Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hydrogel interfaces for merging humans and machines

Abstract

The last few decades have witnessed unprecedented convergence between humans and machines that closely operate around the human body. Despite these advances, traditional machines made of hard, dry and abiotic materials are substantially dissimilar to soft, wet and living biological tissues. This dissimilarity results in severe limitations for long-term, reliable and highly efficient interfacing between humans and machines. To bridge this gap, hydrogels have emerged as an ideal material candidate for interfacing between humans and machines owing to their mechanical and chemical similarities to biological tissues and the versatility and flexibility in designing their properties. In this Review, we provide a comprehensive summary of functional modes, design principles, and current and future applications for hydrogel interfaces towards merging humans and machines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Current applications of hydrogel interfaces.
Fig. 2: Functional modes of hydrogel interfaces.
Fig. 3: Design principles for hydrogel interfaces with desired properties.
Fig. 4: Next-generation hydrogel interfaces.

Similar content being viewed by others

References

  1. Jeong, J.-W. et al. Soft materials in neuroengineering for hard problems in neuroscience. Neuron 86, 175–186 (2015).

    Article  CAS  Google Scholar 

  2. Lacour, S. P., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016).

    Article  CAS  Google Scholar 

  3. Salatino, J. W., Ludwig, K. A., Kozai, T. D. & Purcell, E. K. Glial responses to implanted electrodes in the brain. Nat. Biomed. Eng. 1, 862–877 (2017).

    Article  CAS  Google Scholar 

  4. Lotti, F., Ranieri, F., Vadalà, G., Zollo, L. & Di Pino, G. Invasive intraneural interfaces: foreign body reaction issues. Front. Neurosci. 11, 497 (2017).

    Article  Google Scholar 

  5. Yuk, H., Lu, B. & Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 48, 1642–1667 (2019).

    Article  CAS  Google Scholar 

  6. Frank, J. A., Antonini, M.-J. & Anikeeva, P. Next-generation interfaces for studying neural function. Nat. Biotechnol. 37, 1013–1023 (2019).

    Article  CAS  Google Scholar 

  7. Kerner, W. Implantable glucose sensors: present status and future developments. Exp. Clin. Endocrinol. Diabetes 109, S341–S346 (2001).

    Article  CAS  Google Scholar 

  8. Moussy, F. in Proc. IEEE Sensors 2002 vol. 1 270–273 (IEEE, 2002).

  9. Ward, W. K. A review of the foreign-body response to subcutaneously-implanted devices: the role of macrophages and cytokines in biofouling and fibrosis. J. Diabetes Sci. Technol. 2, 768–777 (2008).

    Article  Google Scholar 

  10. Farra, R. et al. First-in-human testing of a wirelessly controlled drug delivery microchip. Sci. Transl Med. 4, 122ra121 (2012).

    Article  Google Scholar 

  11. Ross, P., Milburn, J., Reith, D., Wiltshire, E. & Wheeler, B. Clinical review: insulin pump-associated adverse events in adults and children. Acta Diabetol. 52, 1017–1024 (2015).

    Article  CAS  Google Scholar 

  12. Heinemann, L. et al. Insulin pump risks and benefits: a clinical appraisal of pump safety standards, adverse event reporting, and research needs: a joint statement of the European Association for the Study of Diabetes and the American Diabetes Association Diabetes Technology Working Group. Diabetes Care 38, 716–722 (2015).

    Article  CAS  Google Scholar 

  13. Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

    Article  CAS  Google Scholar 

  14. Kim, D. H., Xiao, J., Song, J., Huang, Y. & Rogers, J. A. Stretchable, curvilinear electronics based on inorganic materials. Adv. Mater. 22, 2108–2124 (2010).

    Article  CAS  Google Scholar 

  15. Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  CAS  Google Scholar 

  16. Kim, D.-H., Ghaffari, R., Lu, N. & Rogers, J. A. Flexible and stretchable electronics for biointegrated devices. Annu. Rev. Biomed. Eng. 14, 113–128 (2012).

    Article  CAS  Google Scholar 

  17. Hong, G. & Lieber, C. M. Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 20, 330–345 (2019).

    Article  CAS  Google Scholar 

  18. Jeong, J. W. et al. Materials and optimized designs for human‐machine interfaces via epidermal electronics. Adv. Mater. 25, 6839–6846 (2013).

    Article  CAS  Google Scholar 

  19. Deng, J. et al. Electrical bioadhesive interface for bioelectronics. Nat. Mater. 20, 229–236 (2021).

    Article  CAS  Google Scholar 

  20. Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).

    Article  CAS  Google Scholar 

  21. Chen, R., Canales, A. & Anikeeva, P. Neural recording and modulation technologies. Nat. Rev. Mater. 2, 16093 (2017).

    Article  CAS  Google Scholar 

  22. Feiner, R. & Dvir, T. Tissue–electronics interfaces: from implantable devices to engineered tissues. Nat. Rev. Mater. 3, 17076 (2018).

    Article  CAS  Google Scholar 

  23. Anderson, J. M., Rodriguez, A. & Chang, D. T. Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008).

    Article  CAS  Google Scholar 

  24. Rolfe, B. et al. in Regenerative Medicine and Tissue Engineering: Cells and Biomaterials (ed. Eberli, D.) (IntechOpen, 2011)

  25. Anderson, J. M. Biological responses to materials. Annu. Rev. Mater. Res. 31, 81–110 (2001).

    Article  CAS  Google Scholar 

  26. Voskerician, G. et al. Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials 24, 1959–1967 (2003).

    Article  CAS  Google Scholar 

  27. Wick, G. et al. The immunology of fibrosis. Annu. Rev. Immunol. 31, 107–135 (2013).

    Article  CAS  Google Scholar 

  28. Harding, J. L. & Reynolds, M. M. Combating medical device fouling. Trends Biotechnol. 32, 140–146 (2014).

    Article  CAS  Google Scholar 

  29. Sadtler, K. et al. Design, clinical translation and immunological response of biomaterials in regenerative medicine. Nat. Rev. Mater. 1, 16040 (2016).

    Article  CAS  Google Scholar 

  30. Wichterle, O. & Lim, D. Hydrophilic gels for biological use. Nature 185, 117–118 (1960).

    Article  Google Scholar 

  31. Lee, K. Y. & Mooney, D. J. Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1880 (2001).

    Article  CAS  Google Scholar 

  32. Peppas, N. A., Hilt, J. Z., Khademhosseini, A. & Langer, R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18, 1345–1360 (2006).

    Article  CAS  Google Scholar 

  33. Zhao, X. et al. Soft materials by design: unconventional polymer networks give extreme properties. Chem. Rev. 212, 4309–4372 (2021).

    Article  Google Scholar 

  34. Calvert, P. Hydrogels for soft machines. Adv. Mater. 21, 743–756 (2009).

    Article  CAS  Google Scholar 

  35. Seliktar, D. Designing cell-compatible hydrogels for biomedical applications. Science 336, 1124–1128 (2012).

    Article  CAS  Google Scholar 

  36. Zhao, X. Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10, 672–687 (2014).

    Article  CAS  Google Scholar 

  37. Zhang, Y. S. & Khademhosseini, A. Advances in engineering hydrogels. Science 356, eaaf3627 (2017).

    Article  Google Scholar 

  38. Demitri, C. et al. Hydrogel based tissue mimicking phantom for in-vitro ultrasound contrast agents studies. J. Biomed. Mater. Res. B Appl. Biomater. 87, 338–345 (2008).

    Article  Google Scholar 

  39. Kirschner, C. M. & Anseth, K. S. Hydrogels in healthcare: from static to dynamic material microenvironments. Acta Mater. 61, 931–944 (2013).

    Article  CAS  Google Scholar 

  40. Xue, K. et al. Hydrogels as emerging materials for translational biomedicine. Adv. Ther. 2, 1800088 (2019).

    Article  Google Scholar 

  41. Aswathy, S., Narendrakumar, U. & Manjubala, I. Commercial hydrogels for biomedical applications. Heliyon 6, e03719 (2020).

    Article  CAS  Google Scholar 

  42. Mandal, A., Clegg, J. R., Anselmo, A. C. & Mitragotri, S. Hydrogels in the clinic. Bioeng. Transl Med. 5, e10158 (2020).

    Article  CAS  Google Scholar 

  43. Alba, N. A., Sclabassi, R. J., Sun, M. & Cui, X. T. Novel hydrogel-based preparation-free EEG electrode. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 415–423 (2010).

    Article  Google Scholar 

  44. Green, R. A., Baek, S., Poole-Warren, L. A. & Martens, P. J. Conducting polymer-hydrogels for medical electrode applications. Sci. Technol. Adv. Mater. 11, 014107 (2010).

    Article  Google Scholar 

  45. Johnson, M. I. Transcutaneous electrical nerve stimulation (TENS). eLS https://doi.org/10.1002/9780470015902.a0024044 (2012).

    Article  Google Scholar 

  46. Nagamine, K. et al. Noninvasive sweat-lactate biosensor emplsoying a hydrogel-based touch pad. Sci. Rep. 9, 10102 (2019).

    Article  Google Scholar 

  47. Zhao, F. et al. Ultra-simple wearable local sweat volume monitoring patch based on swellable hydrogels. Lab Chip 20, 168–174 (2020).

    Article  CAS  Google Scholar 

  48. Bariya, M., Nyein, H. Y. Y. & Javey, A. Wearable sweat sensors. Nat. Electron. 1, 160–171 (2018).

    Article  Google Scholar 

  49. Yao, H., Marcheselli, C., Afanasiev, A., Lähdesmäki, I. & Parviz, B. in IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS) 769–772 (IEEE, 2012).

  50. Park, J. et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci. Adv. 4, eaap9841 (2018).

    Article  Google Scholar 

  51. Kim, J. et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun. 8, 14997 (2017).

    Article  Google Scholar 

  52. Yin, R. et al. Soft transparent graphene contact lens electrodes for conformal full-cornea recording of electroretinogram. Nat. Commun. 9, 2334 (2018).

    Article  Google Scholar 

  53. Mirani, B. et al. An advanced multifunctional hydrogel-based dressing for wound monitoring and drug delivery. Adv. Healthc. Mater. 6, 1700718 (2017).

    Article  Google Scholar 

  54. Liu, L. et al. A pH-Indicating colorimetric tough hydrogel patch towards applications in a substrate for smart wound dressings. Polymers 9, 558 (2017).

    Article  Google Scholar 

  55. Gianino, E., Miller, C. & Gilmore, J. Smart wound dressings for diabetic chronic wounds. Bioengineering 5, 51 (2018).

    Article  CAS  Google Scholar 

  56. Blacklow, S. et al. Bioinspired mechanically active adhesive dressings to accelerate wound closure. Sci. Adv. 5, eaaw3963 (2019).

    Article  CAS  Google Scholar 

  57. Liu, J. et al. Triggerable tough hydrogels for gastric resident dosage forms. Nat. Commun. 8, 124 (2017).

    Article  Google Scholar 

  58. Liu, X. et al. Ingestible hydrogel device. Nat. Commun. 10, 493 (2019).

    Article  Google Scholar 

  59. Steiger, C. et al. Ingestible electronics for diagnostics and therapy. Nat. Rev. Mater. 4, 83–98 (2019).

    Article  CAS  Google Scholar 

  60. Freeman, M. E., Furey, M. J., Love, B. J. & Hampton, J. M. Friction, wear, and lubrication of hydrogels as synthetic articular cartilage. Wear 241, 129–135 (2000).

    Article  CAS  Google Scholar 

  61. Gong, J. P. et al. Synthesis of hydrogels with extremely low surface friction. J. Am. Chem. Soc. 123, 5582–5583 (2001).

    Article  CAS  Google Scholar 

  62. Kaneko, D., Tada, T., Kurokawa, T., Gong, J. P. & Osada, Y. Mechanically strong hydrogels with ultra-low frictional coefficients. Adv. Mater. 17, 535–538 (2005).

    Article  CAS  Google Scholar 

  63. Ahmed, J. & Gong, J. P. in Encyclopedia of Polymeric Nanomaterials (eds Kobayashi, S. & Müllen, K.) 958–966 (Springer, 2015).

  64. Yu, Y. et al. Multifunctional “hydrogel skins” on diverse polymers with arbitrary shapes. Adv. Mater. 31, 1807101 (2019).

    Article  Google Scholar 

  65. Lin, W. et al. Cartilage-inspired, lipid-based boundary-lubricated hydrogels. Science 370, 335–338 (2020).

    Article  CAS  Google Scholar 

  66. Jiang, S. & Cao, Z. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Mater. 22, 920–932 (2010).

    Article  CAS  Google Scholar 

  67. Murosaki, T., Ahmed, N. & Gong, J. P. Antifouling properties of hydrogels. Sci. Technol. Adv. Mater. 12, 064706 (2012).

    Article  Google Scholar 

  68. Parada, G. et al. Ultrathin and robust hydrogel coatings on cardiovascular medical devices to mitigate thromboembolic and infectious complications. Adv. Healthc. Mater. 9, 2001116 (2020).

    Article  CAS  Google Scholar 

  69. Lu, Y. et al. Poly (vinyl alcohol)/poly (acrylic acid) hydrogel coatings for improving electrode–neural tissue interface. Biomaterials 30, 4143–4151 (2009).

    Article  CAS  Google Scholar 

  70. Zhang, L. et al. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 31, 553–556 (2013).

    Article  CAS  Google Scholar 

  71. Vegas, A. J. et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat. Biotechnol. 34, 345 (2016).

    Article  CAS  Google Scholar 

  72. Spencer, K. C. et al. Characterization of mechanically matched hydrogel coatings to improve the biocompatibility of neural implants. Sci. Rep. 7, 1952 (2017).

    Article  Google Scholar 

  73. Xie, X. et al. Reduction of measurement noise in a continuous glucose monitor by coating the sensor with a zwitterionic polymer. Nat. Biomed. Eng. 2, 894 (2018).

    Article  CAS  Google Scholar 

  74. Bochenek, M. A. et al. Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques. Nat. Biomed. Eng. 2, 810–821 (2018).

    Article  CAS  Google Scholar 

  75. Zhang, Y. et al. Fundamentals and applications of zwitterionic antifouling polymers. J. Phys. D 52, 403001 (2019).

    Article  CAS  Google Scholar 

  76. Sheng, H. et al. Neural interfaces by hydrogels. Extrem. Mech. Lett. 30, 100510 (2019).

    Article  Google Scholar 

  77. Liu, Y. et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3, 58–68 (2019).

    Article  CAS  Google Scholar 

  78. Liu, Y. et al. Morphing electronics enable neuromodulation in growing tissue. Nat. Biotechnol. 38, 1031–1036 (2020).

    Article  CAS  Google Scholar 

  79. Gaharwar, A. K., Peppas, N. A. & Khademhosseini, A. Nanocomposite hydrogels for biomedical applications. Biotechnol. Bioeng. 111, 441–453 (2014).

    Article  CAS  Google Scholar 

  80. Webber, M. J., Appel, E. A., Meijer, E. & Langer, R. Supramolecular biomaterials. Nat. Mater. 15, 13–26 (2016).

    Article  CAS  Google Scholar 

  81. Lu, Y., Aimetti, A. A., Langer, R. & Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2, 16075 (2016).

    Article  Google Scholar 

  82. Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016).

    Article  CAS  Google Scholar 

  83. Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J. & Shenoy, V. B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584, 535–546 (2020).

    Article  CAS  Google Scholar 

  84. Peppas, N. A. & Khare, A. R. Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv. Drug Deliv. Rev. 11, 1–35 (1993).

    Article  CAS  Google Scholar 

  85. Gupta, P., Vermani, K. & Garg, S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today 7, 569–579 (2002).

    Article  CAS  Google Scholar 

  86. Lin, C.-C. & Metters, A. T. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv. Drug Deliv. Rev. 58, 1379–1408 (2006).

    Article  CAS  Google Scholar 

  87. Li, J. & Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1, 16071 (2016).

    Article  CAS  Google Scholar 

  88. Liu, X., Liu, J., Lin, S. & Zhao, X. Hydrogel machines. Mater. Today 36, 102–124 (2020).

    Article  CAS  Google Scholar 

  89. Johnson, M. Transcutaneous electrical nerve stimulation: mechanisms, clinical application and evidence. Rev. Pain 1, 7–11 (2007).

    Article  Google Scholar 

  90. Akhtar, A., Sombeck, J., Boyce, B. & Bretl, T. Controlling sensation intensity for electrotactile stimulation in human-machine interfaces. Sci. Robot. 3, eaap9770 (2018).

    Article  Google Scholar 

  91. Luna, J. L. V., Krenn, M., Cortés Ramirez, J. A. & Mayr, W. Dynamic impedance model of the skin-electrode interface for transcutaneous electrical stimulation. PLoS ONE 10, e0130368 (2015).

    Article  Google Scholar 

  92. Yang, C. & Suo, Z. Hydrogel ionotronics. Nat. Rev. Mater. 3, 125 (2018).

    Article  CAS  Google Scholar 

  93. Prokop, A. F. et al. Polyacrylamide gel as an acoustic coupling medium for focused ultrasound therapy. Ultrasound Med. Biol. 29, 1351–1358 (2003).

    Article  Google Scholar 

  94. Zell, K., Sperl, J. I., Vogel, M. W., Niessner, R. & Haisch, C. Acoustical properties of selected tissue phantom materials for ultrasound imaging. Phys. Med. Biol. 52, N475 (2007).

    Article  CAS  Google Scholar 

  95. Casarotto, R. A., Adamowski, J. C., Fallopa, F. & Bacanelli, F. Coupling agents in therapeutic ultrasound: acoustic and thermal behavior. Arch. Phys. Med. Rehabil. 85, 162–165 (2004).

    Article  Google Scholar 

  96. Miller, D. L. et al. Overview of therapeutic ultrasound applications and safety considerations. J. Ultrasound Med. 31, 623–634 (2012).

    Article  Google Scholar 

  97. Boateng, J. S., Matthews, K. H., Stevens, H. N. & Eccleston, G. M. Wound healing dressings and drug delivery systems: a review. J. Pharm. Sci. 97, 2892–2923 (2008).

    Article  CAS  Google Scholar 

  98. Hamedi, H., Moradi, S., Hudson, S. M. & Tonelli, A. E. Chitosan based hydrogels and their applications for drug delivery in wound dressings: a review. Carbohydr. Polym. 199, 445–460 (2018).

    Article  CAS  Google Scholar 

  99. Caló, E. & Khutoryanskiy, V. V. Biomedical applications of hydrogels: a review of patents and commercial products. Eur. Polym. J. 65, 252–267 (2015).

    Article  Google Scholar 

  100. Tricoli, A., Nasiri, N. & De, S. Wearable and miniaturized sensor technologies for personalized and preventive medicine. Adv. Funct. Mater. 27, 1605271 (2017).

    Article  Google Scholar 

  101. Lee, H. et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11, 566 (2016).

    Article  Google Scholar 

  102. Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl Med. 8, 366ra165 (2016).

    Article  Google Scholar 

  103. Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    Article  CAS  Google Scholar 

  104. Wang, C. et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2, 687 (2018).

    Article  Google Scholar 

  105. Chung, H. U. et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363, eaau0780 (2019).

    Article  CAS  Google Scholar 

  106. Kim, J., Campbell, A. S., de Ávila, B. E.-F. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

    Article  CAS  Google Scholar 

  107. Chung, H. U. et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat. Med. 26, 418–429 (2020).

    Article  CAS  Google Scholar 

  108. Stapleton, F., Stretton, S., Papas, E., Skotnitsky, C. & Sweeney, D. F. Silicone hydrogel contact lenses and the ocular surface. Ocul. Surf. 4, 24–43 (2006).

    Article  Google Scholar 

  109. Kirchhof, S., Goepferich, A. M. & Brandl, F. P. Hydrogels in ophthalmic applications. Eur. J. Pharm. Biopharm. 95, 227–238 (2015).

    Article  CAS  Google Scholar 

  110. Lee, G.-H. et al. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 5, 149–165 (2020).

    Article  Google Scholar 

  111. Lloyd, J. D., Marque, M. J. III & Kacprowicz, R. F. Closure techniques. Emerg. Med. Clin. North Am. 25, 73–81 (2007).

    Article  Google Scholar 

  112. Slieker, J. C., Daams, F., Mulder, I. M., Jeekel, J. & Lange, J. F. Systematic review of the technique of colorectal anastomosis. JAMA Surg. 148, 190–201 (2013).

    Article  Google Scholar 

  113. Annabi, N., Yue, K., Tamayol, A. & Khademhosseini, A. Elastic sealants for surgical applications. Eur. J. Pharm. Biopharm. 95, 27–39 (2015).

    Article  CAS  Google Scholar 

  114. Munoz Taboada, G. et al. Overcoming the translational barriers of tissue adhesives. Nat. Rev. Mater. 5, 310–329 (2020).

    Article  Google Scholar 

  115. Nam, S. & Mooney, D. Polymeric tissue adhesives. Chem. Rev. 121, 11336–11384 (2021).

    Article  CAS  Google Scholar 

  116. Li, J. et al. Tough adhesives for diverse wet surfaces. Science 357, 378–381 (2017).

    Article  CAS  Google Scholar 

  117. Yuk, H. et al. Dry double-sided tape for adhesion of wet tissues and devices. Nature 575, 169–174 (2019).

    Article  CAS  Google Scholar 

  118. Sharma, B. et al. Human cartilage repair with a photoreactive adhesive-hydrogel composite. Sci. Transl Med. 5, 167ra166 (2013).

    Article  Google Scholar 

  119. Annabi, N. et al. Engineering a highly elastic human protein–based sealant for surgical applications. Sci. Transl Med. 9, eaai7466 (2017).

    Article  Google Scholar 

  120. Okun, M. S. Deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 367, 1529–1538 (2012).

    Article  CAS  Google Scholar 

  121. Hickey, P. & Stacy, M. Deep brain stimulation: a paradigm shifting approach to treat Parkinson’s disease. Front. Neurosci. 10, 173 (2016).

    Article  Google Scholar 

  122. Fox, D. The electric cure. Nature 545, 20–22 (2017).

    Article  CAS  Google Scholar 

  123. Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    Article  CAS  Google Scholar 

  124. Wenger, N. et al. Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury. Nat. Med. 22, 138 (2016).

    Article  CAS  Google Scholar 

  125. Formento, E. et al. Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nat. Neurosci. 21, 1728–1741 (2018).

    Article  CAS  Google Scholar 

  126. Wagner, F. B. et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature 563, 65–71 (2018).

    Article  CAS  Google Scholar 

  127. Courtine, G. & Sofroniew, M. V. Spinal cord repair: advances in biology and technology. Nat. Med. 25, 898–908 (2019).

    Article  CAS  Google Scholar 

  128. Park, J. et al. Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Sci. Transl Med. 8, 344ra386 (2016).

    Article  Google Scholar 

  129. Freedman, B. et al. Management of atrial high-rate episodes detected by cardiac implanted electronic devices. Nat. Rev. Cardiol. 14, 701–714 (2017).

    Article  Google Scholar 

  130. Cingolani, E., Goldhaber, J. I. & Marbán, E. Next-generation pacemakers: from small devices to biological pacemakers. Nat. Rev. Cardiol. 15, 139–150 (2018).

    Article  Google Scholar 

  131. Yacoub, M. H. & McLeod, C. The expanding role of implantable devices to monitor heart failure and pulmonary hypertension. Nat. Rev. Cardiol. 15, 770–779 (2018).

    Article  Google Scholar 

  132. Dhanasingh, A. & Jolly, C. An overview of cochlear implant electrode array designs. Hear. Res. 356, 93–103 (2017).

    Article  Google Scholar 

  133. Ortiz-Catalan, M., Håkansson, B. & Brånemark, R. An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Sci. Transl Med. 6, 257re256 (2014).

    Article  Google Scholar 

  134. Farina, D. et al. Man/machine interface based on the discharge timings of spinal motor neurons after targeted muscle reinnervation. Nat. Biomed. Eng. 1, 0025 (2017).

    Article  Google Scholar 

  135. Ortiz-Catalan, M., Mastinu, E., Sassu, P., Aszmann, O. & Brånemark, R. Self-contained neuromusculoskeletal arm prostheses. N. Engl. J. Med. 382, 1732–1738 (2020).

    Article  Google Scholar 

  136. Rao, L., Zhou, H., Li, T., Li, C. & Duan, Y. Y. Polyethylene glycol-containing polyurethane hydrogel coatings for improving the biocompatibility of neural electrodes. Acta Biomater. 8, 2233–2242 (2012).

    Article  CAS  Google Scholar 

  137. Aregueta-Robles, U. A., Woolley, A. J., Poole-Warren, L. A., Lovell, N. H. & Green, R. A. Organic electrode coatings for next-generation neural interfaces. Front. Neuroeng. 7, 15 (2014).

    Article  CAS  Google Scholar 

  138. Yuk, H. et al. 3D printing of conducting polymers. Nat. Commun. 11, 1604 (2020).

    Article  CAS  Google Scholar 

  139. Inoue, A., Yuk, H., Lu, B. & Zhao, X. Strong adhesion of wet conducting polymers on diverse substrates. Sci. Adv. 6, eaay5394 (2020).

    Article  CAS  Google Scholar 

  140. Sahel, J.-A. et al. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat. Med. 27, 1223–1229 (2021).

    Article  CAS  Google Scholar 

  141. Choi, M. et al. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo. Nat. Photonics 7, 987 (2013).

    Article  CAS  Google Scholar 

  142. Guo, J. et al. Highly stretchable, strain sensing hydrogel optical fibers. Adv. Mater. 28, 10244–10249 (2016).

    Article  CAS  Google Scholar 

  143. Nazempour, R., Zhang, Q., Fu, R. & Sheng, X. Biocompatible and implantable optical fibers and waveguides for biomedicine. Materials 11, 1283 (2018).

    Article  Google Scholar 

  144. Guo, J., Yang, C., Dai, Q. & Kong, L. Soft and stretchable polymeric optical waveguide-based sensors for wearable and biomedical applications. Sensors 19, 3771 (2019).

    Article  CAS  Google Scholar 

  145. Langer, R. Drug delivery and targeting. Nature 392, 5–10 (1998).

    CAS  Google Scholar 

  146. Peppas, N. A. & Van Blarcom, D. S. Hydrogel-based biosensors and sensing devices for drug delivery. J. Control. Release 240, 142–150 (2016).

    Article  CAS  Google Scholar 

  147. Bjugstad, K., Lampe, K., Kern, D. & Mahoney, M. Biocompatibility of poly (ethylene glycol)-based hydrogels in the brain: an analysis of the glial response across space and time. J. Biomed. Mater. Res. A 95, 79–91 (2010).

    Article  CAS  Google Scholar 

  148. Mack, M. J. Minimally invasive and robotic surgery. JAMA 285, 568–572 (2001).

    Article  CAS  Google Scholar 

  149. Liu, X. et al. Magnetic living hydrogels for intestinal localization, retention, and diagnosis. Adv. Funct. Mater. 31, 2010918 (2021).

    Article  CAS  Google Scholar 

  150. Greenway, F. L. et al. A randomized, double-blind, placebo-controlled study of Gelesis100: a novel nonsystemic oral hydrogel for weight loss. Obesity 27, 205–216 (2019).

    Article  CAS  Google Scholar 

  151. Deem, M. E. Guidewire having hydrophilic coating. US Patent 5,840,046 (1998).

  152. Bologna, R. A., Polansky, M., Fraimow, H. D., Gordon, D. A. & Whitmore, K. E. Hydrogel/silver ion-coated urinary catheter reduces nosocomial urinary tract infection rates in intensive care unit patients: a multicenter study. Urology 54, 982–987 (1999).

    Article  CAS  Google Scholar 

  153. Lederer, J. W., Jarvis, W. R., Thomas, L. & Ritter, J. Multicenter cohort study to assess the impact of a silver-alloy and hydrogel-coated urinary catheter on symptomatic catheter-associated urinary tract infections. J. Wound Ostomy Cont. Nurs. 41, 473 (2014).

    Article  Google Scholar 

  154. Kim, Y., Parada, G. A., Liu, S. & Zhao, X. Ferromagnetic soft continuum robots. Sci. Robot. 4, eaax7329 (2019).

    Article  Google Scholar 

  155. John, T., Rajpurkar, A., Smith, G., Fairfax, M. & Triest, J. Antibiotic pretreatment of hydrogel ureteral stent. J. Endourol. 21, 1211–1216 (2007).

    Article  Google Scholar 

  156. Obiweluozor, F. O. et al. Thromboresistant semi-IPN hydrogel coating: towards improvement of the hemocompatibility/biocompatibility of metallic stent implants. Mater. Sci. Eng. C 99, 1274–1288 (2019).

    Article  CAS  Google Scholar 

  157. Lopes, P. A. et al. Soft bioelectronic stickers: selection and evaluation of skin-interfacing electrodes. Adv. Healthc. Mater. 8, 1900234 (2019).

    Article  Google Scholar 

  158. Gong, J. P., Katsuyama, Y., Kurokawa, T. & Osada, Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003).

    Article  CAS  Google Scholar 

  159. Sun, J.-Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012).

    Article  CAS  Google Scholar 

  160. Wang, Q., Hou, R., Cheng, Y. & Fu, J. Super-tough double-network hydrogels reinforced by covalently compositing with silica-nanoparticles. Soft Matter 8, 6048–6056 (2012).

    Article  CAS  Google Scholar 

  161. Liu, R. et al. Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J. Mater. Chem. 22, 14160–14167 (2012).

    Article  CAS  Google Scholar 

  162. Yuk, H., Zhang, T., Lin, S., Parada, G. A. & Zhao, X. Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 15, 190–196 (2016).

    Article  CAS  Google Scholar 

  163. Yuk, H., Zhang, T., Parada, G. A., Liu, X. & Zhao, X. Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 7, 12028 (2016).

    Article  Google Scholar 

  164. Yang, J., Bai, R. & Suo, Z. Topological adhesion of wet materials. Adv. Mater. 30, 1800671 (2018).

    Article  Google Scholar 

  165. Yang, S. Y. et al. A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue. Nat. Commun. 4, 1702 (2013).

    Article  Google Scholar 

  166. Liu, J. et al. Fatigue-resistant adhesion of hydrogels. Nat. Commun. 11, 1071 (2020).

    Article  CAS  Google Scholar 

  167. Huebsch, N. et al. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc. Natl Acad. Sci. USA 111, 9762–9767 (2014).

    Article  CAS  Google Scholar 

  168. Schoellhammer, C. M. et al. Ultrasound-mediated gastrointestinal drug delivery. Sci. Transl Med. 7, 310ra168 (2015).

    Article  Google Scholar 

  169. Chen, L. et al. Soft elastic hydrogel couplants for ultrasonography. Mater. Sci. Eng. C. 119, 111609 (2021).

    Article  CAS  Google Scholar 

  170. Corvino, A. et al. Utility of a gel stand-off pad in the detection of Doppler signal on focal nodular lesions of the skin. J. Ultrasound 23, 45–53 (2020).

    Article  Google Scholar 

  171. Gabriel, C., Peyman, A. & Grant, E. H. Electrical conductivity of tissue at frequencies below 1 MHz. Phys. Med. Biol. 54, 4863 (2009).

    Article  CAS  Google Scholar 

  172. Cogan, S. F. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275–309 (2008).

    Article  CAS  Google Scholar 

  173. Rivnay, J., Wang, H., Fenno, L., Deisseroth, K. & Malliaras, G. G. Next-generation probes, particles, and proteins for neural interfacing. Sci. Adv. 3, e1601649 (2017).

    Article  Google Scholar 

  174. Choi, M., Humar, M., Kim, S. & Yun, S. H. Step-index optical fiber made of biocompatible hydrogels. Adv. Mater. 27, 4081–4086 (2015).

    Article  CAS  Google Scholar 

  175. Ehrbar, M., Schoenmakers, R., Christen, E. H., Fussenegger, M. & Weber, W. Drug-sensing hydrogels for the inducible release of biopharmaceuticals. Nat. Mater. 7, 800–804 (2008).

    Article  CAS  Google Scholar 

  176. Hendrickson, G. R. & Lyon, L. A. Bioresponsive hydrogels for sensing applications. Soft Matter 5, 29–35 (2009).

    Article  CAS  Google Scholar 

  177. Buenger, D., Topuz, F. & Groll, J. Hydrogels in sensing applications. Prog. Polym. Sci. 37, 1678–1719 (2012).

    Article  CAS  Google Scholar 

  178. Elshaarani, T. et al. Synthesis of hydrogel-bearing phenylboronic acid moieties and their applications in glucose sensing and insulin delivery. J. Mater. Chem. B 6, 3831–3854 (2018).

    Article  CAS  Google Scholar 

  179. Sinha, A. et al. Polymer hydrogel interfaces in electrochemical sensing strategies: a review. TrAC. Trends Anal. Chem. 118, 488–501 (2019).

    Article  Google Scholar 

  180. Dee, K. C., Puleo, D. A. & Bizios, R. An Introduction to Tissue-Biomaterial Interactions (Wiley, 2003).

  181. Li, C. et al. Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 5, 61–81 (2019).

    Article  Google Scholar 

  182. Green, J. J. & Elisseeff, J. H. Mimicking biological functionality with polymers for biomedical applications. Nature 540, 386–394 (2016).

    Article  CAS  Google Scholar 

  183. Davidson, M. D., Burdick, J. A. & Wells, R. G. Engineered biomaterial platforms to study fibrosis. Adv. Healthc. Mater. 9, 1901682 (2020).

    Article  CAS  Google Scholar 

  184. Fattahi, P., Yang, G., Kim, G. & Abidian, M. R. A review of organic and inorganic biomaterials for neural interfaces. Adv. Mater. 26, 1846–1885 (2014).

    Article  CAS  Google Scholar 

  185. Morais, J. M., Papadimitrakopoulos, F. & Burgess, D. J. Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J. 12, 188–196 (2010).

    Article  CAS  Google Scholar 

  186. Koh, A., Nichols, S. P. & Schoenfisch, M. H. Glucose sensor membranes for mitigating the foreign body response. J. Diabetes Sci. Technol. 5, 1052–1059 (2011).

    Article  Google Scholar 

  187. Arciola, C. R., Campoccia, D. & Montanaro, L. Implant infections: adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 16, 397 (2018).

    Article  CAS  Google Scholar 

  188. Zhang, D. et al. Dealing with the foreign-body response to implanted biomaterials: strategies and applications of new materials. Adv. Funct. Mater. 31, 2007226 (2020).

    Article  Google Scholar 

  189. Nichol, J. W. et al. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31, 5536–5544 (2010).

    Article  CAS  Google Scholar 

  190. Yue, K. et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73, 254–271 (2015).

    Article  CAS  Google Scholar 

  191. Augst, A. D., Kong, H. J. & Mooney, D. J. Alginate hydrogels as biomaterials. Macromol. Biosci. 6, 623–633 (2006).

    Article  CAS  Google Scholar 

  192. Lee, K. Y. & Mooney, D. J. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37, 106–126 (2012).

    Article  CAS  Google Scholar 

  193. Rowley, J. A., Madlambayan, G. & Mooney, D. J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20, 45–53 (1999).

    Article  CAS  Google Scholar 

  194. Berger, J. et al. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur. J. Pharm. Biopharm. 57, 19–34 (2004).

    Article  CAS  Google Scholar 

  195. Ahmadi, F., Oveisi, Z., Samani, S. M. & Amoozgar, Z. Chitosan based hydrogels: characteristics and pharmaceutical applications. Res. Pharm. Sci. 10, 1–16 (2015).

    CAS  Google Scholar 

  196. Pellá, M. C. et al. Chitosan-based hydrogels: from preparation to biomedical applications. Carbohydr. Polym. 196, 233–245 (2018).

    Article  Google Scholar 

  197. Wang, Z. et al. Functional regeneration of tendons using scaffolds with physical anisotropy engineered via microarchitectural manipulation. Sci. Adv. 4, eaat4537 (2018).

    Article  CAS  Google Scholar 

  198. Yang, G., Lin, H., Rothrauff, B. B., Yu, S. & Tuan, R. S. Multilayered polycaprolactone/gelatin fiber-hydrogel composite for tendon tissue engineering. Acta Biomater. 35, 68–76 (2016).

    Article  Google Scholar 

  199. Mredha, M. T. I. et al. A facile method to fabricate anisotropic hydrogels with perfectly aligned hierarchical fibrous structures. Adv. Mater. 30, 1704937 (2018).

    Article  Google Scholar 

  200. Lin, S., Liu, J., Liu, X. & Zhao, X. Muscle-like fatigue-resistant hydrogels by mechanical training. Proc. Natl Acad. Sci. USA 116, 10244–10249 (2019).

    Article  CAS  Google Scholar 

  201. Hua, M. et al. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 590, 594–599 (2021).

    Article  CAS  Google Scholar 

  202. Rossetti, L. et al. The microstructure and micromechanics of the tendon–bone insertion. Nat. Mater. 16, 664–670 (2017).

    Article  CAS  Google Scholar 

  203. Nonoyama, T. et al. Double-network hydrogels strongly bondable to bones by spontaneous osteogenesis penetration. Adv. Mater. 28, 6740–6745 (2016).

    Article  CAS  Google Scholar 

  204. Rauner, N., Meuris, M., Zoric, M. & Tiller, J. C. Enzymatic mineralization generates ultrastiff and tough hydrogels with tunable mechanics. Nature 543, 407–410 (2017).

    Article  CAS  Google Scholar 

  205. Discher, D. E., Janmey, P. & Wang, Y.-L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    Article  CAS  Google Scholar 

  206. Lin, X. et al. A viscoelastic adhesive epicardial patch for treating myocardial infarction. Nat. Biomed. Eng. 3, 632–643 (2019).

    Article  CAS  Google Scholar 

  207. Tringides, C. M. et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nat. Nanotechnol. 5, 1019–1029 (2021).

    Article  Google Scholar 

  208. Gong, J. P. Why are double network hydrogels so tough? Soft Matter 6, 2583–2590 (2010).

    Article  CAS  Google Scholar 

  209. Zhang, T., Yuk, H., Lin, S., Parada, G. A. & Zhao, X. Tough and tunable adhesion of hydrogels: experiments and models. Acta Mech. Sin. 33, 543–554 (2017).

    Article  Google Scholar 

  210. Chen, X., Yuk, H., Wu, J., Nabzdyk, C. S. & Zhao, X. Instant tough bioadhesive with triggerable benign detachment. Proc. Natl Acad. Sci. USA 117, 15497–15503 (2020).

    Article  CAS  Google Scholar 

  211. Chen, J. et al. An adhesive hydrogel with “load-sharing” effect as tissue bandages for drug and cell delivery. Adv. Mater. 32, 2001628 (2020).

    Article  CAS  Google Scholar 

  212. Gong, J. P. Friction and lubrication of hydrogels — its richness and complexity. Soft Matter 2, 544–552 (2006).

    Article  CAS  Google Scholar 

  213. Mu, R. et al. Polymer-filled macroporous hydrogel for low friction. Extrem. Mech. Lett. 38, 100742 (2020).

    Article  Google Scholar 

  214. Skudrzyk, E. The Foundations of Acoustics: Basic Mathematics and Basic Acoustics (Springer, 2012).

  215. Yuk, H. et al. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat. Commun. 8, 14230 (2017).

    Article  CAS  Google Scholar 

  216. Lee, W., Lee, S. D., Park, M. Y., Yang, J. & Yoo, S. S. Evaluation of polyvinyl alcohol cryogel as an acoustic coupling medium for low-intensity transcranial focused ultrasound. Int. J. Imaging Syst. Technol. 24, 332–338 (2014).

    Article  Google Scholar 

  217. Dvir, T. et al. Nanowired three-dimensional cardiac patches. Nat. Nanotechnol. 6, 720–725 (2011).

    Article  CAS  Google Scholar 

  218. Ahn, Y., Lee, H., Lee, D. & Lee, Y. Highly conductive and flexible silver nanowire-based microelectrodes on biocompatible hydrogel. ACS Appl. Mater. Interfaces 6, 18401–18407 (2014).

    Article  CAS  Google Scholar 

  219. Shin, S. R. et al. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano 7, 2369–2380 (2013).

    Article  CAS  Google Scholar 

  220. Song, H. S., Kwon, O. S., Kim, J.-H., Conde, J. & Artzi, N. 3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics. Biosens. Bioelectron. 89, 187–200 (2017).

    Article  CAS  Google Scholar 

  221. Pan, L. et al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc. Natl Acad. Sci. USA 109, 9287–9292 (2012).

    Article  CAS  Google Scholar 

  222. Yao, B. et al. Ultrahigh-conductivity polymer hydrogels with arbitrary structures. Adv. Mater. 29, 1700974 (2017).

    Article  Google Scholar 

  223. Lu, B. et al. Pure PEDOT: PSS hydrogels. Nat. Commun. 10, 1043 (2019).

    Article  Google Scholar 

  224. Proctor, C. M., Rivnay, J. & Malliaras, G. G. Understanding volumetric capacitance in conducting polymers. J. Polym. Sci. B Polym. Phys. 54, 1433–1436 (2016).

    Article  CAS  Google Scholar 

  225. Paulsen, B. D., Tybrandt, K., Stavrinidou, E. & Rivnay, J. Organic mixed ionic–electronic conductors. Nat. Mater. 19, 13–26 (2020).

    Article  CAS  Google Scholar 

  226. Zhang, Q. et al. High refractive index inorganic–organic interpenetrating polymer network (IPN) hydrogel nanocomposite toward artificial cornea implants. ACS Macro Lett. 1, 876–881 (2012).

    Article  CAS  Google Scholar 

  227. Tummala, G. K., Joffre, T., Rojas, R., Persson, C. & Mihranyan, A. Strain-induced stiffening of nanocellulose-reinforced poly (vinyl alcohol) hydrogels mimicking collagenous soft tissues. Soft Matter 13, 3936–3945 (2017).

    Article  CAS  Google Scholar 

  228. Ritger, P. L. & Peppas, N. A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release 5, 23–36 (1987).

    Article  CAS  Google Scholar 

  229. Ritger, P. L. & Peppas, N. A. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Control. Release 5, 37–42 (1987).

    Article  CAS  Google Scholar 

  230. Cukier, R. Diffusion of Brownian spheres in semidilute polymer solutions. Macromolecules 17, 252–255 (1984).

    Article  CAS  Google Scholar 

  231. Deen, W. Hindered transport of large molecules in liquid-filled pores. AIChE J. 33, 1409–1425 (1987).

    Article  CAS  Google Scholar 

  232. Amsden, B. Solute diffusion within hydrogels. Mechanisms and models. Macromolecules 31, 8382–8395 (1998).

    Article  CAS  Google Scholar 

  233. Esfand, R. & Tomalia, D. A. Poly (amidoamine)(PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov. Today 6, 427–436 (2001).

    Article  CAS  Google Scholar 

  234. Omidian, H., Rocca, J. G. & Park, K. Advances in superporous hydrogels. J. Control. Release 102, 3–12 (2005).

    Article  CAS  Google Scholar 

  235. Zhao, X. et al. Active scaffolds for on-demand drug and cell delivery. Proc. Natl Acad. Sci. USA 108, 67–72 (2011).

    Article  CAS  Google Scholar 

  236. Coughlan, D. & Corrigan, O. Drug–polymer interactions and their effect on thermoresponsive poly (N-isopropylacrylamide) drug delivery systems. Int. J. Pharm. 313, 163–174 (2006).

    Article  CAS  Google Scholar 

  237. Muir, V. G. & Burdick, J. A. Chemically modified biopolymers for the formation of biomedical hydrogels. Chem. Rev. 121, 10949 (2020).

    Google Scholar 

  238. Correa, S. et al. Translational applications of hydrogels. Chem. Rev. 121, 11385–11457 (2021).

    Article  CAS  Google Scholar 

  239. Bouhadir, K. H. et al. Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol. Prog. 17, 945–950 (2001).

    Article  CAS  Google Scholar 

  240. Boontheekul, T., Kong, H.-J. & Mooney, D. J. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials 26, 2455–2465 (2005).

    Article  CAS  Google Scholar 

  241. Lin, C.-C. & Anseth, K. S. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm. Res. 26, 631–643 (2009).

    Article  CAS  Google Scholar 

  242. Zustiak, S. P. & Leach, J. B. Hydrolytically degradable poly (ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties. Biomacromolecules 11, 1348–1357 (2010).

    Article  CAS  Google Scholar 

  243. Burdick, J. A. & Prestwich, G. D. Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 23, H41–H56 (2011).

    Article  CAS  Google Scholar 

  244. Tavakoli, J. & Tang, Y. Hydrogel based sensors for biomedical applications: an updated review. Polymers 9, 364 (2017).

    Article  Google Scholar 

  245. Kim, H., Cohen, R. E., Hammond, P. T. & Irvine, D. J. Live lymphocyte arrays for biosensing. Adv. Funct. Mater. 16, 1313–1323 (2006).

    Article  CAS  Google Scholar 

  246. Ulijn, R. V. et al. Bioresponsive hydrogels. Mater. Today 10, 40–48 (2007).

    Article  CAS  Google Scholar 

  247. Shibata, H. et al. Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring. Proc. Natl Acad. Sci. USA 107, 17894–17898 (2010).

    Article  CAS  Google Scholar 

  248. Bhattacharya, S., Sarkar, R., Nandi, S., Porgador, A. & Jelinek, R. Detection of reactive oxygen species by a carbon-dot–ascorbic acid hydrogel. Anal. Chem. 89, 830–836 (2017).

    Article  CAS  Google Scholar 

  249. Hynes, R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25 (1992).

    Article  CAS  Google Scholar 

  250. Nuttelman, C. R., Mortisen, D. J., Henry, S. M. & Anseth, K. S. Attachment of fibronectin to poly (vinyl alcohol) hydrogels promotes NIH3T3 cell adhesion, proliferation, and migration. J. Biomed. Mater. Res. 57, 217–223 (2001).

    Article  CAS  Google Scholar 

  251. Mosahebi, A., Wiberg, M. & Terenghi, G. Addition of fibronectin to alginate matrix improves peripheral nerve regeneration in tissue-engineered conduits. Tissue Eng. 9, 209–218 (2003).

    Article  CAS  Google Scholar 

  252. Burdick, J. A. & Anseth, K. S. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23, 4315–4323 (2002).

    Article  CAS  Google Scholar 

  253. Yang, F. et al. The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials 26, 5991–5998 (2005).

    Article  CAS  Google Scholar 

  254. Chen, S., Li, L., Zhao, C. & Zheng, J. Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer 51, 5283–5293 (2010).

    Article  CAS  Google Scholar 

  255. Li, J. & Kao, W. J. Synthesis of polyethylene glycol (PEG) derivatives and PEGylated− peptide biopolymer conjugates. Biomacromolecules 4, 1055–1067 (2003).

    Article  CAS  Google Scholar 

  256. Costa, F., Carvalho, I. F., Montelaro, R. C., Gomes, P. & Martins, M. C. L. Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater. 7, 1431–1440 (2011).

    Article  CAS  Google Scholar 

  257. Bazaka, K., Jacob, M. V., Crawford, R. J. & Ivanova, E. P. Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms. Appl. Microbiol. Biotechnol. 95, 299–311 (2012).

    Article  CAS  Google Scholar 

  258. Farah, S. et al. Long-term implant fibrosis prevention in rodents and non-human primates using crystallized drug formulations. Nat. Mater. 18, 892–904 (2019).

    Article  CAS  Google Scholar 

  259. Zhu, J. & Marchant, R. E. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev. Med. Devic. 8, 607–626 (2011).

    Article  Google Scholar 

  260. Cho, Y. W. et al. Gentamicin-releasing urethral catheter for short-term catheterization. J. Biomater. Sci. Polym. Ed. 14, 963–972 (2003).

    Article  CAS  Google Scholar 

  261. Oxley, T. J. et al. Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity. Nat. Biotechnol. 34, 320–327 (2016).

    Article  CAS  Google Scholar 

  262. Kim, K. O., Kim, G. J. & Kim, J. H. A cellulose/β-cyclodextrin nanofiber patch as a wearable epidermal glucose sensor. RSC Adv. 9, 22790–22794 (2019).

    Article  CAS  Google Scholar 

  263. Kim, G. J. & Kim, K. O. Novel glucose-responsive of the transparent nanofiber hydrogel patches as a wearable biosensor via electrospinning. Sci. Rep. 10, 18858 (2020).

    Article  CAS  Google Scholar 

  264. Wang, D.-A. et al. Multifunctional chondroitin sulphate for cartilage tissue–biomaterial integration. Nat. Mater. 6, 385–392 (2007).

    Article  CAS  Google Scholar 

  265. Foyt, D. A., Norman, M. D., Yu, T. T. & Gentleman, E. Exploiting advanced hydrogel technologies to address key challenges in regenerative medicine. Adv. Healthc. Mater. 7, 1700939 (2018).

    Article  Google Scholar 

  266. Quinn, C. A., Connor, R. E. & Heller, A. Biocompatible, glucose-permeable hydrogel for in situ coating of implantable biosensors. Biomaterials 18, 1665–1670 (1997).

    Article  CAS  Google Scholar 

  267. Yetisen, A. K. et al. Glucose-sensitive hydrogel optical fibers functionalized with phenylboronic acid. Adv. Mater. 29, 1606380 (2017).

    Article  Google Scholar 

  268. Kahan, S. & Kumbhari, V. A weight loss device that looks like a pill. Obesity 27, 189–189 (2019).

    Article  Google Scholar 

  269. Kharkar, P. M., Kiick, K. L. & Kloxin, A. M. Designing degradable hydrogels for orthogonal control of cell microenvironments. Chem. Soc. Rev. 42, 7335–7372 (2013).

    Article  CAS  Google Scholar 

  270. Edelman, I. & Leibman, J. Anatomy of body water and electrolytes. Am. J. Med. 27, 256–277 (1959).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Institute of Health (1-R01-HL153857) and the National Science Foundation (EFMA-1935291). This work is additionally supported by the National Research Foundation, the Prime Minister′s Office, Singapore, under its Campus for Research Excellence and Technological Enterprise programme, through the Singapore MIT Alliance for Research and Technology: Critical Analytics for Manufacturing Personalized-Medicine Inter-Disciplinary Research Group. H.Y. acknowledges financial support from Samsung Scholarship. X.Z. acknowledges the George N. Hatsopoulos (1949) Faculty Fellowship from the Massachusetts Institute of Technology and the Humboldt Research Award.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the planning, discussion and writing of the manuscript.

Corresponding authors

Correspondence to Hyunwoo Yuk or Xuanhe Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Capacitance

C=q/V, where q is the charge held on the conductor and V is the electric potential of the conductor. Unit: F.

Electrical conductivity

For an ideal conductor, the electrical conductivity is \(\sigma =L/RA\), where L is the length, A is the cross-sectional area and R is the electrical resistance of the material. The reciprocal of electrical conductivity is electrical resistivity. Unit: Sm-1.

Refractive index

n=c/v, where c is the speed of light in a vacuum and v is the speed of light in the material. Unitless.

Charge injection capacity

Amount of charge that the electrode can inject per unit area without causing irreversible electrochemical reactions or tissue damage.

Young’s modulus

The Young’s modulus of a material in the linear elastic region is E=S/ε, where S is the engineering stress and ε is the engineering strain of the material. Unit: Pa.

Fracture toughness

\(\Gamma ={G}_{c,{\rm{bulk}}}=-\,{\rm{d}}{U}_{{\rm{bulk}}}\,/\,{\rm{d}}A,\) where Gc,bulk is the critical energy release rate that drives bulk crack propagation in the material, Ubulk is the total potential energy of the material and A is the crack area measured in the undeformed state33,159. Unit: Jm-2.

Interfacial toughness

\({\Gamma }^{{\rm{inter}}}={G}_{c,{\rm{inter}}}=-\,{\rm{d}}{U}_{{\rm{inter}}}\,/\,{\rm{d}}A,\) where Gc,inter is the critical energy release rate that drives interfacial crack propagation, Uinter is the total potential energy of the adhered materials and A is the crack area measured in the undeformed state33,162. Unit: Jm-2.

Friction coefficient

\(\mu =f\,/\,N,\) where f is the measured friction force and N is the applied normal force to the material. Unitless.

Acoustic impedance

For a homogeneous material, the acoustic impedance is \(Z=\sqrt{{\rho }_{{\rm{eff}}}{K}_{{\rm{eff}}}},\) where \({\rho }_{{\rm{eff}}}\) is the effective density and Keff is the effective bulk modulus of the material. Unit: Pa∙sm−3.

Transmittance

T=I/I0, where I0 is the intensity of incident light and I is the intensity of transmitted light through the material. Unitless and often denoted in percentage.

Electrical double layer

Accumulation of charged ions around the electrode within electrolytic medium under the applied electric potential.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuk, H., Wu, J. & Zhao, X. Hydrogel interfaces for merging humans and machines. Nat Rev Mater 7, 935–952 (2022). https://doi.org/10.1038/s41578-022-00483-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-022-00483-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing