Abstract
Metal-oxide-based charge-transport layers have played a pivotal role in the progress of perovskite solar cells. Yet metal-oxide/perovskite interfaces are often highly defective, owing to both metal-oxide and perovskite surface defects. This results in non-radiative recombination and impedes charge transfer. Moreover, during operation, such interfaces may suffer from undesirable chemical reactions and mechanical delamination issues. Solving this multifaceted challenge requires a holistic approach to concurrently address the interfacial defect, charge-transfer, chemical stability and delamination issues, to bring perovskite solar cell technology closer to commercialization. With this motivation, we review and discuss the issues associated with the metal-oxide/perovskite interface in detail. With this knowledge at hand, we then suggest solutions based on molecular engineering for many, if not all, challenges that encumber the metal-oxide/perovskite interface. Specifically, in light of the semiconducting and ultrafast charge-transfer properties of dyes and the recent success of self-assembled monolayers as charge-selective contacts, we discuss how such molecules can potentially be a promising solution for all metal-oxide/perovskite interface issues.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Zhang, F. & Zhu, K. Additive engineering for efficient and stable perovskite solar cells. Adv. Energy Mater. 10, 1902579 (2020).
Ball, J. M. & Petrozza, A. Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1, 16149 (2016).
Wang, F., Bai, S., Tress, W., Hagfeldt, A. & Gao, F. Defects engineering for high-performance perovskite solar cells. npj Flex. Electron. 2, 22 (2018).
Lin, L. et al. Inorganic electron transport materials in perovskite solar cells. Adv. Funct. Mater. 31, 2008300 (2021).
Shluger, A. in Handbook of Materials Modeling (eds Andreoni, W. & Yip, S.) https://doi.org/10.1007/978-3-319-50257-1_79-1 (Springer, 2019).
Allen, T. G., Bullock, J., Yang, X., Javey, A. & De Wolf, S. Passivating contacts for crystalline silicon solar cells. Nat. Energy 4, 914–928 (2019).
Shin, S. S., Lee, S. J. & Seok, S. I. Metal oxide charge transport layers for efficient and stable perovskite solar cells. Adv. Funct. Mater. 29, 1900455 (2019). This work provides an up-to-date overview of the development of state-of-the-art metal-oxide charge-transport layers for the fabrication of efficient and stable perovskite solar cells (PSCs).
Chen, Q., Wang, C., Li, Y. & Chen, L. Interfacial dipole in organic and perovskite solar cells. J. Am. Chem. Soc. 142, 18281–18292 (2020). This work focuses on the dipole moment of different interlayers and its impact on the performance of perovskite and organic solar cells.
Yang, Y. et al. Eliminating charge accumulation via interfacial dipole for efficient and stable perovskite solar cells. ACS Appl. Mater. Interfaces 11, 34964–34972 (2019).
Roose, B., Wang, Q. & Abate, A. The role of charge selective contacts in perovskite solar cell stability. Adv. Energy Mater. 9, 1803140 (2019). This study analyses materials and interface engineering of charge-selective contacts to enhance the device stability of PSCs.
Mundt, L. E. et al. Surface-activated corrosion in tin–lead halide perovskite solar cells. ACS Energy Lett. 5, 3344–3351 (2020).
Schutt, K. et al. Overcoming zinc oxide interface instability with a methylammonium-free perovskite for high-performance solar cells. Adv. Funct. Mater. 29, 1900466 (2019).
Boyd, C. C. et al. Overcoming redox reactions at perovskite-nickel oxide interfaces to boost voltages in perovskite solar cells. Joule 4, 1759–1775 (2020). This study provides insights into redox reactions occurring at metal-oxide/perovskite interfaces, particularly at the NiOx/perovskite interface, and strategies to alleviate such unwanted reactions.
Dai, Z. et al. Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability. Science 372, 618–622 (2021). This work shows that the insertion of an iodine-terminated self-assembled monolayer (SAM) at the SnO2/perovskite interface increases the adhesion toughness between the electron-transport layer (ETL) and perovskite layer by 50%.
Zhao, J. et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 3, eaao5616 (2017). This study reveals that the thermal expansion mismatch between the perovskite and substrate materials is an important intrinsic source of instability in perovskite films, accelerating the decomposition of PSCs.
Jiao, Y. et al. Strain engineering of metal halide perovskites on coupling anisotropic behaviors. Adv. Funct. Mater. 31, 2006243 (2021).
Muñoz-García, A. B. et al. Dye-sensitized solar cells strike back. Chem. Soc. Rev. 50, 12450–12550 (2021). This review summarizes the advances in the field of dye-sensitized solar cells (DSSCs), including dye sensitizers, over the past decade, encompassing all aspects of the technology.
Polo, A. S., Itokazu, M. K. & Murakami Iha, N. Y. Metal complex sensitizers in dye-sensitized solar cells. Coord. Chem. Rev. 248, 1343–1361 (2004).
Mishra, A., Fischer, M. K. R. & Bäuerle, P. Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew. Chem. Int. Ed. 48, 2474–2499 (2009).
Ayele, D. W. et al. in Advances in Organometallic Chemistry and Catalysis 501–511 (Wiley, 2013).
Massin, J. et al. Design and synthesis of novel organometallic dyes for NiO sensitization and photo-electrochemical applications. Dalton Trans. 45, 12539–12547 (2016).
Zhumagali, S. et al. Linked nickel oxide/perovskite interface passivation for high-performance textured monolithic tandem solar cells. Adv. Energy Mater. 11, 2101662 (2021). This work provides an insight into the interface modification of the NiOx hole-transport layer (HTL)/perovskite interface by self-assembled N719 dye, and its impact on the fabrication of highly efficient and stable single-junction and multi-junction PSCs.
Kohle, O., Grätzel, M., Meyer, A. F. & Meyer, T. B. The photovoltaic stability of bis(isothiocyanato)ruthenium(ii)-bis-2,2′bipyridine-4,4′-dicarboxylic acid and related sensitizers. Adv. Mater. 9, 904–906 (1997).
Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).
Anderson, S. et al. Chemical modification of a titanium (iv) oxide electrode to give stable dye sensitisation without a supersensitiser. Nature 280, 571–573 (1979).
Tsubomura, H., Matsumura, M., Nomura, Y. & Amamiya, T. Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature 261, 402–403 (1976).
O’Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).
Harikisun, R. & Desilvestro, H. Long-term stability of dye solar cells. Sol. Energy 85, 1179–1188 (2011).
Miettunen, K. et al. Insights into corrosion in dye solar cells. Prog. Photovolt. Res. Appl. 23, 1045–1056 (2015).
Bach, U. et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583–585 (1998).
Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).
Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).
Jeng, J.-Y. et al. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25, 3727–3732 (2013).
Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).
Kim, H., Lim, K.-G. & Lee, T.-W. Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers. Energy Environ. Sci. 9, 12–30 (2016).
Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).
Ali, F., Roldán-Carmona, C., Sohail, M. & Nazeeruddin, M. K. Applications of self-assembled monolayers for perovskite solar cells interface engineering to address efficiency and stability. Adv. Energy Mater. 10, 2002989 (2020). This work describes the importance of SAMs for the improvement of PSC performance through energy band alignment, reduced interfacial charge recombination and trap passivation.
Zhang, L. & Cole, J. M. Anchoring groups for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 7, 3427–3455 (2015).
Carella, A., Borbone, F. & Centore, R. Research progress on photosensitizers for DSSC. Front. Chem. 6, 481 (2018).
Nalzala Thomas, M. R., Kanniyambatti Lourdusamy, V. J., Dhandayuthapani, A. A. & Jayakumar, V. Non-metallic organic dyes as photosensitizers for dye-sensitized solar cells: a review. Environ. Sci. Pollut. Res. 28, 28911–28925 (2021).
Kim, S. Y., Cho, S. J., Byeon, S. E., He, X. & Yoon, H. J. Self-assembled monolayers as interface engineering nanomaterials in perovskite solar cells. Adv. Energy Mater. 10, 2002606 (2020).
Zuo, C. et al. Advances in perovskite solar cells. Adv. Sci. 3, 1500324 (2016).
Lee, K. E., Gomez, M. A., Elouatik, S. & Demopoulos, G. P. Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal Raman imaging. Langmuir 26, 9575–9583 (2010).
Ouyang, D., Huang, Z. & Choy, W. C. H. Solution-processed metal oxide nanocrystals as carrier transport layers in organic and perovskite solar cells. Adv. Funct. Mater. 29, 1804660 (2019).
Wang, K. et al. Novel inorganic electron transport layers for planar perovskite solar cells: progress and prospective. Nano Energy 68, 104289 (2020).
Cao, Z. et al. Metal oxide alternatives for efficient electron transport in perovskite solar cells: beyond TiO2 and SnO2. J. Mater. Chem. A 8, 19768–19787 (2020).
Dong, Q., Ho, C. H. Y., Yu, H., Salehi, A. & So, F. Defect passivation by fullerene derivative in perovskite solar cells with aluminum-doped zinc oxide as electron transporting layer. Chem. Mater. 31, 6833–6840 (2019).
Guo, H. et al. Low-temperature processed yttrium-doped SrSnO3 perovskite electron transport layer for planar heterojunction perovskite solar cells with high efficiency. Nano Energy 59, 1–9 (2019).
Ye, Q.-Q. et al. A SrGeO3 inorganic electron-transporting layer for high-performance perovskite solar cells. J. Mater. Chem. A 7, 14559–14564 (2019).
Ali, J. et al. Interfacial and structural modifications in perovskite solar cells. Nanoscale 12, 5719–5745 (2020).
Hao, F., Stoumpos, C. C., Chang, R. P. H. & Kanatzidis, M. G. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136, 8094–8099 (2014).
Chen, X. et al. Efficient and reproducible monolithic perovskite/organic tandem solar cells with low-loss interconnecting layers. Joule 4, 1594–1606 (2020).
Isikgor, F. H. et al. Concurrent cationic and anionic perovskite defect passivation enables 27.4% perovskite/silicon tandems with suppression of halide segregation. Joule 5, 1566–1586 (2021). This study suggests that concurrent cationic and anionic perovskite defect passivation through multifunctional molecules leads to improved passivation of perovskites.
Xu, L. et al. Inverted perovskite solar cells employing doped NiO hole transport layers: a review. Nano Energy 63, 103860 (2019).
Wu, S. et al. A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells. Nat. Commun. 10, 1161 (2019).
Ouyang, D., Zheng, J., Huang, Z., Zhu, L. & Choy, W. C. H. An efficacious multifunction codoping strategy on a room-temperature solution-processed hole transport layer for realizing high-performance perovskite solar cells. J. Mater. Chem. A 9, 371–379 (2021).
Zheng, Y. et al. Solution-processable nickel–chromium ternary oxide as an efficient hole transport layer for inverted planar perovskite solar cells. J. Mater. Chem. A 9, 21792–21798 (2021).
Zhang, H. et al. Low-temperature solution-processed CuCrO2 hole-transporting layer for efficient and photostable perovskite solar cells. Adv. Energy Mater. 8, 1702762 (2018).
Akin, S., Sadegh, F., Turan, S. & Sonmezoglu, S. Inorganic CuFeO2 delafossite nanoparticles as effective hole transport materials for highly efficient and long-term stable perovskite solar cells. ACS Appl. Mater. Interfaces 11, 45142–45149 (2019).
Subbiah, A. S. et al. Inorganic hole conducting layers for perovskite-based solar cells. J. Phys. Chem. Lett. 5, 1748–1753 (2014).
Eperon, G. E. et al. Perovskite–perovskite tandem photovoltaics with optimized band gaps. Science 354, 861–865 (2016).
Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).
Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).
Jeong, M. et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 369, 1615–1620 (2020).
Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014).
Jeong, J. et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021).
Ke, W. et al. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc. 137, 6730–6733 (2015).
Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019).
Min, H. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021). This work highlights the importance of forming a coherent interlayer between the SnO2 ETL and the perovskite layer by coupling Cl-bonded SnO2 with a Cl-containing perovskite precursor.
Yang, X. et al. Grain-boundaries-engineering via laser manufactured La-doped BaSnO3 nanocrystals with tailored surface states enabling perovskite solar cells with efficiency of 23.74%. Adv. Funct. Mater. 32, 2112388 (2022).
Liu, D. & Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photon. 8, 133–138 (2014).
Azmi, R. et al. High efficiency low-temperature processed perovskite solar cells integrated with alkali metal doped ZnO electron transport layers. ACS Energy Lett. 3, 1241–1246 (2018).
Azmi, R. et al. Shallow and deep trap state passivation for low-temperature processed perovskite solar cells. ACS Energy Lett. 5, 1396–1403 (2020).
Shin, S. S. et al. High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C. Nat. Commun. 6, 7410 (2015).
Dou, J. et al. Highly efficient Zn2SnO4 perovskite solar cells through band alignment engineering. Chem. Commun. 55, 14673–14676 (2019).
Sadegh, F. et al. Highly efficient, stable and hysteresis-less planar perovskite solar cell based on chemical bath treated Zn2SnO4 electron transport layer. Nano Energy 75, 105038 (2020).
Subbiah, A. S., Dhara, A. K., Mahuli, N., Banerjee, S. & Sarkar, S. K. Ultra-thin atomic layer deposited–Nb2O5 as electron transport layer for co-evaporated MAPbI3 planar perovskite solar cells. Energy Technol. 8, 1900878 (2020).
Kogo, A., Numata, Y., Ikegami, M. & Miyasaka, T. Nb2O5 blocking layer for high open-circuit voltage perovskite solar cells. Chem. Lett. 44, 829–830 (2015).
Feng, J. et al. E-beam evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite solar cells. Nano Energy 36, 1–8 (2017).
Wang, Z., Lou, J., Zheng, X., Zhang, W.-H. & Qin, Y. Solution processed Nb2O5 electrodes for high efficient ultraviolet light stable planar perovskite solar cells. ACS Sustain. Chem. Eng. 7, 7421–7429 (2019).
Aydin, E. et al. Ligand-bridged charge extraction and enhanced quantum efficiency enable efficient n–i–p perovskite/silicon tandem solar cells. Energy Environ. Sci. 14, 4377–4390 (2021).
Liu, J. et al. Lewis-acid doping of triphenylamine-based hole transport materials improves the performance and stability of perovskite solar cells. ACS Appl. Mater. Interfaces 12, 23874–23884 (2020).
Domanski, K. et al. Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10, 6306–6314 (2016).
Isikgor, F. H. et al. Scaling-up perovskite solar cells on hydrophobic surfaces. Nano Energy 81, 105633 (2021).
Zhao, J. et al. Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime? Energy Environ. Sci. 9, 3650–3656 (2016).
Di Girolamo, D. et al. Progress, highlights and perspectives on NiO in perovskite photovoltaics. Chem. Sci. 11, 7746–7759 (2020).
Ru, P. et al. High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells. Adv. Energy Mater. 10, 1903487 (2020).
Al-Ashouri, A. et al. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12, 3356–3369 (2019). This work proves that the surface modification of transparent conductive oxides with hole-selective SAMs enables the fabrication of highly efficient HTL-free p–i–n PSCs, performing better than the PSCs incorporating an HTL, such as PTAA.
Azmi, R. et al. Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376, 73–77 (2022).
Hou, Y. et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science 358, 1192–1197 (2017).
Lin, Y. et al. Self-assembled monolayer enables hole transport layer-free organic solar cells with 18% efficiency and improved operational stability. ACS Energy Lett. 5, 2935–2944 (2020).
Hermes, I. M., Hou, Y., Bergmann, V. W., Brabec, C. J. & Weber, S. A. L. The interplay of contact layers: how the electron transport layer influences interfacial recombination and hole extraction in perovskite solar cells. J. Phys. Chem. Lett. 9, 6249–6256 (2018).
Martín, C., Ziółek, M. & Douhal, A. Ultrafast and fast charge separation processes in real dye-sensitized solar cells. J. Photochem. Photobiol. C 26, 1–30 (2016).
Wang, P. et al. Stable and efficient organic dye-sensitized solar cell based on ionic liquid electrolyte. Joule 2, 2145–2153 (2018).
Mariani, P., Vesce, L. & Di Carlo, A. The role of printing techniques for large-area dye sensitized solar cells. Semicond. Sci. Technol. 30, 104003 (2015).
Richard, M. et al. Large-scale patterning of π-conjugated materials by meniscus guided coating methods. Adv. Colloid Interface Sci. 275, 102080 (2020).
Zhang, Z. & Yates, J. T. in Defects at Oxide Surfaces (eds Jacques, J. & Geoff, T.) 81–121 (Springer, 2015).
Morresi, L. in Silicon Based Thin Film Solar Cells (ed. Roberto, M.) 81–107 (Bentham Science, 2013).
Fu, L. et al. Defect passivation strategies in perovskites for an enhanced photovoltaic performance. Energy Environ. Sci. 13, 4017–4056 (2020).
Chen, B., Rudd, P. N., Yang, S., Yuan, Y. & Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019). This study reviews the recent advances in passivation of imperfections in PSCs to reduce non-radiative charge recombination and suppress ion migration.
Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).
Pearson, A. J. et al. Oxygen degradation in mesoporous Al2O3/CH3NH3PbI3−xClx perovskite solar cells: kinetics and mechanisms. Adv. Energy Mater. 6, 1600014 (2016).
Christians, J. A., Miranda Herrera, P. A. & Kamat, P. V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 137, 1530–1538 (2015).
Yin, W.-J., Shi, T. & Yan, Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26, 4653–4658 (2014).
Kim, G.-W. & Petrozza, A. Defect tolerance and intolerance in metal-halide perovskites. Adv. Energy Mater. 10, 2001959 (2020).
Wolff, C. M., Caprioglio, P., Stolterfoht, M. & Neher, D. Nonradiative recombination in perovskite solar cells: the role of interfaces. Adv. Mater. 31, 1902762 (2019).
Wang, J., Datta, K., Weijtens, C. H. L., Wienk, M. M. & Janssen, R. A. J. Insights into fullerene passivation of SnO2 electron transport layers in perovskite solar cells. Adv. Funct. Mater. 29, 1905883 (2019).
Zhu, T., Su, J., Labat, F., Ciofini, I. & Pauporté, T. Interfacial engineering through chloride-functionalized self-assembled monolayers for high-performance perovskite solar cells. Appl. Mater. Interfaces 12, 744–752 (2020).
Hou, M. et al. Enhancing efficiency and stability of perovskite solar cells via a self-assembled dopamine interfacial layer. ACS Appl. Mater. Interfaces 10, 30607–30613 (2018).
Han, J. et al. Interfacial engineering of a ZnO electron transporting layer using self-assembled monolayers for high performance and stable perovskite solar cells. J. Mater. Chem. A 8, 2105–2113 (2020).
Wang, R. et al. Caffeine improves the performance and thermal stability of perovskite solar cells. Joule 3, 1464–1477 (2019).
Abate, A. et al. Supramolecular halogen bond passivation of organic–inorganic halide perovskite solar cells. Nano Lett. 14, 3247–3254 (2014).
Haddon, R. C. et al. The fullerenes: powerful carbon-based electron acceptors. Phil. Trans. R. Soc. A 343, 53–62 (1993).
Abdi-Jalebi, M. et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018).
Abdi-Jalebi, M. et al. Impact of monovalent cation halide additives on the structural and optoelectronic properties of CH3NH3PbI3 perovskite. Adv. Energy Mater. 6, 1502472 (2016).
Yang, S. et al. Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells. J. Am. Chem. Soc. 141, 5781–5787 (2019).
Xue, J., Wang, R. & Yang, Y. The surface of halide perovskites from nano to bulk. Nat. Rev. Mater. 5, 809–827 (2020).
Zheng, X. et al. Dual functions of crystallization control and defect passivation enabled by sulfonic zwitterions for stable and efficient perovskite solar cells. Adv. Mater. 30, 1803428 (2018).
Li, M.-H. et al. Highly efficient 2D/3D hybrid perovskite solar cells via low-pressure vapor-assisted solution process. Adv. Mater. 30, 1801401 (2018).
Ke, W. et al. Compositional and solvent engineering in Dion–Jacobson 2D perovskites boosts solar cell efficiency and stability. Adv. Energy Mater. 9, 1803384 (2019).
Wang, Z. et al. Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium–caesium–formamidinium lead halide perovskites. Nat. Energy 2, 17135 (2017).
Gharibzadeh, S. et al. Record open-circuit voltage wide-bandgap perovskite solar cells utilizing 2D/3D perovskite heterostructure. Adv. Energy Mater. 9, 1803699 (2019).
Jung, M., Shin, T. J., Seo, J., Kim, G. & Seok, S. I. Structural features and their functions in surfactant-armoured methylammonium lead iodide perovskites for highly efficient and stable solar cells. Energy Environ. Sci. 11, 2188–2197 (2018).
Zhao, T., Chueh, C.-C., Chen, Q., Rajagopal, A. & Jen, A. K. Y. Defect passivation of organic–inorganic hybrid perovskites by diammonium iodide toward high-performance photovoltaic devices. ACS Energy Lett. 1, 757–763 (2016).
Liu, X., Guo, L. J. & Zheng, Y. 5-nm LiF as an efficient cathode buffer layer in polymer solar cells through simply introducing a C60 interlayer. Nanoscale Res. Lett. 12, 543 (2017).
Wu, T., Li, X., Qi, Y., Zhang, Y. & Han, L. Defect passivation for perovskite solar cells: from molecule design to device performance. ChemSusChem 14, 4354–4376 (2021).
Kim, E.-B., Akhtar, M. S., Shin, H.-S., Ameen, S. & Nazeeruddin, M. K. A review on two-dimensional (2D) and 2D–3D multidimensional perovskite solar cells: perovskites structures, stability, and photovoltaic performances. J. Photochem. Photobiol. C 48, 100405 (2021).
Wetzelaer, G.-J. A. H. et al. Trap-assisted non-radiative recombination in organic–inorganic perovskite solar cells. Adv. Mater. 27, 1837–1841 (2015).
Stranks, S. D. et al. Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states. Phys. Rev. Appl. 2, 034007 (2014).
Adhyaksa, G. W. P. et al. Carrier diffusion lengths in hybrid perovskites: processing, composition, aging, and surface passivation effects. Chem. Mater. 28, 5259–5263 (2016).
Herz, L. M. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017).
Stolterfoht, M. et al. The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 12, 2778–2788 (2019). This study highlights that, to maximize the open-circuit voltage of PSCs, energy-level matching of perovskite/charge-transport layer stacks is of primary importance.
Altinkaya, C. et al. Tin oxide electron-selective layers for efficient, stable, and scalable perovskite solar cells. Adv. Mater. 33, 2005504 (2021).
Tu, B. et al. Novel molecular doping mechanism for n-doping of SnO2 via triphenylphosphine oxide and its effect on perovskite solar cells. Adv. Mater. 31, 1805944 (2019).
Tavakoli, M. M., Giordano, F., Zakeeruddin, S. M. & Grätzel, M. Mesoscopic oxide double layer as electron specific contact for highly efficient and UV stable perovskite photovoltaics. Nano Lett. 18, 2428–2434 (2018).
Chen, R. et al. High-efficiency, hysteresis-less, UV-stable perovskite solar cells with cascade ZnO–ZnS electron transport layer. J. Am. Chem. Soc. 141, 541–547 (2019).
Chen, Y. et al. Design of an inorganic mesoporous hole-transporting layer for highly efficient and stable inverted perovskite solar cells. Adv. Mater. 30, 1805660 (2018).
Le Corre, V. M. et al. Charge transport layers limiting the efficiency of perovskite solar cells: how to optimize conductivity, doping, and thickness. ACS Appl. Energy Mater. 2, 6280–6287 (2019).
Da, Y., Xuan, Y. & Li, Q. Quantifying energy losses in planar perovskite solar cells. Sol. Energy Mater. Sol. Cell 174, 206–213 (2018).
Chung, I., Lee, B., He, J., Chang, R. P. H. & Kanatzidis, M. G. All-solid-state dye-sensitized solar cells with high efficiency. Nature 485, 486–489 (2012).
Snook, J. H., Samuelson, L. A., Kumar, J., Kim, Y.-G. & Whitten, J. E. Ultraviolet photoelectron spectroscopy of nanocrystalline TiO2 films sensitized with (2,2′-bipyridyl)ruthenium(ii) dyes for photovoltaic applications. Org. Electron. 6, 55–64 (2005).
Ahn, J. et al. Synthesis of novel ruthenium dyes with thiophene or thienothiophene substituted terpyridyl ligands and their characterization. Mol. Cryst. Liq. Cryst. 581, 45–51 (2013).
Cheng, M., Yang, X., Zhang, F., Zhao, J. & Sun, L. Tuning the HOMO and LUMO energy levels of organic dyes with N-carboxomethylpyridinium as acceptor to optimize the efficiency of dye-sensitized solar cells. J. Phys. Chem. C. 117, 9076–9083 (2013).
Delices, A. Organized Organic Dye/Hole Transporting Materials for TiO2- and ZnO- based Solid-State Dye-Sensitized Solar Cells (s-DSSCs). PhD thesis, Univ. Sorbonne Paris Cité (2017).
Shoute, L. C. T. & Loppnow, G. R. Excited-state metal-to-ligand charge transfer dynamics of a ruthenium(ii) dye in solution and adsorbed on TiO2 nanoparticles from resonance Raman spectroscopy. J. Am. Chem. Soc. 125, 15636–15646 (2003).
Hwang, S. et al. A highly efficient organic sensitizer for dye-sensitized solar cells. Chem. Commun. https://doi.org/10.1039/b709859f (2007).
Pham, T. T. T. et al. Toward efficient solid-state p-type dye-sensitized solar cells: the dye matters. J. Phys. Chem. C 121, 129–139 (2017).
Abate, S. Y., Huang, D.-C. & Tao, Y.-T. Surface modification of TiO2 layer with phosphonic acid monolayer in perovskite solar cells: effect of chain length and terminal functional group. Org. Electron. 78, 105583 (2020).
Katono, M. et al. Effect of extended π-conjugation of the donor structure of organic D–A−π–A dyes on the photovoltaic performance of dye-sensitized solar cells. J. Phys. Chem. C 118, 16486–16493 (2014).
Antila, L. J., Myllyperkiö, P., Mustalahti, S., Lehtivuori, H. & Korppi-Tommola, J. Injection and ultrafast regeneration in dye-sensitized solar cells. J. Phys. Chem. C 118, 7772–7780 (2014).
Odobel, F., Le Pleux, L., Pellegrin, Y. & Blart, E. New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities. Acc. Chem. Res. 43, 1063–1071 (2010).
Wolff, C. M. et al. Orders of recombination in complete perovskite solar cells — linking time-resolved and steady-state measurements. Adv. Energy Mater. 11, 2101823 (2021).
Lange, I. et al. Tuning the work function of polar zinc oxide surfaces using modified phosphonic acid self-assembled monolayers. Adv. Funct. Mater. 24, 7014–7024 (2014).
Ansari, F. et al. Passivation mechanism exploiting surface dipoles affords high-performance perovskite solar cells. J. Am. Chem. Soc. 142, 11428–11433 (2020).
Lee, J.-H. et al. Introducing paired electric dipole layers for efficient and reproducible perovskite solar cells. Energy Environ. Sci. 11, 1742–1751 (2018).
Zhang, C. et al. Reduction of nonradiative loss in inverted perovskite solar cells by donor–π–acceptor dipoles. ACS Appl. Mater. Inter. 13, 44321–44328 (2021).
Thampy, S., Xu, W. & Hsu, J. W. P. Metal oxide-induced instability and its mitigation in halide perovskite solar cells. J. Phys. Chem. Lett. 12, 8495–8506 (2021).
Sahli, F. et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17, 820–826 (2018).
Liu, J. et al. 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule https://doi.org/10.1016/j.joule.2021.11.003 (2021).
Huang, H.-F. et al. Synthesis and characterization of highly stable and efficient star-molecules. Dye Pigm. 96, 705–713 (2013).
Katoh, R. et al. Highly stable sensitizer dyes for dye-sensitized solar cells: role of the oligothiophene moiety. Energy Environ. Sci. 2, 542–546 (2009).
Takijiri, K., Morita, K., Nakazono, T., Sakai, K. & Ozawa, H. Highly stable chemisorption of dyes with pyridyl anchors over TiO2: application in dye-sensitized photoelectrochemical water reduction in aqueous media. Chem. Commun. 53, 3042–3045 (2017).
Hunger, K. in Industrial Dyes: Chemistry, Properties, Applications (ed. Hunger, K.) 643–651 (Wiley, 2002).
Li, X. et al. Bifacial modified charge transport materials for highly efficient and stable inverted perovskite solar cells. ACS Appl. Mater. Interfaces 10, 17861–17870 (2018).
Yang, S. et al. Excellent moisture stability and efficiency of inverted all-inorganic CsPbIBr2 perovskite solar cells through molecule interface engineering. ACS Appl. Mater. Interfaces 12, 13931–13940 (2020).
Rombach, F. M., Haque, S. A. & Macdonald, T. J. Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy Environ. Sci. 14, 5161–5190 (2021).
Cheacharoen, R. et al. Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling. Energy Environ. Sci. 11, 144–150 (2018).
De Bastiani, M. et al. Mechanical reliability of fullerene/tin oxide interfaces in monolithic perovskite/silicon tandem cells. ACS Energy Lett. 7, 827–833 (2022).
Corsini, F. & Griffini, G. Recent progress in encapsulation strategies to enhance the stability of organometal halide perovskite solar cells. J. Phys. Energy 2, 031002 (2020).
Rong, Y. et al. Challenges for commercializing perovskite solar cells. Science 361, eaat8235 (2018).
Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020).
Ramirez, C., Yadavalli, S. K., Garces, H. F., Zhou, Y. & Padture, N. P. Thermo-mechanical behavior of organic–inorganic halide perovskites for solar cells. Scr. Mater. 150, 36–41 (2018).
Wang, M., Ni, Z., Xiao, X., Zhou, Y. & Huang, J. Strain engineering in metal halide perovskite materials and devices: influence on stability and optoelectronic properties. Chem. Phys. Rev. 2, 031302 (2021).
Meng, X. et al. Bio-inspired vertebral design for scalable and flexible perovskite solar cells. Nat. Commun. 11, 3016 (2020).
Xue, D.-J. et al. Regulating strain in perovskite thin films through charge-transport layers. Nat. Commun. 11, 1514 (2020).
Zhu, C. et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Commun. 10, 815 (2019).
Rolston, N. et al. Mechanical integrity of solution-processed perovskite solar cells. Extrem. Mech. Lett. 9, 353–358 (2016).
Soufiani, A. M. et al. Lessons learnt from spatially resolved electro- and photoluminescence imaging: interfacial delamination in CH3NH3PbI3 planar perovskite solar cells upon illumination. Adv. Energy Mater. 7, 1602111 (2017).
Boström, H. L. B. & Goodwin, A. L. Hybrid perovskites, metal–organic frameworks, and beyond: unconventional degrees of freedom in molecular frameworks. Acc. Chem. Res. 54, 1288–1297 (2021).
Rösch, A. T., Söntjens, S. H. M., Robben, J., Palmans, A. R. A. & Schnitzer, T. Rotational isomerism of an amide substituted squaraine dye: a combined spectroscopic and computational study. J. Org. Chem. 86, 13100–13103 (2021).
Yuan, C. et al. A π-conjugated system with flexibility and rigidity that shows environment-dependent RGB luminescence. J. Am. Chem. Soc. 135, 8842–8845 (2013).
Wang, G. et al. Design of an AIE-active flexible self-assembled monolayer probe for trace nitroaromatic compound explosive detection. ACS Sens. 6, 1849–1856 (2021).
Minemoto, T. & Murata, M. Theoretical analysis on effect of band offsets in perovskite solar cells. Sol. Energy Mater. Sol. Cell 133, 8–14 (2015).
Grosso, D. How to exploit the full potential of the dip-coating process to better control film formation. J. Mater. Chem. 21, 17033–17038 (2011).
Magomedov, A. et al. Self-assembled hole transporting monolayer for highly efficient perovskite solar cells. Adv. Energy Mater. 8, 1801892 (2018).
Chen, P., Yin, X., Que, M., Liu, X. & Que, W. Low temperature solution processed indium oxide thin films with reliable photoelectrochemical stability for efficient and stable planar perovskite solar cells. J. Mater. Chem. A 5, 9641–9648 (2017).
Daskeviciute-Geguziene, S. et al. Cross-linkable carbazole-based hole transporting materials for perovskite solar cells. Chem. Commun. 58, 7495–7498 (2022).
Liu, K. et al. Fullerene derivative anchored SnO2 for high-performance perovskite solar cells. Energy Environ. Sci. 11, 3463–3471 (2018).
Huang, S.-K. et al. Unravelling the origin of the photocarrier dynamics of fullerene-derivative passivation of SnO2 electron transporters in perovskite solar cells. J. Mater. Chem. A 8, 23607–23616 (2020).
Shao, Y., Xiao, Z., Bi, C., Yuan, Y. & Huang, J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014).
Wojciechowski, K. et al. C60 as an efficient n-type compact layer in perovskite solar cells. J. Phys. Chem. Lett. 6, 2399–2405 (2015).
Noel, N. K. et al. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites. ACS Nano 8, 9815–9821 (2014).
Zuo, L. et al. Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci. Adv. 3, e1700106 (2017).
Wen, T. Y. et al. Surface electronic modification of perovskite thin film with water-resistant electron delocalized molecules for stable and efficient photovoltaics. Adv. Energy Mater. 8, 1703143 (2018).
Xiong, S. et al. Direct observation on p- to n-type transformation of perovskite surface region during defect passivation driving high photovoltaic efficiency. Joule 5, 467–480 (2021).
Li, W. et al. Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells. J. Mater. Chem. A 2, 20105–20111 (2014).
Peng, J. et al. A universal double-side passivation for high open-circuit voltage in perovskite solar cells: role of carbonyl groups in poly(methyl methacrylate). Adv. Energy Mater. 8, 1801208 (2018).
You, S. et al. A biopolymer heparin sodium interlayer anchoring TiO2 and MAPbI3 enhances trap passivation and device stability in perovskite solar cells. Adv. Mater. 30, 1706924 (2018).
Chen, H. et al. Efficient bifacial passivation with crosslinked thioctic acid for high-performance methylammonium lead iodide perovskite solar cells. Adv. Mater. 32, 1905661 (2020).
Chen, J., Zhao, X., Kim, S.-G. & Park, N.-G. Multifunctional chemical linker imidazoleacetic acid hydrochloride for 21% efficient and stable planar perovskite solar cells. Adv. Mater. 31, 1902902 (2019).
Zheng, D. et al. Simultaneous bottom-up interfacial and bulk defect passivation in highly efficient planar perovskite solar cells using nonconjugated small-molecule electrolytes. Adv. Mater. 31, 1903239 (2019).
Tan, F. et al. Dual coordination of Ti and Pb using bilinkable ligands improves perovskite solar cell performance and stability. Adv. Func. Mater. 30, 2005155 (2020).
Burwig, T., Fränzel, W. & Pistor, P. Crystal phases and thermal stability of co-evaporated CsPbX3 (X = I, Br) thin films. J. Phys. Chem. Lett. 9, 4808–4813 (2018).
Wolfi, J. S. & Cavin, O. B. The effective thermal expansion of nickel and nickel oxide during high-temperature oxidation. Adv. X Ray Anal. 37, 449–456 (1993).
Lai, F.-I., Yang, J.-F., Chen, W.-C., Hsu, Y.-C. & Kuo, S.-Y. Weatherability of Cu2ZnSnSe4 thin film solar cells on diverse substrates. Sol. Energy 195, 626–635 (2020).
Chung, I. et al. CsSnI3: semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 134, 8579–8587 (2012).
Acknowledgements
This work was supported by the King Abdullah University of Science and Technology (KAUST) under award numbers OSR-2021-4833, OSR-CARF/CCF-3079, IED OSR-2019-4580, IED OSR-2019-4208, OSR-CRG2020-4350 and CRG2019-4093.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Materials thanks Mohammad Khaja Nazeeruddin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Isikgor, F.H., Zhumagali, S., T. Merino, L.V. et al. Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat Rev Mater 8, 89–108 (2023). https://doi.org/10.1038/s41578-022-00503-3
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41578-022-00503-3
This article is cited by
-
Materials and methods for cost-effective fabrication of perovskite photovoltaic devices
Communications Materials (2024)
-
Future optoelectronics unlocked by ‘doping’ strategy
Nature (2024)
-
Regulating phase homogeneity by self-assembled molecules for enhanced efficiency and stability of inverted perovskite solar cells
Nature Photonics (2024)
-
Structural evolution of anodized TiO2 nanotubes and their solar energy applications
Macromolecular Research (2024)
-
Two-Dimensional Materials for Highly Efficient and Stable Perovskite Solar Cells
Nano-Micro Letters (2024)