. Tuyls, K. & Weiss, G. Multiagent learning: basics, challenges, and prospects. AI Mag. 33, 41–52 (2012).

    Google Scholar 

  145. Bowling, M. Convergence and no-regret in multiagent learning. In Advances in Neural Information Processing Systems 17, 209–216 (NIPS, 2004).

  146. Lowe, R. et al. Multi-agent actor-critic for mixed cooperative-competitive environments. 31st Conf. Neural Inf. Process. Syst. https://doi.org/10.1007/BF01744832 (2017).

    Article  Google Scholar 

  147. Granda, J. M., Donina, L., Dragone, V., Long, D. L. & Cronin, L. Controlling an organic synthesis robot with machine learning to search for new reactivity. Nature 559, 377–381 (2018).

    Article  CAS  Google Scholar 

  148. Coley, C. W. et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 365, aax1566 (2019).

    Article  Google Scholar 

  149. Langner, S. et al. Beyond ternary OPV: high-throughput experimentation and self-driving laboratories optimize multicomponent systems. Adv. Mater. 32, e1907801 (2020).

    Article  Google Scholar 

  150. Sun, S. et al. A data fusion approach to optimize compositional stability of halide perovskites. Matter 4, 1305–1322 (2021).

    Article  CAS  Google Scholar 

  151. Sun, S. et al. Accelerated development of perovskite-inspired materials via high-throughput synthesis and machine-learning diagnosis. Joule 3, 1437–1451 (2019).

    Article  CAS  Google Scholar 

  152. Unhelkar, V. V, Li, S. & Shah, J. A. Semi-supervised learning of decision-making models for human–robot collaboration. In Proc. Conf. on Robot Learning (eds Kaelbling, L. P., Kragic, D. & Sugiura, K.) Vol. 100, 192–203 (PMLR, 2020).

  153. Pérez-D’Arpino, C., Khurshid, R. P. & Shah, J. A. Experimental assessment of human–robot teaming for multi-step remote manipulation with expert operators. Preprint at https://doi.org/10.48550/arXiv.2011.10898 (2020).

  154. Fazeli, N. et al. See, feel, act: hierarchical learning for complex manipulation skills with multisensory fusion. Sci. Robot. 4, eaav3123 (2019).

    Article  Google Scholar 

  155. Baker, M. & Penny, D. Is there a reproducibility crisis? Nature 533, 452–454 (2016).

    Article  CAS  Google Scholar 

  156. Silver, D. et al. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362, 1140–1144 (2018).

    Article  CAS  Google Scholar 

  157. Russakovsky, O. et al. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015).

    Article  Google Scholar 

  158. Wei, G.-W. Protein structure prediction beyond AlphaFold. Nat. Mach. Intell. 1, 336–337 (2019).

    Article  Google Scholar 

  159. Reilly, A. M. et al. Report on the sixth blind test of organic crystal structure prediction methods. Acta Crystallogr. B 72, 439–459 (2016).

    Article  CAS  Google Scholar 

  160. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. The Cambridge structural database. Acta Crystallogr. B 72, 171–179 (2016).

    Article  CAS  Google Scholar 

  161. Chanussot, L. et al. Open Catalyst 2020 (OC20) dataset and community challenges. ACS Catal. 11, 6059–6072 (2021).

    Article  CAS  Google Scholar 

  162. Bogojeski, M., Vogt-Maranto, L., Tuckerman, M. E., Müller, K. R. & Burke, K. Quantum chemical accuracy from density functional approximations via machine learning. Nat. Commun. 11, 5223 (2020).

    Article  CAS  Google Scholar 

  163. She, Q. et al. OpenLORIS-object: a robotic vision dataset and benchmark for lifelong deep learning. Proc. IEEE Int. Conf. Robot. Autom. https://doi.org/10.1109/ICRA40945.2020.9196887 (2020).

    Article  Google Scholar 

  164. Dasari, S. et al. RoboNet: large-scale multi-robot learning. Preprint at https://doi.org/10.48550/arXiv.1910.11215 (2019).

  165. Davies, D. W. et al. Computational screening of all stoichiometric inorganic materials. Chem 1, 617–627 (2016).

    Article  CAS  Google Scholar 

  166. Ricci, F. et al. Data descriptor: an ab initio electronic transport database for inorganic materials. Sci. Data 4, 170085 (2017).

    Article  CAS  Google Scholar 

  167. Gibbs, Z. M. et al. Effective mass and Fermi surface complexity factor from ab initio band structure calculations. npj Comput. Mater. 3, 8 (2017).

    Article  Google Scholar 

  168. Winther, K. T. et al. Catalysis-Hub.org, an open electronic structure database for surface reactions. Sci. Data 6, 75 (2019).

    Article  Google Scholar 

  169. CASP14. Critical assessment of techniques for protein structure prediction. Deepmind https://predictioncenter.org/casp14/doc/CASP14_Abstracts.pdf (2020).

  170. Ting-Yao, H., Giles, C. L. & Huang, T.-H. ‘Kenneth’. SciCap: generating captions for scientific figures. Preprint at https://doi.org/10.48550/arXiv.2110.11624 (2021).

  171. Banerjee, A. et al. Ultralarge elastic deformation of nanoscale diamond. Science 360, 300–302 (2018).

    Article  CAS  Google Scholar 

  172. Chen, S. J., Chen, W. Q., Ouyang, Y., Matthai, S. & Zhang, L. Transitions between nanomechanical and continuum mechanical contacts: new insights from liquid structure. Nanoscale 11, 22954–22963 (2019).

    Article  CAS  Google Scholar 

  173. Jinnouchi, R. & Asahi, R. Predicting catalytic activity of nanoparticles by a DFT-aided machine-learning algorithm. J. Phys. Chem. Lett. 8, 4279–4283 (2017).

    Article  CAS  Google Scholar 

  174. Behnken, H. Simulation of the development of dislocation density in multi-crystalline silicon during crystallisation processes. 24th European Photovoltaic Solar Energy Conf. https://doi.org/10.4229/24thEUPVSEC2009-2CV.1.43 (2009).

    Article  Google Scholar 

  175. Yu, L. & Zunger, A. Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials. Phys. Rev. Lett. 108, 068701 (2012).

    Article  Google Scholar 

  176. Yan, J. et al. Material descriptors for predicting thermoelectric performance. Energy Environ. Sci. 8, 983–994 (2015).

    Article  Google Scholar 

  177. Suwardi, A. et al. Inertial effective mass as an effective descriptor for thermoelectrics: via data-driven evaluation. J. Mater. Chem. A 7, 23762–23769 (2019).

    Article  CAS  Google Scholar 

  178. Deng, T. et al. EPIC STAR: a reliable and efficient approach for phonon- and impurity-limited charge transport calculations. npj Comput. Mater. 6, 46 (2020).

    Article  CAS  Google Scholar 

  179. Deng, T. et al. Electronic transport descriptors for the rapid screening of thermoelectric materials. Mater. Horiz. https://doi.org/10.1039/d1mh00751c (2021).

    Article  Google Scholar 

  180. Zeng, A. et al. Robotic pick-and-place of novel objects in clutter with multi-affordance grasping and cross-domain image matching. Int. J. Rob. Res. https://doi.org/10.1177/0278364919868017 (2019).

    Article  Google Scholar 

  181. Akkaya, I. et al. Solving Rubik’s cube with a robot hand. Preprint at https://doi.org/10.48550/arXiv.1910.07113 (2019).

  182. Settles, B. Active Learning Literature Survey. CS Technical Reports (Univ. Wisconsin-Madison Department of Computer Sciences, 2009).

  183. Leong, C. J. et al. An object-oriented framework to enable workflow evolution across materials acceleration platforms. Matter 5, 3124–3134 (2022).

    Article  Google Scholar 

  184. Cully, A., Clune, J., Tarapore, D. & Mouret, J. B. Robots that can adapt like animals. Nature 521, 503–507 (2015).

    Article  CAS  Google Scholar 

  185. Zhang, M. et al. Solar: deep structured representations for model-based reinforcement learning. 36th Int. Conf. Mach. Learn. ICML 2019 https://doi.org/10.48550/arXiv.1808.09105 (2019).

    Article  Google Scholar 

  186. Kaiser, Ł. et al. Model based reinforcement learning for Atari. ICLR 2020 https://openreview.net/pdf?id=S1xCPJHtDB (2019).

  187. Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J. & Quillen, D. Learning hand–eye coordination for robotic grasping with deep learning and large-scale data collection. Int. J. Rob. Res. 37, 421–436 (2018).

    Article  Google Scholar 

  188. Kober, J., Bagnell, J. A. & Peters, J. Reinforcement learning in robotics: a survey. Int. J. Rob. Res. 32, 1238–1274 (2013).

    Article  Google Scholar 

  189. Buşoniu, L., de Bruin, T., Tolić, D., Kober, J. & Palunko, I. Reinforcement learning for control: performance, stability, and deep approximators. Annu. Rev. Control. 46, 8–28 (2018).

    Article  Google Scholar 

  190. Amato, C., Konidaris, G., Kaelbling, L. P. & How, J. P. Modeling and planning with macro-actions in decentralized POMDPs. J. Artif. Intell. Res. 64, 817–859 (2019).

    Article  Google Scholar 

  191. Levine, S. & Koltun, V. Guided policy search. In Proc. 30th Int. Conf. on Machine Learning (eds Dasgupta, S. & McAllester, D.) Vol. 28, 1–9 (PMLR, 2013).

  192. Kohn, W., Becke, A. D. & Parr, R. G. Density functional theory of electronic structure. J. Phys. Chem. 100, 12974–12980 (1996).

    Article  CAS  Google Scholar 

  193. Alder, B. & Wainwright, T. Studies in molecular dynamics. I. General method. J. Chem. Phys. 31, 459 (1959).

    Article  CAS  Google Scholar 

  194. Fermi, E., Pasta, J. R. & Ulam, S. M. Studies of the non-linear problems (Technical Report). In Collected Papers of Enrico Fermi Vol. 2 https://doi.org/10.2172/4376203 (Univ. Chicago Press, 1955).

  195. Weinan, E. Principles Of Multiscale Modeling (Cambridge Univ. Press, 2011).

  196. Zhou, Z., Li, X. & Zare, R. N. Optimizing chemical reactions with deep reinforcement learning. ACS Cent. Sci. 3, 1337–1344 (2017).

    Article  CAS  Google Scholar 

  197. Ren, Z. et al. Embedding physics domain knowledge into a Bayesian network enables layer-by-layer process innovation for photovoltaics. npj Comput. Mater. 6, 9 (2020).

    Article  CAS  Google Scholar 

  198. Ziatdinov, M., Wong, C. Y. & Kalinin, S. V. Finding Simplicity: unsupervised discovery of features, patterns, and order parameters via shift-invariant variational autoencoders. Preprint at https://doi.org/10.48550/arXiv.2106.12472 (2021).

  199. Xie, T., Fu, X., Ganea, O.-E., Barzilay, R. & Jaakkola, T. Crystal diffusion variational autoencoder for periodic material generation. ICLR 2022 https://openreview.net/forum?id=03RLpj-tc_ (2021).

  200. Kanwar, G. et al. Equivariant flow-based sampling for lattice gauge theory. Phys. Rev. Lett. 125, 1–6 (2020).

    Article  Google Scholar 

  201. Chen, B. et al. Automated discovery of fundamental variables hidden in experimental data. Nat. Comput. Sci. 2, 433–442 (2022).

    Article  Google Scholar 

  202. Liu, Z. et al. Machine learning with knowledge constraints for process optimization of open-air perovskite solar cell manufacturing. Joule 6, 834–849 (2022).

    Article  Google Scholar 

  203. Häse, F. et al. Olympus: a benchmarking framework for noisy optimization and experiment planning. Mach. Learn. Sci. Technol. 2, 035021 (2021).

    Article  Google Scholar 

  204. Liang, Q. et al. Benchmarking the performance of Bayesian optimization across multiple experimental materials science domains. npj Comput. Mater. 7, 188 (2021).

    Article  Google Scholar 

  205. Graff, D. E., Shakhnovich, E. I. & Coley, C. W. Accelerating high-throughput virtual screening through molecular pool-based active learning. Chem. Sci. 12, 7866–7881 (2021).

    Article  CAS  Google Scholar 

  206. Wang, Z., Gehring, C., Kohli, P. & Jegelka, S. Batched large-scale Bayesian optimization in high-dimensional spaces. Int. Conf. Artif. Intell. Stat. 84, 745–754 (2018).

    Google Scholar 

  207. Eriksson, D., Pearce, M., Gardner, J. R., Turner, R. & Poloczek, M. Scalable global optimization via local Bayesian optimization. Adv. Neural Inf. Process. Syst. 32, 5497–5508 (2019).

    Google Scholar 

  208. Solomou, A. et al. Multi-objective Bayesian materials discovery: application on the discovery of precipitation strengthened NiTi shape memory alloys through micromechanical modeling. Mater. Des. 160, 810–827 (2018).

    Article  CAS  Google Scholar 

  209. MacLeod, B. P. et al. A self-driving laboratory advances the Pareto front for material properties. Nat. Commun. 13, 995 (2022).

    Article  CAS  Google Scholar 

  210. Erps, T. et al. Accelerated discovery of 3D printing materials using data-driven multi-objective optimization. Sci. Adv. 7, eabf7435 (2021).

    Article  CAS  Google Scholar 

  211. Schweidtmann, A. M. et al. Machine learning meets continuous flow chemistry: Automated optimization towards the Pareto front of multiple objectives. Chem. Eng. J. 352, 277–282 (2018).

    Article  CAS  Google Scholar 

  212. Tiihonen, A. et al. Predicting antimicrobial activity of conjugated oligoelectrolyte molecules via machine learning. J. Am. Chem. Soc. 143, 18917–18931 (2021).

    Article  CAS  Google Scholar 

  213. Stanev, V. et al. Unsupervised phase mapping of X-ray diffraction data by nonnegative matrix factorization integrated with custom clustering. npj Comput. Mater. 4, 43 (2018).

    Article  Google Scholar 

  214. Chen, D. et al. Deep reasoning networks: thinking fast and slow, for pattern de-mixing. ICLR 2020 https://openreview.net/forum?id=HkehD3VtvS (2020).

  215. Pan, J. et al. Transfer learning-based artificial intelligence-integrated physical modeling to enable failure analysis for 3 nanometer and smaller silicon-based CMOS transistors. ACS Appl. Nano Mater. 4, 6903–6915 (2021).

    Article  CAS  Google Scholar 

  216. Mekki-Berrada, F. et al. Two-step machine learning enables optimized nanoparticle synthesis. npj Comput. Mater. 7, 55 (2021).

    Article  CAS  Google Scholar 

  217. Utterback, J. M. Mastering the Dynamics of Innovation: How Companies Can Seize Opportunities in the Face of Technological Change 3rd edn (Harvard Business School Press, 1994).

  218. Ourmazd, A. Science in the age of machine learning. Nat. Rev. Phys. 2, 342–343 (2020).

    Article  Google Scholar 

  219. Kemp, C. & Tenenbaum, J. B. The discovery of structural form. Proc. Natl Acad. Sci. USA 105, 10687–10692 (2008).

    Article  CAS  Google Scholar 

  220. Schmidt, M. & Lipson, H. Distilling free-form natural laws. Science 324, 81–86 (2009).

    Article  CAS  Google Scholar 

  221. Oudeyer, P.-Y. in The New Science of Curiosity (ed. Gordon, G.) 43–72 (Nova Science Publishers, 2018).

  222. Bellman, R. Functional equations in the theory of dynamic programming-VI A direct convergence proof. Ann. Math. 65, 215–223 (1957).

    Article  Google Scholar 

  223. Gupta, A. & Lermusiaux, P. F. J. Neural closure models for dynamical systems. Proc. R. Soc. A 477, (2021).

  224. Kononova, O. et al. Text-mined dataset of inorganic materials synthesis recipes. Sci. Data 6, 203 (2019).

    Article  Google Scholar 

  225. Kirkpatrick, J. et al. Overcoming catastrophic forgetting in neural networks. Proc. Natl Acad. Sci. USA 114, 3521–3526 (2017).

    Article  CAS  Google Scholar 

  226. Rusu, A. A. et al. Progressive neural networks. Preprint at https://doi.org/10.48550/arXiv.1606.04671 (2016).

  227. Rusu, A. A. et al. Policy distillation. Preprint at https://doi.org/10.48550/arXiv.1511.06295 (2016).

  228. Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44, 5149–5169 (2022).

    Google Scholar 

  229. Vanschoren, J. Meta-learning: a survey. Preprint at https://doi.org/10.48550/arXiv.1810.03548 (2018).

  230. Zhuang, F. et al. A comprehensive survey on transfer learning. Proc. IEEE 109, 43–76 (2021).

    Article  Google Scholar 

  231. Khetarpal, K., Ahmed, Z., Comanici, G., Abel, D. & Precup, D. What can I do here? A theory of affordances in reinforcement learning. PMLR 119, 5243–5253 (2020).

    Google Scholar 

  232. Altshuller, G. & Shapiro, R. The psychology of inventive creativity. Issues Psychol. 6, 37–49 (1956).

    Google Scholar 

  233. Wlaźlak, E. et al. Heavy pnictogen chalcohalides: the synthesis, structure and properties of these rediscovered semiconductors. Chem. Commun. 54, 12133–12162 (2018).

    Article  Google Scholar 

  234. Aldakov, D., Lefrançois, A. & Reiss, P. Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications. J. Mater. Chem. C 1, 3756–3776 (2013).

    Article  CAS  Google Scholar 

  235. Gao, T. et al. 2D ternary chalcogenides. Adv. Opt. Mater. 6, 1800058 (2018).

    Article  Google Scholar 

  236. Zhang, Y. et al. A ‘tips and tricks’ practical guide to the synthesis of metal halide perovskite nanocrystals. Chem. Mater. 32, 5410–5423 (2020).

    Article  CAS  Google Scholar 

  237. Paschen, S. & Si, Q. Quantum phases driven by strong correlations. Nat. Rev. Phys. 3, 9–26 (2021).

    Article  Google Scholar 

  238. Orenstein, J. & Millis, A. J. Advances in the physics of high-temperature superconductivity. Science 288, 468–474 (2000).

    Article  CAS  Google Scholar 

  239. Hebard, A. & Stewart, G. Progress in superconductivity. Phys. Today 72, 44–45 (2019).

    Article  CAS  Google Scholar 

  240. Schreiber, S. L. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287, 1964–1969 (2000).

    Article  CAS  Google Scholar 

  241. Lee, G. H. et al. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 5, 149–165 (2020).

    Article  Google Scholar 

  242. Gibson, R. F. A review of recent research on mechanics of multifunctional composite materials and structures. Compos. Struct. 92, 2793–2810 (2010).

    Article  Google Scholar 

  243. Barabási, A. L. & Frangos, J. Linked: How Everything is Connected to Everything Else and What It Means for Business, Science, and Everyday Life (Basic Books, 2014).

  244. Silbey, S. S. From the faculty chair: how not to teach ethics. MITFacultyNewsletter http://web.mit.edu/fnl/volume/311/silbey.html. (2018).

  245. Nohria, N. & Taneja, H. Managing the unintended consequencies of your innovations. Harvard Business Review https://hbr.org/2021/01/managing-the-unintended-consequences-of-your-innovations (2021).

  246. Merton, R. K. The unanticipated consequences of purposive social action. Am. Sociol. Rev. 1, 894–904 (1936).

    Article  Google Scholar 

  247. Urbina, F. et al. Dual use of artificial-intelligence-powered drug discovery. Nat. Mach. Intell. 4, 189–191 (2022).

    Article  Google Scholar 

  248. Kearns, M. & Roth, A. The Ethical Algorithm: The Science Of Socially Aware Algorithm Design (Oxford Univ. Press, 2019).

  249. Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  Google Scholar 

  250. Ong, S. P. et al. The materials application programming interface (API): a simple, flexible and efficient API for materials data based on representational state transfer (REST) principles. Comput. Mater. Sci. 97, 209–215 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors benefited from insights deriving from discussions with other researchers too numerous to count. Particularly formative discussions included the authors’ co-workers L. Zhe, D. Ren, P. Teyssonneyre, S. I. Parker Tian (SMART), N. Azizan, G. Barbastathis, S. Bonner, P. Doyle, E. A. Fitzgerald, T. Ganapathy, R. Gomez-Bombarelli, F. Oviedo, Q. Liang, E. E. Looney, R. Naik, E. M. Sachs (originally proposed autonomous invention), A. E. Siemenn, J. Thapa, A. Tiihonen, M. Short, S. Sun (MIT), V. Chellappan, J. Cheng, S. Jayavelu, J. Kumar, Y.-F. Lim, S. Ramasamy, C. Troadec and the AMDM team (A*STAR), D. Bash, G. Bazan, A. Cheetham, S. Khan and A. Thean (NUS), and in alphabetical order by affiliation, B. Maruyama (AFRL), K. Brown (Boston University), J. Schrier (Fordham University), C. Brabec and M. Peters (Forschungszentrum Jülich), A. Norquist (Haverford College), A. Walsh (Imperial), Y. Jung (KAIST), A. Cooper (Liverpool), J.-H. Simpers (NIST), Y. Liu (Shanghai University), R. Simpson and K. Wood (SUTD; introduced T.B. to the concept of autonomous discovery), K. Kumar (Temasek), E. Sargent and A. Aspuru-Guzik (University of Toronto), S. Jaffer (TOTAL), C. Burlinguette and J. Hein (UBC), D. P. Fenning and S. Ping Ong (UCSD), D. Beck and H. Hillhouse (Univ. of Washington) and countless more.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Kedar Hippalgaonkar or Tonio Buonassisi.

Ethics declarations

Competing interests

K.H. and T.B. hold equity in a start-up company, Xinterra, focused on commercializing ML technologies for accelerated materials development. J.K. is a research scientist at Google DeepMind. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Yousung Jung and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Arduino: https://www.arduino.cc/

AtomWork-Advanced database: https://atomwork-adv.nims.go.jp/

Average computational power: https://en.wikipedia.org/wiki/Computer_performance_by_orders_of_magnitude#Deciscale_computing_(10%E2%88%921)

Critical Assessment of protein Structure Prediction: https://predictioncenter.org/

DARPA Grand Challenges for autonomous driving: https://www.darpa.mil/about-us/timeline/-grand-challenge-for-autonomous-vehicles

Data-centric AI: https://datacentric.ai/

Guiding principles: https://futureoflife.org/ai-principles/

ICSD: https://icsd.products.fiz-karlsruhe.de/

Initial test for any AI ethics filter: https://futureoflife.org/ai-principles/

JARVIS: https://www.nist.gov/programs-projects/jarvis-dft

Larger discussion involving ethics in AI: https://www.microsoft.com/en-us/ai/our-approach-to-ai

MaRDA: https://www.marda-alliance.org/

Materials Project: https://MaterialsProject.org/

NOMAD: https://nomad-lab.eu/

NREL: https://htem.nrel.gov/

Ongoing efforts by NIST: https://materialsdata.nist.gov

Openrobotics: http://www.openrobotics.org/

OpenTrons: https://opentrons.com/

OQMD: http://oqmd.org/

ROS: https://www.ros.org/

ROS Industrial: https://rosindustrial.org

Specialized robots to aid scientific research: https://www.youtube.com/watch?v=03p2CADwGF8&t=1447s

The Crystal Structure Blind Test: https://www.ccdc.cam.ac.uk/Community/initiatives/cspblindtests/

The Open Catalyst Project: https://opencatalystproject.org/challenge.html

YARP: https://www.yarp.it/git-master/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hippalgaonkar, K., Li, Q., Wang, X. et al. Knowledge-integrated machine learning for materials: lessons from gameplaying and robotics. Nat Rev Mater 8, 241–260 (2023). https://doi.org/10.1038/s41578-022-00513-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-022-00513-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing