Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Materials, physics and systems for multicaloric cooling

Abstract

Calls to minimize greenhouse gas emissions and demands for higher energy efficiency continue to drive research into alternative cooling and refrigeration technologies. The caloric effect is the reversible change in temperature and entropic states of a solid material subjected to one or more fields and can be exploited to achieve cooling. The field of caloric cooling has undergone a series of transformations over the past 50 years, bolstered by the advent of new materials and devices, and these developments have contributed to the emergence of multicalorics in the past decade. Multicaloric materials display one or more types of ferroic order that can give rise to multiple field-induced phase transitions that can enhance various aspects of caloric effects. These materials could open up new avenues for extracting heat and spearhead hitherto unknown technological applications. In this Review, we survey the emerging field of multicaloric cooling and explore state-of-the-art caloric materials and systems (devices) that are responsive to multiple fields. We present our vision of the future applications of multicaloric and caloric cooling and examine key factors that govern the overall system efficiency of the cooling devices.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of monocaloric materials as the basis for multicaloric cooling.
Fig. 2: Categories of caloric cooling.
Fig. 3: Loss factors in monocaloric and multicaloric cooling systems.

References

  1. Dupont, J. L., Domanski, P., Lebrun, P. & Ziegler, F. The role of refrigeration in the global economy (2019), 38th note on refrigeration technologies (International Institute of Refrigeration, 2019).

  2. Fahler, S. et al. Caloric effects in ferroic materials: new concepts for cooling. Adv. Eng. Mater. 14, 10–19 (2012).

    Article  CAS  Google Scholar 

  3. Moya, X., Kar-Narayan, S. & Mathur, N. D. Caloric materials near ferroic phase transitions. Nat. Mater. 13, 439–450 (2014).

    Article  CAS  Google Scholar 

  4. Takeuchi, I. & Sandeman, K. Solid-state cooling with caloric materials. Phys. Today 68, 48–54 (2015).

    Article  CAS  Google Scholar 

  5. Cazorla, C. Novel mechanocaloric materials for solid-state cooling applications. Appl. Phys. Rev. 6, 041316 (2019).

    Article  CAS  Google Scholar 

  6. Moya, X. & Mathur, N. D. Caloric materials for cooling and heating. Science 370, 797–803 (2020).

    Article  CAS  Google Scholar 

  7. Goetzler, W., Zogg, R., Young, J. & Johnson, C. Energy savings potential and RD&D opportunities for non-vapor-compression HVAC technologies (Navigant Consulting, 2014).

  8. Goetzler, W. et al. Energy savings potential and RD&D opportunities for commercial building HVAC systems (Navigant Consulting, 2017).

  9. Liu, J., Gottschall, T., Skokov, K. P., Moore, J. D. & Gutfleisch, O. Giant magnetocaloric effect driven by structural transitions. Nat. Mater. 11, 620–626 (2012).

    Article  CAS  Google Scholar 

  10. Nair, B. et al. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range. Nature 575, 468–472 (2019).

    Article  CAS  Google Scholar 

  11. Hou, H. et al. Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing. Science 366, 1116–1121 (2019).

    Article  CAS  Google Scholar 

  12. Sandeman, K. G. Research update: the mechanocaloric potential of spin crossover compounds. APL Mater. 4, 111102 (2016).

    Article  CAS  Google Scholar 

  13. Jacobs, S. et al. The performance of a large-scale rotary magnetic refrigerator. Int. J. Refrig. 37, 84–91 (2014). Reports a magnetic refrigerator with a high cooling power on the order of kilowatts at both 0 K and over temperature spans of >10 K.

    Article  CAS  Google Scholar 

  14. Tušek, J. et al. A regenerative elastocaloric heat pump. Nat. Energy 1, 16134 (2016). First demonstration of the applicability of active regeneration in elastocaloric prototyping.

    Article  CAS  Google Scholar 

  15. Plaznik, U. et al. Bulk relaxor ferroelectric ceramics as a working body for an electrocaloric cooling device. Appl. Phys. Lett. 106, 043903 (2015).

    Article  CAS  Google Scholar 

  16. Greco, A., Aprea, C., Maiorino, A. & Masselli, C. A review of the state of the art of solid-state caloric cooling processes at room-temperature before 2019. Int. J. Refrig. 106, 66–88 (2019).

    Article  Google Scholar 

  17. Mañosa, L. et al. Giant solid-state barocaloric effect in the Ni–Mn–In magnetic shape-memory alloy. Nat. Mater. 9, 478–481 (2010).

    Article  CAS  Google Scholar 

  18. Vopson, M. M. The multicaloric effect in multiferroic materials. Solid State Commun. 152, 2067–2070 (2012).

    Article  CAS  Google Scholar 

  19. Mañosa, L., Planes, A. & Acet, M. Advanced materials for solid-state refrigeration. J. Mater. Chem. A 1, 4925–4936 (2013).

    Article  CAS  Google Scholar 

  20. Stern-Taulats, E. et al. Multicaloric materials and effects. MRS Bull. 43, 295–299 (2018).

    Article  Google Scholar 

  21. Moya, X., Phan, M.-H., Srikanth, H. & Albertini, F. Multicalorics. J. Appl. Phys. 128, 240401 (2020).

    Article  CAS  Google Scholar 

  22. Lisenkov, S., Mani, B. K., Chang, C. M., Almand, J. & Ponomareva, I. Multicaloric effect in ferroelectric PbTiO3 from first principles. Phys. Rev. B 87, 224101 (2013).

    Article  CAS  Google Scholar 

  23. Vopson, M. M. Theory of giant-caloric effects in multiferroic materials. J. Phys. D 46, 345304 (2013).

    Article  CAS  Google Scholar 

  24. Edström, A. & Ederer, C. Prediction of a giant magnetoelectric cross-caloric effect around a tetracritical point in multiferroic SrMnO3. Phys. Rev. Lett. 124, 167201 (2020).

    Article  Google Scholar 

  25. Hao, J.-Z. et al. Multicaloric and coupled-caloric effects. Chin. Phys. B 29, 047504 (2020).

    Article  CAS  Google Scholar 

  26. Annaorazov, M. P., Nikitin, S. A., Tyurin, A. L., Asatryan, K. A. & Dovletov, A. K. Anomalously high entropy change in FeRh alloy. J. Appl. Phys. 79, 1689–1695 (1996).

    Article  CAS  Google Scholar 

  27. Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

    Article  CAS  Google Scholar 

  28. Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016).

    Article  CAS  Google Scholar 

  29. Ramesh, R. & Schlom, D. G. Creating emergent phenomena in oxide superlattices. Nat. Rev. Mater. 4, 257–268 (2019).

    Article  Google Scholar 

  30. Spaldin, N. A. & Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 18, 203–212 (2019).

    Article  CAS  Google Scholar 

  31. Tegus, O., Bruck, E., Buschow, K. H. J. & de Boer, F. R. Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415, 150–152 (2002).

    Article  CAS  Google Scholar 

  32. Neese, B. et al. Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321, 821–823 (2008).

    Article  CAS  Google Scholar 

  33. Bonnot, E., Romero, R., Mañosa, L., Vives, E. & Planes, A. Elastocaloric effect associated with the martensitic transition in shape-memory alloys. Phys. Rev. Lett. 100, 125901 (2008).

    Article  CAS  Google Scholar 

  34. Cui, J. et al. Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires. Appl. Phys. Lett. 101, 073904 (2012).

    Article  CAS  Google Scholar 

  35. Scott, J. F. Electrocaloric materials. Annu. Rev. Mater. Res. 41, 229–240 (2011).

    Article  CAS  Google Scholar 

  36. Franco, V. et al. Magnetocaloric effect: from materials research to refrigeration devices. Prog. Mater. Sci. 93, 112–232 (2018).

    Article  Google Scholar 

  37. Mañosa, L. & Planes, A. Materials with giant mechanocaloric effects: cooling by strength. Adv. Mater. 29, 1603607 (2016). Analyses the thermodynamics of mechanocaloric effects and summarizes advances in the major families of barocaloric and elastocaloric materials.

    Article  CAS  Google Scholar 

  38. Qian, S. et al. A review of elastocaloric cooling: materials, cycles and system integrations. Int. J. Refrig. 64, 1–19 (2016).

    Article  CAS  Google Scholar 

  39. Shi, J. et al. Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration. Joule 3, 1200–1225 (2019).

    Article  Google Scholar 

  40. Bruck, E., Yibole, H. & Zhang, L. A universal metric for ferroic energy materials. Phil. Trans. R. Soc. A 374, 20150303 (2016).

    Article  CAS  Google Scholar 

  41. Kitanovski, A. Energy applications of magnetocaloric materials. Adv. Energy Mater. 10, 1903741 (2020).

    Article  CAS  Google Scholar 

  42. Kitanovski, A. et al. Magnetocaloric Energy Conversion (Springer, 2015).

  43. Weiss, P. & Piccard, A. Le phénomène magnétocalorique. J. Phys. Theor. Appl. 7, 103–109 (1917).

    Article  Google Scholar 

  44. Debye, P. Einige Bemerkungen zur Magnetisierung bei tiefer Temperatur. Ann. Phys. 386, 1154–1160 (1926).

    Article  Google Scholar 

  45. Giauque, W. F. A thermodynamic treatment of certain magnetic effects. A proposed method of producing temperatures considerably below 1° absolute. J. Am. Chem. Soc. 49, 1864–1870 (1927).

    Article  CAS  Google Scholar 

  46. Giauque, W. F. & MacDougall, D. P. Attainment of temperatures below 1° absolute by demagnetization of Gd2(SO4)3·8H2O. Phys. Rev. 43, 768–768 (1933).

    Article  CAS  Google Scholar 

  47. Brown, G. V. Magnetic heat pumping near room temperature. J. Appl. Phys. 47, 3673–3680 (1976).

    Article  CAS  Google Scholar 

  48. Pecharsky, V. K. & Gschneidner, K. A. Giant magnetocaloric effect in Gd5(Si2Ge2). Phys. Rev. Lett. 78, 4494–4497 (1997).

    Article  CAS  Google Scholar 

  49. Hu, F. X. et al. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6. Appl. Phys. Lett. 78, 3675–3677 (2001).

    Article  CAS  Google Scholar 

  50. Shen, B. G., Sun, J. R., Hu, F. X., Zhang, H. W. & Cheng, Z. H. Recent progress in exploring magnetocaloric materials. Adv. Mater. 21, 4545–4564 (2009).

    Article  CAS  Google Scholar 

  51. Krenke, T. et al. Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nat. Mater. 4, 450–454 (2005).

    Article  CAS  Google Scholar 

  52. Masche, M., Liang, J., Dall’Olio, S., Engelbrecht, K. & Bahl, C. R. H. Performance analysis of a high-efficiency multi-bed active magnetic regenerator device. Appl. Therm. Eng. 199, 117569 (2021).

    Article  CAS  Google Scholar 

  53. Eriksen, D. et al. Design and experimental tests of a rotary active magnetic regenerator prototype. Int. J. Refrig. 58, 14–21 (2015).

    Article  Google Scholar 

  54. Dall’Olio, S. et al. Novel design of a high efficiency multi-bed active magnetic regenerator heat pump. Int. J. Refrig. 132, 243–254 (2021).

    Article  CAS  Google Scholar 

  55. Kobeko, P. & Kurtschatov, J. Dielectric properties of the Seignette salt crystals. Z. Phys. 66, 192–205 (1930).

    Article  CAS  Google Scholar 

  56. Wiseman, G. G. & Kuebler, J. K. Electrocaloric effect in ferroelectric Rochelle salt. Phys. Rev. 131, 2023–2027 (1963).

    Article  CAS  Google Scholar 

  57. Kikuchi, A. & Sawaguchi, E. Electrocaloric effect in SrTiO3. J. Phys. Soc. Jpn. 19, 1497–1498 (1964).

    Article  CAS  Google Scholar 

  58. Hegenbarth, E. Studies of the electrocaloric effect of ferroelectric ceramics at low temperatures. Cryogenics 1, 242–243 (1961).

    Article  Google Scholar 

  59. Lombardo, G. & Pohl, R. O. Electrocaloric effect and a new type of impurity mode. Phys. Rev. Lett. 15, 291–293 (1965).

    Article  CAS  Google Scholar 

  60. Shepherd, I. & Feher, G. Cooling by adiabatic depolarization of OH molecules in KCl. Phys. Rev. Lett. 15, 194–198 (1965).

    Article  CAS  Google Scholar 

  61. Mischenko, A. S., Zhang, Q., Scott, J. F., Whatmore, R. W. & Mathur, N. D. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 311, 1270–1271 (2006).

    Article  CAS  Google Scholar 

  62. Torelló, A. et al. Giant temperature span in electrocaloric regenerator. Science 370, 125–129 (2020). Reports an electrocaloric device that uses active regeneration to achieve a temperature span of >10K.

    Article  CAS  Google Scholar 

  63. Wang, Y. et al. A high-performance solid-state electrocaloric cooling system. Science 370, 129–133 (2020).

    Article  CAS  Google Scholar 

  64. Ma, R. et al. Highly efficient electrocaloric cooling with electrostatic actuation. Science 357, 1130–1134 (2017).

    Article  CAS  Google Scholar 

  65. Meng, Y. et al. A cascade electrocaloric cooling device for large temperature lift. Nat. Energy 5, 996–1002 (2020).

    Article  Google Scholar 

  66. Gough, J. A description of a property of caoutchouc, or Indian rubber; with some reflections on the cause of the elasticity of this substance. Mem. Lit. Philos. Soc. Manch. 1, 288–295 (1805).

    Google Scholar 

  67. Joule, J. P. On some thermo-dynamic properties of solids. Philos. Trans. 149, 91–131 (1859).

    Article  Google Scholar 

  68. Kobayashi, A. Elastocaloric effect in many-valley semiconductors. J. Phys. Soc. Jpn 17, 1518–1518 (1962).

    Article  Google Scholar 

  69. Bechtold, C., Chluba, C., De Miranda, R. L. & Quandt, E. High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films. Appl. Phys. Lett. 101, 091903 (2012).

    Article  CAS  Google Scholar 

  70. Quarini, J. & Prince, A. Solid state refrigeration: cooling and refrigeration using crystalline phase changes in metal alloys. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 218, 1175–1179 (2004).

    Article  CAS  Google Scholar 

  71. Rodriguez, C. & Brown, L. C. Thermal effect due to stress-induced martensite formation in β-CuAlNi single crystals. Metall. Mater. Trans. A 11, 147–150 (1980).

    Article  Google Scholar 

  72. Pieczyska, E. A., Tobushi, H. & Kulasinski, K. Development of transformation bands in TiNi SMA for various stress and strain rates studied by a fast and sensitive infrared camera. Smart Mater. Struct. 22, 035007 (2013).

    Article  CAS  Google Scholar 

  73. Wu, Y., Ertekin, E. & Sehitoglu, H. Elastocaloric cooling capacity of shape memory alloys – Role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation. Acta Mater. 135, 158–176 (2017).

    Article  CAS  Google Scholar 

  74. Cong, D. et al. Colossal elastocaloric effect in ferroelastic Ni-Mn-Ti alloys. Phys. Rev. Lett. 122, 255703 (2019).

    Article  CAS  Google Scholar 

  75. Frenzel, J. et al. On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys. Acta Mater. 90, 213–231 (2015).

    Article  CAS  Google Scholar 

  76. Saylor, A. 2012 ARPA-E summit technology showcase: UMD’s thermoelastic cooling. US Department of Energy https://www.energy.gov/articles/2012-arpa-e-summit-technology-showcase (2012).

  77. Qian, S. et al. in Proceedings of the 16th International Refrigeration and Air Conditioning Conference 2385 (Purdue Univ. Press, 2016).

  78. Rodriquez, E. L. & Filisko, F. E. Thermoelastic temperature changes in poly(methyl methacrylate) at high hydrostatic pressure: experimental. J. Appl. Phys. 53, 6536–6540 (1982).

    Article  CAS  Google Scholar 

  79. Muller, K. A. et al. Cooling by adiabatic pressure application in Pr1−xLaxNiO3. Appl. Phys. Lett. 73, 1056–1058 (1998).

    Article  Google Scholar 

  80. Strässle, T., Furrer, A., Lacorre, P. & Müller, K. A. A novel principle for cooling by adiabatic pressure application in rare-earth compounds. J. Alloys Compd. 303–304, 228–231 (2000).

    Article  Google Scholar 

  81. Matsunami, D., Fujita, A., Takenaka, K. & Kano, M. Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN. Nat. Mater. 14, 73–78 (2015).

    Article  CAS  Google Scholar 

  82. Lloveras, P. et al. Giant barocaloric effects at low pressure in ferrielectric ammonium sulphate. Nat. Commun. 6, 8801 (2015).

    Article  CAS  Google Scholar 

  83. Bermudez-Garcia, J. M. et al. Giant barocaloric effect in the ferroic organic-inorganic hybrid [TPrA][Mn(dca)3] perovskite under easily accessible pressures. Nat. Commun. 8, 15715 (2017).

    Article  CAS  Google Scholar 

  84. Kosugi, Y. et al. Colossal barocaloric effect by large latent heat produced by first-order intersite-charge-transfer transition. Adv. Funct. Mater. 31, 2009476 (2021).

    Article  CAS  Google Scholar 

  85. Aznar, A. et al. Giant barocaloric effects over a wide temperature range in superionic conductor AgI. Nat. Commun. 8, 1851 (2017).

    Article  CAS  Google Scholar 

  86. Lloveras, P. et al. Colossal barocaloric effects near room temperature in plastic crystals of neopentylglycol. Nat. Commun. 10, 1803 (2019).

    Article  CAS  Google Scholar 

  87. Aznar, A. et al. Reversible and irreversible colossal barocaloric effects in plastic crystals. J. Mater. Chem. A 8, 639–647 (2020).

    Article  CAS  Google Scholar 

  88. Aznar, A. et al. Reversible colossal barocaloric effects near room temperature in 1-X-adamantane (X=Cl, Br) plastic crystals. Appl. Mater. Today 23, 101023 (2021).

    Article  Google Scholar 

  89. Li, B. et al. Colossal barocaloric effects in plastic crystals. Nature 567, 506–510 (2019).

    Article  CAS  Google Scholar 

  90. von Ranke, P. J. et al. Colossal refrigerant capacity in [Fe(hyptrz)3]A2·H2O around the freezing temperature of water. Phys. Rev. B 98, 224408 (2018).

    Article  Google Scholar 

  91. Vallone, S. P. et al. Giant barocaloric effect at the spin crossover transition of a molecular crystal. Adv. Mater. 31, 1807334 (2019). Experimentally examines the barocaloric effect of a molecular crystal with a pressure-driven spin-crossover transition near room temperature.

    Article  CAS  Google Scholar 

  92. Romanini, M. et al. Giant and reversible barocaloric effect in trinuclear spin-crossover complex Fe3(bntrz)6(tcnset)6. Adv. Mater. 33, 2008076 (2021).

    Article  CAS  Google Scholar 

  93. Gama, S. et al. Pressure-induced colossal magnetocaloric effect in MnAs. Phys. Rev. Lett. 93, 237202 (2004).

    Article  CAS  Google Scholar 

  94. Morellon, L. et al. Pressure enhancement of the giant magnetocaloric effect in Tb5Si2Ge2. Phys. Rev. Lett. 93, 137201 (2004).

    Article  CAS  Google Scholar 

  95. Magen, C. et al. Hydrostatic pressure control of the magnetostructural phase transition in Gd5Si2Ge2 single crystals. Phys. Rev. B 72, 024416 (2005).

    Article  CAS  Google Scholar 

  96. Lyubina, J., Nenkov, K., Schultz, L. & Gutfleisch, O. Multiple metamagnetic transitions in the magnetic refrigerant La(Fe, Si)13Hx. Phys. Rev. Lett. 101, 177203 (2008).

    Article  CAS  Google Scholar 

  97. de Oliveira, N. A. Entropy change upon magnetic field and pressure variations. Appl. Phys. Lett. 90, 052501 (2007).

    Article  CAS  Google Scholar 

  98. Planes, A., Castan, T. & Saxena, A. Thermodynamics of multicaloric effects in multiferroics. Philos. Mag. 94, 1893–1908 (2014). Theoretically analyses the thermodynamics of multicaloric effects. The materials discussed are typical examples of category II cooling (multiple fields on single-phase materials), as defined in Fig. 2a of this Review.

    Article  CAS  Google Scholar 

  99. Liu, Y. et al. Large reversible caloric effect in FeRh thin films via a dual-stimulus multicaloric cycle. Nat. Commun. 7, 11614 (2016).

    Article  CAS  Google Scholar 

  100. Qiao, K. et al. Novel reduction of hysteresis loss controlled by strain memory effect in FeRh/PMN-PT heterostructures. Nano Energy 59, 285–294 (2019). Reports a multicaloric composite, to which a magnetic field is applied to the film and an electric field to the substrate in a multistep cycle. This work is an example of category IV cooling (multiple fields on composite materials), as defined in Fig. 2a of this Review.

    Article  CAS  Google Scholar 

  101. Qiao, K. et al. Regulation of phase transition and magnetocaloric effect by ferroelectric domains in FeRh/PMN-PT heterojunctions. Acta Mater. 91, 51–59 (2020).

    Article  CAS  Google Scholar 

  102. Moya, X. et al. Giant and reversible extrinsic magnetocaloric effects in La0.7Ca0.3MnO3 films due to strain. Nat. Mater. 12, 52–58 (2013). One of the first demonstrations of multicaloric cooling in multiferroic composites and a typical example of category III cooling (single field on composite materials), as defined in Fig. 2a of this Review.

    Article  CAS  Google Scholar 

  103. Hou, H., Finkel, P., Staruch, M., Cui, J. & Takeuchi, I. Ultra-low-field magneto-elastocaloric cooling in a multiferroic composite device. Nat. Commun. 9, 4075 (2018).

    Article  CAS  Google Scholar 

  104. Planes, A., Castán, T. & Saxena, A. Thermodynamics of multicaloric effects in multiferroic materials: application to metamagnetic shape-memory alloys and ferrotoroidics. Phil. Trans. R. Soc. A 374, 20150304 (2016).

    Article  CAS  Google Scholar 

  105. Pecharsky, V. K. & Gschneidner, K. A. Gd5(SixGe1−x)4: an extremum material. Adv. Mater. 13, 683–686 (2001).

    Article  CAS  Google Scholar 

  106. Gschneidner, K. A., Pecharsky, V. K. & Tsokol, A. O. Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479–1539 (2005).

    Article  CAS  Google Scholar 

  107. Yuce, S. et al. Barocaloric effect in the magnetocaloric prototype Gd5Si2Ge2. Appl. Phys. Lett. 101, 071906 (2012).

    Article  CAS  Google Scholar 

  108. Gràcia-Condal, A. et al. Multicaloric effects in metamagnetic Heusler Ni-Mn-In under uniaxial stress and magnetic field. Appl. Phys. Rev. 7, 041406 (2020). Demonstrates the multicaloric effect of Ni–Mn–In Heusler alloys under a magnetic field and uniaxial stress. Provides another example of category II cooling (multiple fields on single-phase materials), as defined in Fig. 2a of this Review.

    Article  CAS  Google Scholar 

  109. Czernuszewicz, A., Kaleta, J. & Lewandowski, D. Multicaloric effect: toward a breakthrough in cooling technology. Energy Convers. Manag. 178, 335–342 (2018).

    Article  CAS  Google Scholar 

  110. Soto-Parra, D. E. et al. Stress- and magnetic field-induced entropy changes in Fe-doped Ni–Mn–Ga shape-memory alloys. Appl. Phys. Lett. 96, 071912 (2010).

    Article  CAS  Google Scholar 

  111. Castillo-Villa, P. O. et al. Elastocaloric and magnetocaloric effects in Ni-Mn-Sn(Cu) shape-memory alloy. J. Appl. Phys. 113, 053506 (2013).

    Article  CAS  Google Scholar 

  112. Matsunami, D. & Fujita, A. Electrocaloric effect of metal-insulator transition in VO2. Appl. Phys. Lett. 106, 042901 (2015).

    Article  CAS  Google Scholar 

  113. Ouyang, G. et al. Elastocaloric effect in vanadium (IV) oxide. Appl. Phys. Lett. 116, 251901 (2020).

    Article  CAS  Google Scholar 

  114. Park, J. H. et al. Measurement of a solid-state triple point at the metal–insulator transition in VO2. Nature 500, 431–434 (2013).

    Article  CAS  Google Scholar 

  115. Prah, U., Wencka, M., Rojac, T., Benčan, A. & Uršič, H. Pb(Fe0.5Nb0.5)O3–BiFeO3-based multicalorics with room-temperature ferroic anomalies. J. Mater. Chem. C 8, 11282–11291 (2020).

    Article  CAS  Google Scholar 

  116. Starkov, I. A. & Starkov, A. S. On the thermodynamic foundations of solid-state cooler based on multiferroic materials. Int. J. Refrig. 37, 249–256 (2014).

    Article  CAS  Google Scholar 

  117. Zhao, Y.-Q. & Cao, H.-X. Multicaloric effect in multiferroic EuTiO3 thin films. J. Mater. Sci. 55, 5705–5714 (2020).

    Article  CAS  Google Scholar 

  118. van Erp, R., Soleimanzadeh, R., Nela, L., Kampitsis, G. & Matioli, E. Co-designing electronics with microfluidics for more sustainable cooling. Nature 585, 211–216 (2020).

    Article  CAS  Google Scholar 

  119. Amirov, A. A., Rodionov, V. V., Starkov, I. A., Starkov, A. S. & Aliev, A. M. Magneto-electric coupling in Fe48Rh52-PZT multiferroic composite. J. Magn. Magn. Mater. 470, 77–80 (2019).

    Article  CAS  Google Scholar 

  120. Andrade, V. M. et al. Multicaloric effect in a multiferroic composite of Gd5(Si,Ge)4 microparticles embedded into a ferroelectric PVDF matrix. Sci. Rep. 9, 18308 (2019).

    Article  CAS  Google Scholar 

  121. Gottschall, T. et al. A multicaloric cooling cycle that exploits thermal hysteresis. Nat. Mater. 17, 929–934 (2018). Reports the use of two stimuli — a magnetic field and uniaxial stress — that are applied sequentially to a multicaloric material to exploit the hysteresis. Provides another example of category II cooling (multiple fields on single-phase materials), as defined in Fig. 2a of this Review.

    Article  CAS  Google Scholar 

  122. Mañosa, L. & Planes, A. Solid-state cooling by stress: a perspective. Appl. Phys. Lett. 116, 050501 (2020).

    Article  CAS  Google Scholar 

  123. Hou, H. et al. Overcoming fatigue through compression for advanced elastocaloric cooling. MRS Bull. 43, 285–290 (2018).

    Article  Google Scholar 

  124. Sebald, G., Komiya, A., Jay, J., Coativy, G. & Lebrun, L. Regenerative cooling using elastocaloric rubber: analytical model and experiments. J. Appl. Phys. 127, 094903 (2020).

    Article  CAS  Google Scholar 

  125. Guyomar, D. et al. Elastocaloric modeling of natural rubber. Appl. Therm. Eng. 57, 33–38 (2013).

    Article  CAS  Google Scholar 

  126. Xie, Z. J., Sebald, G. & Guyomar, D. Comparison of elastocaloric effect of natural rubber with other caloric effects on different-scale cooling application cases. Appl. Therm. Eng. 111, 914–926 (2017).

    Article  Google Scholar 

  127. Chauhan, A., Patel, S. & Vaish, R. Elastocaloric effect in ferroelectric ceramics. Appl. Phys. Lett. 106, 172901 (2015).

    Article  CAS  Google Scholar 

  128. Patel, S., Chauhan, A. & Vaish, R. Elastocaloric and piezocaloric effects in lead zirconate titanate ceramics. Energy Technol. 4, 647–652 (2016).

    Article  CAS  Google Scholar 

  129. Christian, J. W. The Theory of Transformations in Metals and Alloys (Pergamon, 2002).

  130. Bhadeshia, H. K. D. H. Worked examples in the Geometry of Crystals (Institute of Materials, 2001).

  131. Lagoudas, D. C. Shape Memory Alloys: Modeling and Engineering Applications (Springer, 2008).

  132. Wang, R. et al. Torsional refrigeration by twisted, coiled, and supercoiled fibers. Science 366, 216–221 (2019).

    Article  CAS  Google Scholar 

  133. Wang, R., Zhou, X., Wang, W. & Liu, Z. Twist-based cooling of polyvinylidene difluoride for mechanothermochromic fibers. Chem. Eng. J. 417, 128060 (2020).

    Article  CAS  Google Scholar 

  134. Sharar, D. J., Radice, J., Warzoha, R., Hanrahan, B. & Smith, A. Low-force elastocaloric refrigeration via bending. Appl. Phys. Lett. 118, 184103 (2021).

    Article  CAS  Google Scholar 

  135. Czernuszewicz, A., Griffith, L., Slaughter, J. & Pecharsky, V. Low-force compressive and tensile actuation for elastocaloric heat pumps. Appl. Mater. Today 19, 100557 (2020).

    Article  Google Scholar 

  136. Slaughter, J., Czernuszewicz, A., Griffith, L. & Pecharsky, V. Compact and efficient elastocaloric heat pumps — Is there a path forward? J. Appl. Phys. 127, 194501 (2020).

    Article  CAS  Google Scholar 

  137. Czernuszewicz, A., Griffith, L., Scott, A., Slaughter, J. & Pecharsky, V. Unlocking large compressive strains in thin active elastocaloric layers. Appl. Therm. Eng. 190, 116850 (2021).

    Article  CAS  Google Scholar 

  138. Khassaf, H., Patel, T., Hebert, R. J. & Alpay, S. P. Flexocaloric response of epitaxial ferroelectric films. J. Appl. Phys. 123, 024102 (2018).

    Article  CAS  Google Scholar 

  139. Ikeda, M. S. et al. Elastocaloric signature of nematic fluctuations. Proc. Natl Acad. Sci. USA 118, e2105911118 (2021).

    Article  CAS  Google Scholar 

  140. Sanchez, J. J. et al. The transport–structural correspondence across the nematic phase transition probed by elasto X-ray diffraction. Nat. Mater. 20, 1519–1524 (2021).

    Article  CAS  Google Scholar 

  141. Cui, J. et al. Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat. Mater. 5, 286–290 (2006).

    Article  CAS  Google Scholar 

  142. Provenzano, V., Shapiro, A. J. & Shull, R. D. Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron. Nature 429, 853–857 (2004).

    Article  CAS  Google Scholar 

  143. Guillou, F., Porcari, G., Yibole, H., van Dijk, N. & Bruck, E. Taming the first-order transition in giant magnetocaloric materials. Adv. Mater. 26, 2671–2675 (2014).

    Article  CAS  Google Scholar 

  144. Fulanovic, L. et al. Fatigue-less electrocaloric effect in relaxor Pb(Mg1/3Nb2/3)O3 multilayer elements. J. Eur. Ceram. Soc. 37, 5105–5108 (2017).

    Article  CAS  Google Scholar 

  145. Masche, M., Ianniciello, L., Tušek, J. & Engelbrecht, K. Impact of hysteresis on caloric cooling performance. Int. J. Refrig. 121, 302–312 (2021).

    Article  Google Scholar 

  146. Hess, T. et al. Thermal hysteresis and its impact on the efficiency of first-order caloric materials. J. Appl. Phys. 127, 075103 (2020).

    Article  CAS  Google Scholar 

  147. Rowe, A. Thermal effectiveness of active caloric regenerators. J. Appl. Phys. 127, 204502 (2020).

    Article  CAS  Google Scholar 

  148. Govindappa, P. et al. Predicting the thermal hysteresis behavior for a single-layer MnFeP1−xSix active magnetic regenerator. Appl. Therm. Eng. 183, 116173 (2021).

    Article  CAS  Google Scholar 

  149. Hamilton, R. F., Sehitoglu, H., Chumlyakov, Y. & Maier, H. J. Stress dependence of the hysteresis in single crystal NiTi alloys. Acta Mater. 52, 3383–3402 (2004).

    Article  CAS  Google Scholar 

  150. Ortin, J. & Planes, A. Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations. Acta Metall. 36, 1873–1889 (1988).

    Article  CAS  Google Scholar 

  151. Callister, W. D. & Rethwisch, D. G. Materials Science and Engineering: An Introduction Ch. 20 (Wiley, 2007).

  152. Gutfleisch, O. et al. Mastering hysteresis in magnetocaloric materials. Phil. Trans. R. Soc. A 374, 20150308 (2016).

    Article  CAS  Google Scholar 

  153. Marathe, M., Ederer, C. & Grunebohm, A. The impact of hysteresis on the electrocaloric effect at first-order phase transitions. Phys. Status Solidi B 255, 1700308 (2018).

    Article  CAS  Google Scholar 

  154. Scheibel, F. et al. Hysteresis design of magnetocaloric materials — from basic mechanisms to applications. Energy Technol. 6, 1397–1428 (2018).

    Article  CAS  Google Scholar 

  155. Ball, J. M. & James, R. D. Proposed experimental tests of a theory of fine microstructure and the two-well problem. Phil. Trans. R. Soc. A 338, 389–450 (1992).

    CAS  Google Scholar 

  156. Chen, X., Srivastava, V., Dabade, V. & James, R. D. Study of the cofactor conditions: conditions of supercompatibility between phases. J. Mech. Phys. Solids 61, 2566–2587 (2013).

    Article  CAS  Google Scholar 

  157. Song, Y., Chen, X., Dabade, V., Shield, T. W. & James, R. D. Enhanced reversibility and unusual microstructure of a phase-transforming material. Nature 502, 85–88 (2013).

    Article  CAS  Google Scholar 

  158. Gu, H. et al. Exploding and weeping ceramics. Nature 599, 416–420 (2021).

    Article  CAS  Google Scholar 

  159. Fujieda, S., Fukamichi, K. & Suzuki, S. Suppression of aqueous corrosion of La(Fe0.88Si0.12)13 by reducing dissolved oxygen concentration for high-performance magnetic refrigeration. J. Alloys Compd. 600, 67–70 (2014).

    Article  CAS  Google Scholar 

  160. Forchelet, J. et al. Corrosion behavior of gadolinium and La–Fe–Co–Si compounds in various heat conducting fluids. Int. J. Refrig. 37, 307–313 (2014).

    Article  CAS  Google Scholar 

  161. Balli, M., Jandl, S., Fournier, P. & Kedous-Lebouc, A. Advanced materials for magnetic cooling: fundamentals and practical aspects. Appl. Phys. Rev. 4, 021305 (2017).

    Article  CAS  Google Scholar 

  162. Guillou, F. et al. Non-hysteretic first-order phase transition with large latent heat and giant low-field magnetocaloric effect. Nat. Commun. 9, 2925 (2018).

    Article  CAS  Google Scholar 

  163. San Juan, J., No, M. L. & Schuh, C. A. Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nat. Nanotechnol. 4, 415–419 (2009).

    Article  CAS  Google Scholar 

  164. Chen, Y. & Schuh, C. A. Size effects in shape memory alloy microwires. Acta Mater. 59, 537–553 (2011).

    Article  CAS  Google Scholar 

  165. Otsuka, K. & Wayman, C. M. Shape Memory Materials (Cambridge Univ. Press, 1998).

  166. Sehitoglu, H., Patriarca, L. & Wu, Y. Shape memory strains and temperatures in the extreme. Curr. Opin. Solid State Mater. Sci. 21, 113–120 (2017).

    Article  CAS  Google Scholar 

  167. Ashby, M. F., Shercliff, H. & Cebon, D. Materials: Engineering, Science, Processing and Design Ch. 9 (Butterworth-Heinemann, 2007).

  168. Bradesko, A. et al. Electrocaloric fatigue of lead magnesium niobate mediated by an electric-field-induced phase transformation. Acta Mater. 169, 275–283 (2019).

    Article  CAS  Google Scholar 

  169. Duca, M. G. D. et al. Comprehensive evaluation of electrocaloric effect and fatigue behavior in the 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 bulk relaxor ferroelectric ceramic. J. Appl. Phys. 128, 104102 (2020).

    Article  CAS  Google Scholar 

  170. Weyland, F. et al. Long term stability of electrocaloric response in barium zirconate titanate. J. Eur. Ceram. Soc. 38, 551–556 (2018).

    Article  CAS  Google Scholar 

  171. Moore, J. D. et al. Selective laser melting of La(Fe,Co,Si)13 geometries for magnetic refrigeration. J. Appl. Phys. 114, 043907 (2013).

    Article  CAS  Google Scholar 

  172. Lyubina, J., Schafer, R., Martin, N., Schultz, L. & Gutfleisch, O. Novel design of La(Fe, Si)13 alloys towards high magnetic refrigeration performance. Adv. Mater. 22, 3735–3739 (2010).

    Article  CAS  Google Scholar 

  173. Yibole, H. et al. Moment evolution across the ferromagnetic phase transition of giant magnetocaloric (Mn, Fe)2(P, Si, B) compounds. Phys. Rev. B 91, 014429 (2015).

    Article  CAS  Google Scholar 

  174. Liu, Y., Fu, X., Yu, Q., Zhang, M. & Liu, J. Significant reduction of phase-transition hysteresis for magnetocaloric (La1−xCex)2Fe11Si2Hy alloys by microstructural manipulation. Acta Mater. 207, 116687 (2021).

    Article  CAS  Google Scholar 

  175. Bai, Y., Han, X., Zheng, X. C. & Qiao, L. J. Both high reliability and giant electrocaloric strength in BaTiO3 ceramics. Sci. Rep. 3, 2895 (2013).

    Article  Google Scholar 

  176. Katter, M., Zellmann, V., Reppel, G. W. & Uestuener, K. Magnetocaloric properties of La(FeCoSi)13 bulk material prepared by powder metallurgy. IEEE Trans. Magn. 44, 3044–3047 (2008).

    Article  CAS  Google Scholar 

  177. Chauhan, A., Patel, S. & Vaish, R. Multicaloric effect in Pb(Mn1/3Nb2/3)O3-32PbTiO3 single crystals. Acta Mater. 9, 384–395 (2015).

    Article  CAS  Google Scholar 

  178. Chauhan, A., Patel, S. & Vaish, R. Multicaloric effect in Pb(Mn1/3Nb2/3)O3-32PbTiO3 single crystals: modes of measurement. Acta Mater. 97, 17–28 (2015).

    Article  CAS  Google Scholar 

  179. Hu, Y. et al. Combined caloric effects in a multiferroic Ni–Mn–Ga alloy with broad refrigeration temperature region. APL Mater. 5, 046103 (2017).

    Article  CAS  Google Scholar 

  180. Li, Z. et al. Achieving a broad refrigeration temperature region through the combination of successive caloric effects in a multiferroic Ni50Mn35In15 alloy. Acta Mater. 192, 52–59 (2020).

    Article  CAS  Google Scholar 

  181. Stern-Taulats, E. et al. Giant multicaloric response of bulk Fe49Rh51. Phys. Rev. B 95, 104424 (2017).

    Article  Google Scholar 

  182. Gràcia-Condal, A., Stern-Taulats, E., Planes, A. & Mañosa, L. Caloric response of Fe49Rh51 subjected to uniaxial load and magnetic field. Phys. Rev. Mater. 2, 084413 (2018).

    Article  Google Scholar 

  183. Odaira, T., Xu, S., Xu, X., Omori, T. & Kainuma, R. Elastocaloric switching effect induced by reentrant martensitic transformation. Appl. Phys. Rev. 7, 031406 (2020).

    Article  CAS  Google Scholar 

  184. Gottschall, T. et al. Advanced characterization of multicaloric materials in pulsed magnetic fields. J. Appl. Phys. 127, 185107 (2020).

    Article  CAS  Google Scholar 

  185. BASF. Premiere of cutting-edge cooling appliance at CES 2015. BASF Joint News Release https://www.basf.com/global/en/media/news-releases/2015/01/p-15-100.html (2015).

  186. Nakashima, A. T. D. et al. A magnetic wine cooler prototype. Int. J. Refrig. 122, 110–121 (2021).

    Article  CAS  Google Scholar 

  187. Lionte, S., Risser, M. & Muller, C. A 15 kW magnetocaloric proof-of-concept unit: initial development and first experimental results. Int. J. Refrig. 122, 256–265 (2021).

    Article  Google Scholar 

  188. Trevizoli, P. V., Nakashima, A. T., Peixer, G. F. & Barbosa, J. R. Performance evaluation of an active magnetic regenerator for cooling applications — part I: experimental analysis and thermodynamic performance. Int. J. Refrig. 72, 192–205 (2016).

    Article  CAS  Google Scholar 

  189. Aprea, C., Cardillo, G., Greco, A., Maiorino, A. & Masselli, C. A rotary permanent magnet magnetic refrigerator based on AMR cycle. Appl. Therm. Eng. 101, 699–703 (2016).

    Article  CAS  Google Scholar 

  190. Cheng, P. et al. Combining magnetocaloric and elastocaloric effects in a Ni45Co5Mn37In13 alloy. J. Mater. Sci. Technol. 94, 47–52 (2021).

    Article  CAS  Google Scholar 

  191. Qian, S. et al. Not-in-kind cooling technologies: a quantitative comparison of refrigerants and system performance. Int. J. Refrig. 62, 177–192 (2016). Analyses and visualizes COPmat for single-phase caloric materials.

    Article  CAS  Google Scholar 

  192. Zimm, C. et al. in Advances in Cryogenic Engineering (ed. Kittel, P.) 1759–1766 (Springer, 1998).

  193. Pecharsky, V. K. & Gschneidner, K. A. Magnetocaloric effect and magnetic refrigeration. J. Magn. Magn. Mater. 200, 44–56 (1999).

    Article  CAS  Google Scholar 

  194. Steyert, W. Stirling-cycle rotating magnetic refrigerators and heat engines for use near room temperature. J. Appl. Phys. 49, 1216–1226 (1978).

    Article  CAS  Google Scholar 

  195. Barclay, J. A. & Steyert, W. A. Active magnetic regenerator. US Patent 4,332,135 (1982).

  196. Sinyavsky, Y. V. & Brodyansky, V. M. Experimental testing of electrocaloric cooling with transparent ferroelectric ceramic as a working body. Ferroelectrics 131, 321–325 (1992).

    Article  CAS  Google Scholar 

  197. Gu, H. et al. A chip scale electrocaloric effect based cooling device. Appl. Phys. Lett. 102, 122904 (2013).

    Article  CAS  Google Scholar 

  198. McLinden, M. O., Brown, J. S., Brignoli, R., Kazakov, A. F. & Domanski, P. A. Limited options for low-global-warming-potential refrigerants. Nat. Commun. 8, 14476 (2017).

    Article  CAS  Google Scholar 

  199. McLinden, M. O., Seeton, C. J. & Pearson, A. New refrigerants and system configurations for vapor-compression refrigeration. Science 370, 791–796 (2020).

    Article  CAS  Google Scholar 

  200. Hou, H. et al. Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat. J. Phys. D 50, 404001 (2017).

    Article  CAS  Google Scholar 

  201. McLinden, M. O. in ASHRAE Handbook — Fundamentals (ed. Owen, M. S.) 749–826 (ASHRAE, 2017).

  202. Hou, H., Takeuchi, I., Staruch, M. & Finkel, P. Systems and methods for cooling using a composite elastocaloric device. US Patent application 2020096240-A1 (2020).

  203. Stacey, W. C. & Litt, B. Technology insight: neuroengineering and epilepsy - designing devices for seizure control. Nat. Rev. Neurol. 4, 190–201 (2008).

    Article  CAS  Google Scholar 

  204. Smyth, M. D. & Rothman, S. M. Focal cooling devices for the surgical treatment of epilepsy. Neurosurg. Clin. 22, 533–546 (2011).

    Article  Google Scholar 

  205. Smyth, M. D. et al. Temperatures achieved in human and canine neocortex during intraoperative passive or active focal cooling. Ther. Hypothermia Temp. Manag. 5, 95–103 (2015).

    Article  Google Scholar 

  206. Musk, E. An integrated brain-machine interface platform with thousands of channels. J. Med. Internet Res. 21, e16194 (2019).

    Article  Google Scholar 

  207. Numazawa, T., Kamiya, K., Utaki, T. & Matsumoto, K. Magnetic refrigerator for hydrogen liquefaction. Cryogenics 62, 185–192 (2014).

    Article  CAS  Google Scholar 

  208. Kim, Y., Park, I. & Jeong, S. Experimental investigation of two-stage active magnetic regenerative refrigerator operating between 77 K and 20 K. Cryogenics 57, 113–121 (2013).

    Article  CAS  Google Scholar 

  209. Park, I. & Jeong, S. Development of the active magnetic regenerative refrigerator operating between 77 K and 20 K with the conduction cooled high temperature superconducting magnet. Cryogenics 88, 106–115 (2017).

    Article  CAS  Google Scholar 

  210. Holladay, J. et al. Investigation of bypass fluid flow in an active magnetic regenerative liquefier. Cryogenics 93, 34–40 (2018).

    Article  CAS  Google Scholar 

  211. Teyber, R. et al. Passive force balancing of an active magnetic regenerative liquefier. J. Magn. Magn. Mater. 451, 79–86 (2018).

    Article  CAS  Google Scholar 

  212. Teyber, R. et al. Performance investigation of a high-field active magnetic regenerator. Appl. Energy 236, 426–436 (2019).

    Article  Google Scholar 

  213. DebRoy, T. et al. Additive manufacturing of metallic components - Process, structure and properties. Prog. Mater. Sci. 92, 112–224 (2018).

    Article  CAS  Google Scholar 

  214. Frazier, W. E. Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23, 1917–1928 (2014).

    Article  CAS  Google Scholar 

  215. DebRoy, T., Mukherjee, T., Wei, H. L., Elmer, J. W. & Milewski, J. O. Metallurgy, mechanistic models and machine learning in metal printing. Nat. Rev. Mater. 6, 48–68 (2021).

    Article  CAS  Google Scholar 

  216. Navickaitė, K. et al. Experimental characterization of active magnetic regenerators constructed using laser beam melting technique. Appl. Therm. Eng. 174, 115297 (2020).

    Article  CAS  Google Scholar 

  217. Lejeune, B. T. et al. Towards additive manufacturing of magnetocaloric working materials. Materialia 16, 101071 (2021).

    Article  CAS  Google Scholar 

  218. Tabor, D. P. et al. Accelerating the discovery of materials for clean energy in the era of smart automation. Nat. Rev. Mater. 3, 5–20 (2018).

    Article  CAS  Google Scholar 

  219. Kusne, A. G. et al. On-the-fly closed-loop materials discovery via Bayesian active learning. Nat. Commun. 11, 5966 (2020).

    Article  CAS  Google Scholar 

  220. Zhu, Z., Ng, D. W. H., Park, H. S. & McAlpine, M. C. 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nat. Rev. Mater. 6, 27–47 (2021).

    Article  Google Scholar 

  221. Klinar, K. & Kitanovski, A. Thermal control elements for caloric energy conversion. Renew. Sust. Energ. Rev. 118, 109571 (2020).

    Article  Google Scholar 

  222. Klinar, K., Swoboda, T., Muñoz Rojo, M. & Kitanovski, A. Fluidic and mechanical thermal control devices. Adv. Electron. Mater. 7, 2000623 (2020). Comprehensive analysis of state-of-the-art thermal control devices, whose implementation in applications spans different sizes and temperatures.

    Article  CAS  Google Scholar 

  223. Maier, L. M. et al. Active magnetocaloric heat pipes provide enhanced specific power of caloric refrigeration. Commun. Phys. 3, 186 (2020).

    Article  CAS  Google Scholar 

  224. Welty, J. R., Wicks, C. E., Wilson, R. E. & Rorrer, G. L. Fundamentals of Momentum, Heat, and Mass Transfer (Wiley, 2007).

  225. Hess, T. et al. Modelling cascaded caloric refrigeration systems that are based on thermal diodes or switches. Int. J. Refrig. 103, 215–222 (2019).

    Article  Google Scholar 

  226. Porenta, L. et al. Thin-walled Ni-Ti tubes under compression: ideal candidates for efficient and fatigue-resistant elastocaloric cooling. Appl. Mater. Today 20, 100712 (2020).

    Article  Google Scholar 

  227. Ding, L. et al. Learning from superelasticity data to search for Ti-Ni alloys with large elastocaloric effect. Acta Mater. 218, 117200 (2021).

    Article  CAS  Google Scholar 

  228. Bom, N. M., Usuda, E. O., Guimaraes, G. M., Coelho, A. A. & Carvalho, A. M. G. Note: Experimental setup for measuring the barocaloric effect in polymers: application to natural rubber. Rev. Sci. Instrum. 88, 046103 (2017).

    Article  CAS  Google Scholar 

  229. Usuda, E. O., Imamura, W., Bom, N. M., Paixão, L. S. & Carvalho, A. M. G. Giant reversible barocaloric effects in nitrile butadiene rubber around room temperature. ACS Appl. Polym. Mater. 1, 1991–1997 (2019).

    Article  CAS  Google Scholar 

  230. Giguère, A. et al. Direct measurement of the “giant” adiabatic temperature change in Gd5Si2Ge2. Phys. Rev. Lett. 83, 2262–2265 (1999).

    Article  Google Scholar 

  231. Chirkova, A. et al. Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions. Acta Mater. 106, 15–21 (2016).

    Article  CAS  Google Scholar 

  232. Annaorazov, M. P. et al. Alloys of the Fe–Rh system as a new class of working material for magnetic refrigerators. Cryogenics 32, 867–872 (1992).

    Article  CAS  Google Scholar 

  233. Dan’Kov, S. Y., Tishin, A., Pecharsky, V. & Gschneidner, K. Magnetic phase transitions and the magnetothermal properties of gadolinium. Phys. Rev. B 57, 3478 (1998).

    Article  Google Scholar 

  234. Gottschall, T. et al. Magnetocaloric effect of gadolinium in high magnetic fields. Phys. Rev. B 99, 134429 (2019).

    Article  CAS  Google Scholar 

  235. Kihara, T., Kohama, Y., Hashimoto, Y., Katsumoto, S. & Tokunaga, M. Adiabatic measurements of magneto-caloric effects in pulsed high magnetic fields up to 55 T. Rev. Sci. Instrum. 84, 074901 (2013).

    Article  CAS  Google Scholar 

  236. Zavareh, M. G. et al. Direct measurement of the magnetocaloric effect in La(Fe,Si,Co)13 compounds in pulsed magnetic fields. Phys. Rev. Appl. 8, 014037 (2017).

    Article  Google Scholar 

  237. Tuttle, B. A. & Payne, D. A. The effects of microstructure on the electrocaloric properties of Pb(Zr,Sn,Ti)O3 ceramics. Ferroelectrics 37, 603–606 (1981).

    Article  CAS  Google Scholar 

  238. Rožič, B. et al. Influence of the critical point on the electrocaloric response of relaxor ferroelectrics. J. Appl. Phys. 110, 064118 (2011).

    Article  CAS  Google Scholar 

  239. Rožič, B. et al. Direct measurements of the giant electrocaloric effect in soft and solid ferroelectric materials. Ferroelectrics 405, 26–31 (2010).

    Article  CAS  Google Scholar 

  240. Zheng, X.-C., Zheng, G.-P., Lin, Z. & Jiang, Z.-Y. Electro-caloric behaviors of lead-free Bi0.5Na0.5TiO3-BaTiO3 ceramics. J. Electroceramics 28, 20–26 (2012).

    Article  CAS  Google Scholar 

  241. Lu, S. G. et al. Comparison of directly and indirectly measured electrocaloric effect in relaxor ferroelectric polymers. Appl. Phys. Lett. 97, 202901 (2010).

    Article  CAS  Google Scholar 

  242. Nouchokgwe, Y. et al. Giant electrocaloric materials energy efficiency in highly ordered lead scandium tantalate. Nat. Commun. 12, 3298 (2021).

    Article  CAS  Google Scholar 

  243. Wang, S. et al. Direct and indirect measurement of large electrocaloric effect in B2O3-ZnO glass modified Ba0.65Sr0.35TiO3 bulk ceramics. Scr. Mater. 193, 59–63 (2021).

    Article  CAS  Google Scholar 

  244. Lu, S. G., Rožič, B., Zhang, Q. M., Kutnjak, Z. & Neese, B. Enhanced electrocaloric effect in ferroelectric poly(vinylidene-fluoride/trifluoroethylene) 55/45 mol% copolymer at ferroelectric-paraelectric transition. Appl. Phys. Lett. 98, 122906 (2011).

    Article  CAS  Google Scholar 

  245. Lu, S. G. et al. Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect. Appl. Phys. Lett. 97, 162904 (2010).

    Article  CAS  Google Scholar 

  246. Pataky, G. J., Ertekin, E. & Sehitoglu, H. Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiAl. Acta Mater. 96, 420–427 (2015).

    Article  CAS  Google Scholar 

  247. Soto-Parra, D. et al. Elastocaloric effect in Ti-Ni shape-memory wires associated with the B2↔B19′ and B2↔R structural transitions. Appl. Phys. Lett. 108, 071902 (2016).

    Article  CAS  Google Scholar 

  248. Trung, N. T., Zhang, L., Caron, L., Buschow, K. H. J. & Brück, E. Giant magnetocaloric effects by tailoring the phase transitions. Appl. Phys. Lett. 96, 172504 (2010).

    Article  CAS  Google Scholar 

  249. Wada, H. & Tanabe, Y. Giant magnetocaloric effect of MnAs1−xSbx. Appl. Phys. Lett. 79, 3302–3304 (2001).

    Article  CAS  Google Scholar 

  250. Hu, F. X. et al. Large magnetic entropy change with small thermal hysteresis near room temperature in metamagnetic alloys Ni51Mn49−xInx. J. Appl. Phys. 105, 07A940 (2009).

    Article  CAS  Google Scholar 

  251. Samanta, T. et al. Hydrostatic pressure-induced modifications of structural transitions lead to large enhancements of magnetocaloric effects in MnNiSi-based systems. Phys. Rev. B 91, 020401 (2015).

    Article  CAS  Google Scholar 

  252. Clifford, D., Sharma, V., Deepak, K., Ramanujan, R. V. & Barua, R. Multicaloric effects in (MnNiSi)1−x(Fe2Ge)x alloys. IEEE Trans. Magn. 57, 2500405 (2021).

    Article  CAS  Google Scholar 

  253. Samanta, T. et al. Barocaloric and magnetocaloric effects in (MnNiSi)1−x(FeCoGe)x. Appl. Phys. Lett. 112, 021907 (2018).

    Article  CAS  Google Scholar 

  254. Liu, X. Q., Chen, T. T., Wu, Y. J. & Chen, X. M. Enhanced electrocaloric effects in spark plasma-sintered Ba0.65Sr0.35TiO3-based ceramics at room temperature. J. Am. Ceram. Soc. 96, 1021–1023 (2013).

    Article  CAS  Google Scholar 

  255. Crossley, S., Nair, B., Whatmore, R. W., Moya, X. & Mathur, N. D. Electrocaloric cooling cycles in lead scandium tantalate with true regeneration via field variation. Phys. Rev. X 9, 041002 (2019).

    CAS  Google Scholar 

  256. Qian, X. S. et al. Giant electrocaloric response over a broad temperature range in modified BaTiO3 ceramics. Adv. Funct. Mater. 24, 1300–1305 (2014).

    Article  CAS  Google Scholar 

  257. Li, X. et al. Giant electrocaloric effect in ferroelectric poly(vinylidenefluoride-trifluoroethylene) copolymers near a first-order ferroelectric transition. Appl. Phys. Lett. 101, 132903 (2012).

    Article  CAS  Google Scholar 

  258. Mañosa, L., Jarque-Farnos, S., Vives, E. & Planes, A. Large temperature span and giant refrigerant capacity in elastocaloric Cu-Zn-Al shape memory alloys. Appl. Phys. Lett. 103, 211904 (2013).

    Article  CAS  Google Scholar 

  259. Stern-Taulats, E. et al. Tailoring barocaloric and magnetocaloric properties in low-hysteresis magnetic shape memory alloys. Acta Mater. 96, 324–332 (2015).

    Article  CAS  Google Scholar 

  260. Shen, J., Wu, J. F. & Sun, J. R. Room-temperature large refrigerant capacity of Gd6Co2Si3. J. Appl. Phys. 106, 083902 (2009).

    Article  CAS  Google Scholar 

  261. Li, L. W., Niehaus, O., Kersting, M. & Pottgen, R. Reversible table-like magnetocaloric effect in Eu4PdMg over a very large temperature span. Appl. Phys. Lett. 104, 092416 (2014).

    Article  CAS  Google Scholar 

  262. Moreira, R. L. Electrocaloric effect in γ-irradiated P(VDF-TrFE) copolymers with relaxor features. Ferroelectrics 446, 1–8 (2013).

    Article  CAS  Google Scholar 

  263. Correia, T. M. et al. PST thin films for electrocaloric coolers. J. Phys. D 44, 165407 (2011).

    Article  CAS  Google Scholar 

  264. Tušek, J., Kitanovski, A., Tomc, U., Favero, C. & Poredoš, A. Experimental comparison of multi-layered La–Fe–Co–Si and single-layered Gd active magnetic regenerators for use in a room-temperature magnetic refrigerator. Int. J. Refrig. 37, 117–126 (2014).

    Article  CAS  Google Scholar 

  265. Legait, U., Guillou, F., Kedous-Lebouc, A., Hardy, V. & Almanza, M. An experimental comparison of four magnetocaloric regenerators using three different materials. Int. J. Refrig. 37, 147–155 (2014).

    Article  CAS  Google Scholar 

  266. Chirkova, A. et al. The effect of the microstructure on the antiferromagnetic to ferromagnetic transition in FeRh alloys. Acta Mater. 131, 31–38 (2017).

    Article  CAS  Google Scholar 

  267. Li, Q. et al. Relaxor ferroelectric-based electrocaloric polymer nanocomposites with a broad operating temperature range and high cooling energy. Adv. Mater. 27, 2236–2241 (2015).

    Article  CAS  Google Scholar 

  268. Zhao, C., Yang, J., Huang, Y., Hao, X. & Wu, J. Broad-temperature-span and large electrocaloric effect in lead-free ceramics utilizing successive and metastable phase transitions. J. Mater. Chem. A 7, 25526–25536 (2019).

    Article  CAS  Google Scholar 

  269. Zarnetta, R. et al. Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability. Adv. Funct. Mater. 20, 1917–1923 (2010).

    Article  CAS  Google Scholar 

  270. Chluba, C. et al. Ultralow-fatigue shape memory alloy films. Science 348, 1004–1007 (2015).

    Article  CAS  Google Scholar 

  271. Chen, H. et al. Unprecedented non-hysteretic superelasticity of [001]-oriented NiCoFeGa single crystals. Nat. Mater. 19, 712–718 (2020).

    Article  CAS  Google Scholar 

  272. Hao, S. et al. A transforming metal nanocomposite with large elastic strain, low modulus, and high strength. Science 339, 1191–1194 (2013).

    Article  CAS  Google Scholar 

  273. Moya, X. et al. Giant electrocaloric strength in single-crystal BaTiO3. Adv. Mater. 25, 1360–1365 (2013).

    Article  CAS  Google Scholar 

  274. Weyland, F. et al. Impact of polarization dynamics and charged defects on the electrocaloric response of ferroelectric Pb(Zr,Ti)O3 ceramics. Energy Technol. 6, 1519–1525 (2018).

    Article  CAS  Google Scholar 

  275. Zhang, K., Kang, G. & Sun, Q. High fatigue life and cooling efficiency of NiTi shape memory alloy under cyclic compression. Scr. Mater. 159, 62–67 (2019).

    Article  CAS  Google Scholar 

  276. Chen, J., Zhang, K., Kan, Q., Yin, H. & Sun, Q. Ultra-high fatigue life of NiTi cylinders for compression-based elastocaloric cooling. Appl. Phys. Lett. 115, 093902 (2019).

    Article  CAS  Google Scholar 

  277. Hua, P., Xia, M., Onuki, Y. & Sun, Q. Nanocomposite NiTi shape memory alloy with high strength and fatigue resistance. Nat. Nanotechnol. 16, 409–413 (2021).

    Article  CAS  Google Scholar 

  278. Xiao, F., Bucsek, A., Jin, X., Porta, M. & Planes, A. Giant elastic response and ultra-stable elastocaloric effect in tweed textured Fe-Pd single crystals. Acta Mater. 223, 117486 (2022).

    Article  CAS  Google Scholar 

  279. Pulko, B. et al. Epoxy-bonded La–Fe–Co–Si magnetocaloric plates. J. Magn. Magn. Mater. 375, 65–73 (2015).

    Article  CAS  Google Scholar 

  280. Bruederlin, F., Ossmer, H., Wendler, F., Miyazaki, S. & Kohl, M. SMA foil-based elastocaloric cooling: from material behavior to device engineering. J. Phys. D 50, 424003 (2017).

    Article  CAS  Google Scholar 

  281. Snodgrass, R. & Erickson, D. A multistage elastocaloric refrigerator and heat pump with 28 K temperature span. Sci. Rep. 9, 18532 (2019).

    Article  CAS  Google Scholar 

  282. Qian, S., Yuan, L., Hou, H. & Takeuchi, I. Accurate prediction of work and coefficient of performance of elastocaloric materials with phase transformation kinetics. Sci. Technol. Built Environ. 24, 673–684 (2018).

    Article  Google Scholar 

  283. Bahl, C. R. H. et al. Development and experimental results from a 1 kW prototype AMR. Int. J. Refrig. 37, 78–83 (2014).

    Article  CAS  Google Scholar 

  284. Liang, J. et al. Performance assessment of a triangular microchannel active magnetic regenerator. Appl. Therm. Eng. 186, 116519 (2021).

    Article  CAS  Google Scholar 

  285. Benedict, M. A., Sherif, S. A., Beers, D. G. & Schroeder, M. G. Design and performance of a novel magnetocaloric heat pump. Sci. Technol. Built Environ. 22, 520–526 (2016).

    Article  Google Scholar 

  286. Lozano, J. A. et al. Development of a novel rotary magnetic refrigerator. Int. J. Refrig. 68, 187–197 (2016).

    Article  CAS  Google Scholar 

  287. Zhang, T., Qian, X. S., Gu, H. M., Hou, Y. & Zhang, Q. M. An electrocaloric refrigerator with direct solid to solid regeneration. Appl. Phys. Lett. 110, 243503 (2017).

    Article  CAS  Google Scholar 

  288. Liu, X. et al. Giant room temperature electrocaloric effect in a layered hybrid perovskite ferroelectric: [(CH3)2CHCH2NH3]2PbCl4. Nat. Commun. 12, 5502 (2021).

    Article  CAS  Google Scholar 

  289. Qian, X. et al. High-entropy polymer produces a giant electrocaloric effect at low fields. Nature 600, 664–669 (2021).

    Article  CAS  Google Scholar 

  290. Bachmann, N. et al. Long-term stable compressive elastocaloric cooling system with latent heat transfer. Commun. Phys. 4, 194 (2021).

    Article  Google Scholar 

  291. Engelbrecht, K. et al. A regenerative elastocaloric device: experimental results. J. Phys. D 50, 424006 (2017).

    Article  CAS  Google Scholar 

  292. Bruederlin, F. et al. Elastocaloric cooling on the miniature scale: a review on materials and device engineering. Energy Technol. 6, 1588–1604 (2018).

    Article  Google Scholar 

  293. Saito, A. T., Kobayashi, T., Kaji, S., Li, J. & Nakagome, H. Environmentally friendly magnetic refrigeration technology using ferromagnetic Gd alloys. Int. J. Environ. Sci. Dev. 7, 316–320 (2016).

    Article  CAS  Google Scholar 

  294. Arnold, D. S., Tura, A., Ruebsaat-Trott, A. & Rowe, A. Design improvements of a permanent magnet active magnetic refrigerator. Int. J. Refrig. 37, 99–105 (2014).

    Article  CAS  Google Scholar 

  295. Yao, G. H., Gong, M. Q. & Wu, J. F. Experimental study on the performance of a room temperature magnetic refrigerator using permanent magnets. Int. J. Refrig. 29, 1267–1273 (2006).

    Article  CAS  Google Scholar 

  296. Greibich, F. et al. Elastocaloric heat pump with specific cooling power of 20.9 W g−1 exploiting snap-through instability and strain-induced crystallization. Nat. Energy 6, 260–267 (2021).

    Article  CAS  Google Scholar 

  297. Ianniciello, L., Bartholomé, K., Fitger, A. & Engelbrecht, K. Long life elastocaloric regenerator operating under compression. Appl. Therm. Eng. 202, 117838 (2022).

    Article  CAS  Google Scholar 

  298. Huang, B. et al. Development of an experimental rotary magnetic refrigerator prototype. Int. J. Refrig. 104, 42–50 (2019).

    Article  CAS  Google Scholar 

  299. Eriksen, D., Engelbrecht, K., Bahl, C. R. H. & Bjork, R. Exploring the efficiency potential for an active magnetic regenerator. Sci. Technol. Built Environ. 22, 527–533 (2016).

    Article  Google Scholar 

  300. Lionte, S., Barcza, A., Risser, M., Muller, C. & Katter, M. LaFeSi-based magnetocaloric material analysis: cyclic endurance and thermal performance results. Int. J. Refrig. 124, 43–51 (2021).

    Article  CAS  Google Scholar 

  301. Rahman, S. et al. Pressure-induced structural evaluation and insulator-metal transition in the mixed spinel ferrite Zn0.2Mg0.8Fe2O4. Phys. Rev. B 95, 024107 (2017).

    Article  Google Scholar 

  302. Ueland, S. M. & Schuh, C. A. Surface roughness-controlled superelastic hysteresis in shape memory microwires. Scr. Mater. 82, 1–4 (2014).

    Article  CAS  Google Scholar 

  303. Steven Brown, J. & Domanski, P. A. Review of alternative cooling technologies. Appl. Therm. Eng. 64, 252–262 (2014).

    Article  CAS  Google Scholar 

  304. Cohen, L. F. Contributions to hysteresis in magnetocaloric materials. Phys. Status Solidi B 255, 1700317 (2018).

    Article  CAS  Google Scholar 

  305. Lovell, E., Pereira, A. M., Caplin, A. D., Lyubina, J. & Cohen, L. F. Dynamics of the first-order metamagnetic transition in magnetocaloric La(Fe,Si)13: reducing hysteresis. Adv. Energy Mater. 5, 1401639 (2015).

    Article  CAS  Google Scholar 

  306. Moore, J. D. et al. Reducing the operational magnetic field in the prototype magnetocaloric system Gd5Ge4 by approaching the single cluster size limit. Appl. Phys. Lett. 88, 072501 (2006).

    Article  CAS  Google Scholar 

  307. Wu, S., Lin, M. R., Lu, S. G., Zhu, L. & Zhang, Q. M. Polar-fluoropolymer blends with tailored nanostructures for high energy density low loss capacitor applications. Appl. Phys. Lett. 99, 132901 (2011).

    Article  CAS  Google Scholar 

  308. Aziguli, H. et al. Tuning the electrocaloric reversibility in ferroelectric copolymers by a blend approach. EPL 125, 57001 (2019).

    Article  CAS  Google Scholar 

  309. Liu, Y., Haibibu, A., Xu, W. H., Han, Z. B. & Wang, Q. Observation of a negative thermal hysteresis in relaxor ferroelectric polymers. Adv. Funct. Mater. 30, 2000648 (2020).

    Article  CAS  Google Scholar 

  310. Fujita, A., Matsunami, D. & Yako, H. Realization of small intrinsic hysteresis with large magnetic entropy change in La0.8Pr0.2(Fe0.88Si0.10Al0.02)13 by controlling itinerant-electron characteristics. Appl. Phys. Lett. 104, 122410 (2014).

    Article  CAS  Google Scholar 

  311. Zhang, H. et al. Reduction of hysteresis loss and large magnetocaloric effect in the C- and H-doped La(Fe, Si)13 compounds around room temperature. J. Appl. Phys. 111, 07A909 (2012).

    Article  CAS  Google Scholar 

  312. Qiu, X., Hollander, L., Wirges, W., Gerhard, R. & Basso, H. C. Direct hysteresis measurements on ferroelectret films by means of a modified Sawyer–Tower circuit. J. Appl. Phys. 113, 224106 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge useful discussions with J. Cui, R. Radermacher, Y. Hwang, J. Muehlbauer, D. Catalini, D. Wen, R. Bao, Y. Xing, W. Yuan and L. Yuan. H.H. was supported by the National Natural Science Foundation of China (NSFC grant no. 12002013) and the Fundamental Research Funds for the Central Universities (grant no. 501LKQB2020105028). I.T. was supported by the U.S. Department of Energy under DE-EE0009159. S.Q. was supported by the National Natural Science Foundation of China (NSFC grant no. 51976149), the Young Elite Scientist Sponsorship Program by CAST (grant no. 2019QNRC001) and the China Postdoctoral Science Foundation (CPSF grant no. 2020M683471).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion of content, writing and editing of the manuscript prior to submission.

Corresponding authors

Correspondence to Huilong Hou or Ichiro Takeuchi.

Ethics declarations

Competing interests

I.T. is a founder of Maryland Energy and Sensor Technologies, a company that works on elastocaloric technologies. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Neil Mathur, Vitalij Pecharsky and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Refrigeration and airconditioning – Consumers: http://www.environment.gov.au/protection/ozone/rac/consumers

The Nobel Prize in Chemistry 1949: https://www.nobelprize.org/prizes/chemistry/1949/summary/

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hou, H., Qian, S. & Takeuchi, I. Materials, physics and systems for multicaloric cooling. Nat Rev Mater 7, 633–652 (2022). https://doi.org/10.1038/s41578-022-00428-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-022-00428-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing