Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review article
  • Published:

Molecular engineering of contact interfaces for high-performance perovskite solar cells

Abstract

Metal-oxide-based charge-transport layers have played a pivotal role in the progress of perovskite solar cells. Yet metal-oxide/perovskite interfaces are often highly defective, owing to both metal-oxide and perovskite surface defects. This results in non-radiative recombination and impedes charge transfer. Moreover, during operation, such interfaces may suffer from undesirable chemical reactions and mechanical delamination issues. Solving this multifaceted challenge requires a holistic approach to concurrently address the interfacial defect, charge-transfer, chemical stability and delamination issues, to bring perovskite solar cell technology closer to commercialization. With this motivation, we review and discuss the issues associated with the metal-oxide/perovskite interface in detail. With this knowledge at hand, we then suggest solutions based on molecular engineering for many, if not all, challenges that encumber the metal-oxide/perovskite interface. Specifically, in light of the semiconducting and ultrafast charge-transfer properties of dyes and the recent success of self-assembled monolayers as charge-selective contacts, we discuss how such molecules can potentially be a promising solution for all metal-oxide/perovskite interface issues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The emergence of PSCs, and generic structures of MFDs and MCDs.
Fig. 2: Properties and performance of various metal-oxide charge-transport layers.
Fig. 3: Metal-oxide and perovskite defects, and their passivation with SAMs.
Fig. 4: Recombination processes at metal-oxide/perovskite interfaces.
Fig. 5: Charge-transfer mechanisms and dipole moment of metal-oxide/dye SAM contacts.
Fig. 6: Chemical reactions at metal-oxide/perovskite interfaces.
Fig. 7: Mechanical stress and its alleviation at metal-oxide/perovskite interfaces.

Similar content being viewed by others

References

  1. Zhang, F. & Zhu, K. Additive engineering for efficient and stable perovskite solar cells. Adv. Energy Mater. 10, 1902579 (2020).

    Article  CAS  Google Scholar 

  2. Ball, J. M. & Petrozza, A. Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1, 16149 (2016).

    Article  CAS  Google Scholar 

  3. Wang, F., Bai, S., Tress, W., Hagfeldt, A. & Gao, F. Defects engineering for high-performance perovskite solar cells. npj Flex. Electron. 2, 22 (2018).

    Article  Google Scholar 

  4. Lin, L. et al. Inorganic electron transport materials in perovskite solar cells. Adv. Funct. Mater. 31, 2008300 (2021).

    Article  CAS  Google Scholar 

  5. Shluger, A. in Handbook of Materials Modeling (eds Andreoni, W. & Yip, S.) https://doi.org/10.1007/978-3-319-50257-1_79-1 (Springer, 2019).

  6. Allen, T. G., Bullock, J., Yang, X., Javey, A. & De Wolf, S. Passivating contacts for crystalline silicon solar cells. Nat. Energy 4, 914–928 (2019).

    Article  CAS  Google Scholar 

  7. Shin, S. S., Lee, S. J. & Seok, S. I. Metal oxide charge transport layers for efficient and stable perovskite solar cells. Adv. Funct. Mater. 29, 1900455 (2019). This work provides an up-to-date overview of the development of state-of-the-art metal-oxide charge-transport layers for the fabrication of efficient and stable perovskite solar cells (PSCs).

    Article  CAS  Google Scholar 

  8. Chen, Q., Wang, C., Li, Y. & Chen, L. Interfacial dipole in organic and perovskite solar cells. J. Am. Chem. Soc. 142, 18281–18292 (2020). This work focuses on the dipole moment of different interlayers and its impact on the performance of perovskite and organic solar cells.

    Article  CAS  Google Scholar 

  9. Yang, Y. et al. Eliminating charge accumulation via interfacial dipole for efficient and stable perovskite solar cells. ACS Appl. Mater. Interfaces 11, 34964–34972 (2019).

    Article  CAS  Google Scholar 

  10. Roose, B., Wang, Q. & Abate, A. The role of charge selective contacts in perovskite solar cell stability. Adv. Energy Mater. 9, 1803140 (2019). This study analyses materials and interface engineering of charge-selective contacts to enhance the device stability of PSCs.

    Google Scholar 

  11. Mundt, L. E. et al. Surface-activated corrosion in tin–lead halide perovskite solar cells. ACS Energy Lett. 5, 3344–3351 (2020).

    Article  CAS  Google Scholar 

  12. Schutt, K. et al. Overcoming zinc oxide interface instability with a methylammonium-free perovskite for high-performance solar cells. Adv. Funct. Mater. 29, 1900466 (2019).

    Article  CAS  Google Scholar 

  13. Boyd, C. C. et al. Overcoming redox reactions at perovskite-nickel oxide interfaces to boost voltages in perovskite solar cells. Joule 4, 1759–1775 (2020). This study provides insights into redox reactions occurring at metal-oxide/perovskite interfaces, particularly at the NiOx/perovskite interface, and strategies to alleviate such unwanted reactions.

    Article  CAS  Google Scholar 

  14. Dai, Z. et al. Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability. Science 372, 618–622 (2021). This work shows that the insertion of an iodine-terminated self-assembled monolayer (SAM) at the SnO2/perovskite interface increases the adhesion toughness between the electron-transport layer (ETL) and perovskite layer by 50%.

    Article  CAS  Google Scholar 

  15. Zhao, J. et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 3, eaao5616 (2017). This study reveals that the thermal expansion mismatch between the perovskite and substrate materials is an important intrinsic source of instability in perovskite films, accelerating the decomposition of PSCs.

    Article  Google Scholar 

  16. Jiao, Y. et al. Strain engineering of metal halide perovskites on coupling anisotropic behaviors. Adv. Funct. Mater. 31, 2006243 (2021).

    Article  CAS  Google Scholar 

  17. Muñoz-García, A. B. et al. Dye-sensitized solar cells strike back. Chem. Soc. Rev. 50, 12450–12550 (2021). This review summarizes the advances in the field of dye-sensitized solar cells (DSSCs), including dye sensitizers, over the past decade, encompassing all aspects of the technology.

    Article  Google Scholar 

  18. Polo, A. S., Itokazu, M. K. & Murakami Iha, N. Y. Metal complex sensitizers in dye-sensitized solar cells. Coord. Chem. Rev. 248, 1343–1361 (2004).

    Article  CAS  Google Scholar 

  19. Mishra, A., Fischer, M. K. R. & Bäuerle, P. Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew. Chem. Int. Ed. 48, 2474–2499 (2009).

    Article  CAS  Google Scholar 

  20. Ayele, D. W. et al. in Advances in Organometallic Chemistry and Catalysis 501–511 (Wiley, 2013).

  21. Massin, J. et al. Design and synthesis of novel organometallic dyes for NiO sensitization and photo-electrochemical applications. Dalton Trans. 45, 12539–12547 (2016).

    Article  CAS  Google Scholar 

  22. Zhumagali, S. et al. Linked nickel oxide/perovskite interface passivation for high-performance textured monolithic tandem solar cells. Adv. Energy Mater. 11, 2101662 (2021). This work provides an insight into the interface modification of the NiOx hole-transport layer (HTL)/perovskite interface by self-assembled N719 dye, and its impact on the fabrication of highly efficient and stable single-junction and multi-junction PSCs.

    Article  CAS  Google Scholar 

  23. Kohle, O., Grätzel, M., Meyer, A. F. & Meyer, T. B. The photovoltaic stability of bis(isothiocyanato)ruthenium(ii)-bis-2,2′bipyridine-4,4′-dicarboxylic acid and related sensitizers. Adv. Mater. 9, 904–906 (1997).

    Article  CAS  Google Scholar 

  24. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    Article  CAS  Google Scholar 

  25. Anderson, S. et al. Chemical modification of a titanium (iv) oxide electrode to give stable dye sensitisation without a supersensitiser. Nature 280, 571–573 (1979).

    Article  CAS  Google Scholar 

  26. Tsubomura, H., Matsumura, M., Nomura, Y. & Amamiya, T. Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature 261, 402–403 (1976).

    Article  CAS  Google Scholar 

  27. O’Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

    Article  Google Scholar 

  28. Harikisun, R. & Desilvestro, H. Long-term stability of dye solar cells. Sol. Energy 85, 1179–1188 (2011).

    Article  CAS  Google Scholar 

  29. Miettunen, K. et al. Insights into corrosion in dye solar cells. Prog. Photovolt. Res. Appl. 23, 1045–1056 (2015).

    Article  CAS  Google Scholar 

  30. Bach, U. et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583–585 (1998).

    Article  CAS  Google Scholar 

  31. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  CAS  Google Scholar 

  32. Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Article  Google Scholar 

  33. Jeng, J.-Y. et al. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25, 3727–3732 (2013).

    Article  CAS  Google Scholar 

  34. Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

    Article  CAS  Google Scholar 

  35. Kim, H., Lim, K.-G. & Lee, T.-W. Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers. Energy Environ. Sci. 9, 12–30 (2016).

    Article  CAS  Google Scholar 

  36. Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  CAS  Google Scholar 

  37. Ali, F., Roldán-Carmona, C., Sohail, M. & Nazeeruddin, M. K. Applications of self-assembled monolayers for perovskite solar cells interface engineering to address efficiency and stability. Adv. Energy Mater. 10, 2002989 (2020). This work describes the importance of SAMs for the improvement of PSC performance through energy band alignment, reduced interfacial charge recombination and trap passivation.

    Article  CAS  Google Scholar 

  38. Zhang, L. & Cole, J. M. Anchoring groups for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 7, 3427–3455 (2015).

    Article  CAS  Google Scholar 

  39. Carella, A., Borbone, F. & Centore, R. Research progress on photosensitizers for DSSC. Front. Chem. 6, 481 (2018).

    Article  CAS  Google Scholar 

  40. Nalzala Thomas, M. R., Kanniyambatti Lourdusamy, V. J., Dhandayuthapani, A. A. & Jayakumar, V. Non-metallic organic dyes as photosensitizers for dye-sensitized solar cells: a review. Environ. Sci. Pollut. Res. 28, 28911–28925 (2021).

    Article  CAS  Google Scholar 

  41. Kim, S. Y., Cho, S. J., Byeon, S. E., He, X. & Yoon, H. J. Self-assembled monolayers as interface engineering nanomaterials in perovskite solar cells. Adv. Energy Mater. 10, 2002606 (2020).

    Article  CAS  Google Scholar 

  42. Zuo, C. et al. Advances in perovskite solar cells. Adv. Sci. 3, 1500324 (2016).

    Article  Google Scholar 

  43. Lee, K. E., Gomez, M. A., Elouatik, S. & Demopoulos, G. P. Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal Raman imaging. Langmuir 26, 9575–9583 (2010).

    Article  CAS  Google Scholar 

  44. Ouyang, D., Huang, Z. & Choy, W. C. H. Solution-processed metal oxide nanocrystals as carrier transport layers in organic and perovskite solar cells. Adv. Funct. Mater. 29, 1804660 (2019).

    Article  Google Scholar 

  45. Wang, K. et al. Novel inorganic electron transport layers for planar perovskite solar cells: progress and prospective. Nano Energy 68, 104289 (2020).

    Article  CAS  Google Scholar 

  46. Cao, Z. et al. Metal oxide alternatives for efficient electron transport in perovskite solar cells: beyond TiO2 and SnO2. J. Mater. Chem. A 8, 19768–19787 (2020).

    Article  CAS  Google Scholar 

  47. Dong, Q., Ho, C. H. Y., Yu, H., Salehi, A. & So, F. Defect passivation by fullerene derivative in perovskite solar cells with aluminum-doped zinc oxide as electron transporting layer. Chem. Mater. 31, 6833–6840 (2019).

    Article  CAS  Google Scholar 

  48. Guo, H. et al. Low-temperature processed yttrium-doped SrSnO3 perovskite electron transport layer for planar heterojunction perovskite solar cells with high efficiency. Nano Energy 59, 1–9 (2019).

    Article  CAS  Google Scholar 

  49. Ye, Q.-Q. et al. A SrGeO3 inorganic electron-transporting layer for high-performance perovskite solar cells. J. Mater. Chem. A 7, 14559–14564 (2019).

    Article  CAS  Google Scholar 

  50. Ali, J. et al. Interfacial and structural modifications in perovskite solar cells. Nanoscale 12, 5719–5745 (2020).

    Article  CAS  Google Scholar 

  51. Hao, F., Stoumpos, C. C., Chang, R. P. H. & Kanatzidis, M. G. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136, 8094–8099 (2014).

    Article  CAS  Google Scholar 

  52. Chen, X. et al. Efficient and reproducible monolithic perovskite/organic tandem solar cells with low-loss interconnecting layers. Joule 4, 1594–1606 (2020).

    Article  CAS  Google Scholar 

  53. Isikgor, F. H. et al. Concurrent cationic and anionic perovskite defect passivation enables 27.4% perovskite/silicon tandems with suppression of halide segregation. Joule 5, 1566–1586 (2021). This study suggests that concurrent cationic and anionic perovskite defect passivation through multifunctional molecules leads to improved passivation of perovskites.

    Article  CAS  Google Scholar 

  54. Xu, L. et al. Inverted perovskite solar cells employing doped NiO hole transport layers: a review. Nano Energy 63, 103860 (2019).

    Article  CAS  Google Scholar 

  55. Wu, S. et al. A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells. Nat. Commun. 10, 1161 (2019).

    Article  Google Scholar 

  56. Ouyang, D., Zheng, J., Huang, Z., Zhu, L. & Choy, W. C. H. An efficacious multifunction codoping strategy on a room-temperature solution-processed hole transport layer for realizing high-performance perovskite solar cells. J. Mater. Chem. A 9, 371–379 (2021).

    Article  CAS  Google Scholar 

  57. Zheng, Y. et al. Solution-processable nickel–chromium ternary oxide as an efficient hole transport layer for inverted planar perovskite solar cells. J. Mater. Chem. A 9, 21792–21798 (2021).

    Article  CAS  Google Scholar 

  58. Zhang, H. et al. Low-temperature solution-processed CuCrO2 hole-transporting layer for efficient and photostable perovskite solar cells. Adv. Energy Mater. 8, 1702762 (2018).

    Article  Google Scholar 

  59. Akin, S., Sadegh, F., Turan, S. & Sonmezoglu, S. Inorganic CuFeO2 delafossite nanoparticles as effective hole transport materials for highly efficient and long-term stable perovskite solar cells. ACS Appl. Mater. Interfaces 11, 45142–45149 (2019).

    Article  CAS  Google Scholar 

  60. Subbiah, A. S. et al. Inorganic hole conducting layers for perovskite-based solar cells. J. Phys. Chem. Lett. 5, 1748–1753 (2014).

    Article  CAS  Google Scholar 

  61. Eperon, G. E. et al. Perovskite–perovskite tandem photovoltaics with optimized band gaps. Science 354, 861–865 (2016).

    Article  CAS  Google Scholar 

  62. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    Article  CAS  Google Scholar 

  63. Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).

    Article  CAS  Google Scholar 

  64. Jeong, M. et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 369, 1615–1620 (2020).

    Article  CAS  Google Scholar 

  65. Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014).

    Article  CAS  Google Scholar 

  66. Jeong, J. et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021).

    Article  CAS  Google Scholar 

  67. Ke, W. et al. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc. 137, 6730–6733 (2015).

    Article  CAS  Google Scholar 

  68. Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019).

    Article  CAS  Google Scholar 

  69. Min, H. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021). This work highlights the importance of forming a coherent interlayer between the SnO2 ETL and the perovskite layer by coupling Cl-bonded SnO2 with a Cl-containing perovskite precursor.

    Article  CAS  Google Scholar 

  70. Yang, X. et al. Grain-boundaries-engineering via laser manufactured La-doped BaSnO3 nanocrystals with tailored surface states enabling perovskite solar cells with efficiency of 23.74%. Adv. Funct. Mater. 32, 2112388 (2022).

    Article  CAS  Google Scholar 

  71. Liu, D. & Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photon. 8, 133–138 (2014).

    Article  CAS  Google Scholar 

  72. Azmi, R. et al. High efficiency low-temperature processed perovskite solar cells integrated with alkali metal doped ZnO electron transport layers. ACS Energy Lett. 3, 1241–1246 (2018).

    Article  CAS  Google Scholar 

  73. Azmi, R. et al. Shallow and deep trap state passivation for low-temperature processed perovskite solar cells. ACS Energy Lett. 5, 1396–1403 (2020).

    Article  CAS  Google Scholar 

  74. Shin, S. S. et al. High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C. Nat. Commun. 6, 7410 (2015).

    Article  CAS  Google Scholar 

  75. Dou, J. et al. Highly efficient Zn2SnO4 perovskite solar cells through band alignment engineering. Chem. Commun. 55, 14673–14676 (2019).

    Article  CAS  Google Scholar 

  76. Sadegh, F. et al. Highly efficient, stable and hysteresis-less planar perovskite solar cell based on chemical bath treated Zn2SnO4 electron transport layer. Nano Energy 75, 105038 (2020).

    Article  CAS  Google Scholar 

  77. Subbiah, A. S., Dhara, A. K., Mahuli, N., Banerjee, S. & Sarkar, S. K. Ultra-thin atomic layer deposited–Nb2O5 as electron transport layer for co-evaporated MAPbI3 planar perovskite solar cells. Energy Technol. 8, 1900878 (2020).

    Article  CAS  Google Scholar 

  78. Kogo, A., Numata, Y., Ikegami, M. & Miyasaka, T. Nb2O5 blocking layer for high open-circuit voltage perovskite solar cells. Chem. Lett. 44, 829–830 (2015).

    Article  CAS  Google Scholar 

  79. Feng, J. et al. E-beam evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite solar cells. Nano Energy 36, 1–8 (2017).

    Article  Google Scholar 

  80. Wang, Z., Lou, J., Zheng, X., Zhang, W.-H. & Qin, Y. Solution processed Nb2O5 electrodes for high efficient ultraviolet light stable planar perovskite solar cells. ACS Sustain. Chem. Eng. 7, 7421–7429 (2019).

    Article  CAS  Google Scholar 

  81. Aydin, E. et al. Ligand-bridged charge extraction and enhanced quantum efficiency enable efficient n–i–p perovskite/silicon tandem solar cells. Energy Environ. Sci. 14, 4377–4390 (2021).

    Article  CAS  Google Scholar 

  82. Liu, J. et al. Lewis-acid doping of triphenylamine-based hole transport materials improves the performance and stability of perovskite solar cells. ACS Appl. Mater. Interfaces 12, 23874–23884 (2020).

    Article  CAS  Google Scholar 

  83. Domanski, K. et al. Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10, 6306–6314 (2016).

    Article  CAS  Google Scholar 

  84. Isikgor, F. H. et al. Scaling-up perovskite solar cells on hydrophobic surfaces. Nano Energy 81, 105633 (2021).

    Article  CAS  Google Scholar 

  85. Zhao, J. et al. Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime? Energy Environ. Sci. 9, 3650–3656 (2016).

    Article  CAS  Google Scholar 

  86. Di Girolamo, D. et al. Progress, highlights and perspectives on NiO in perovskite photovoltaics. Chem. Sci. 11, 7746–7759 (2020).

    Article  Google Scholar 

  87. Ru, P. et al. High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells. Adv. Energy Mater. 10, 1903487 (2020).

    Article  CAS  Google Scholar 

  88. Al-Ashouri, A. et al. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12, 3356–3369 (2019). This work proves that the surface modification of transparent conductive oxides with hole-selective SAMs enables the fabrication of highly efficient HTL-free p–i–n PSCs, performing better than the PSCs incorporating an HTL, such as PTAA.

    Article  CAS  Google Scholar 

  89. Azmi, R. et al. Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376, 73–77 (2022).

    Article  CAS  Google Scholar 

  90. Hou, Y. et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science 358, 1192–1197 (2017).

    Article  CAS  Google Scholar 

  91. Lin, Y. et al. Self-assembled monolayer enables hole transport layer-free organic solar cells with 18% efficiency and improved operational stability. ACS Energy Lett. 5, 2935–2944 (2020).

    Article  CAS  Google Scholar 

  92. Hermes, I. M., Hou, Y., Bergmann, V. W., Brabec, C. J. & Weber, S. A. L. The interplay of contact layers: how the electron transport layer influences interfacial recombination and hole extraction in perovskite solar cells. J. Phys. Chem. Lett. 9, 6249–6256 (2018).

    Article  CAS  Google Scholar 

  93. Martín, C., Ziółek, M. & Douhal, A. Ultrafast and fast charge separation processes in real dye-sensitized solar cells. J. Photochem. Photobiol. C 26, 1–30 (2016).

    Article  Google Scholar 

  94. Wang, P. et al. Stable and efficient organic dye-sensitized solar cell based on ionic liquid electrolyte. Joule 2, 2145–2153 (2018).

    Article  CAS  Google Scholar 

  95. Mariani, P., Vesce, L. & Di Carlo, A. The role of printing techniques for large-area dye sensitized solar cells. Semicond. Sci. Technol. 30, 104003 (2015).

    Article  Google Scholar 

  96. Richard, M. et al. Large-scale patterning of π-conjugated materials by meniscus guided coating methods. Adv. Colloid Interface Sci. 275, 102080 (2020).

    Article  CAS  Google Scholar 

  97. Zhang, Z. & Yates, J. T. in Defects at Oxide Surfaces (eds Jacques, J. & Geoff, T.) 81–121 (Springer, 2015).

  98. Morresi, L. in Silicon Based Thin Film Solar Cells (ed. Roberto, M.) 81–107 (Bentham Science, 2013).

  99. Fu, L. et al. Defect passivation strategies in perovskites for an enhanced photovoltaic performance. Energy Environ. Sci. 13, 4017–4056 (2020).

    Article  CAS  Google Scholar 

  100. Chen, B., Rudd, P. N., Yang, S., Yuan, Y. & Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019). This study reviews the recent advances in passivation of imperfections in PSCs to reduce non-radiative charge recombination and suppress ion migration.

    Article  CAS  Google Scholar 

  101. Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

    Article  Google Scholar 

  102. Pearson, A. J. et al. Oxygen degradation in mesoporous Al2O3/CH3NH3PbI3xClx perovskite solar cells: kinetics and mechanisms. Adv. Energy Mater. 6, 1600014 (2016).

    Article  Google Scholar 

  103. Christians, J. A., Miranda Herrera, P. A. & Kamat, P. V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 137, 1530–1538 (2015).

    Article  CAS  Google Scholar 

  104. Yin, W.-J., Shi, T. & Yan, Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26, 4653–4658 (2014).

    Article  CAS  Google Scholar 

  105. Kim, G.-W. & Petrozza, A. Defect tolerance and intolerance in metal-halide perovskites. Adv. Energy Mater. 10, 2001959 (2020).

    Article  CAS  Google Scholar 

  106. Wolff, C. M., Caprioglio, P., Stolterfoht, M. & Neher, D. Nonradiative recombination in perovskite solar cells: the role of interfaces. Adv. Mater. 31, 1902762 (2019).

    Article  CAS  Google Scholar 

  107. Wang, J., Datta, K., Weijtens, C. H. L., Wienk, M. M. & Janssen, R. A. J. Insights into fullerene passivation of SnO2 electron transport layers in perovskite solar cells. Adv. Funct. Mater. 29, 1905883 (2019).

    Article  CAS  Google Scholar 

  108. Zhu, T., Su, J., Labat, F., Ciofini, I. & Pauporté, T. Interfacial engineering through chloride-functionalized self-assembled monolayers for high-performance perovskite solar cells. Appl. Mater. Interfaces 12, 744–752 (2020).

    Article  CAS  Google Scholar 

  109. Hou, M. et al. Enhancing efficiency and stability of perovskite solar cells via a self-assembled dopamine interfacial layer. ACS Appl. Mater. Interfaces 10, 30607–30613 (2018).

    Article  CAS  Google Scholar 

  110. Han, J. et al. Interfacial engineering of a ZnO electron transporting layer using self-assembled monolayers for high performance and stable perovskite solar cells. J. Mater. Chem. A 8, 2105–2113 (2020).

    Article  CAS  Google Scholar 

  111. Wang, R. et al. Caffeine improves the performance and thermal stability of perovskite solar cells. Joule 3, 1464–1477 (2019).

    Article  CAS  Google Scholar 

  112. Abate, A. et al. Supramolecular halogen bond passivation of organic–inorganic halide perovskite solar cells. Nano Lett. 14, 3247–3254 (2014).

    Article  CAS  Google Scholar 

  113. Haddon, R. C. et al. The fullerenes: powerful carbon-based electron acceptors. Phil. Trans. R. Soc. A 343, 53–62 (1993).

    CAS  Google Scholar 

  114. Abdi-Jalebi, M. et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018).

    Article  CAS  Google Scholar 

  115. Abdi-Jalebi, M. et al. Impact of monovalent cation halide additives on the structural and optoelectronic properties of CH3NH3PbI3 perovskite. Adv. Energy Mater. 6, 1502472 (2016).

    Article  Google Scholar 

  116. Yang, S. et al. Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells. J. Am. Chem. Soc. 141, 5781–5787 (2019).

    Article  CAS  Google Scholar 

  117. Xue, J., Wang, R. & Yang, Y. The surface of halide perovskites from nano to bulk. Nat. Rev. Mater. 5, 809–827 (2020).

    Article  CAS  Google Scholar 

  118. Zheng, X. et al. Dual functions of crystallization control and defect passivation enabled by sulfonic zwitterions for stable and efficient perovskite solar cells. Adv. Mater. 30, 1803428 (2018).

    Article  Google Scholar 

  119. Li, M.-H. et al. Highly efficient 2D/3D hybrid perovskite solar cells via low-pressure vapor-assisted solution process. Adv. Mater. 30, 1801401 (2018).

    Article  Google Scholar 

  120. Ke, W. et al. Compositional and solvent engineering in Dion–Jacobson 2D perovskites boosts solar cell efficiency and stability. Adv. Energy Mater. 9, 1803384 (2019).

    Article  Google Scholar 

  121. Wang, Z. et al. Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium–caesium–formamidinium lead halide perovskites. Nat. Energy 2, 17135 (2017).

    Article  CAS  Google Scholar 

  122. Gharibzadeh, S. et al. Record open-circuit voltage wide-bandgap perovskite solar cells utilizing 2D/3D perovskite heterostructure. Adv. Energy Mater. 9, 1803699 (2019).

    Article  Google Scholar 

  123. Jung, M., Shin, T. J., Seo, J., Kim, G. & Seok, S. I. Structural features and their functions in surfactant-armoured methylammonium lead iodide perovskites for highly efficient and stable solar cells. Energy Environ. Sci. 11, 2188–2197 (2018).

    Article  CAS  Google Scholar 

  124. Zhao, T., Chueh, C.-C., Chen, Q., Rajagopal, A. & Jen, A. K. Y. Defect passivation of organic–inorganic hybrid perovskites by diammonium iodide toward high-performance photovoltaic devices. ACS Energy Lett. 1, 757–763 (2016).

    Article  CAS  Google Scholar 

  125. Liu, X., Guo, L. J. & Zheng, Y. 5-nm LiF as an efficient cathode buffer layer in polymer solar cells through simply introducing a C60 interlayer. Nanoscale Res. Lett. 12, 543 (2017).

    Article  Google Scholar 

  126. Wu, T., Li, X., Qi, Y., Zhang, Y. & Han, L. Defect passivation for perovskite solar cells: from molecule design to device performance. ChemSusChem 14, 4354–4376 (2021).

    Article  CAS  Google Scholar 

  127. Kim, E.-B., Akhtar, M. S., Shin, H.-S., Ameen, S. & Nazeeruddin, M. K. A review on two-dimensional (2D) and 2D–3D multidimensional perovskite solar cells: perovskites structures, stability, and photovoltaic performances. J. Photochem. Photobiol. C 48, 100405 (2021).

    Article  CAS  Google Scholar 

  128. Wetzelaer, G.-J. A. H. et al. Trap-assisted non-radiative recombination in organic–inorganic perovskite solar cells. Adv. Mater. 27, 1837–1841 (2015).

    Article  CAS  Google Scholar 

  129. Stranks, S. D. et al. Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states. Phys. Rev. Appl. 2, 034007 (2014).

    Article  CAS  Google Scholar 

  130. Adhyaksa, G. W. P. et al. Carrier diffusion lengths in hybrid perovskites: processing, composition, aging, and surface passivation effects. Chem. Mater. 28, 5259–5263 (2016).

    Article  CAS  Google Scholar 

  131. Herz, L. M. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017).

    Article  CAS  Google Scholar 

  132. Stolterfoht, M. et al. The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 12, 2778–2788 (2019). This study highlights that, to maximize the open-circuit voltage of PSCs, energy-level matching of perovskite/charge-transport layer stacks is of primary importance.

    Article  CAS  Google Scholar 

  133. Altinkaya, C. et al. Tin oxide electron-selective layers for efficient, stable, and scalable perovskite solar cells. Adv. Mater. 33, 2005504 (2021).

    Article  CAS  Google Scholar 

  134. Tu, B. et al. Novel molecular doping mechanism for n-doping of SnO2 via triphenylphosphine oxide and its effect on perovskite solar cells. Adv. Mater. 31, 1805944 (2019).

    Article  Google Scholar 

  135. Tavakoli, M. M., Giordano, F., Zakeeruddin, S. M. & Grätzel, M. Mesoscopic oxide double layer as electron specific contact for highly efficient and UV stable perovskite photovoltaics. Nano Lett. 18, 2428–2434 (2018).

    Article  CAS  Google Scholar 

  136. Chen, R. et al. High-efficiency, hysteresis-less, UV-stable perovskite solar cells with cascade ZnO–ZnS electron transport layer. J. Am. Chem. Soc. 141, 541–547 (2019).

    Article  CAS  Google Scholar 

  137. Chen, Y. et al. Design of an inorganic mesoporous hole-transporting layer for highly efficient and stable inverted perovskite solar cells. Adv. Mater. 30, 1805660 (2018).

    Article  Google Scholar 

  138. Le Corre, V. M. et al. Charge transport layers limiting the efficiency of perovskite solar cells: how to optimize conductivity, doping, and thickness. ACS Appl. Energy Mater. 2, 6280–6287 (2019).

    Article  Google Scholar 

  139. Da, Y., Xuan, Y. & Li, Q. Quantifying energy losses in planar perovskite solar cells. Sol. Energy Mater. Sol. Cell 174, 206–213 (2018).

    Article  CAS  Google Scholar 

  140. Chung, I., Lee, B., He, J., Chang, R. P. H. & Kanatzidis, M. G. All-solid-state dye-sensitized solar cells with high efficiency. Nature 485, 486–489 (2012).

    Article  CAS  Google Scholar 

  141. Snook, J. H., Samuelson, L. A., Kumar, J., Kim, Y.-G. & Whitten, J. E. Ultraviolet photoelectron spectroscopy of nanocrystalline TiO2 films sensitized with (2,2′-bipyridyl)ruthenium(ii) dyes for photovoltaic applications. Org. Electron. 6, 55–64 (2005).

    Article  CAS  Google Scholar 

  142. Ahn, J. et al. Synthesis of novel ruthenium dyes with thiophene or thienothiophene substituted terpyridyl ligands and their characterization. Mol. Cryst. Liq. Cryst. 581, 45–51 (2013).

    Article  CAS  Google Scholar 

  143. Cheng, M., Yang, X., Zhang, F., Zhao, J. & Sun, L. Tuning the HOMO and LUMO energy levels of organic dyes with N-carboxomethylpyridinium as acceptor to optimize the efficiency of dye-sensitized solar cells. J. Phys. Chem. C. 117, 9076–9083 (2013).

    Article  CAS  Google Scholar 

  144. Delices, A. Organized Organic Dye/Hole Transporting Materials for TiO2- and ZnO- based Solid-State Dye-Sensitized Solar Cells (s-DSSCs). PhD thesis, Univ. Sorbonne Paris Cité (2017).

  145. Shoute, L. C. T. & Loppnow, G. R. Excited-state metal-to-ligand charge transfer dynamics of a ruthenium(ii) dye in solution and adsorbed on TiO2 nanoparticles from resonance Raman spectroscopy. J. Am. Chem. Soc. 125, 15636–15646 (2003).

    Article  CAS  Google Scholar 

  146. Hwang, S. et al. A highly efficient organic sensitizer for dye-sensitized solar cells. Chem. Commun. https://doi.org/10.1039/b709859f (2007).

    Article  Google Scholar 

  147. Pham, T. T. T. et al. Toward efficient solid-state p-type dye-sensitized solar cells: the dye matters. J. Phys. Chem. C 121, 129–139 (2017).

    Article  CAS  Google Scholar 

  148. Abate, S. Y., Huang, D.-C. & Tao, Y.-T. Surface modification of TiO2 layer with phosphonic acid monolayer in perovskite solar cells: effect of chain length and terminal functional group. Org. Electron. 78, 105583 (2020).

    Article  CAS  Google Scholar 

  149. Katono, M. et al. Effect of extended π-conjugation of the donor structure of organic D–A−π–A dyes on the photovoltaic performance of dye-sensitized solar cells. J. Phys. Chem. C 118, 16486–16493 (2014).

    Article  CAS  Google Scholar 

  150. Antila, L. J., Myllyperkiö, P., Mustalahti, S., Lehtivuori, H. & Korppi-Tommola, J. Injection and ultrafast regeneration in dye-sensitized solar cells. J. Phys. Chem. C 118, 7772–7780 (2014).

    Article  CAS  Google Scholar 

  151. Odobel, F., Le Pleux, L., Pellegrin, Y. & Blart, E. New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities. Acc. Chem. Res. 43, 1063–1071 (2010).

    Article  CAS  Google Scholar 

  152. Wolff, C. M. et al. Orders of recombination in complete perovskite solar cells — linking time-resolved and steady-state measurements. Adv. Energy Mater. 11, 2101823 (2021).

    Article  CAS  Google Scholar 

  153. Lange, I. et al. Tuning the work function of polar zinc oxide surfaces using modified phosphonic acid self-assembled monolayers. Adv. Funct. Mater. 24, 7014–7024 (2014).

    Article  CAS  Google Scholar 

  154. Ansari, F. et al. Passivation mechanism exploiting surface dipoles affords high-performance perovskite solar cells. J. Am. Chem. Soc. 142, 11428–11433 (2020).

    Article  CAS  Google Scholar 

  155. Lee, J.-H. et al. Introducing paired electric dipole layers for efficient and reproducible perovskite solar cells. Energy Environ. Sci. 11, 1742–1751 (2018).

    Article  CAS  Google Scholar 

  156. Zhang, C. et al. Reduction of nonradiative loss in inverted perovskite solar cells by donor–π–acceptor dipoles. ACS Appl. Mater. Inter. 13, 44321–44328 (2021).

    Article  CAS  Google Scholar 

  157. Thampy, S., Xu, W. & Hsu, J. W. P. Metal oxide-induced instability and its mitigation in halide perovskite solar cells. J. Phys. Chem. Lett. 12, 8495–8506 (2021).

    Article  CAS  Google Scholar 

  158. Sahli, F. et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17, 820–826 (2018).

    Article  CAS  Google Scholar 

  159. Liu, J. et al. 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule https://doi.org/10.1016/j.joule.2021.11.003 (2021).

    Article  Google Scholar 

  160. Huang, H.-F. et al. Synthesis and characterization of highly stable and efficient star-molecules. Dye Pigm. 96, 705–713 (2013).

    Article  CAS  Google Scholar 

  161. Katoh, R. et al. Highly stable sensitizer dyes for dye-sensitized solar cells: role of the oligothiophene moiety. Energy Environ. Sci. 2, 542–546 (2009).

    Article  CAS  Google Scholar 

  162. Takijiri, K., Morita, K., Nakazono, T., Sakai, K. & Ozawa, H. Highly stable chemisorption of dyes with pyridyl anchors over TiO2: application in dye-sensitized photoelectrochemical water reduction in aqueous media. Chem. Commun. 53, 3042–3045 (2017).

    Article  CAS  Google Scholar 

  163. Hunger, K. in Industrial Dyes: Chemistry, Properties, Applications (ed. Hunger, K.) 643–651 (Wiley, 2002).

  164. Li, X. et al. Bifacial modified charge transport materials for highly efficient and stable inverted perovskite solar cells. ACS Appl. Mater. Interfaces 10, 17861–17870 (2018).

    Article  CAS  Google Scholar 

  165. Yang, S. et al. Excellent moisture stability and efficiency of inverted all-inorganic CsPbIBr2 perovskite solar cells through molecule interface engineering. ACS Appl. Mater. Interfaces 12, 13931–13940 (2020).

    Article  CAS  Google Scholar 

  166. Rombach, F. M., Haque, S. A. & Macdonald, T. J. Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy Environ. Sci. 14, 5161–5190 (2021).

    Article  CAS  Google Scholar 

  167. Cheacharoen, R. et al. Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling. Energy Environ. Sci. 11, 144–150 (2018).

    Article  CAS  Google Scholar 

  168. De Bastiani, M. et al. Mechanical reliability of fullerene/tin oxide interfaces in monolithic perovskite/silicon tandem cells. ACS Energy Lett. 7, 827–833 (2022).

    Article  Google Scholar 

  169. Corsini, F. & Griffini, G. Recent progress in encapsulation strategies to enhance the stability of organometal halide perovskite solar cells. J. Phys. Energy 2, 031002 (2020).

    Article  CAS  Google Scholar 

  170. Rong, Y. et al. Challenges for commercializing perovskite solar cells. Science 361, eaat8235 (2018).

    Article  Google Scholar 

  171. Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020).

    Article  Google Scholar 

  172. Ramirez, C., Yadavalli, S. K., Garces, H. F., Zhou, Y. & Padture, N. P. Thermo-mechanical behavior of organic–inorganic halide perovskites for solar cells. Scr. Mater. 150, 36–41 (2018).

    Article  CAS  Google Scholar 

  173. Wang, M., Ni, Z., Xiao, X., Zhou, Y. & Huang, J. Strain engineering in metal halide perovskite materials and devices: influence on stability and optoelectronic properties. Chem. Phys. Rev. 2, 031302 (2021).

    Article  Google Scholar 

  174. Meng, X. et al. Bio-inspired vertebral design for scalable and flexible perovskite solar cells. Nat. Commun. 11, 3016 (2020).

    Article  CAS  Google Scholar 

  175. Xue, D.-J. et al. Regulating strain in perovskite thin films through charge-transport layers. Nat. Commun. 11, 1514 (2020).

    Article  CAS  Google Scholar 

  176. Zhu, C. et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Commun. 10, 815 (2019).

    Article  CAS  Google Scholar 

  177. Rolston, N. et al. Mechanical integrity of solution-processed perovskite solar cells. Extrem. Mech. Lett. 9, 353–358 (2016).

    Article  Google Scholar 

  178. Soufiani, A. M. et al. Lessons learnt from spatially resolved electro- and photoluminescence imaging: interfacial delamination in CH3NH3PbI3 planar perovskite solar cells upon illumination. Adv. Energy Mater. 7, 1602111 (2017).

    Article  Google Scholar 

  179. Boström, H. L. B. & Goodwin, A. L. Hybrid perovskites, metal–organic frameworks, and beyond: unconventional degrees of freedom in molecular frameworks. Acc. Chem. Res. 54, 1288–1297 (2021).

    Article  Google Scholar 

  180. Rösch, A. T., Söntjens, S. H. M., Robben, J., Palmans, A. R. A. & Schnitzer, T. Rotational isomerism of an amide substituted squaraine dye: a combined spectroscopic and computational study. J. Org. Chem. 86, 13100–13103 (2021).

    Article  Google Scholar 

  181. Yuan, C. et al. A π-conjugated system with flexibility and rigidity that shows environment-dependent RGB luminescence. J. Am. Chem. Soc. 135, 8842–8845 (2013).

    Article  CAS  Google Scholar 

  182. Wang, G. et al. Design of an AIE-active flexible self-assembled monolayer probe for trace nitroaromatic compound explosive detection. ACS Sens. 6, 1849–1856 (2021).

    Article  CAS  Google Scholar 

  183. Minemoto, T. & Murata, M. Theoretical analysis on effect of band offsets in perovskite solar cells. Sol. Energy Mater. Sol. Cell 133, 8–14 (2015).

    Article  CAS  Google Scholar 

  184. Grosso, D. How to exploit the full potential of the dip-coating process to better control film formation. J. Mater. Chem. 21, 17033–17038 (2011).

    Article  CAS  Google Scholar 

  185. Magomedov, A. et al. Self-assembled hole transporting monolayer for highly efficient perovskite solar cells. Adv. Energy Mater. 8, 1801892 (2018).

    Article  Google Scholar 

  186. Chen, P., Yin, X., Que, M., Liu, X. & Que, W. Low temperature solution processed indium oxide thin films with reliable photoelectrochemical stability for efficient and stable planar perovskite solar cells. J. Mater. Chem. A 5, 9641–9648 (2017).

    Article  CAS  Google Scholar 

  187. Daskeviciute-Geguziene, S. et al. Cross-linkable carbazole-based hole transporting materials for perovskite solar cells. Chem. Commun. 58, 7495–7498 (2022).

    Article  CAS  Google Scholar 

  188. Liu, K. et al. Fullerene derivative anchored SnO2 for high-performance perovskite solar cells. Energy Environ. Sci. 11, 3463–3471 (2018).

    Article  CAS  Google Scholar 

  189. Huang, S.-K. et al. Unravelling the origin of the photocarrier dynamics of fullerene-derivative passivation of SnO2 electron transporters in perovskite solar cells. J. Mater. Chem. A 8, 23607–23616 (2020).

    Article  CAS  Google Scholar 

  190. Shao, Y., Xiao, Z., Bi, C., Yuan, Y. & Huang, J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014).

    Article  CAS  Google Scholar 

  191. Wojciechowski, K. et al. C60 as an efficient n-type compact layer in perovskite solar cells. J. Phys. Chem. Lett. 6, 2399–2405 (2015).

    Article  CAS  Google Scholar 

  192. Noel, N. K. et al. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites. ACS Nano 8, 9815–9821 (2014).

    Article  CAS  Google Scholar 

  193. Zuo, L. et al. Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci. Adv. 3, e1700106 (2017).

    Article  Google Scholar 

  194. Wen, T. Y. et al. Surface electronic modification of perovskite thin film with water-resistant electron delocalized molecules for stable and efficient photovoltaics. Adv. Energy Mater. 8, 1703143 (2018).

    Article  Google Scholar 

  195. Xiong, S. et al. Direct observation on p- to n-type transformation of perovskite surface region during defect passivation driving high photovoltaic efficiency. Joule 5, 467–480 (2021).

    Article  CAS  Google Scholar 

  196. Li, W. et al. Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells. J. Mater. Chem. A 2, 20105–20111 (2014).

    Article  CAS  Google Scholar 

  197. Peng, J. et al. A universal double-side passivation for high open-circuit voltage in perovskite solar cells: role of carbonyl groups in poly(methyl methacrylate). Adv. Energy Mater. 8, 1801208 (2018).

    Article  Google Scholar 

  198. You, S. et al. A biopolymer heparin sodium interlayer anchoring TiO2 and MAPbI3 enhances trap passivation and device stability in perovskite solar cells. Adv. Mater. 30, 1706924 (2018).

    Article  Google Scholar 

  199. Chen, H. et al. Efficient bifacial passivation with crosslinked thioctic acid for high-performance methylammonium lead iodide perovskite solar cells. Adv. Mater. 32, 1905661 (2020).

    Article  CAS  Google Scholar 

  200. Chen, J., Zhao, X., Kim, S.-G. & Park, N.-G. Multifunctional chemical linker imidazoleacetic acid hydrochloride for 21% efficient and stable planar perovskite solar cells. Adv. Mater. 31, 1902902 (2019).

    Article  Google Scholar 

  201. Zheng, D. et al. Simultaneous bottom-up interfacial and bulk defect passivation in highly efficient planar perovskite solar cells using nonconjugated small-molecule electrolytes. Adv. Mater. 31, 1903239 (2019).

    Article  CAS  Google Scholar 

  202. Tan, F. et al. Dual coordination of Ti and Pb using bilinkable ligands improves perovskite solar cell performance and stability. Adv. Func. Mater. 30, 2005155 (2020).

    Article  CAS  Google Scholar 

  203. Burwig, T., Fränzel, W. & Pistor, P. Crystal phases and thermal stability of co-evaporated CsPbX3 (X = I, Br) thin films. J. Phys. Chem. Lett. 9, 4808–4813 (2018).

    Article  CAS  Google Scholar 

  204. Wolfi, J. S. & Cavin, O. B. The effective thermal expansion of nickel and nickel oxide during high-temperature oxidation. Adv. X Ray Anal. 37, 449–456 (1993).

    Article  Google Scholar 

  205. Lai, F.-I., Yang, J.-F., Chen, W.-C., Hsu, Y.-C. & Kuo, S.-Y. Weatherability of Cu2ZnSnSe4 thin film solar cells on diverse substrates. Sol. Energy 195, 626–635 (2020).

    Article  CAS  Google Scholar 

  206. Chung, I. et al. CsSnI3: semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 134, 8579–8587 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the King Abdullah University of Science and Technology (KAUST) under award numbers OSR-2021-4833, OSR-CARF/CCF-3079, IED OSR-2019-4580, IED OSR-2019-4208, OSR-CRG2020-4350 and CRG2019-4093.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Furkan H. Isikgor or Stefaan De Wolf.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Mohammad Khaja Nazeeruddin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isikgor, F.H., Zhumagali, S., T. Merino, L.V. et al. Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat Rev Mater 8, 89–108 (2023). https://doi.org/10.1038/s41578-022-00503-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-022-00503-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing