Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human- and machine-centred designs of molecules and materials for sustainability and decarbonization

Abstract

Breakthroughs in molecular and materials discovery require meaningful outliers to be identified in existing trends. As knowledge accumulates, the inherent bias of human intuition makes it harder to elucidate increasingly opaque chemical and physical principles. Moreover, given the limited manual and intellectual throughput of investigators, these principles cannot be efficiently applied to design new materials across a vast chemical space. Many data-driven approaches, following advances in high-throughput capabilities and machine learning, have tackled these limitations. In this Review, we compare traditional, human-centred methods with state-of-the-art, data-driven approaches to molecular and materials discovery. We first introduce the limitations of human-centred Edisonian, model-system and descriptor-based approaches. We then discuss how data-driven approaches can address these limitations by promoting throughput, reducing cognitive overload and biases, and establishing atomistic understanding that is transferable across a broad chemical space. We examine how high-throughput capabilities can be combined with active learning and inverse design to efficiently optimize materials out of millions or an intractable number of candidates. Lastly, we pinpoint challenges to accelerate future workflows and ultimately enable self-driving platforms, which automate and streamline the optimization of molecules and materials in iterative cycles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Human-centred and data-driven molecular and materials discovery paradigms.
Fig. 2: Human-crafted and data-driven descriptors.
Fig. 3: Sequential screening tiers in the modern high-throughput screening approach.
Fig. 4: Active learning of materials for performance optimization.
Fig. 5: Inverse design of materials with generative models.

Similar content being viewed by others

References

  1. Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    Article  CAS  Google Scholar 

  2. Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017).

    Article  Google Scholar 

  3. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  Google Scholar 

  4. Li, W., Erickson, E. M. & Manthiram, A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 5, 26–34 (2020).

    Article  CAS  Google Scholar 

  5. Montoya, J. H. et al. Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2017).

    Article  Google Scholar 

  6. Muy, S. et al. Tuning mobility and stability of lithium ion conductors based on lattice dynamics. Energy Environ. Sci. 11, 850–859 (2018).

    Article  CAS  Google Scholar 

  7. Gorai, P., Stevanović, V. & Toberer, E. S. Computationally guided discovery of thermoelectric materials. Nat. Rev. Mater. 2, 17053 (2017).

    Article  CAS  Google Scholar 

  8. Zavyalova, U., Holena, M., Schlögl, R. & Baerns, M. Statistical analysis of past catalytic data on oxidative methane coupling for new insights into the composition of high-performance catalysts. ChemCatChem 3, 1935–1947 (2011).

    Article  CAS  Google Scholar 

  9. Hwang, J. et al. Perovskites in catalysis and electrocatalysis. Science 358, 751–756 (2017).

    Article  CAS  Google Scholar 

  10. Medford, A. J. et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328, 36–42 (2015).

    Article  CAS  Google Scholar 

  11. Medford, A. J., Kunz, M. R., Ewing, S. M., Borders, T. & Fushimi, R. Extracting knowledge from data through catalysis informatics. ACS Catal. 8, 7403–7429 (2018).

    Article  CAS  Google Scholar 

  12. Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular design using machine learning: generative models for matter engineering. Science 361, 360–365 (2018).

    Article  CAS  Google Scholar 

  13. Gromski, P. S., Henson, A. B., Granda, J. M. & Cronin, L. How to explore chemical space using algorithms and automation. Nat. Rev. Chem. 3, 119–128 (2019).

    Article  Google Scholar 

  14. Tabor, D. P. et al. Accelerating the discovery of materials for clean energy in the era of smart automation. Nat. Rev. Mater. 3, 5–20 (2018).

    Article  CAS  Google Scholar 

  15. Pyzer-Knapp, E. O., Suh, C., Gómez-Bombarelli, R., Aguilera-Iparraguirre, J. & Aspuru-Guzik, A. What is high-throughput virtual screening? A perspective from organic materials discovery. Annu. Rev. Mater. Res. 45, 195–216 (2015).

    Article  CAS  Google Scholar 

  16. Häse, F., Roch, L. M. & Aspuru-Guzik, A. Next-generation experimentation with self-driving laboratories. Trends Chem. 1, 282–291 (2019).

    Article  Google Scholar 

  17. Stein, H. S. & Gregoire, J. M. Progress and prospects for accelerating materials science with automated and autonomous workflows. Chem. Sci. 10, 9640–9649 (2019).

    Article  CAS  Google Scholar 

  18. Aspuru-Guzik, A. & Persson, K. Materials Acceleration Platform: Accelerating Advanced Energy Materials Discovery by Integrating High-Throughput Methods and Artificial Intelligence. Report of the Clean Energy Materials Innovation Workshop http://nrs.harvard.edu/urn-3:HUL.InstRepos:35164974 (SENER/US Department of Energy/CIFAR, 2018).

  19. George, J. & Hautier, G. Chemist versus machine: traditional knowledge versus machine learning techniques. Trends Chem. 3, 86–95 (2021).

    Article  CAS  Google Scholar 

  20. Topham, S. A. in Catalysis: Science and Technology (eds Anderson, J. R. & Boudart, M.) 1–50 (Springer, 1985).

  21. Haber, F. & Koenig, A. Wissenschaftliche Übersichten: Oxydation des Luftstickstoffes. Z. Elektrochem. Angew. Phys. Chem. 16, 11–25 (1910).

    Article  CAS  Google Scholar 

  22. Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008).

    Article  CAS  Google Scholar 

  23. Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Article  Google Scholar 

  24. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    Article  CAS  Google Scholar 

  25. Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

    Article  CAS  Google Scholar 

  26. Jia, X. et al. Anthropogenic biases in chemical reaction data hinder exploratory inorganic synthesis. Nature 573, 251–255 (2019).

    Article  CAS  Google Scholar 

  27. Qiao, B. et al. Quantitative mapping of molecular substituents to macroscopic properties enables predictive design of oligoethylene glycol-based lithium electrolytes. ACS Cent. Sci. 6, 1115–1128 (2020).

    Article  CAS  Google Scholar 

  28. Lopez, J., Mackanic, D. G., Cui, Y. & Bao, Z. Designing polymers for advanced battery chemistries. Nat. Rev. Mater. 4, 312–330 (2019).

    Article  CAS  Google Scholar 

  29. Bachman, J. C. et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016).

    Article  CAS  Google Scholar 

  30. Lu, Y. C. et al. Lithium–oxygen batteries: bridging mechanistic understanding and battery performance. Energy Environ. Sci. 6, 750–768 (2013).

    Article  CAS  Google Scholar 

  31. Feng, S. et al. Mapping a stable solvent structure landscape for aprotic Li–air battery organic electrolytes. J. Mater. Chem. A 5, 23987–23998 (2017).

    Article  CAS  Google Scholar 

  32. Giordano, L. et al. Ligand-dependent energetics for dehydrogenation: implications in Li-ion battery electrolyte stability and selective oxidation catalysis of hydrogen-containing molecules. Chem. Mater. 31, 5464–5474 (2019).

    Article  CAS  Google Scholar 

  33. Stoerzinger, K. A., Qiao, L., Biegalski, M. D. & Shao-Horn, Y. Orientation-dependent oxygen evolution activities of rutile IrO2 and RuO2. J. Phys. Chem. Lett. 5, 1636–1641 (2014).

    Article  CAS  Google Scholar 

  34. Rao, R. R. et al. Operando identification of site-dependent water oxidation activity on ruthenium dioxide single-crystal surfaces. Nat. Catal. 3, 516–525 (2020).

    Article  CAS  Google Scholar 

  35. Shi, Y. et al. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 121, 649–735 (2021).

    Article  CAS  Google Scholar 

  36. Sata, N., Eberman, K., Eberl, K. & Maier, J. Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature 408, 946–949 (2000).

    Article  CAS  Google Scholar 

  37. Luckyanova, M. N. et al. Coherent phonon heat conduction in superlattices. Science 338, 936–939 (2012).

    Article  CAS  Google Scholar 

  38. Ertl, G. Surface science and catalysis — studies on the mechanism of ammonia synthesis: the P. H. Emmett award address. Catal. Rev. 21, 201–223 (1980).

    Article  CAS  Google Scholar 

  39. Ertl, G. Reactions at surfaces: from atoms to complexity (Nobel lecture). Angew. Chem. Int. Ed. 47, 3524–3535 (2008).

    Article  CAS  Google Scholar 

  40. Stoltze, P. & Nørskov, J. K. Bridging the ‘pressure gap’ between ultrahigh-vacuum surface physics and high-pressure catalysis. Phys. Rev. Lett. 55, 2502–2505 (1985).

    Article  CAS  Google Scholar 

  41. Duke, C. B. The birth and evolution of surface science: child of the union of science and technology. Proc. Natl Acad. Sci. USA 100, 3858–3864 (2003).

    Article  CAS  Google Scholar 

  42. Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003).

    Article  CAS  Google Scholar 

  43. Guo, J. et al. Real-space imaging of interfacial water with submolecular resolution. Nat. Mater. 13, 184–189 (2014).

    Article  CAS  Google Scholar 

  44. Wei, C. et al. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv. Mater. 31, 1806296 (2019).

    Article  Google Scholar 

  45. Talaie, E. et al. Methods and protocols for electrochemical energy storage materials research. Chem. Mater. 29, 90–105 (2017).

    Article  CAS  Google Scholar 

  46. Bruix, A., Margraf, J. T., Andersen, M. & Reuter, K. First-principles-based multiscale modelling of heterogeneous catalysis. Nat. Catal. 2, 659–670 (2019).

    Article  CAS  Google Scholar 

  47. Kitano, M. et al. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem. 4, 934–940 (2012).

    Article  CAS  Google Scholar 

  48. Ye, T.-N. et al. Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature 583, 391–395 (2020).

    Article  CAS  Google Scholar 

  49. Shen, T.-H. et al. Oxygen evolution reaction in Ba0.5Sr0.5Co0.8Fe0.2O3−δ aided by intrinsic Co/Fe spinel-like surface. J. Am. Chem. Soc. 142, 15876–15883 (2020).

    Article  CAS  Google Scholar 

  50. Wan, G. et al. Amorphization mechanism of SrIrO3 electrocatalyst: how oxygen redox initiates ionic diffusion and structural reorganization. Sci. Adv. 7, eabc7323 (2021).

    Article  CAS  Google Scholar 

  51. Reuter, K., Plaisance, C. P., Oberhofer, H. & Andersen, M. Perspective: on the active site model in computational catalyst screening. J. Chem. Phys. 146, 040901 (2017).

    Article  Google Scholar 

  52. Gauthier, M. et al. Electrode–electrolyte interface in Li-ion batteries: current understanding and new insights. J. Phys. Chem. Lett. 6, 4653–4672 (2015).

    Article  CAS  Google Scholar 

  53. Plaisance, C. P., Reuter, K. & van Santen, R. A. Quantum chemistry of the oxygen evolution reaction on cobalt(ii,iii) oxide — implications for designing the optimal catalyst. Faraday Discuss. 188, 199–226 (2016).

    Article  CAS  Google Scholar 

  54. Ghiringhelli, L. M., Vybiral, J., Levchenko, S. V., Draxl, C. & Scheffler, M. Big data of materials science: critical role of the descriptor. Phys. Rev. Lett. 114, 105503 (2015).

    Article  Google Scholar 

  55. Wagner, N. & Rondinelli, J. M. Theory-guided machine learning in materials science. Front. Mater. 3, 28 (2016).

    Article  Google Scholar 

  56. Nørskov, J. K., Abild-Pedersen, F., Studt, F. & Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl Acad. Sci. USA 108, 937–943 (2011).

    Article  Google Scholar 

  57. Muratov, E. N. et al. QSAR without borders. Chem. Soc. Rev. 49, 3525–3564 (2020).

    Article  CAS  Google Scholar 

  58. Jain, A., Shin, Y. & Persson, K. A. Computational predictions of energy materials using density functional theory. Nat. Rev. Mater. 1, 15004 (2016).

    Article  CAS  Google Scholar 

  59. Stocker, S., Csányi, G., Reuter, K. & Margraf, J. T. Machine learning in chemical reaction space. Nat. Commun. 11, 5505 (2020).

    Article  CAS  Google Scholar 

  60. Miller, G. A. The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63, 81–97 (1956).

    Article  CAS  Google Scholar 

  61. George, J. et al. The limited predictive power of the Pauling rules. Angew. Chem. Int. Ed. 59, 7569–7575 (2020).

    Article  CAS  Google Scholar 

  62. Hong, W. T., Welsch, R. E. & Shao-Horn, Y. Descriptors of oxygen-evolution activity for oxides: a statistical evaluation. J. Phys. Chem. C 120, 78–86 (2016).

    Article  CAS  Google Scholar 

  63. Hoerl, A. E. & Kennard, R. W. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12, 55–67 (1970).

    Article  Google Scholar 

  64. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58, 267–288 (1996).

    Google Scholar 

  65. Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 67, 301–320 (2005).

    Article  Google Scholar 

  66. Cramer, J. S. The early origins of the logit model. Stud. Hist. Phil. Sci. Part C 35, 613–626 (2004).

    Google Scholar 

  67. Ho, T. K. Random decision forests. Proc. 3rd Int. Conf. Doc. Anal. Recognit. 1, 278–282 (1995).

    Article  Google Scholar 

  68. Wang, A. Y.-T. et al. Machine learning for materials scientists: an introductory guide toward best practices. Chem. Mater. 32, 4954–4965 (2020).

    Article  CAS  Google Scholar 

  69. Artrith, N. et al. Best practices in machine learning for chemistry. Nat. Chem. 13, 505–508 (2021).

    Article  CAS  Google Scholar 

  70. Zhu, T. et al. Charting lattice thermal conductivity for inorganic crystals and discovering rare earth chalcogenides for thermoelectrics. Energy Environ. Sci. 14, 3559–3566 (2021).

    Article  CAS  Google Scholar 

  71. García-Muelas, R. & López, N. Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals. Nat. Commun. 10, 4687 (2019).

    Article  Google Scholar 

  72. Batra, R., Chen, C., Evans, T. G., Walton, K. S. & Ramprasad, R. Prediction of water stability of metal–organic frameworks using machine learning. Nat. Mach. Intell. 2, 704–710 (2020).

    Article  Google Scholar 

  73. Ahneman, D. T., Estrada, J. G., Lin, S., Dreher, S. D. & Doyle, A. G. Predicting reaction performance in C–N cross-coupling using machine learning. Science 360, 186–190 (2018).

    Article  CAS  Google Scholar 

  74. Ouyang, R., Curtarolo, S., Ahmetcik, E., Scheffler, M. & Ghiringhelli, L. M. SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Phys. Rev. Mater. 2, 83802 (2018).

    Article  CAS  Google Scholar 

  75. Ouyang, R., Ahmetcik, E., Carbogno, C., Scheffler, M. & Ghiringhelli, L. M. Simultaneous learning of several materials properties from incomplete databases with multi-task SISSO. J. Phys. Mater. 2, 24002 (2019).

    Article  Google Scholar 

  76. Andersen, M., Levchenko, S. V., Scheffler, M. & Reuter, K. Beyond scaling relations for the description of catalytic materials. ACS Catal. 9, 2752–2759 (2019).

    Article  CAS  Google Scholar 

  77. Xu, W., Andersen, M. & Reuter, K. Data-driven descriptor engineering and refined scaling relations for predicting transition metal oxide reactivity. ACS Catal. 11, 734–742 (2021).

    Article  CAS  Google Scholar 

  78. Bartel, C. J. et al. New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 5, eaav0693 (2019).

    Article  CAS  Google Scholar 

  79. Ouyang, B. et al. Synthetic accessibility and stability rules of NASICONs. Nat. Commun. 12, 5752 (2021).

    Article  CAS  Google Scholar 

  80. Hanak, J. J. The ‘multiple-sample concept’ in materials research: synthesis, compositional analysis and testing of entire multicomponent systems. J. Mater. Sci. 5, 964–971 (1970).

    Article  CAS  Google Scholar 

  81. Xiang, X.-D. et al. A combinatorial approach to materials discovery. Science 268, 1738–1740 (1995).

    Article  CAS  Google Scholar 

  82. Szymanski, N. J. et al. Toward autonomous design and synthesis of novel inorganic materials. Mater. Horiz. 8, 2169–2198 (2021).

    Article  CAS  Google Scholar 

  83. Adhikari, T. et al. Development of high-throughput methods for sodium-ion battery cathodes. ACS Comb. Sci. 22, 311–318 (2020).

    Article  CAS  Google Scholar 

  84. Brown, C. R., McCalla, E., Watson, C. & Dahn, J. R. Combinatorial study of the Li–Ni–Mn–Co oxide pseudoquaternary system for use in Li–ion battery materials research. ACS Comb. Sci. 17, 381–391 (2015).

    Article  CAS  Google Scholar 

  85. Potts, K. P., Grignon, E. & McCalla, E. Accelerated screening of high-energy lithium-ion battery cathodes. ACS Appl. Energy Mater. 2, 8388–8393 (2019).

    Article  CAS  Google Scholar 

  86. Jonderian, A., Ting, M. & McCalla, E. Metastability in Li–La–Ti–O perovskite materials and its impact on ionic conductivity. Chem. Mater. 33, 4792–4804 (2021).

    Article  CAS  Google Scholar 

  87. Yao, Y. et al. High-throughput, combinatorial synthesis of multimetallic nanoclusters. Proc. Natl Acad. Sci. USA 117, 6316–6322 (2020).

    Article  CAS  Google Scholar 

  88. Hattrick-Simpers, J. R., Gregoire, J. M. & Kusne, A. G. Perspective: composition–structure–property mapping in high-throughput experiments: turning data into knowledge. APL Mater. 4, 53211 (2016).

    Article  Google Scholar 

  89. Green, M. L. et al. Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies. Appl. Phys. Rev. 4, 11105 (2017).

    Article  Google Scholar 

  90. Marzari, N., Ferretti, A. & Wolverton, C. Electronic-structure methods for materials design. Nat. Mater. 20, 736–749 (2021).

    Article  CAS  Google Scholar 

  91. Axelrod, S. et al. Learning matter: materials design with machine learning and atomistic simulations. Acc. Mater. Res. 3, 343–357 (2022).

    Article  CAS  Google Scholar 

  92. Reymond, J.-L., van Deursen, R., Blum, L. C. & Ruddigkeit, L. Chemical space as a source for new drugs. Med. Chem. Commun. 1, 30–38 (2010).

    Article  CAS  Google Scholar 

  93. Horton, M. K., Dwaraknath, S. & Persson, K. A. Promises and perils of computational materials databases. Nat. Comput. Sci. 1, 3–5 (2021).

    Article  Google Scholar 

  94. Hachmann, J. et al. The Harvard Clean Energy Project: large-scale computational screening and design of organic photovoltaics on the world community grid. J. Phys. Chem. Lett. 2, 2241–2251 (2011).

    Article  CAS  Google Scholar 

  95. Olivares-Amaya, R. et al. Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics. Energy Environ. Sci. 4, 4849–4861 (2011).

    Article  CAS  Google Scholar 

  96. Hachmann, J. et al. Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry — the Harvard Clean Energy Project. Energy Environ. Sci. 7, 698–704 (2014).

    Article  CAS  Google Scholar 

  97. Er, S., Suh, C., Marshak, M. P. & Aspuru-Guzik, A. Computational design of molecules for an all-quinone redox flow battery. Chem. Sci. 6, 885–893 (2015).

    Article  CAS  Google Scholar 

  98. Lin, K. et al. A redox-flow battery with an alloxazine-based organic electrolyte. Nat. Energy 1, 16102 (2016).

    Article  CAS  Google Scholar 

  99. Boyd, P. G. et al. Data-driven design of metal–organic frameworks for wet flue gas CO2 capture. Nature 576, 253–256 (2019).

    Article  CAS  Google Scholar 

  100. Schwalbe-Koda, D. et al. A priori control of zeolite phase competition and intergrowth with high-throughput simulations. Science 374, 308–315 (2021).

    Article  CAS  Google Scholar 

  101. Shinde, A. et al. Discovery of manganese-based solar fuel photoanodes via integration of electronic structure calculations, Pourbaix stability modeling, and high-throughput experiments. ACS Energy Lett. 2, 2307–2312 (2017).

    Article  CAS  Google Scholar 

  102. Yan, Q. et al. Solar fuels photoanode materials discovery by integrating high-throughput theory and experiment. Proc. Natl Acad. Sci. USA 114, 3040–3043 (2017).

    Article  CAS  Google Scholar 

  103. Noh, J. et al. Unveiling new stable manganese based photoanode materials via theoretical high-throughput screening and experiments. Chem. Commun. 55, 13418–13421 (2019).

    Article  CAS  Google Scholar 

  104. Xiong, Y. et al. Optimizing accuracy and efficacy in data-driven materials discovery for the solar production of hydrogen. Energy Environ. Sci. 14, 2335–2348 (2021).

    Article  CAS  Google Scholar 

  105. Muy, S. et al. High-throughput screening of solid-state Li-ion conductors using lattice-dynamics descriptors. iScience 16, 270–282 (2019).

    Article  CAS  Google Scholar 

  106. Wang, S., Wang, Z., Setyawan, W., Mingo, N. & Curtarolo, S. Assessing the thermoelectric properties of sintered compounds via high-throughput ab-initio calculations. Phys. Rev. X 1, 21012 (2011).

    Google Scholar 

  107. Xiao, Y., Miara, L. J., Wang, Y. & Ceder, G. Computational screening of cathode coatings for solid-state batteries. Joule 3, 1252–1275 (2019).

    Article  CAS  Google Scholar 

  108. Aykol, M. et al. High-throughput computational design of cathode coatings for Li-ion batteries. Nat. Commun. 7, 13779 (2016).

    Article  CAS  Google Scholar 

  109. Jain, A. et al. Commentary: the Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 11002 (2013).

    Article  Google Scholar 

  110. Aykol, M., Dwaraknath, S. S., Sun, W. & Persson, K. A. Thermodynamic limit for synthesis of metastable inorganic materials. Sci. Adv. 4, eaaq0148 (2018).

    Article  Google Scholar 

  111. Singh, A. K. et al. Electrochemical stability of metastable materials. Chem. Mater. 29, 10159–10167 (2017).

    Article  CAS  Google Scholar 

  112. Talirz, L. et al. Materials Cloud, a platform for open computational science. Sci. Data 7, 299 (2020).

    Article  Google Scholar 

  113. Draxl, C. & Scheffler, M. The NOMAD laboratory: from data sharing to artificial intelligence. J. Phys. Mater. 2, 036001 (2019).

    Article  CAS  Google Scholar 

  114. Curtarolo, S. et al. AFLOW: an automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 58, 218–226 (2012).

    Article  CAS  Google Scholar 

  115. Curtarolo, S. et al. AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci. 58, 227–235 (2012).

    Article  CAS  Google Scholar 

  116. Saal, J. E., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 65, 1501–1509 (2013).

    Article  CAS  Google Scholar 

  117. Winther, K. T. et al. Catalysis-Hub.org, an open electronic structure database for surface reactions. Sci. Data 6, 75 (2019).

    Article  Google Scholar 

  118. Chanussot, L. et al. Open Catalyst 2020 (OC20) dataset and community challenges. ACS Catal. 11, 6059–6072 (2021).

    Article  CAS  Google Scholar 

  119. Rosen, A. S. et al. Machine learning the quantum-chemical properties of metal–organic frameworks for accelerated materials discovery. Matter 4, 1578–1597 (2021).

    Article  CAS  Google Scholar 

  120. O’Mara, J., Meredig, B. & Michel, K. Materials data infrastructure: a case study of the Citrination platform to examine data import, storage, and access. JOM 68, 2031–2034 (2016).

    Article  Google Scholar 

  121. Blaiszik, B. et al. The materials data facility: data services to advance materials science research. JOM 68, 2045–2052 (2016).

    Article  Google Scholar 

  122. Zakutayev, A. et al. An open experimental database for exploring inorganic materials. Sci. Data 5, 180053 (2018).

    Article  Google Scholar 

  123. Soedarmadji, E., Stein, H. S., Suram, S. K., Guevarra, D. & Gregoire, J. M. Tracking materials science data lineage to manage millions of materials experiments and analyses. npj Comput. Mater. 5, 79 (2019).

    Article  Google Scholar 

  124. Ma, S. & Liu, Z.-P. Machine learning for atomic simulation and activity prediction in heterogeneous catalysis: current status and future. ACS Catal. 10, 13213–13226 (2020).

    Article  CAS  Google Scholar 

  125. Manzhos, S. & Carrington, T. Neural network potential energy surfaces for small molecules and reactions. Chem. Rev. 121, 10187–10217 (2021).

    Article  CAS  Google Scholar 

  126. Wang, Y. et al. Design principles for solid-state lithium superionic conductors. Nat. Mater. 14, 1026–1031 (2015).

    Article  CAS  Google Scholar 

  127. Rong, Z. et al. Materials design rules for multivalent ion mobility in intercalation structures. Chem. Mater. 27, 6016–6021 (2015).

    Article  CAS  Google Scholar 

  128. Canepa, P. et al. High magnesium mobility in ternary spinel chalcogenides. Nat. Commun. 8, 1759 (2017).

    Article  Google Scholar 

  129. Natarajan, A. R. & Van der Ven, A. Machine-learning the configurational energy of multicomponent crystalline solids. npj Comput. Mater. 4, 56 (2018).

    Article  Google Scholar 

  130. Kaufman, J. L., Vinckevičiūtė, J., Krishna Kolli, S., Gabriel Goiri, J. & Van der Ven, A. Understanding intercalation compounds for sodium-ion batteries and beyond. Phil. Trans. R. Soc. A 377, 20190020 (2019).

    Article  CAS  Google Scholar 

  131. Wang, Z. et al. Phase stability and sodium-vacancy orderings in a NaSICON electrode. J. Mater. Chem. A 10, 209–217 (2022).

    Article  Google Scholar 

  132. Ament, S. E. et al. Multi-component background learning automates signal detection for spectroscopic data. npj Comput. Mater. 5, 77 (2019).

    Article  Google Scholar 

  133. Kalinin, S. V., Sumpter, B. G. & Archibald, R. K. Big–deep–smart data in imaging for guiding materials design. Nat. Mater. 14, 973–980 (2015).

    Article  CAS  Google Scholar 

  134. Spurgeon, S. R. et al. Towards data-driven next-generation transmission electron microscopy. Nat. Mater. 20, 274–279 (2021).

    Article  CAS  Google Scholar 

  135. Kalinin, S. V. et al. Machine learning in scanning transmission electron microscopy. Nat. Rev. Methods Prim. 2, 11 (2022).

    Article  CAS  Google Scholar 

  136. Friederich, P., Häse, F., Proppe, J. & Aspuru-Guzik, A. Machine-learned potentials for next-generation matter simulations. Nat. Mater. 20, 750–761 (2021).

    Article  CAS  Google Scholar 

  137. Calegari Andrade, M. F., Ko, H.-Y., Zhang, L., Car, R. & Selloni, A. Free energy of proton transfer at the water–TiO2 interface from ab initio deep potential molecular dynamics. Chem. Sci. 11, 2335–2341 (2020).

    Article  CAS  Google Scholar 

  138. Deringer, V. L. et al. Origins of structural and electronic transitions in disordered silicon. Nature 589, 59–64 (2021).

    Article  CAS  Google Scholar 

  139. Schütt, K. T., Sauceda, H. E., Kindermans, P.-J., Tkatchenko, A. & Müller, K.-R. SchNet — a deep learning architecture for molecules and materials. J. Chem. Phys. 148, 241722 (2018).

    Article  Google Scholar 

  140. Wang, W., Yang, T., Harris, W. H. & Gómez-Bombarelli, R. Active learning and neural network potentials accelerate molecular screening of ether-based solvate ionic liquids. Chem. Commun. 56, 8920–8923 (2020).

    Article  CAS  Google Scholar 

  141. Margraf, J. T. & Reuter, K. Pure non-local machine-learned density functional theory for electron correlation. Nat. Commun. 12, 344 (2021).

    Article  CAS  Google Scholar 

  142. Garrido Torres, J. A., Jennings, P. C., Hansen, M. H., Boes, J. R. & Bligaard, T. Low-scaling algorithm for nudged elastic band calculations using a surrogate machine learning model. Phys. Rev. Lett. 122, 156001 (2019).

    Article  CAS  Google Scholar 

  143. Ang, S. J., Wang, W., Schwalbe-Koda, D., Axelrod, S. & Gómez-Bombarelli, R. Active learning accelerates ab initio molecular dynamics on reactive energy surfaces. Chem 7, 738–751 (2021).

    Article  CAS  Google Scholar 

  144. Artrith, N., Lin, Z. & Chen, J. G. Predicting the activity and selectivity of bimetallic metal catalysts for ethanol reforming using machine learning. ACS Catal. 10, 9438–9444 (2020).

    Article  CAS  Google Scholar 

  145. Oviedo, F. et al. Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks. npj Comput. Mater. 5, 60 (2019).

    Article  Google Scholar 

  146. Maffettone, P. M. et al. Crystallography companion agent for high-throughput materials discovery. Nat. Comput. Sci. 1, 290–297 (2021).

    Article  Google Scholar 

  147. Szymanski, N. J., Bartel, C. J., Zeng, Y., Tu, Q. & Ceder, G. Probabilistic deep learning approach to automate the interpretation of multi-phase diffraction spectra. Chem. Mater. 33, 4204–4215 (2021).

    Article  CAS  Google Scholar 

  148. Chen, D. et al. Automating crystal-structure phase mapping by combining deep learning with constraint reasoning. Nat. Mach. Intell. 3, 812–822 (2021).

    Article  Google Scholar 

  149. Pollice, R. et al. Data-driven strategies for accelerated materials design. Acc. Chem. Res. 54, 849–860 (2021).

    Article  CAS  Google Scholar 

  150. Rogers, D. & Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 50, 742–754 (2010).

    Article  CAS  Google Scholar 

  151. Gómez-Bombarelli, R. et al. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat. Mater. 15, 1120–1127 (2016).

    Article  Google Scholar 

  152. Musil, F. et al. Physics-inspired structural representations for molecules and materials. Chem. Rev. 121, 9759–9815 (2021).

    Article  CAS  Google Scholar 

  153. Bartók, A. P., Kondor, R. & Csányi, G. On representing chemical environments. Phys. Rev. B 87, 184115 (2013).

    Article  Google Scholar 

  154. Smidt, T. E. Euclidean symmetry and equivariance in machine learning. Trends Chem. 3, 82–85 (2021).

    Article  CAS  Google Scholar 

  155. Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28, 31–36 (1988).

    Article  CAS  Google Scholar 

  156. Krenn, M., Häse, F., Nigam, A., Friederich, P. & Aspuru-Guzik, A. Self-referencing embedded strings (SELFIES): a 100% robust molecular string representation. Mach. Learn. Sci. Technol. 1, 45024 (2020).

    Article  Google Scholar 

  157. Duvenaud, D. K. et al. Convolutional networks on graphs for learning molecular fingerprints. Adv. Neural Inf. Process. Syst. 28, 2224–2232 (2015).

    Google Scholar 

  158. Mohapatra, S., Yang, T. & Gómez-Bombarelli, R. Reusability report: designing organic photoelectronic molecules with descriptor conditional recurrent neural networks. Nat. Mach. Intell. 2, 749–752 (2020).

    Article  Google Scholar 

  159. Dunn, A., Wang, Q., Ganose, A., Dopp, D. & Jain, A. Benchmarking materials property prediction methods: the Matbench test set and Automatminer reference algorithm. npj Comput. Mater. 6, 138 (2020).

    Article  Google Scholar 

  160. Ziletti, A., Kumar, D., Scheffler, M. & Ghiringhelli, L. M. Insightful classification of crystal structures using deep learning. Nat. Commun. 9, 2775 (2018).

    Article  Google Scholar 

  161. Noh, J. et al. Inverse design of solid-state materials via a continuous representation. Matter 1, 1370–1384 (2019).

    Article  Google Scholar 

  162. Schütt, K. T. et al. How to represent crystal structures for machine learning: towards fast prediction of electronic properties. Phys. Rev. B 89, 205118 (2014).

    Article  Google Scholar 

  163. Seko, A., Hayashi, H., Nakayama, K., Takahashi, A. & Tanaka, I. Representation of compounds for machine-learning prediction of physical properties. Phys. Rev. B 95, 144110 (2017).

    Article  Google Scholar 

  164. Isayev, O. et al. Universal fragment descriptors for predicting properties of inorganic crystals. Nat. Commun. 8, 15679 (2017).

    Article  CAS  Google Scholar 

  165. Xie, T. & Grossman, J. C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120, 145301 (2018).

    Article  CAS  Google Scholar 

  166. Fung, V., Zhang, J., Juarez, E. & Sumpter, B. G. Benchmarking graph neural networks for materials chemistry. npj Comput. Mater. 7, 84 (2021).

    Article  CAS  Google Scholar 

  167. Xie, T. & Grossman, J. C. Hierarchical visualization of materials space with graph convolutional neural networks. J. Chem. Phys. 149, 174111 (2018).

    Article  Google Scholar 

  168. Coley, C. W. Defining and exploring chemical spaces. Trends Chem. 3, 133–145 (2021).

    Article  CAS  Google Scholar 

  169. Cheng, B. et al. Mapping materials and molecules. Acc. Chem. Res. 53, 1981–1991 (2020).

    Article  CAS  Google Scholar 

  170. Ceriotti, M. Unsupervised machine learning in atomistic simulations, between predictions and understanding. J. Chem. Phys. 150, 150901 (2019).

    Article  Google Scholar 

  171. van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    Google Scholar 

  172. McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: uniform manifold approximation and projection. J. Open Source Softw. 3, 861 (2018).

    Article  Google Scholar 

  173. Wattenberg, M., Viégas, F. & Johnson, I. How to use t-SNE effectively. Distill 1, e2 (2016).

    Article  Google Scholar 

  174. Kobak, D. & Linderman, G. C. Initialization is critical for preserving global data structure in both t-SNE and UMAP. Nat. Biotechnol. 39, 156–157 (2021).

    Article  CAS  Google Scholar 

  175. Tran, K. & Ulissi, Z. W. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat. Catal. 1, 696–703 (2018).

    Article  CAS  Google Scholar 

  176. Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020).

    Article  CAS  Google Scholar 

  177. Goldsmith, B. R., Boley, M., Vreeken, J., Scheffler, M. & Ghiringhelli, L. M. Uncovering structure–property relationships of materials by subgroup discovery. N. J. Phys. 19, 13031 (2017).

    Article  Google Scholar 

  178. Hautier, G., Fischer, C., Ehrlacher, V., Jain, A. & Ceder, G. Data mined ionic substitutions for the discovery of new compounds. Inorg. Chem. 50, 656–663 (2011).

    Article  CAS  Google Scholar 

  179. Zhang, Y. et al. Unsupervised discovery of solid-state lithium ion conductors. Nat. Commun. 10, 5260 (2019).

    Article  Google Scholar 

  180. Blyth, C. R. On Simpson’s paradox and the sure-thing principle. J. Am. Stat. Assoc. 67, 364–366 (1972).

    Article  Google Scholar 

  181. Li, H. et al. Subgroup discovery points to the prominent role of charge transfer in breaking nitrogen scaling relations at single-atom catalysts on VS2. ACS Catal. 11, 7906–7914 (2021).

    Article  CAS  Google Scholar 

  182. Terayama, K., Sumita, M., Tamura, R. & Tsuda, K. Black-box optimization for automated discovery. Acc. Chem. Res. 54, 1334–1346 (2021).

    Article  CAS  Google Scholar 

  183. Sun, S. et al. A data fusion approach to optimize compositional stability of halide perovskites. Matter 4, 1305–1322 (2021).

    Article  CAS  Google Scholar 

  184. Rohr, B. et al. Benchmarking the acceleration of materials discovery by sequential learning. Chem. Sci. 11, 2696–2706 (2020).

    Article  Google Scholar 

  185. Langner, S. et al. Beyond ternary OPV: high-throughput experimentation and self-driving laboratories optimize multicomponent systems. Adv. Mater. 32, 1907801 (2020).

    Article  CAS  Google Scholar 

  186. Shields, B. J. et al. Bayesian reaction optimization as a tool for chemical synthesis. Nature 590, 89–96 (2021).

    Article  CAS  Google Scholar 

  187. Kunkel, C., Margraf, J. T., Chen, K., Oberhofer, H. & Reuter, K. Active discovery of organic semiconductors. Nat. Commun. 12, 2422 (2021).

    Article  CAS  Google Scholar 

  188. Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555, 604–610 (2018).

    Article  CAS  Google Scholar 

  189. Granda, J. M., Donina, L., Dragone, V., Long, D.-L. & Cronin, L. Controlling an organic synthesis robot with machine learning to search for new reactivity. Nature 559, 377–381 (2018).

    Article  CAS  Google Scholar 

  190. Coley, C. W. et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 365, eaax1566 (2019).

    Article  CAS  Google Scholar 

  191. MacLeod, B. P. et al. Self-driving laboratory for accelerated discovery of thin-film materials. Sci. Adv. 6, eaaz8867 (2020).

    Article  CAS  Google Scholar 

  192. MacLeod, B. P. et al. A self-driving laboratory advances the Pareto front for material properties. Nat. Commun. 13, 995 (2022).

    Article  CAS  Google Scholar 

  193. Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).

    Article  CAS  Google Scholar 

  194. Stach, E. et al. Autonomous experimentation systems for materials development: a community perspective. Matter 4, 2702–2726 (2021).

    Article  Google Scholar 

  195. Schwalbe-Koda, D. & Gómez-Bombarelli, R. in Machine Learning Meets Quantum Physics (eds Schütt, K. T. et al.) 445–467 (Springer, 2020).

  196. Zunger, A. Inverse design in search of materials with target functionalities. Nat. Rev. Chem. 2, 121 (2018).

    Article  CAS  Google Scholar 

  197. Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. Int. Conf. on Learning Representations (ICLR, 2014).

  198. Yao, Z. et al. Inverse design of nanoporous crystalline reticular materials with deep generative models. Nat. Mach. Intell. 3, 76–86 (2021).

    Article  Google Scholar 

  199. Esterhuizen, J. A., Goldsmith, B. R. & Linic, S. Interpretable machine learning for knowledge generation in heterogeneous catalysis. Nat. Catal. 5, 175–184 (2022).

    Article  Google Scholar 

  200. Wang, S.-H., Pillai, H. S., Wang, S., Achenie, L. E. K. & Xin, H. Infusing theory into deep learning for interpretable reactivity prediction. Nat. Commun. 12, 5288 (2021).

    Article  CAS  Google Scholar 

  201. Ji, W. & Deng, S. Autonomous discovery of unknown reaction pathways from data by chemical reaction neural network. J. Phys. Chem. A 125, 1082–1092 (2021).

    Article  CAS  Google Scholar 

  202. Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206–215 (2019).

    Article  Google Scholar 

  203. Noh, J., Gu, G. H., Kim, S. & Jung, Y. Machine-enabled inverse design of inorganic solid materials: promises and challenges. Chem. Sci. 11, 4871–4881 (2020).

    Article  CAS  Google Scholar 

  204. Ren, Z. et al. An invertible crystallographic representation for general inverse design of inorganic crystals with targeted properties. Matter 5, 314–335 (2022).

    Article  CAS  Google Scholar 

  205. Gómez-Bombarelli, R. et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4, 268–276 (2018).

    Article  Google Scholar 

  206. Jin, W., Barzilay, R. & Jaakkola, T. Junction tree variational autoencoder for molecular graph generation. In Proc. 35th International Conf. on Machine Learning Vol. 80 (eds Dy, J. & Krause, A.) 2323–2332 (PMLR, 2018).

  207. Xie, T., Fu, X., Ganea, O.-E., Barzilay, R. & Jaakkola, T. Crystal diffusion variational autoencoder for periodic material generation. Int. Conf. on Learning Representations (ICLR, 2022).

  208. Nigam, A., Pollice, R., Krenn, M., Gomes, G. P. & Aspuru-Guzik, A. Beyond generative models: superfast traversal, optimization, novelty, exploration and discovery (STONED) algorithm for molecules using SELFIES. Chem. Sci. 12, 7079–7090 (2021).

    Article  CAS  Google Scholar 

  209. Peng, J., Damewood, J. K., Karaguesian, J., Gómez-Bombarelli, R. & Shao-Horn, Y. Navigating multimetallic catalyst space with Bayesian optimization. Joule 5, 3069–3071 (2021).

    Article  Google Scholar 

  210. Gao, W. & Coley, C. W. The synthesizability of molecules proposed by generative models. J. Chem. Inf. Model. 60, 5714–5723 (2020).

    Article  CAS  Google Scholar 

  211. Margraf, J. T., Ulissi, Z. W., Jung, Y. & Reuter, K. Heterogeneous catalysis in grammar school. J. Phys. Chem. C 126, 2931–2936 (2022).

    Article  CAS  Google Scholar 

  212. Aykol, M. et al. Network analysis of synthesizable materials discovery. Nat. Commun. 10, 2018 (2019).

    Article  Google Scholar 

  213. Jang, J., Gu, G. H., Noh, J., Kim, J. & Jung, Y. Structure-based synthesizability prediction of crystals using partially supervised learning. J. Am. Chem. Soc. 142, 18836–18843 (2020).

    Article  CAS  Google Scholar 

  214. Hong, W. T. et al. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8, 1404–1427 (2015).

    Article  CAS  Google Scholar 

  215. Grimaud, A. et al. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 4, 2439 (2013).

    Article  Google Scholar 

  216. Lee, Y. L., Kleis, J., Rossmeisl, J., Shao-Horn, Y. & Morgan, D. Prediction of solid oxide fuel cell cathode activity with first-principles descriptors. Energy Environ. Sci. 4, 3966–3970 (2011).

    Article  CAS  Google Scholar 

  217. Grimaud, A. et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9, 457–465 (2017).

    Article  CAS  Google Scholar 

  218. Hong, W. T. et al. Charge-transfer-energy-dependent oxygen evolution reaction mechanisms for perovskite oxides. Energy Environ. Sci. 10, 2190–2200 (2017).

    Article  CAS  Google Scholar 

  219. Scharber, M. C. et al. Design rules for donors in bulk-heterojunction solar cells — towards 10% energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006).

    Article  CAS  Google Scholar 

  220. Chen, T., Sai Gautam, G. & Canepa, P. Ionic transport in potential coating materials for Mg batteries. Chem. Mater. 31, 8087–8099 (2019).

    Article  CAS  Google Scholar 

  221. Gorai, P., Famprikis, T., Singh, B., Stevanović, V. & Canepa, P. Devil is in the defects: electronic conductivity in solid electrolytes. Chem. Mater. 33, 7484–7498 (2021).

    Article  CAS  Google Scholar 

  222. Franceschetti, A. & Zunger, A. The inverse band-structure problem of finding an atomic configuration with given electronic properties. Nature 402, 60–63 (1999).

    Article  CAS  Google Scholar 

  223. Le, T. C. & Winkler, D. A. Discovery and optimization of materials using evolutionary approaches. Chem. Rev. 116, 6107–6132 (2016).

    Article  CAS  Google Scholar 

  224. Nouira, A., Sokolovska, N. & Crivello, J.-C. CrystalGAN: learning to discover crystallographic structures with generative adversarial networks. In Proc. AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering (eds Martin, A. et al.) (Stanford University, 2019).

  225. Kim, B., Lee, S. & Kim, J. Inverse design of porous materials using artificial neural networks. Sci. Adv. 6, eaax9324 (2020).

    Article  CAS  Google Scholar 

  226. Kim, S., Noh, J., Gu, G. H., Aspuru-Guzik, A. & Jung, Y. Generative adversarial networks for crystal structure prediction. ACS Cent. Sci. 6, 1412–1420 (2020).

    Article  CAS  Google Scholar 

  227. Popova, M., Isayev, O. & Tropsha, A. Deep reinforcement learning for de novo drug design. Sci. Adv. 4, eaap7885 (2018).

    Article  CAS  Google Scholar 

  228. Jørgensen, M. S. et al. Atomistic structure learning. J. Chem. Phys. 151, 54111 (2019).

    Article  Google Scholar 

  229. Meldgaard, S. A., Mortensen, H. L., Jørgensen, M. S. & Hammer, B. Structure prediction of surface reconstructions by deep reinforcement learning. J. Phys. Condens. Matter 32, 404005 (2020).

    Article  CAS  Google Scholar 

  230. Trasatti, S. Work function, electronegativity, and electrochemical behaviour of metals. III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. 39, 163–184 (1972).

    Article  CAS  Google Scholar 

  231. Dahl, S. et al. Role of steps in N2 activation on Ru(0001). Phys. Rev. Lett. 83, 1814–1817 (1999).

    Article  Google Scholar 

  232. Chen, M. S. & Goodman, D. W. The structure of catalytically active gold on titania. Science 306, 252–255 (2004).

    Article  CAS  Google Scholar 

  233. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007).

    Article  CAS  Google Scholar 

  234. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    Article  CAS  Google Scholar 

  235. Trasatti, S. Electrocatalysis by oxides — attempt at a unifying approach. J. Electroanal. Chem. Interf. Electrochem. 111, 125–131 (1980).

    Article  CAS  Google Scholar 

  236. Bockris, J. O. M. O. & Otagawa, T. The electrocatalysis of oxygen evolution on perovskites. J. Electrochem. Soc. 131, 290–302 (1984).

    Article  CAS  Google Scholar 

  237. Hammer, B. & Norskov, J. K. Why gold is the noblest of all the metals. Nature 376, 238–240 (1995).

    Article  CAS  Google Scholar 

  238. Hammer, B. & Nørskov, J. K. Theoretical surface science and catalysis — calculations and concepts. Adv. Catal. 45, 71–129 (2000).

    CAS  Google Scholar 

  239. Jacobsen, C. J. H. et al. Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts. J. Am. Chem. Soc. 123, 8404–8405 (2001).

    Article  CAS  Google Scholar 

  240. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for molecular orbital principles. Science 334, 1383–1385 (2011).

    Article  CAS  Google Scholar 

  241. Suntivich, J. et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 3, 546–550 (2011).

    Article  CAS  Google Scholar 

  242. Matsumoto, Y., Yoneyama, H. & Tamura, H. Influence of the nature of the conduction band of transition metal oxides on catalytic activity for oxygen reduction. J. Electroanal. Chem. Interf. Electrochem. 83, 237–243 (1977).

    Article  CAS  Google Scholar 

  243. Jacobs, R., Hwang, J., Shao-Horn, Y. & Morgan, D. Assessing correlations of perovskite catalytic performance with electronic structure descriptors. Chem. Mater. 31, 785–797 (2019).

    Article  CAS  Google Scholar 

  244. Giordano, L. et al. Electronic structure-based descriptors for oxide properties and functions. Acc. Chem. Res. 55, 298–308 (2022).

    Article  CAS  Google Scholar 

  245. Kuznetsov, D. A., Peng, J., Giordano, L., Román-Leshkov, Y. & Shao-Horn, Y. Bismuth substituted strontium cobalt perovskites for catalyzing oxygen evolution. J. Phys. Chem. C 124, 6562–6570 (2020).

    Article  CAS  Google Scholar 

  246. Yuan, S. et al. Tunable metal hydroxide–organic frameworks for catalysing oxygen evolution. Nat. Mater. 21, 673–680 (2022).

    Article  CAS  Google Scholar 

  247. Lopez, N. et al. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal. 223, 232–235 (2004).

    Article  CAS  Google Scholar 

  248. Calle-Vallejo, F., Loffreda, D., Koper, M. T. M. & Sautet, P. Introducing structural sensitivity into adsorption–energy scaling relations by means of coordination numbers. Nat. Chem. 7, 403–410 (2015).

    Article  CAS  Google Scholar 

  249. Calle-Vallejo, F. et al. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 350, 185–189 (2015).

    Article  CAS  Google Scholar 

  250. Mavrikakis, M., Hammer, B. & Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 81, 2819–2822 (1998).

    Article  Google Scholar 

  251. Escudero-Escribano, M. et al. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 352, 73–76 (2016).

    Article  CAS  Google Scholar 

  252. Chattot, R. et al. Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nat. Mater. 17, 827–833 (2018).

    Article  CAS  Google Scholar 

  253. Østergaard, T. M. et al. Oxidation of ethylene carbonate on Li metal oxide surfaces. J. Phys. Chem. C 122, 10442–10449 (2018).

    Article  Google Scholar 

  254. Goodfellow, I. et al. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27, 2672–2680 (2014).

    Google Scholar 

  255. Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Advanced Research Projects Agency–Energy (ARPA-E), US Department of Energy under award number DE-AR0001220, and by the Toyota Research Institute through the Accelerated Materials Design and Discovery programme.

Author information

Authors and Affiliations

Authors

Contributions

Y.S.-H. and J.P. planned and outlined the manuscript. J.P. contributed to the writing of all sections. K.A., L.G. and Y.Y. contributed to the writing of the Edisonian section. L.G.,C.J.E. and R.R.R. contributed to the writing of the model-system section. K.A. and Y.Y. contributed to the writing of the descriptor section. T.X., C.J.E., J.R.L. and D.J.Z. contributed to the writing of the high-throughput and machine learning sections. J.R.L. contributed to the writing of the active learning section. D.S.-K. and R.G.-B. contributed to the writing of the inverse design section. All authors contributed to the editing and proofreading of the manuscript.

Corresponding authors

Correspondence to Rafael Gómez-Bombarelli or Yang Shao-Horn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Ivano Castelli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J., Schwalbe-Koda, D., Akkiraju, K. et al. Human- and machine-centred designs of molecules and materials for sustainability and decarbonization. Nat Rev Mater 7, 991–1009 (2022). https://doi.org/10.1038/s41578-022-00466-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-022-00466-5

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics