Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A roadmap for the commercialization of perovskite light emitters

An Author Correction to this article was published on 12 September 2022

This article has been updated

Abstract

Metal halide perovskites (MHPs) possess advantageous optoelectronic properties, so perovskite emitters and perovskite light-emitting diodes (PeLEDs) are promising candidates for next-generation high-colour-purity displays and lighting applications. Within the past 5 years, the luminescence efficiency of MHP emitters and PeLEDs has increased rapidly. However, the industrial applications of perovskites are impeded by several technical bottlenecks, such as insufficient colour reproducibility, low operational stability, toxicity and limited large-scale production. In this Review, we survey the current status of MHP emitters and PeLEDs and provide a technical roadmap to highlight the goals and requirements for them to successfully enter the markets for vivid displays with high colour purity, augmented and virtual reality displays and general and special lighting. We also set out steps for future research in MHPs and their device applications.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Current status of perovskite light emitters.
Fig. 2: Technical roadmap for perovskite light emitters.
Fig. 3: Synthesis and surface-modification strategies for PeNCs.
Fig. 4: Crystal-growth strategies for perovskite polycrystalline thin films.
Fig. 5: Defect management strategies in perovskites.
Fig. 6: Problems and solutions for perovskite light emitter applications.

Change history

References

  1. Lu, M. et al. Metal halide perovskite light-emitting devices: promising technology for next-generation displays. Adv. Funct. Mater. 29, 1902008 (2019).

    Google Scholar 

  2. Dai, X., Deng, Y., Peng, X. & Jin, Y. Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization. Adv. Mater. 29, 1607022 (2017).

    Google Scholar 

  3. Wang, Y. et al. All-inorganic quantum-dot LEDs based on a phase-stabilized α-CsPbI3 perovskite. Angew. Chem. Int. Ed. 60, 16164–16170 (2021).

    CAS  Google Scholar 

  4. Chiba, T. et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photon. 12, 681–687 (2018).

    CAS  Google Scholar 

  5. Li, H. et al. Efficient and stable red perovskite light-emitting diodes with operational stability >300 h. Adv. Mater. 33, 2008820 (2021).

  6. Kim, Y.-H. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photon. 15, 148–155 (2021).

  7. Dong, Y. et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15, 668–674 (2020).

    CAS  Google Scholar 

  8. Wang, H. et al. A multi-functional molecular modifier enabling efficient large-area perovskite light-emitting diodes. Joule 4, 1977–1987 (2020).

    CAS  Google Scholar 

  9. Hou, S., Gangishetty, M. K., Quan, Q. & Congreve, D. N. Efficient blue and white perovskite light-emitting diodes via manganese doping. Joule 2, 2421–2433 (2018).

    CAS  Google Scholar 

  10. Karlsson, M. et al. Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. Nat. Commun. 12, 361 (2021).

    CAS  Google Scholar 

  11. Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    CAS  Google Scholar 

  12. Fang, Y., Dong, Q., Shao, Y., Yuan, Y. & Huang, J. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photon. 9, 679–686 (2015).

    CAS  Google Scholar 

  13. Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).

    CAS  Google Scholar 

  14. Kumar, P. et al. Highly luminescent biocompatible CsPbBr3@SiO2 core–shell nanoprobes for bioimaging and drug delivery. J. Mater. Chem. B 8, 10337–10345 (2020).

    CAS  Google Scholar 

  15. MacAdam, D. L. Visual sensitivities to color differences in daylight. J. Opt. Soc. Am. 32, 247–274 (1942).

    Google Scholar 

  16. Wei, Z. & Xing, J. The rise of perovskite light-emitting diodes. J. Phys. Chem. Lett. 10, 3035–3042 (2019).

    CAS  Google Scholar 

  17. Meloni, S., Palermo, G., Ashari-Astani, N., Grätzel, M. & Rothlisberger, U. Valence and conduction band tuning in halide perovskites for solar cell applications. J. Mater. Chem. A 4, 15997–16002 (2016).

    CAS  Google Scholar 

  18. Shen, W. S. et al. Surfacial ligand management of a perovskite film for efficient and stable light-emitting diodes. J. Mater. Chem. C 7, 14725–14730 (2019).

    CAS  Google Scholar 

  19. Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 63903 (2014).

    Google Scholar 

  20. Frost, J. M. et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014).

    CAS  Google Scholar 

  21. Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Google Scholar 

  22. Milstein, T. J., Kroupa, D. M. & Gamelin, D. R. Picosecond quantum cutting generates photoluminescence quantum yields over 100% in ytterbium-doped CsPbCl3 nanocrystals. Nano Lett. 18, 3792–3799 (2018).

    CAS  Google Scholar 

  23. Herz, L. M. Charge-carrier dynamics in organic–inorganic metal halide perovskites. Annu. Rev. Phys. Chem. 67, 65–89 (2016).

    CAS  Google Scholar 

  24. Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    CAS  Google Scholar 

  25. Han, T.-H. et al. Molecularly controlled interfacial layer strategy toward highly efficient simple-structured organic light-emitting diodes. Adv. Mater. 24, 1487–1493 (2012).

    CAS  Google Scholar 

  26. Han, T.-H. et al. Interface and defect engineering for metal halide perovskite optoelectronic devices. Adv. Mater. 31, 1803515 (2019).

    CAS  Google Scholar 

  27. Kim, Y.-H. et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv. Mater. 27, 1248–1254 (2015).

    CAS  Google Scholar 

  28. Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).

    CAS  Google Scholar 

  29. Wright, A. D. et al. Electron–phonon coupling in hybrid lead halide perovskites. Nat. Commun. 7, 11755 (2016).

    Google Scholar 

  30. Iaru, C. M., Geuchies, J. J., Koenraad, P. M., Vanmaekelbergh, D. & Silov, A. Y. Strong carrier–phonon coupling in lead halide perovskite nanocrystals. ACS Nano 11, 11024–11030 (2017).

    CAS  Google Scholar 

  31. Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).

    CAS  Google Scholar 

  32. Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).

    CAS  Google Scholar 

  33. Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

    CAS  Google Scholar 

  34. Zhao, B. et al. Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nat. Electron. 3, 704–710 (2020).

    CAS  Google Scholar 

  35. Zhao, B. et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photon. 12, 783–789 (2018).

    CAS  Google Scholar 

  36. Zhang, Q. et al. Ceramic-like stable CsPbBr3 nanocrystals encapsulated in silica derived from molecular sieve templates. Nat. Commun. 11, 31 (2020).

  37. Jang, J. et al. Extremely stable luminescent crosslinked perovskite nanoparticles under harsh environments over 1.5 years. Adv. Mater. 33, 2005255 (2021).

  38. Chang, S., Bai, Z. & Zhong, H. In situ fabricated perovskite nanocrystals: a revolution in optical materials. Adv. Opt. Mater. 6, 1800380 (2018).

    Google Scholar 

  39. Zhou, Q. et al. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights. Adv. Mater. 28, 9163–9168 (2016).

    CAS  Google Scholar 

  40. Forrest, S. R. Organic Electronics: Foundations To Applications (Oxford Univ. Press, 2020).

  41. Woo, S.-J., Kim, J. S. & Lee, T.-W. Characterization of stability and challenges to improve operational lifetime in perovskite light-emitting diodes. Nat. Photon. 15, 630–634 (2021).

    CAS  Google Scholar 

  42. Wang, H. et al. Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light emitting devices. Nat. Commun. 10, 665 (2019).

    Google Scholar 

  43. Liu, Y. et al. Bright and stable light-emitting diodes based on perovskite quantum dots in perovskite matrix. J. Am. Chem. Soc. 143, 15606–15615 (2021).

    CAS  Google Scholar 

  44. Bi, C. et al. Perovskite quantum dots with ultralow trap density by acid etching-driven ligand exchange for high luminance and stable pure-blue light-emitting diodes. Adv. Mater. 33, 2006722 (2021).

  45. Cho, Y. J., Yook, K. S. & Lee, J. Y. High efficiency in a solution-processed thermally activated delayed-fluorescence device using a delayed-fluorescence emitting material with improved solubility. Adv. Mater. 26, 6642–6646 (2014).

    CAS  Google Scholar 

  46. Lee, J. et al. Deep blue phosphorescent organic light-emitting diodes with very high brightness and efficiency. Nat. Mater. 15, 92–98 (2016).

    CAS  Google Scholar 

  47. Sasabe, H. et al. High-efficiency blue and white organic light-emitting devices incorporating a blue iridium carbene complex. Adv. Mater. 22, 5003–5007 (2010).

    CAS  Google Scholar 

  48. Kondo, Y. et al. Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter. Nat. Photon. 13, 678–682 (2019).

    CAS  Google Scholar 

  49. Yang, M., Park, I. S. & Yasuda, T. Full-color, narrowband, and high-efficiency electroluminescence from boron and carbazole embedded polycyclic heteroaromatics. J. Am. Chem. Soc. 142, 19468–19472 (2020).

    CAS  Google Scholar 

  50. Yang, Y. et al. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photon. 9, 259–265 (2015).

    CAS  Google Scholar 

  51. Kim, T. et al. Efficient and stable blue quantum dot light-emitting diode. Nature 586, 385–389 (2020).

    CAS  Google Scholar 

  52. Shen, H. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photon. 13, 192–197 (2019).

    CAS  Google Scholar 

  53. Kim, Y.-H. et al. Highly efficient light-emitting diodes of colloidal metal-halide perovskite nanocrystals beyond quantum size. ACS Nano 11, 6586–6593 (2017).

    CAS  Google Scholar 

  54. Kumar, S. et al. Ultrapure green light-emitting diodes using two-dimensional formamidinium perovskites: achieving recommendation 2020 color coordinates. Nano Lett. 17, 5277–5284 (2017).

    CAS  Google Scholar 

  55. Zhang, S. et al. Efficient red perovskite light-emitting diodes based on solution-processed multiple quantum wells. Adv. Mater. 29, 1606600 (2017).

  56. DeRosa, M. C. et al. Synthesis, characterization, and evaluation of [Ir(ppy)2(vpy)Cl] as a polymer-bound oxygen sensor. Inorg. Chem. 42, 4864–4872 (2003).

    CAS  Google Scholar 

  57. Wu, T. L. et al. Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off. Nat. Photon. 12, 235–240 (2018).

    CAS  Google Scholar 

  58. Zjang, Y., Baer, C. C. D., Camaioni-Neto, P. & O’Brien, D. A. S. A new synthetic route to the preparation of a series of strong photoreducing agents: fac tris-ortho-metalated complexes of iridium(III) with substituted 2-phenylpyridines. Inorg. Chem. 30, 1685–1687 (1991).

    Google Scholar 

  59. Lee, K. H. et al. Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots. ACS Nano 8, 4893–4901 (2014).

    CAS  Google Scholar 

  60. Li, Y. et al. Stoichiometry-controlled InP-based quantum dots: synthesis, photoluminescence, and electroluminescence. J. Am. Chem. Soc. 141, 6448–6452 (2019).

    CAS  Google Scholar 

  61. Zhang, F. et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9, 4533–4542 (2015).

    CAS  Google Scholar 

  62. Lee, T.-W., Im, S. H., Kim, Y.-H. & Cho, H. Perovskite nanocrystal particle and optoelectronic device using the same. Patent KR-101815588-B1 (2018).

  63. Won, Y. H. et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019).

    CAS  Google Scholar 

  64. Maes, J. et al. Light absorption coefficient of CsPbBr3 perovskite nanocrystals. J. Phys. Chem. Lett. 9, 3093–3097 (2018).

    CAS  Google Scholar 

  65. Li, J., Chen, J., Shen, Y. & Peng, X. Extinction coefficient per CdE (E = Se or S) unit for zinc-blende CdE nanocrystals. Nano Res. 11, 3991–4004 (2018).

    CAS  Google Scholar 

  66. Joung, J. F., Han, M., Jeong, M. & Park, S. Experimental database of optical properties of organic compounds. Sci. Data 7, 295 (2020).

  67. Talapin, D. V. et al. Etching of colloidal InP nanocrystals with fluorides: photochemical nature of the process resulting in high photoluminescence efficiency. J. Phys. Chem. B 106, 12659–12663 (2002).

    CAS  Google Scholar 

  68. The European Parliament and The Council of The European Union. Directive 2011/65/EU of the European parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment 88–110 (EU, 2011).

  69. Bojan, T., Kumar, U. & Bojan, V. in 2014 IEEE Int. Conf. Vehicular Electron. Safety 174–179 (IEEE, 2014).

  70. Zhou, H. et al. Water passivation of perovskite nanocrystals enables air-stable intrinsically stretchable color-conversion layers for stretchable displays. Adv. Mater. 32, 2001989 (2020).

  71. Lee, T.-W., Im, S., Kim, Y.-H. & Cho, H. Perovskite nanocrystalline particles and optoelectronic device using same. US patent US-2017358757-A1 (2019).

  72. Jang, H. J. et al. Progress of display performances: AR, VR, QLED, OLED, and TFT. J. Inf. Disp. 20, 1–8 (2019).

    CAS  Google Scholar 

  73. Zou, C., Chang, C., Sun, D., Böhringer, K. F. & Lin, L. Y. Photolithographic patterning of perovskite thin films for multicolor display applications. Nano Lett. 20, 3710–3717 (2020).

    CAS  Google Scholar 

  74. Kim, W. H. et al. High-performance color-converted full-color micro-LED arrays. Appl. Sci. 10, 2112 (2020).

    CAS  Google Scholar 

  75. Lee, E. et al. Quantum dot conversion layers through inkjet printing. SID Symp. Dig. Tech. Pap. 49, 525–527 (2018).

    CAS  Google Scholar 

  76. Yang, R. & Wang, W. A numerical and experimental study on gap compensation and wavelength selection in UV-lithography of ultra-high aspect ratio SU-8 microstructures. Sens. Actuat. B 110, 279–288 (2005).

  77. Morgan, M. G., Morgan, F. & Ine, B. The transition to solid-state lighting. Proc. IEEE 97, 481–510 (2009).

    Google Scholar 

  78. Ooi, A. et al. Growth and development of Arabidopsis thaliana under single-wavelength red and blue laser light. Sci. Rep. 6, 33885 (2016).

  79. Morita, T. & Tokura, H. The influence of different wavelengths of light on human biological rhythms. Appl. Hum. Sci. 17, 91–96 (1998).

    CAS  Google Scholar 

  80. Kim, Y.-H., Wolf, C., Kim, H. & Lee, T.-W. Charge carrier recombination and ion migration in metal-halide perovskite nanoparticle films for efficient light-emitting diodes. Nano Energy 52, 329–335 (2018).

    CAS  Google Scholar 

  81. Park, J., Jang, H. M., Kim, S., Jo, S. H. & Lee, T.-W. Electroluminescence of perovskite nanocrystals with ligand engineering. Trends Chem. 2, 837–849 (2020).

    CAS  Google Scholar 

  82. Lee, H. et al. Perovskite emitters as a platform material for down-conversion applications. Adv. Mater. Technol. 5, 2000091 (2020).

  83. Lee, T.-W., Kim, Y.-H. & Cho, H. Wavelength converting particle, method for manufacturing wavelength converting particle, and light emitting diode containing wavelength converting particle. US patent US-2020020834-A1 (2021).

  84. Song, J. et al. Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs. Adv. Mater. 30, 1800764 (2018).

  85. Tong, Y. et al. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem. Int. Ed. 55, 13887–13892 (2016).

    CAS  Google Scholar 

  86. Hu, Y. L. et al. Rapid synthesis of cesium lead halide perovskite nanocrystals by l-lysine assisted solid-phase reaction at room temperature. RSC Adv. 10, 34215–34224 (2020).

    CAS  Google Scholar 

  87. Kim, Y. et al. High efficiency perovskite light-emitting diodes of ligand-engineered colloidal formamidinium lead bromide nanoparticles. Nano Energy 38, 51–58 (2017).

    CAS  Google Scholar 

  88. Li, D. et al. Improving stability of cesium lead iodide perovskite nanocrystals by solution surface treatments. ACS Omega 5, 18013–18020 (2020).

    CAS  Google Scholar 

  89. Ripka, E. G., Deschene, C. R., Franck, J. M., Bae, I. T. & Maye, M. M. Understanding the surface properties of halide exchanged cesium lead halide nanoparticles. Langmuir 34, 11139–11146 (2018).

    CAS  Google Scholar 

  90. Nenon, D. P. et al. Design principles for trap-free CsPbX3 nanocrystals: enumerating and eliminating surface halide vacancies with softer lewis bases. J. Am. Chem. Soc. 140, 17760–17772 (2018).

    CAS  Google Scholar 

  91. Zhang, F. et al. Colloidal synthesis of air-stable CH3NH3PbI3 quantum dots by gaining chemical insight into the solvent effects. Chem. Mater. 29, 3793–3799 (2017).

    CAS  Google Scholar 

  92. Nedelcu, G. et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 15, 5635–5640 (2015).

    CAS  Google Scholar 

  93. Zhang, C. et al. Narrow-band violet-light-emitting diodes based on stable cesium lead chloride perovskite nanocrystals. ACS Energy Lett. 6, 3545–3554 (2021).

    CAS  Google Scholar 

  94. Ma, D. et al. Chloride insertion-immobilization enables bright, narrowband, and stable blue-emitting perovskite diodes. J. Am. Chem. Soc. 142, 5126–5513 (2020).

    CAS  Google Scholar 

  95. Shen, X. et al. Zn-alloyed CsPbI3 nanocrystals for highly efficient perovskite light-emitting devices. Nano Lett. 19, 1552–1559 (2019).

    CAS  Google Scholar 

  96. Almeida, G. et al. Role of acid-base equilibria in the size, shape, and phase control of cesium lead bromide nanocrystals. ACS Nano 12, 1704–1711 (2018).

    CAS  Google Scholar 

  97. Lu, M. et al. Bright CsPbI3 perovskite quantum dot light-emitting diodes with top-emitting structure and a low efficiency roll-off realized by applying zirconium acetylacetonate surface modification. Nano Lett. 20, 2829–2836 (2020).

    CAS  Google Scholar 

  98. Zhang, J. et al. Enhancing stability of red perovskite nanocrystals through copper substitution for efficient light-emitting diodes. Nano Energy 62, 434–441 (2019).

    CAS  Google Scholar 

  99. Song, J. et al. Organic–inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48%. Adv. Mater. 30, 1805409 (2018).

  100. Chen, H. et al. High-efficiency formamidinium lead bromide perovskite nanocrystal-based light-emitting diodes fabricated via a surface defect self-passivation strategy. Adv. Opt. Mater. 8, 1901390 (2020).

    CAS  Google Scholar 

  101. Chiba, T. et al. Neodymium chloride-doped perovskite nanocrystals for efficient blue light-emitting devices. ACS Appl. Mater. Interf. 12, 53891–53898 (2020).

    CAS  Google Scholar 

  102. Yang, F. et al. Efficient and spectrally stable blue perovskite light-emitting diodes based on potassium passivated nanocrystals. Adv. Funct. Mater. 30, 1908760 (2020).

  103. Wang, Q. et al. Qualifying composition dependent p and n self-doping in CH3NH3PbI3. Appl. Phys. Lett. 105, 163508 (2014).

    Google Scholar 

  104. Xiao, Z. et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–197 (2015).

    CAS  Google Scholar 

  105. Jin, H. et al. It’s a trap! on the nature of localised states and charge trapping in lead halide perovskites. Mater. Horiz. 7, 397–410 (2020).

    CAS  Google Scholar 

  106. Zu, F. S. et al. Impact of white light illumination on the electronic and chemical structures of mixed halide and single crystal perovskites. Adv. Opt. Mater. 5, 1700139 (2017).

    Google Scholar 

  107. Yong, Z. J. et al. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield. J. Am. Chem. Soc. 140, 9942–9951 (2018).

    CAS  Google Scholar 

  108. Akkerman, Q. A., Meggiolaro, D., Dang, Z., De Angelis, F. & Manna, L. Fluorescent alloy CsPbxMn1-xI3 perovskite nanocrystals with high structural and optical stability. ACS Energy Lett. 2, 2183–2186 (2017).

    CAS  Google Scholar 

  109. Behera, R. K. et al. Doping the smallest shannon radii transition metal ion Ni(II) for stabilizing α-CsPbI3 perovskite nanocrystals. J. Phys. Chem. Lett. 10, 7916–7921 (2019).

    CAS  Google Scholar 

  110. Woo, J. Y. et al. Highly stable cesium lead halide perovskite nanocrystals through in situ lead halide inorganic passivation. Chem. Mater. 29, 7088–7092 (2017).

    CAS  Google Scholar 

  111. Bi, C. et al. Thermally stable copper(II)-doped cesium lead halide perovskite quantum dots with strong blue emission. J. Phys. Chem. Lett. 10, 943–952 (2019).

    CAS  Google Scholar 

  112. Phung, N. et al. The doping mechanism of halide perovskite unveiled by alkaline earth metals. J. Am. Chem. Soc. 142, 2364–2374 (2020).

    CAS  Google Scholar 

  113. Meggiolaro, D., Mosconi, E. & De Angelis, F. Formation of surface defects dominates ion migration in lead-halide perovskites. ACS Energy Lett. 4, 779–785 (2019).

    CAS  Google Scholar 

  114. De Roo, J. et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10, 2071–2081 (2016).

    Google Scholar 

  115. Grisorio, R. et al. Exploring the surface chemistry of cesium lead halide perovskite nanocrystals. Nanoscale 11, 986–999 (2019).

    CAS  Google Scholar 

  116. Hassanabadi, E. et al. Ligand and band gap engineering: tailoring the protocol synthesis for achieving high-quality CsPbI3 quantum dots. Nanoscale 12, 14194–14203 (2020).

    CAS  Google Scholar 

  117. Yao, J. S. et al. Suppressing Auger recombination in cesium lead bromide perovskite nanocrystal film for bright light-emitting diodes. J. Phys. Chem. Lett. 11, 9371–9378 (2020).

    CAS  Google Scholar 

  118. Yao, J. et al. Calcium-tributylphosphine oxide passivation enables the efficiency of pure-blue perovskite light-emitting diode up to 3.3%. Sci. Bull. 65, 1150–1153 (2020).

    CAS  Google Scholar 

  119. Fang, T. et al. Perovskite QLED with an external quantum efficiency of over 21% by modulating electronic transport. Sci. Bull. 66, 36–43 (2021).

    CAS  Google Scholar 

  120. Li, J. et al. 50-Fold EQE mprovement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 29, 1603885 (2017).

    Google Scholar 

  121. Hoshi, K. et al. Purification of perovskite quantum dots using low-dielectric-constant washing solvent ‘diglyme’ for highly efficient light-emitting devices. ACS Appl. Mater. Interf. 10, 24607–24612 (2018).

    CAS  Google Scholar 

  122. Kumawat, N. K., Swarnkar, A., Nag, A. & Kabra, D. Ligand engineering to improve the luminance efficiency of CsPbBr3 nanocrystal based light-emitting diodes. J. Phys. Chem. C 122, 13767–13773 (2018).

    CAS  Google Scholar 

  123. Pan, J. et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 28, 8718–8725 (2016).

    CAS  Google Scholar 

  124. Pan, J. et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am. Chem. Soc. 140, 562–565 (2018).

    CAS  Google Scholar 

  125. Krieg, F. et al. Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: zwitterionic capping ligands for improved durability and stability. ACS Energy Lett. 3, 641–646 (2018).

    CAS  Google Scholar 

  126. Zhang, B. et al. Alkyl phosphonic acids deliver CsPbBr3 nanocrystals with high photoluminescence quantum yield and truncated octahedron shape. Chem. Mater. 31, 9140–9147 (2019).

    CAS  Google Scholar 

  127. Brown, A. A. M. et al. Self-assembly of a robust hydrogen-bonded octylphosphonate network on cesium lead bromide perovskite nanocrystals for light-emitting diodes. Nanoscale 11, 12370–12380 (2019).

    CAS  Google Scholar 

  128. Wang, T., Li, X., Fang, T., Wang, S. & Song, J. Room-temperature synthesis of perovskite-phase CsPbI3 nanocrystals for optoelectronics via a ligand-mediated strategy. Chem. Eng. J. 418, 129361 (2021).

    CAS  Google Scholar 

  129. Yang, D. et al. CsPbBr3 quantum dots 2.0: benzenesulfonic acid equivalent ligand awakens complete purification. Adv. Mater. 31, 1900767 (2019).

  130. Zhang, F. et al. Synergetic effect of the surfactant and silica coating on the enhanced emission and stability of perovskite quantum dots for anticounterfeiting. ACS Appl. Mater. Interf. 11, 28013–28022 (2019).

    CAS  Google Scholar 

  131. Tang, B. et al. A universal synthesis strategy for stable CsPbX3@oxide core–shell nanoparticles through bridging ligands. Nanoscale 13, 10600–10607 (2021).

    CAS  Google Scholar 

  132. Zhong, Q. et al. One-pot synthesis of highly stable CsPbBr3@SiO2 core–shell nanoparticles. ACS Nano 12, 8579–8587 (2018).

    CAS  Google Scholar 

  133. Huang, Y. et al. Enhancing the stability of CH3NH3PbBr3 nanoparticles using double hydrophobic shells of SiO2 and poly(vinylidene fluoride). ACS Appl. Mater. Interf. 11, 26384–26391 (2019).

    CAS  Google Scholar 

  134. Loiudice, A., Strach, M., Saris, S., Chernyshov, D. & Buonsanti, R. Universal oxide shell growth enables in situ structural studies of perovskite nanocrystals during the anion exchange reaction. J. Am. Chem. Soc. 141, 8254–8263 (2020).

    Google Scholar 

  135. Li, Z. J. et al. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. Adv. Funct. Mater. 28, 1704288 (2018).

    Google Scholar 

  136. Rainò, G. et al. Underestimated effect of a polymer matrix on the light emission of single CsPbBr3 nanocrystals. Nano Lett. 19, 3648–3653 (2019).

    Google Scholar 

  137. Shi, Z. et al. Strategy of solution-processed all-inorganic heterostructure for humidity/temperature-stable perovskite quantum dot light-emitting diodes. ACS Nano 12, 1462–1472 (2018).

  138. Cho, H., Kim, Y.-H., Wolf, C., Lee, H. D. & Lee, T.-W. Improving the stability of metal halide perovskite materials and light-emitting diodes. Adv. Mater. 30, 1704587 (2018).

  139. Kim, H. et al. Proton-transfer-induced 3D/2D hybrid perovskites suppress ion migration and reduce luminance overshoot. Nat. Commun. 11, 3378 (2020).

  140. Han, B. et al. Green perovskite light-emitting diodes with 200 hours stability and 16% efficiency: cross-linking strategy and mechanism. Adv. Funct. Mater. 31, 2011003 (2021).

    CAS  Google Scholar 

  141. Minotto, A. et al. Role of core–shell interfaces on exciton recombination in CdSe-CdxZn1-xS quantum dots. J. Phys. Chem. C 118, 24117–24126 (2014).

    CAS  Google Scholar 

  142. He, Y. et al. Suppression of the Auger recombination process in CdSe/CdS core/shell nanocrystals. ACS Omega 4, 9198–9203 (2019).

    CAS  Google Scholar 

  143. Smith, A. M., Mohs, A. M. & Nie, S. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat. Nanotechnol. 4, 56–63 (2009).

    CAS  Google Scholar 

  144. Li, G. et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv. Mater. 28, 3528–3534 (2016).

    CAS  Google Scholar 

  145. Tang, X. et al. Single halide perovskite/semiconductor core/shell quantum dots with ultrastability and nonblinking properties. Adv. Sci. 6, 1900412 (2019).

    CAS  Google Scholar 

  146. Zhang, X. et al. PbS capped CsPbI3 nanocrystals for efficient and stable light-emitting devices using p-i-n structures. ACS Cent. Sci. 4, 1352–1359 (2018).

    CAS  Google Scholar 

  147. Zhang, C. et al. Core/shell perovskite nanocrystals: synthesis of highly efficient and environmentally stable FAPbBr3/CsPbBr3 for LED applications. Adv. Funct. Mater. 30, 1910582 (2020).

    CAS  Google Scholar 

  148. Han, T.-H. et al. Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat. Commun. 10, 520 (2019).

    CAS  Google Scholar 

  149. Han, T.-H. et al. Surface-2D/bulk-3D heterophased perovskite nanograins for long-term-stable light-emitting diodes. Adv. Mater. 32, 1905674 (2020).

    CAS  Google Scholar 

  150. Chen, B., Rudd, P. N., Yang, S., Yuan, Y. & Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019).

    CAS  Google Scholar 

  151. Tanaka, K. et al. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid. State Commun. 127, 619–623 (2003).

    CAS  Google Scholar 

  152. Ding, B. et al. Material nucleation/growth competition tuning towards highly reproducible planar perovskite solar cells with efficiency exceeding 20%. J. Mater. Chem. A 5, 6840–6848 (2017).

    CAS  Google Scholar 

  153. Park, M.-H. et al. Efficient perovskite light-emitting diodes using polycrystalline core–shell-mimicked nanograins. Adv. Funct. Mater. 29, 1902017 (2019).

    Google Scholar 

  154. Si, J. et al. Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X = Br, I) nanoplates with controlled thicknesses. ACS Nano 11, 11100–11107 (2017).

    CAS  Google Scholar 

  155. Han, D. et al. Efficient light-emitting diodes based on in situ fabricated FAPbBr3 nanocrystals: the enhancing role of the ligand-assisted reprecipitation process. ACS Nano 12, 8808–8816 (2018).

    CAS  Google Scholar 

  156. Xiao, Z. et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 11, 108–115 (2017).

    CAS  Google Scholar 

  157. Lee, H.-D. et al. Efficient Ruddlesden–Popper perovskite light-emitting diodes with randomly oriented nanocrystals. Adv. Funct. Mater. 29, 1901225 (2019).

    Google Scholar 

  158. Byun, J. et al. Efficient visible quasi-2D perovskite light-emitting diodes. Adv. Mater. 28, 7515–7520 (2016).

    CAS  Google Scholar 

  159. Zou, W. et al. Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nat. Commun. 9, 608 (2018).

    Google Scholar 

  160. Chang, J. et al. Enhanced performance of red perovskite light-emitting diodes through the dimensional tailoring of perovskite multiple quantum wells. J. Phys. Chem. Lett. 9, 881–886 (2018).

    CAS  Google Scholar 

  161. Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon. 10, 699–704 (2016).

    CAS  Google Scholar 

  162. Sun, C. et al. High-performance large-area quasi-2D perovskite light-emitting diodes. Nat. Commun. 12, 2207 (2021).

    CAS  Google Scholar 

  163. Xing, G. et al. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun. 8, 14558 (2017).

    CAS  Google Scholar 

  164. Quan, L. N. et al. Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission. Nano Lett. 17, 3701–3709 (2017).

    CAS  Google Scholar 

  165. Liu, Y. et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat. Photon. 13, 760–764 (2019).

    CAS  Google Scholar 

  166. Wang, C. et al. Dimension control of in situ fabricated CsPbClBr2 nanocrystal films toward efficient blue light-emitting diodes. Nat. Commun. 11, 6428 (2020).

    CAS  Google Scholar 

  167. Domanski, K. et al. Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy Environ. Sci. 10, 604–613 (2017).

    CAS  Google Scholar 

  168. Yuan, Y. et al. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells. Sci. Adv. 3, e1602164 (2017).

    Google Scholar 

  169. Kang, D.-H. & Park, N.-G. On the current–voltage hysteresis in perovskite solar cells: dependence on perovskite composition and methods to remove hysteresis. Adv. Mater. 31, 1805214 (2019).

    Google Scholar 

  170. Goldschmidt, V. M. Die Gesetze der Krystallochemie. Naturwissenschaften 14, 477–485 (1926).

    CAS  Google Scholar 

  171. Amat, A. et al. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. Nano Lett. 14, 3608–3616 (2014).

    CAS  Google Scholar 

  172. Swarnkar, A., Mir, W. J. & Nag, A. Can B-site doping or alloying improve thermal- and phase-stability of all-inorganic CsPbX3 (X = Cl, Br, I) perovskites? ACS Energy Lett. 3, 286–289 (2018).

    CAS  Google Scholar 

  173. Ahmed, G. H., Yin, J., Bakr, O. M. & Mohammed, O. F. Near-unity photoluminescence quantum yield in inorganic perovskite nanocrystals by metal-ion doping. J. Chem. Phys. 152, 020902 (2020).

  174. Li, Z. et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28, 284–292 (2016).

    Google Scholar 

  175. Yi, C. et al. Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 9, 656–662 (2016).

    CAS  Google Scholar 

  176. Yin, J., Ahmed, G. H., Bakr, O. M., Brédas, J. L. & Mohammed, O. F. Unlocking the effect of trivalent metal doping in all-inorganic CsPbBr3 perovskite. ACS Energy Lett. 4, 789–795 (2019).

    CAS  Google Scholar 

  177. Yao, J. S. et al. Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes. J. Am. Chem. Soc. 140, 3626–3634 (2018).

    CAS  Google Scholar 

  178. Wang, Q. et al. Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nat. Commun. 10, 5633 (2019).

    CAS  Google Scholar 

  179. Yang, J. N. et al. Potassium bromide surface passivation on CsPbI3-xBrx nanocrystals for efficient and stable pure red perovskite light-emitting diodes. J. Am. Chem. Soc. 142, 2956–2967 (2020).

    CAS  Google Scholar 

  180. Chen, J. K. et al. High-efficiency violet-emitting all-inorganic perovskite nanocrystals enabled by alkaline-earth metal passivation. Chem. Mater. 31, 3974–3983 (2019).

    CAS  Google Scholar 

  181. Noel, N. K. et al. Enhanced photoluminescence and solar cell performance via lewis base passivation of organic–inorganic lead halide perovskites. ACS Nano 8, 9815–9821 (2014).

    CAS  Google Scholar 

  182. Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photonics 13, 418–424 (2019).

    CAS  Google Scholar 

  183. Na Quan, L. et al. Edge stabilization in reduced-dimensional perovskites. Nat. Commun. 11, 170 (2020).

    Google Scholar 

  184. Ren, Z. et al. High-performance blue perovskite light-emitting diodes enabled by efficient energy transfer between coupled quasi-2D perovskite layers. Adv. Mater. 33, 2005570 (2021).

    CAS  Google Scholar 

  185. Lee, J.-W., Kim, H.-S. & Park, N.-G. Lewis acid–base adduct approach for high efficiency perovskite solar cells. Acc. Chem. Res. 49, 311–319 (2016).

    Google Scholar 

  186. Li, H. et al. Intermolecular π–π conjugation self-assembly to stabilize surface passivation of highly efficient perovskite solar cells. Adv. Mater. 32, 1907396 (2020).

    CAS  Google Scholar 

  187. Wang, R. et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 366, 1509–1513 (2019).

    CAS  Google Scholar 

  188. Li, B. et al. Efficient passivation strategy on Sn related defects for high performance all-inorganic CsSnI3 perovskite solar cells. Adv. Funct. Mater. 31, 2007447 (2021).

    CAS  Google Scholar 

  189. Ahn, S. et al. Synergistic molecular engineering of hole-injecting conducting polymers overcomes luminescence quenching in perovskite light-emitting diodes. Adv. Opt. Mater. 9, 2100646 (2021).

    CAS  Google Scholar 

  190. Seo, H.-K. et al. Efficient flexible organic/inorganic hybrid perovskite light-emitting diodes based on graphene anode. Adv. Mater. 29, 1605587 (2017).

    Google Scholar 

  191. Park, M.-H. et al. Unravelling additive-based nanocrystal pinning for high efficiency organic-inorganic halide perovskite light-emitting diodes. Nano Energy 42, 157–165 (2017).

    CAS  Google Scholar 

  192. Peng, X. F. et al. Modified conducting polymer hole injection layer for high-efficiency perovskite light-emitting devices: enhanced hole injection and reduced luminescence quenching. J. Phys. Chem. Lett. 8, 4691–4697 (2017).

    CAS  Google Scholar 

  193. Li, Z. et al. Modification of interface between PEDOT:PSS and perovskite film inserting an ultrathin LiF layer for enhancing efficiency of perovskite light-emitting diodes. Org. Electron. 81, 105675 (2020).

    CAS  Google Scholar 

  194. Hoye, R. L. Z. et al. Identifying and reducing interfacial losses to enhance color-pure electroluminescence in blue-emitting perovskite nanoplatelet light-emitting diodes. ACS Energy Lett. 4, 1181–1188 (2019).

    CAS  Google Scholar 

  195. Xiao, Z. et al. Enhancing the performance of perovskite light-emitting devices through 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene interlayer incorporation. RSC Adv. 9, 29037–29043 (2019).

    CAS  Google Scholar 

  196. Lee, S. et al. Amine-based passivating materials for enhanced optical properties and performance of organic-inorganic perovskites in light-emitting diodes. J. Phys. Chem. Lett. 8, 1784–1792 (2017).

    CAS  Google Scholar 

  197. Xu, L. et al. A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nat. Commun. 11, 3902 (2020).

  198. Kumar, A., Srivastava, R., Kamalasanan, M. N. & Mehta, D. S. Enhancement of light extraction efficiency of organic light emitting diodes using nanostructured indium tin oxide. Opt. Lett. 37, 575–577 (2012).

    CAS  Google Scholar 

  199. Yuan, Z. et al. Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes. Nat. Commun. 10, 2818 (2019).

    Google Scholar 

  200. Cho, C. et al. The role of photon recycling in perovskite light-emitting diodes. Nat. Commun. 11, 611 (2020).

    CAS  Google Scholar 

  201. Jeong, S.-H. et al. Characterizing the efficiency of perovskite solar cells and light-emitting diodes. Joule 4, 1206–1235 (2020).

    CAS  Google Scholar 

  202. Zhao, L. et al. Electrical stress influences the efficiency of CH3NH3PbI3 perovskite light emitting devices. Adv. Mater. 29, 1605317 (2017).

    Google Scholar 

  203. Zhao, L. et al. Thermal management enables bright and stable perovskite light-emitting diodes. Adv. Mater. 32, 2000752 (2020).

    CAS  Google Scholar 

  204. Zhao, L., Lee, K. M., Roh, K., Khan, S. U. Z. & Rand, B. P. Improved outcoupling efficiency and stability of perovskite light-emitting diodes using thin emitting layers. Adv. Mater. 31, 1805836 (2019).

    Google Scholar 

  205. Guerrero, A. et al. Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano 10, 218–224 (2016).

    CAS  Google Scholar 

  206. Li, N. et al. Stabilizing perovskite light-emitting diodes by incorporation of binary alkali cations. Adv. Mater. 32, 1907786 (2020).

    CAS  Google Scholar 

  207. Kuang, C. et al. Critical role of additive-induced molecular interaction on the operational stability of perovskite light-emitting diodes. Joule 5, 618–630 (2021).

    CAS  Google Scholar 

  208. Tsai, H. et al. Stable light-emitting diodes using phase-pure Ruddlesden–Popper layered perovskites. Adv. Mater. 30, 1704217 (2018).

    Google Scholar 

  209. Lee, J.-W. et al. Solid-phase hetero epitaxial growth of α-phase formamidinium perovskite. Nat. Commun. 11, 5514 (2020).

    CAS  Google Scholar 

  210. Yang, M. et al. Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nat. Energy 2, 17038 (2017).

  211. Muscarella, L. A. et al. Lattice compression increases the activation barrier for phase segregation in mixed-halide perovskites. ACS Energy Lett. 5, 3152–3158 (2020).

    CAS  Google Scholar 

  212. Knight, A. J. & Herz, L. M. Preventing phase segregation in mixed-halide perovskites: a perspective. Energy Environ. Sci. 13, 2024–2046 (2020).

    CAS  Google Scholar 

  213. Chu, Z. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 22% via small-molecule passivation. Adv. Mater. 33, 2007169 (2021).

    CAS  Google Scholar 

  214. Hassan, Y. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591, 72–77 (2021).

    CAS  Google Scholar 

  215. Lim, K.-G., Han, T.-H. & Lee, T.-W. Engineering electrodes and metal halide perovskite materials for flexible/stretchable perovskite solar cells and light-emitting diodes. Energy Environ. Sci. 14, 2009–2035 (2021).

    CAS  Google Scholar 

  216. Shin, P., Sung, J. & Ho, M. Microelectronics reliability control of droplet formation for low viscosity fluid by double waveforms applied to a piezoelectric inkjet nozzle. Microelectron. Reliab. 51, 797–804 (2011).

    CAS  Google Scholar 

  217. Gao, A. et al. Printable CsPbBr3 perovskite quantum dot ink for coffee ring-free fluorescent microarrays using inkjet printing. Nanoscale 12, 2569–2577 (2020).

    CAS  Google Scholar 

  218. Kim, T. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photon. 5, 176–182 (2011).

    CAS  Google Scholar 

  219. Cui, Z., Han, Y., Huang, Q., Dong, J. & Zhu, Y. Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics. Nanoscale 10, 6806–6811 (2018).

    CAS  Google Scholar 

  220. Lee, W. et al. High-resolution spin-on-patterning of perovskite thin films for a multiplexed image sensor array. Adv. Mater. 29, 1702902 (2017).

  221. Lin, C. H. et al. Large-area lasing and multicolor perovskite quantum dot patterns. Adv. Opt. Mater. 6, 1800474 (2018).

  222. Hou, S., Guo, Y., Tang, Y. & Quan, Q. Synthesis and stabilization of colloidal perovskite nanocrystals by multidentate polymer micelles. ACS Appl. Mater. Interf. 9, 18417–18422 (2017).

    CAS  Google Scholar 

  223. Li, H., Jia, C., Li, H. & Meng, X. CsPbX3/Cs4PbX6 core/shell perovskite nanocrystals. Chem. Commun. 54, 6300–6303 (2018).

    Google Scholar 

  224. Wang, B. et al. Postsynthesis phase transformation for CsPbBr3/Rb4PbBr6 core/shell nanocrystals with exceptional photostability. ACS Appl. Mater. Interf. 10, 23303–23310 (2018).

    CAS  Google Scholar 

  225. Zhao, H. et al. High-brightness perovskite light-emitting diodes based on FAPbBr3 nanocrystals with rationally designed aromatic ligands. ACS Energy Lett. 6, 2395–2403 (2021).

    CAS  Google Scholar 

  226. Fang, Z. et al. Dual passivation of perovskite defects for light-emitting diodes with external quantum efficiency exceeding 20%. Adv. Funct. Mater. 30, 1909754 (2020).

    CAS  Google Scholar 

  227. Liu, Z. et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Adv. Mater. 33, 2103268 (2021).

  228. Chu, S. et al. Large-area and efficient perovskite light-emitting diodes via low-temperature blade-coating. Nat. Commun. 12, 147 (2021).

    CAS  Google Scholar 

  229. Ma, D. et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 599, 594–598 (2021).

    CAS  Google Scholar 

  230. Jiang, Y. et al. Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes. Nat. Commun. 12, 336 (2021).

    CAS  Google Scholar 

  231. Liu, Y. et al. Water-soluble conjugated polyelectrolyte hole transporting layer for efficient sky-blue perovskite light-emitting diodes. Small 17, 1–8 (2021).

    Google Scholar 

  232. Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).

    CAS  Google Scholar 

  233. Wang, L. et al. Blue quantum dot light-emitting diodes with high electroluminescent efficiency. ACS Appl. Mater. Interf. 9, 38755–38760 (2017).

    CAS  Google Scholar 

  234. Xu, Y. et al. Constructing charge-transfer excited states based on frontier molecular orbital engineering: narrowband green electroluminescence with high color purity and efficiency. Angew. Chem. Int. Ed. 132, 17595–17599 (2020).

    Google Scholar 

  235. Woo Choi, J. et al. Organic–inorganic hybrid perovskite quantum dots with high PLQY and enhanced carrier mobility through crystallinity control by solvent engineering and solid-state ligand exchange. Nanoscale 10, 13356–13367 (2018).

    CAS  Google Scholar 

  236. Salas, G., Costo, R. & del Puerto Morales, M. Synthesis of inorganic nanoparticles. Front. Nanosci. 4, 35–79 (2012).

    Google Scholar 

  237. Thanh, N. T. K., Maclean, N. & Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 114, 7610–7630 (2014).

    CAS  Google Scholar 

  238. Kim, B. W. et al. Morphology controlled nanocrystalline CsPbBr3 thin-film for metal halide perovskite light emitting diodes. J. Ind. Eng. Chem. 97, 417–425 (2021).

    CAS  Google Scholar 

  239. Huang, G. et al. A strategy for improving the performance of perovskite red light-emitting diodes by controlling the growth of perovskite crystal. J. Mater. Chem. C 7, 11887–11895 (2019).

    CAS  Google Scholar 

  240. Lee, H., Ko, D. & Lee, C. Direct evidence of ion-migration-induced degradation of ultrabright perovskite light-emitting diodes. ACS Appl. Mater. Interf. 11, 11667–11673 (2019).

    CAS  Google Scholar 

  241. Kim, Y. et al. Exploiting the full advantages of colloidal perovskite nanocrystals for large-area efficient light-emitting diodes. Nat. Nanotechnol. 17, 590–597 (2022).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (grant numbers NRF-2016R1A3B1908431 and 2020R1C1C1008485). This research was also supported by the Creative Materials Discovery Program through the NRF, funded by the Ministry of Science and ICT (grant number 2018M3D1A1058536). K.Y.J. acknowledged the support from the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (grant number 20214000000570).

Author information

Authors and Affiliations

Authors

Contributions

T.-H.H. and K.Y.J. researched data for the article. T.-H.H., K.Y.J. and T.-W.L. contributed substantially to discussion of the content. T.-H.H., K.Y.J. and T.-W.L. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Tae-Woo Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ITU-R Recommendation BT.2020: https://www.itu.int/rec/R-REC-BT.2020-0-201208-S

LCD televisions based on perovskite-QD films: https://www.perovskite-info.com/tcl-and-zhijing-nanotech-collaborate-pqd-solutions-lcd-tvs

QDot LCD SharpGreen perovskite film: https://quantum-solutions.com/product/qdot-lcd-sharpgreen-perovskite-film/

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, TH., Jang, K.Y., Dong, Y. et al. A roadmap for the commercialization of perovskite light emitters. Nat Rev Mater (2022). https://doi.org/10.1038/s41578-022-00459-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41578-022-00459-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing