Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Flexible self-charging power sources

Abstract

Power supply is one of the bottlenecks to realizing untethered wearable electronics, soft robotics and the internet of things. Flexible self-charging power sources integrate energy harvesters, power management electronics and energy-storage units on the same platform; they harvest energy from the ambient environment and simultaneously store the generated electricity for consumption. Thus, they enable self-powered, sustainable and maintenance-free soft electronics. However, challenges associated with materials engineering, mechanistic understanding and device design emerge when moving from individual devices to integrated systems for practical applications. In this Review, we discuss various flexible self-charging technologies as power sources, including the combination of flexible solar cells, mechanical energy harvesters, thermoelectrics, biofuel cells and hybrid devices with flexible energy-storage components. We consider exemplary applications of power-source integration in soft electronics. Finally, we provide an overview of the emerging challenges, strategies and opportunities for research and development of flexible self-charging power sources.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Mechanisms of flexible ambient energy harvesters.
Fig. 2: Charging mechanisms of flexible energy-storage devices.
Fig. 3: Mechanisms of self-charging power sources.
Fig. 4: Power management in self-charging power sources.
Fig. 5: Applications of flexible self-powered sensing systems.

References

  1. Someya, T. & Amagai, M. Toward a new generation of smart skins. Nat. Biotechnol. 37, 382–388 (2019).

    Article  CAS  Google Scholar 

  2. Rich, S. I., Wood, R. J. & Majidi, C. Untethered soft robotics. Nat. Electron. 1, 102–112 (2018).

    Article  Google Scholar 

  3. Zamarayeva, A. M. et al. Flexible and stretchable power sources for wearable electronics. Sci. Adv. 3, e1602051 (2017).

    Article  Google Scholar 

  4. He, J. et al. Scalable production of high-performing woven lithium-ion fibre batteries. Nature 597, 57–63 (2021).

    Article  CAS  Google Scholar 

  5. Ray, T. R. et al. Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119, 5461–5533 (2019).

    Article  CAS  Google Scholar 

  6. Curiel, R. F. Self-charging solar battery. US patent 4563727 (1986).

  7. Kanbara, T., Takada, K., Yamamura, Y. & Kondo, S. Photo-rechargeable solid state battery. Solid State Ion. 40-41, 955–958 (1990).

    Article  CAS  Google Scholar 

  8. Anton, S. R., Erturk, A. & Inman, D. J. Multifunctional self-charging structures using piezoceramics and thin-film batteries. Smart Mater. Struct. 19, 115021 (2010).

    Article  Google Scholar 

  9. Xue, X., Wang, S., Guo, W., Zhang, Y. & Wang, Z. L. Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell. Nano Lett. 12, 5048–5054 (2012).

    Article  CAS  Google Scholar 

  10. Chen, J. et al. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 1, 16138 (2016).

    Article  CAS  Google Scholar 

  11. Sun, H., Zhang, Y., Zhang, J., Sun, X. & Peng, H. Energy harvesting and storage in 1D devices. Nat. Rev. Mater. 2, 17023 (2017).

    Article  CAS  Google Scholar 

  12. Pu, X. et al. A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv. Mater. 27, 2472–2478 (2015).

    Article  CAS  Google Scholar 

  13. Jeerapan, I., Sempionatto, J. R., Pavinatto, A., You, J.-M. & Wang, J. Stretchable biofuel cells as wearable textile-based self-powered sensors. J. Mater. Chem. A 4, 18342–18353 (2016).

    Article  CAS  Google Scholar 

  14. Yu, Y. et al. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci. Robot. 5, eaaz7946 (2020).

    Article  Google Scholar 

  15. Ostfeld, A. E., Gaikwad, A. M., Khan, Y. & Arias, A. C. High-performance flexible energy storage and harvesting system for wearable electronics. Sci. Rep. 6, 26122 (2016).

    Article  CAS  Google Scholar 

  16. Kaltenbrunner, M. et al. Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nat. Mater. 14, 1032–1039 (2015).

    Article  CAS  Google Scholar 

  17. Cheng, Y.-B., Pascoe, A., Huang, F. & Peng, Y. Print flexible solar cells. Nature 539, 488–489 (2016).

    Article  CAS  Google Scholar 

  18. Jinno, H. et al. Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications. Nat. Energy 2, 780–785 (2017).

    Article  CAS  Google Scholar 

  19. Kaltenbrunner, M. et al. Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 3, 770 (2012).

    Article  Google Scholar 

  20. Wu, S. et al. Low-bandgap organic bulk-heterojunction enabled efficient and flexible perovskite solar cells. Adv. Mater. 33, 2105539 (2021).

    Article  CAS  Google Scholar 

  21. Wan, J. et al. Solution-processed transparent conducting electrodes for flexible organic solar cells with 16.61% efficiency. Nanomicro Lett. 13, 44 (2021).

    Google Scholar 

  22. Kim, S. et al. High-power and flexible indoor solar cells via controlled growth of perovskite using a greener antisolvent. ACS Appl. Energy Mater. 3, 6995–7003 (2020).

    Article  CAS  Google Scholar 

  23. Huang, J. et al. Stretchable ITO-free organic solar cells with intrinsic anti-reflection substrate for high-efficiency outdoor and indoor energy harvesting. Adv. Funct. Mater. 31, 2010172 (2021).

    Article  CAS  Google Scholar 

  24. Zou, H. et al. Quantifying and understanding the triboelectric series of inorganic non-metallic materials. Nat. Commun. 11, 2093 (2020).

    Article  CAS  Google Scholar 

  25. Fan, F.-R., Tian, Z.-Q. & Wang, Z. L. Flexible triboelectric generator. Nano Energy 1, 328–334 (2012).

    Article  CAS  Google Scholar 

  26. Zhu, G. et al. A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv. Mater. 26, 3788–3796 (2014).

    Article  CAS  Google Scholar 

  27. Deng, J. et al. Vitrimer elastomer-based jigsaw puzzle-like healable triboelectric nanogenerator for self-powered wearable electronics. Adv. Mater. 30, 1705918 (2018).

    Article  Google Scholar 

  28. Liu, R. et al. Shape memory polymers for body motion energy harvesting and self-powered mechanosensing. Adv. Mater. 30, 1705195 (2018).

    Article  Google Scholar 

  29. Hinchet, R. et al. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365, 491–494 (2019).

    Article  CAS  Google Scholar 

  30. Parida, K. et al. Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator. Nat. Commun. 10, 2158 (2019).

    Article  Google Scholar 

  31. Wang, Z. L. & Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006).

    Article  CAS  Google Scholar 

  32. Wu, W. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014).

    Article  CAS  Google Scholar 

  33. Hwang, G.-T. et al. Self-powered deep brain stimulation via a flexible PIMNT energy harvester. Energy Environ. Sci. 8, 2677–2684 (2015).

    Article  CAS  Google Scholar 

  34. Khan, H. et al. Liquid metal-based synthesis of high performance monolayer SnS piezoelectric nanogenerators. Nat. Commun. 11, 3449 (2020).

    Article  CAS  Google Scholar 

  35. Gu, L. et al. Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrode. Nat. Commun. 11, 1030 (2020).

    Article  CAS  Google Scholar 

  36. Park, K.-I. et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 26, 2514–2520 (2014).

    Article  CAS  Google Scholar 

  37. Hinterleitner, B. et al. Thermoelectric performance of a metastable thin-film Heusler alloy. Nature 576, 85–90 (2019).

    Article  CAS  Google Scholar 

  38. Jin, Q. et al. Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold. Nat. Mater. 18, 62–68 (2019).

    Article  CAS  Google Scholar 

  39. Han, C.-G. et al. Giant thermopower of ionic gelatin near room temperature. Science 368, 1091–1098 (2020).

    Article  CAS  Google Scholar 

  40. He, S. et al. Semiconductor glass with superior flexibility and high room temperature thermoelectric performance. Sci. Adv. 6, eaaz8423 (2020).

    Article  CAS  Google Scholar 

  41. Shi, X.-L., Zou, J. & Chen, Z.-G. Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 120, 7399–7515 (2020).

    Article  CAS  Google Scholar 

  42. Oh, J. Y. et al. Chemically exfoliated transition metal dichalcogenide nanosheet-based wearable thermoelectric generators. Energy Environ. Sci. 9, 1696–1705 (2016).

    Article  CAS  Google Scholar 

  43. Hong, S. et al. Wearable thermoelectrics for personalized thermoregulation. Sci. Adv. 5, eaaw0536 (2019).

    Article  CAS  Google Scholar 

  44. Lee, B. et al. High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics. Nat. Commun. 11, 5948 (2020).

    Article  CAS  Google Scholar 

  45. Byun, S.-H. et al. Design strategy for transformative electronic system toward rapid, bidirectional stiffness tuning using graphene and flexible thermoelectric device interfaces. Adv. Mater. 33, 2007239 (2021).

    Article  CAS  Google Scholar 

  46. Bandodkar, A. J. et al. Soft, stretchable, high power density electronic skin-based biofuel cells for scavenging energy from human sweat. Energy Environ. Sci. 10, 1581–1589 (2017).

    Article  Google Scholar 

  47. Bandodkar, A. J. et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 5, eaav3294 (2019).

    Article  Google Scholar 

  48. Tang, S. et al. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Sci. Robot. 5, eaba6137 (2020).

    Article  Google Scholar 

  49. Xu, C., Wang, X. & Wang, Z. L. Nanowire structured hybrid cell for concurrently scavenging solar and mechanical energies. J. Am. Chem. Soc. 131, 5866–5872 (2009).

    Article  CAS  Google Scholar 

  50. Seo, B., Cha, Y., Kim, S. & Choi, W. Rational design for optimizing hybrid thermo-triboelectric generators targeting human activities. ACS Energy Lett. 4, 2069–2074 (2019).

    Article  CAS  Google Scholar 

  51. Qiu, C., Wu, F., Lee, C. & Yuce, M. R. Self-powered control interface based on Gray code with hybrid triboelectric and photovoltaics energy harvesting for IoT smart home and access control applications. Nano Energy 70, 104456 (2020).

    Article  CAS  Google Scholar 

  52. Lukatskaya, M. R. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017).

    Article  CAS  Google Scholar 

  53. Berggren, M. & Malliaras, G. G. How conducting polymer electrodes operate. Science 364, 233–234 (2019).

    Article  CAS  Google Scholar 

  54. Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).

    Article  CAS  Google Scholar 

  55. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  Google Scholar 

  56. Pomerantseva, E., Bonaccorso, F., Feng, X., Cui, Y. & Gogotsi, Y. Energy storage: the future enabled by nanomaterials. Science 366, eaan8285 (2019).

    Article  CAS  Google Scholar 

  57. Goodenough, J. B. How we made the Li-ion rechargeable battery. Nat. Electron. 1, 204–204 (2018).

    Article  Google Scholar 

  58. Ma, L. et al. Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 5, 743–749 (2020).

    Article  CAS  Google Scholar 

  59. Simon, P., Gogotsi, Y. & Dunn, B. Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014).

    Article  CAS  Google Scholar 

  60. Dubal, D. P., Ayyad, O., Ruiz, V. & Gomez-Romero, P. Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 44, 1777–1790 (2015).

    Article  CAS  Google Scholar 

  61. Lukatskaya, M. R., Dunn, B. & Gogotsi, Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 12647 (2016).

    Article  Google Scholar 

  62. Amatucci, G. G., Badway, F., Du Pasquier, A. & Zheng, T. An asymmetric hybrid nonaqueous energy storage cell. J. Electrochem. Soc. 148, A930 (2001).

    Article  CAS  Google Scholar 

  63. Tie, D. et al. Hybrid energy storage devices: advanced electrode materials and matching principles. Energy Storage Mater. 21, 22–40 (2019).

    Article  Google Scholar 

  64. Simon, P. & Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19, 1151–1163 (2020).

    Article  CAS  Google Scholar 

  65. Mackanic, D. G., Kao, M. & Bao, Z. Enabling deformable and stretchable batteries. Adv. Energy Mater. 10, 2001424 (2020).

    Article  CAS  Google Scholar 

  66. Hauch, A., Georg, A., Krašovec, U. O. & Orel, B. Photovoltaically self-charging battery. J. Electrochem. Soc. 149, A1208 (2002).

    Article  CAS  Google Scholar 

  67. Miyasaka, T. & Murakami, T. N. The photocapacitor: an efficient self-charging capacitor for direct storage of solar energy. Appl. Phys. Lett. 85, 3932–3934 (2004).

    Article  CAS  Google Scholar 

  68. Liu, R. et al. Silicon nanowire/polymer hybrid solar cell-supercapacitor: a self-charging power unit with a total efficiency of 10.5%. Nano Lett. 17, 4240–4247 (2017).

    Article  CAS  Google Scholar 

  69. Liang, J. et al. MoS2-based all-purpose fibrous electrode and self-powering energy fiber for efficient energy harvesting and storage. Adv. Energy Mater. 7, 1601208 (2017).

    Article  Google Scholar 

  70. Liu, R. et al. An efficient ultra-flexible photo-charging system integrating organic photovoltaics and supercapacitors. Adv. Energy Mater. 10, 2000523 (2020).

    Article  CAS  Google Scholar 

  71. Li, W., Fu, H.-C., Zhao, Y., He, J.-H. & Jin, S. 14.1% efficient monolithically integrated solar flow battery. Chem 4, 2644–2657 (2018).

    Article  CAS  Google Scholar 

  72. Qin, H. et al. A universal and passive power management circuit with high efficiency for pulsed triboelectric nanogenerator. Nano Energy 68, 104372 (2020).

    Article  CAS  Google Scholar 

  73. Segev, G., Beeman, J. W., Greenblatt, J. B. & Sharp, I. D. Hybrid photoelectrochemical and photovoltaic cells for simultaneous production of chemical fuels and electrical power. Nat. Mater. 17, 1115–1121 (2018).

    Article  CAS  Google Scholar 

  74. Huang, K. et al. High-performance flexible perovskite solar cells via precise control of electron transport layer. Adv. Energy Mater. 9, 1901419 (2019).

    Article  CAS  Google Scholar 

  75. Ru, P. et al. High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells. Adv. Energy Mater. 10, 1903487 (2020).

    Article  CAS  Google Scholar 

  76. Giustino, F. & Snaith, H. J. Toward lead-free perovskite solar cells. ACS Energy Lett. 1, 1233–1240 (2016).

    Article  CAS  Google Scholar 

  77. Ke, W. & Kanatzidis, M. G. Prospects for low-toxicity lead-free perovskite solar cells. Nat. Commun. 10, 965 (2019).

    Article  Google Scholar 

  78. Sun, Y. et al. Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nat. Electron. 2, 513–520 (2019).

    Article  CAS  Google Scholar 

  79. Qin, F. et al. Robust metal ion-chelated polymer interfacial layer for ultraflexible non-fullerene organic solar cells. Nat. Commun. 11, 4508 (2020).

    Article  CAS  Google Scholar 

  80. Niu, S. et al. Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system. Nano Energy 8, 150–156 (2014).

    Article  CAS  Google Scholar 

  81. Niu, S., Wang, X., Yi, F., Zhou, Y. S. & Wang, Z. L. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 6, 8975 (2015).

    Article  CAS  Google Scholar 

  82. Cheng, X. et al. Power management and effective energy storage of pulsed output from triboelectric nanogenerator. Nano Energy 61, 517–532 (2019).

    Article  CAS  Google Scholar 

  83. Wang, J. et al. A flexible fiber-based supercapacitor–triboelectric-nanogenerator power system for wearable electronics. Adv. Mater. 27, 4830–4836 (2015).

    Article  CAS  Google Scholar 

  84. Pu, X. et al. Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 28, 98–105 (2016).

    Article  CAS  Google Scholar 

  85. Liu, M. et al. High-energy asymmetric supercapacitor yarns for self-charging power textiles. Adv. Funct. Mater. 29, 1806298 (2019).

    Article  CAS  Google Scholar 

  86. Chen, J. et al. Traditional weaving craft for one-piece self-charging power textile for wearable electronics. Nano Energy 50, 536–543 (2018).

    Article  CAS  Google Scholar 

  87. Dong, K. et al. A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors. ACS Nano 11, 9490–9499 (2017).

    Article  CAS  Google Scholar 

  88. Cong, Z. et al. Stretchable coplanar self-charging power textile with resist-dyeing triboelectric nanogenerators and microsupercapacitors. ACS Nano 14, 5590–5599 (2020).

    Article  CAS  Google Scholar 

  89. Wang, S. et al. Motion charged battery as sustainable flexible-power-unit. ACS Nano 7, 11263–11271 (2013).

    Article  CAS  Google Scholar 

  90. Wang, J. et al. All-plastic-materials based self-charging power system composed of triboelectric nanogenerators and supercapacitors. Adv. Funct. Mater. 26, 1070–1076 (2016).

    Article  CAS  Google Scholar 

  91. Song, Y. et al. Integrated self-charging power unit with flexible supercapacitor and triboelectric nanogenerator. J. Mater. Chem. A 4, 14298–14306 (2016).

    Article  CAS  Google Scholar 

  92. Wang, J. et al. Sustainably powering wearable electronics solely by biomechanical energy. Nat. Commun. 7, 12744 (2016).

    Article  CAS  Google Scholar 

  93. Liu, D. et al. A constant current triboelectric nanogenerator arising from electrostatic breakdown. Sci. Adv. 5, eaav6437 (2019).

    Article  CAS  Google Scholar 

  94. Chen, C. et al. Direct current fabric triboelectric nanogenerator for biomotion energy harvesting. ACS Nano 14, 4585–4594 (2020).

    Article  CAS  Google Scholar 

  95. Yin, X. et al. A motion vector sensor via direct-current triboelectric nanogenerator. Adv. Funct. Mater. 30, 2002547 (2020).

    Article  CAS  Google Scholar 

  96. Song, Y. et al. Direct current triboelectric nanogenerators. Adv. Energy Mater. 10, 2002756 (2020).

    Article  CAS  Google Scholar 

  97. Xue, X. et al. Flexible self-charging power cell for one-step energy conversion and storage. Adv. Energy Mater. 4, 1301329 (2014).

    Article  Google Scholar 

  98. Xing, L., Nie, Y., Xue, X. & Zhang, Y. PVDF mesoporous nanostructures as the piezo-separator for a self-charging power cell. Nano Energy 10, 44–52 (2014).

    Article  CAS  Google Scholar 

  99. Kim, Y.-S. et al. Highly porous piezoelectric PVDF membrane as effective lithium ion transfer channels for enhanced self-charging power cell. Nano Energy 14, 77–86 (2015).

    Article  CAS  Google Scholar 

  100. Zhou, D., Yang, T., Yang, J. & Fan, L.-Z. A flexible self-charging sodium-ion full battery for self-powered wearable electronics. J. Mater. Chem. A 8, 13267–13276 (2020).

    Article  CAS  Google Scholar 

  101. Pazhamalai, P. et al. A high efficacy self-charging MoSe2 solid-state supercapacitor using electrospun nanofibrous piezoelectric separator with ionogel electrolyte. Adv. Mater. Interfaces 5, 1800055 (2018).

    Article  Google Scholar 

  102. Zhou, D. et al. A piezoelectric nanogenerator promotes highly stretchable and self-chargeable supercapacitors. Mater. Horiz. 7, 2158–2167 (2020).

    Article  CAS  Google Scholar 

  103. Krishnamoorthy, K. et al. Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy. Nat. Commun. 11, 2351 (2020).

    Article  CAS  Google Scholar 

  104. Zhao, D. et al. Ionic thermoelectric supercapacitors. Energy Environ. Sci. 9, 1450–1457 (2016).

    Article  CAS  Google Scholar 

  105. Kim, S. L., Lin, H. T. & Yu, C. Thermally chargeable solid-state supercapacitor. Adv. Energy Mater. 6, 1600546 (2016).

    Article  Google Scholar 

  106. Cheng, H., He, X., Fan, Z. & Ouyang, J. Flexible quasi-solid state ionogels with remarkable Seebeck coefficient and high thermoelectric properties. Adv. Energy Mater. 9, 1901085 (2019).

    Article  Google Scholar 

  107. Li, T. et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nat. Mater. 18, 608–613 (2019).

    Article  CAS  Google Scholar 

  108. Dupont, M., MacFarlane, D. & Pringle, J. Thermo-electrochemical cells for waste heat harvesting–progress and perspectives. Chem. Commun. 53, 6288–6302 (2017).

    Article  CAS  Google Scholar 

  109. Hu, R. et al. Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell. Nano Lett. 10, 838–846 (2010).

    Article  CAS  Google Scholar 

  110. Duan, J. et al. Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest. Nat. Commun. 9, 5146 (2018).

    Article  Google Scholar 

  111. Wang, X. et al. Direct thermal charging cell for converting low-grade heat to electricity. Nat. Commun. 10, 4151 (2019).

    Article  Google Scholar 

  112. Zhao, C.-E. et al. Nanostructured material-based biofuel cells: recent advances and future prospects. Chem. Soc. Rev. 46, 1545–1564 (2017).

    Article  CAS  Google Scholar 

  113. Jeerapan, I., Sempionatto, J. R. & Wang, J. On-body bioelectronics: wearable biofuel cells for bioenergy harvesting and self-powered biosensing. Adv. Funct. Mater. 30, 1906243 (2020).

    Article  CAS  Google Scholar 

  114. Xiao, X. et al. Tackling the challenges of enzymatic (bio)fuel cells. Chem. Rev. 119, 9509–9558 (2019).

    Article  CAS  Google Scholar 

  115. Agnès, C. et al. Supercapacitor/biofuel cell hybrids based on wired enzymes on carbon nanotube matrices: autonomous reloading after high power pulses in neutral buffered glucose solutions. Energy Environ. Sci. 7, 1884–1888 (2014).

    Article  Google Scholar 

  116. Pankratov, D. et al. A Nernstian biosupercapacitor. Angew. Chem. Int. Ed. 55, 15434–15438 (2016).

    Article  CAS  Google Scholar 

  117. Lv, J. et al. Sweat-based wearable energy harvesting-storage hybrid textile devices. Energy Environ. Sci. 11, 3431–3442 (2018).

    Article  CAS  Google Scholar 

  118. Qiu, M., Sun, P., Cui, G., Tong, Y. & Mai, W. A flexible microsupercapacitor with integral photocatalytic fuel cell for self-charging. ACS Nano 13, 8246–8255 (2019).

    Article  CAS  Google Scholar 

  119. Pu, X. et al. Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-sensitized solar cells. Adv. Energy Mater. 6, 1601048 (2016).

    Article  Google Scholar 

  120. Wen, Z. et al. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 2, e1600097 (2016).

    Article  Google Scholar 

  121. Ren, Z. et al. Wearable and self-cleaning hybrid energy harvesting system based on micro/nanostructured haze film. Nano Energy 67, 104243 (2020).

    Article  CAS  Google Scholar 

  122. Zhang, Q. et al. Shadow enhanced self-charging power system for wave and solar energy harvesting from the ocean. Nat. Commun. 12, 616 (2021).

    Article  CAS  Google Scholar 

  123. Wu, C. et al. FAPbI3 flexible solar cells with a record efficiency of 19.38% fabricated in air via ligand and additive synergetic process. Adv. Funct. Mater. 29, 1902974 (2019).

    Article  Google Scholar 

  124. Zi, Y. et al. Triboelectric–pyroelectric–piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Adv. Mater. 27, 2340–2347 (2015).

    Article  CAS  Google Scholar 

  125. Wang, S., Wang, Z. L. & Yang, Y. A one-structure-based hybridized nanogenerator for scavenging mechanical and thermal energies by triboelectric–piezoelectric–pyroelectric effects. Adv. Mater. 28, 2881–2887 (2016).

    Article  CAS  Google Scholar 

  126. Wu, Y. et al. Triboelectric–thermoelectric hybrid nanogenerator for harvesting energy from ambient environments. Adv. Mater. Technol. 3, 1800166 (2018).

    Article  Google Scholar 

  127. Jo, S., Kim, I., Byun, J., Jayababu, N. & Kim, D. Boosting a power performance of a hybrid nanogenerator via frictional heat combining a triboelectricity and thermoelectricity toward advanced smart sensors. Adv. Mater. Technol. 6, 2000752 (2021).

    Article  CAS  Google Scholar 

  128. Pan, C., Li, Z., Guo, W., Zhu, J. & Wang, Z. L. Fiber-based hybrid nanogenerators for/as self-powered systems in biological liquid. Angew. Chem. Int. Ed. 50, 11192–11196 (2011).

    Article  CAS  Google Scholar 

  129. Hansen, B. J., Liu, Y., Yang, R. & Wang, Z. L. Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4, 3647–3652 (2010).

    Article  CAS  Google Scholar 

  130. Yin, L. et al. A self-sustainable wearable multi-modular E-textile bioenergy microgrid system. Nat. Commun. 12, 1542 (2021).

    Article  CAS  Google Scholar 

  131. Hu, Y. et al. A portable and efficient solar-rechargeable battery with ultrafast photo-charge/discharge rate. Adv. Energy Mater. 9, 1900872 (2019).

    Article  Google Scholar 

  132. Fu, H.-C. et al. An efficient and stable solar flow battery enabled by a single-junction GaAs photoelectrode. Nat. Commun. 12, 156 (2021).

    Article  CAS  Google Scholar 

  133. Li, W. & Jin, S. Design principles and developments of integrated solar flow batteries. Acc. Chem. Res. 53, 2611–2621 (2020).

    Article  CAS  Google Scholar 

  134. Santos, J. L., Antunes, F., Chehab, A. & Cruz, C. A maximum power point tracker for PV systems using a high performance boost converter. Sol. Energy 80, 772–778 (2006).

    Article  Google Scholar 

  135. Miyatake, M., Veerachary, M., Toriumi, F., Fujii, N. & Ko, H. Maximum power point tracking of multiple photovoltaic arrays: a PSO approach. IEEE Trans. Aerosp. Electron. Syst. 47, 367–380 (2011).

    Article  Google Scholar 

  136. Gurung, A. et al. Highly efficient perovskite solar cell photocharging of lithium ion battery using DC–DC booster. Adv. Energy Mater. 7, 1602105 (2017).

    Article  Google Scholar 

  137. Fang, C. et al. Overview of power management for triboelectric nanogenerators. Adv. Intell. Syst. 2, 1900129 (2020).

    Article  Google Scholar 

  138. Niu, S. & Wang, Z. L. Theoretical systems of triboelectric nanogenerators. Nano Energy 14, 161–192 (2015).

    Article  CAS  Google Scholar 

  139. Xu, L. et al. Giant voltage enhancement via triboelectric charge supplement channel for self-powered electroadhesion. ACS Nano 12, 10262–10271 (2018).

    Article  CAS  Google Scholar 

  140. Ghaffarinejad, A., Hasani, J. Y., Galayko, D. & Basset, P. Superior performance of half-wave to full-wave rectifier as a power conditioning circuit for triboelectric nanogenerators: application to contact-separation and sliding mode TENG. Nano Energy 66, 104137 (2019).

    Article  CAS  Google Scholar 

  141. Xu, S. et al. Self-doubled-rectification of triboelectric nanogenerator. Nano Energy 66, 104165 (2019).

    Article  CAS  Google Scholar 

  142. Li, G. et al. Miura folding based charge-excitation triboelectric nanogenerator for portable power supply. Nano Res. 14, 4204–4210 (2021).

    Article  CAS  Google Scholar 

  143. Ghaffarinejad, A. et al. A conditioning circuit with exponential enhancement of output energy for triboelectric nanogenerator. Nano Energy 51, 173–184 (2018).

    Article  CAS  Google Scholar 

  144. Xu, L., Bu, T. Z., Yang, X. D., Zhang, C. & Wang, Z. L. Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators. Nano Energy 49, 625–633 (2018).

    Article  CAS  Google Scholar 

  145. Cheng, L., Xu, Q., Zheng, Y., Jia, X. & Qin, Y. A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed. Nat. Commun. 9, 3773 (2018).

    Article  Google Scholar 

  146. Liu, W. et al. Integrated charge excitation triboelectric nanogenerator. Nat. Commun. 10, 1426 (2019).

    Article  Google Scholar 

  147. He, W. et al. Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nat. Commun. 11, 4277 (2020).

    Article  CAS  Google Scholar 

  148. Zi, Y. et al. An inductor-free auto-power-management design built-in triboelectric nanogenerators. Nano Energy 31, 302–310 (2017).

    Article  CAS  Google Scholar 

  149. Cheng, G. et al. Managing and maximizing the output power of a triboelectric nanogenerator by controlled tip–electrode air-discharging and application for UV sensing. Nano Energy 44, 208–216 (2018).

    Article  CAS  Google Scholar 

  150. Yang, J. et al. Managing and optimizing the output performances of a triboelectric nanogenerator by a self-powered electrostatic vibrator switch. Nano Energy 46, 220–228 (2018).

    Article  CAS  Google Scholar 

  151. Cheng, X. et al. High efficiency power management and charge boosting strategy for a triboelectric nanogenerator. Nano Energy 38, 438–446 (2017).

    Article  CAS  Google Scholar 

  152. Zhang, H. et al. Employing a MEMS plasma switch for conditioning high-voltage kinetic energy harvesters. Nat. Commun. 11, 3221 (2020).

    Article  CAS  Google Scholar 

  153. Zhu, G., Chen, J., Zhang, T., Jing, Q. & Wang, Z. L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 5, 3426 (2014).

    Article  Google Scholar 

  154. Pu, X. et al. Efficient charging of Li-ion batteries with pulsed output current of triboelectric nanogenerators. Adv. Sci. 3, 1500255 (2016).

    Article  Google Scholar 

  155. Liu, W. et al. Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator. Nat. Commun. 11, 1883 (2020).

    Article  CAS  Google Scholar 

  156. Xi, F. et al. Universal power management strategy for triboelectric nanogenerator. Nano Energy 37, 168–176 (2017).

    Article  CAS  Google Scholar 

  157. Park, S. et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 561, 516–521 (2018).

    Article  CAS  Google Scholar 

  158. Song, Y., Mukasa, D., Zhang, H. & Gao, W. Self-powered wearable biosensors. Acc. Mater. Res. 2, 184–197 (2021).

    Article  CAS  Google Scholar 

  159. Zheng, Q., Tang, Q., Wang, Z. L. & Li, Z. Self-powered cardiovascular electronic devices and systems. Nat. Rev. Cardiol. 18, 7–21 (2020).

    Article  Google Scholar 

  160. Lou, Z., Li, L., Wang, L. & Shen, G. Recent progress of self-powered sensing systems for wearable electronics. Small 13, 1701791 (2017).

    Article  Google Scholar 

  161. Chun, K. Y., Son, Y. J., Jeon, E. S., Lee, S. & Han, C. S. A self-powered sensor mimicking slow- and fast-adapting cutaneous mechanoreceptors. Adv. Mater. 30, 1706299 (2018).

    Article  Google Scholar 

  162. Meng, K. et al. A wireless textile-based sensor system for self-powered personalized health care. Matter 2, 896–907 (2020).

    Article  Google Scholar 

  163. Wang, Z. et al. A self-powered angle sensor at nanoradian-resolution for robotic arms and personalized medicare. Adv. Mater. 32, 2001466 (2020).

    Article  CAS  Google Scholar 

  164. Wang, Z. L. Self-powered nanosensors and nanosystems. Adv. Mater. 24, 280–285 (2012).

    Article  CAS  Google Scholar 

  165. Korhonen, I., Parkka, J. & Van Gils, M. Health monitoring in the home of the future. IEEE Eng. Med. Biol. Mag. 22, 66–73 (2003).

    Article  Google Scholar 

  166. Lee, H. et al. Toward all-day wearable health monitoring: an ultralow-power, reflective organic pulse oximetry sensing patch. Sci. Adv. 4, eaas9530 (2018).

    Article  CAS  Google Scholar 

  167. Zou, Y. et al. A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nat. Commun. 10, 2695 (2019).

    Article  Google Scholar 

  168. Yu, H., Li, N. & Zhao, N. How far are we from achieving self-powered flexible health monitoring systems: an energy perspective. Adv. Energy Mater. 11, 2002646 (2021).

    Article  CAS  Google Scholar 

  169. Yin, R., Wang, D., Zhao, S., Lou, Z. & Shen, G. Wearable sensors-enabled human–machine interaction systems: from design to application. Adv. Funct. Mater. 31, 2008936 (2021).

    Article  CAS  Google Scholar 

  170. Yu, X. et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575, 473–479 (2019).

    Article  CAS  Google Scholar 

  171. Starner, T. Human-powered wearable computing. IBM Syst. J. 35, 618–629 (1996).

    Article  Google Scholar 

  172. Riemer, R. & Shapiro, A. Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions. J. Neuroeng. Rehabil. 8, 22 (2011).

    Article  Google Scholar 

  173. Zhou, M., Al-Furjan, M. S. H., Zou, J. & Liu, W. A review on heat and mechanical energy harvesting from human: principles, prototypes and perspectives. Renew. Sust. Energ. Rev. 82, 3582–3609 (2018).

    Article  Google Scholar 

  174. Lee, E. J. et al. High-performance piezoelectric nanogenerators based on chemically-reinforced composites. Energy Environ. Sci. 11, 1425–1430 (2018).

    Article  CAS  Google Scholar 

  175. Li, H. et al. A hybrid biofuel and triboelectric nanogenerator for bioenergy harvesting. Nanomicro Lett. 12, 50 (2020).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI under grant nos. JP18H05465 and JP18H05469.

Author information

Authors and Affiliations

Authors

Contributions

R.L. wrote and edited the article. Z.L.W., K.F. and T.S. contributed to the discussion of content and edited the manuscript before submission.

Corresponding authors

Correspondence to Ruiyuan Liu, Kenjiro Fukuda or Takao Someya.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Weishu Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Wang, Z.L., Fukuda, K. et al. Flexible self-charging power sources. Nat Rev Mater 7, 870–886 (2022). https://doi.org/10.1038/s41578-022-00441-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-022-00441-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing