Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Methane transformation by photocatalysis

Abstract

Methane hydrate and shale gas are predicted to have substantial reserves, far beyond the sum of other fossil fuels. Using methane instead of crude oil as a building block is, thus, a very attractive strategy for synthesizing valuable chemicals. Because methane is so inert, its direct conversion needs a high activation energy and typically requires harsh reaction conditions or strong oxidants. Photocatalysis, which employs photons operated under very mild conditions, is a promising technology to reduce the thermodynamic barrier in direct methane conversion and to avoid the common issues of overoxidation and catalyst deactivation. In this Review, we cover the development of photocatalysts and co-catalysts, including the use of inorganic materials and polymeric semiconductors, and explain how the use of batch or flow reaction systems affects the reaction kinetics and product selectivity. We also discuss efforts to understand the underlying reaction mechanisms from both a photophysical and a chemical perspective. Finally, we present our view of the challenges facing this field and suggest potential solutions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The fundamentals of photocatalysis and methane conversion.
Fig. 2: Key developments in photocatalytic methane conversion.
Fig. 3: Representative reaction systems in photocatalytic methane conversion.
Fig. 4: Complementary time-resolved spectroscopies to probe photophysical and photochemical processes in photocatalysts.

Similar content being viewed by others

References

  1. Meng, X. et al. Direct methane conversion under mild condition by thermo-, electro-, or photocatalysis. Chem 5, 2296–2325 (2019).

    Article  CAS  Google Scholar 

  2. Schwach, P., Pan, X. & Bao, X. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chem. Rev. 117, 8497–8520 (2017).

    Article  CAS  Google Scholar 

  3. U.S. Energy Information Administration (EIA). Annual Energy Outlook 2019. EIA https://www.eia.gov/outlooks/archive/aeo19/ (2019).

  4. Gunsalus, N. J. et al. Homogeneous functionalization of methane. Chem. Rev. 117, 8521–8573 (2017).

    Article  CAS  Google Scholar 

  5. Song, Y. et al. Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgO. Science 367, 777–781 (2020).

    Article  CAS  Google Scholar 

  6. Farrell, B. L., Igenegbai, V. O. & Linic, S. A viewpoint on direct methane conversion to ethane and ethylene using oxidative coupling on solid catalysts. ACS Catal. 6, 4340–4346 (2016).

    Article  CAS  Google Scholar 

  7. Farrauto, R. J. Low-temperature oxidation of methane. Science 337, 659–660 (2012).

    Article  CAS  Google Scholar 

  8. Li, L., Fan, S., Mu, X., Mi, Z. & Li, C.-J. J. Photoinduced conversion of methane into benzene over GaN nanowires. J. Am. Chem. Soc. 136, 7793–7796 (2014). The first report of a typical photocatalytic methane conversion to benzene. The efficiency is moderate.

    Article  CAS  Google Scholar 

  9. Yuliati, L. & Yoshida, H. Photocatalytic conversion of methane. Chem. Soc. Rev. 37, 1592–1602 (2008).

    Article  CAS  Google Scholar 

  10. Xie, J. et al. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species. Nat. Catal. 1, 889–896 (2018). Report of 15% CH4 conversion with 90% CH3OH selectivity on FeOx/TiO2 owing to single-atom Fe and its clusters.

    Article  CAS  Google Scholar 

  11. Hu, Y., Higashimoto, S., Takahashi, S., Nagai, Y. & Anpo, M. Selective photooxidation of methane into methanol by nitric oxide over V-MCM-41 mesoporous molecular sieves. Catal. Lett. 100, 35–37 (2005).

    Article  CAS  Google Scholar 

  12. Ward, M. D., Brazdil, J. F., Mehandru, S. P. & Anderson, A. B. Methane photoactivation on copper molybdate: an experimental and theoretical study. J. Phys. Chem. 91, 6515–6521 (1987).

    Article  CAS  Google Scholar 

  13. Suzuki, T., Wada, K., Shima, M. & Watanabe, Y. Photoinduced partial oxidation of methane into formaldehyde on silica-supported molybdena. J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/C39900001059 (1990). Photocatalytic methane conversion to formaldehyde with extremely high selectivity of 96.7%. The yield of formaldehyde was 0.078% at 493 K.

    Article  Google Scholar 

  14. Zhou, Y., Zhang, L. & Wang, W. Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis. Nat. Commun. 10, 506 (2019).

    Article  CAS  Google Scholar 

  15. Meng, L. et al. Gold plasmon-induced photocatalytic dehydrogenative coupling of methane to ethane on polar oxide surfaces. Energy Environ. Sci. 11, 294–298 (2018).

    Article  CAS  Google Scholar 

  16. Wu, S. et al. Ga-doped and Pt-loaded porous TiO2–SiO2 for photocatalytic nonoxidative coupling of methane. J. Am. Chem. Soc. 141, 6592–6600 (2019).

    Article  CAS  Google Scholar 

  17. Yoshida, H., Matsushita, N., Kato, Y. & Hattori, T. Active sites in sol–gel prepared silica-alumina for photoinduced non-oxidative methane coupling. Phys. Chem. Chem. Phys. 4, 2459–2465 (2002).

    Article  CAS  Google Scholar 

  18. Shi, D., Feng, Y. & Zhong, S. Photocatalytic conversion of CH4 and CO2 to oxygenated compounds over Cu/CdS–TiO2/SiO2 catalyst. Catal. Today 98, 505–509 (2004).

    Article  CAS  Google Scholar 

  19. Zhou, L. et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat. Energy 5, 61–70 (2020). A detailed investigation of the plasmonic effect on methane activation.

    Article  CAS  Google Scholar 

  20. Bard, A. J. Photoelectrochemistry. Science 207, 139–144 (1980).

    Article  CAS  Google Scholar 

  21. Linsebigler, A. L., Lu, G. & Yates, J. T. Jr Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995).

    Article  CAS  Google Scholar 

  22. Chen, X. et al. Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts. Nat. Commun. 7, 12273 (2016).

    Article  CAS  Google Scholar 

  23. Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009).

    Article  CAS  Google Scholar 

  24. Scaife, D. E. Oxide semiconductors in photoelectrochemical conversion of solar energy. Sol. Energy 25, 41–54 (1980).

    Article  CAS  Google Scholar 

  25. Yuliati, L., Tsubota, M., Satsuma, A., Itoh, H. & Yoshida, H. Photoactive sites on pure silica materials for nonoxidative direct methane coupling. J. Catal. 238, 214–220 (2006).

    Article  CAS  Google Scholar 

  26. Lang, J., Ma, Y., Wu, X., Jiang, Y. & Hu, Y. H. Highly efficient light-driven methane coupling under ambient conditions based on an integrated design of a photocatalytic system. Green Chem. 22, 4669–4675 (2020). First report of photocatalytic methane activation through the methyl anion pathway, although the activity requires improvement.

    Article  CAS  Google Scholar 

  27. Song, H. et al. Visible-light-mediated methane activation for steam methane reforming under mild conditions: a case study of Rh/TiO2 Catalysts. ACS Catal. 8, 7556–7565 (2018).

    Article  CAS  Google Scholar 

  28. Meng, X. et al. Photothermal conversion of CO2 into CH4 with H2 over Group VIII nanocatalysts: An alternative approach for solar fuel production. Angew. Chem. Int. Ed. 53, 11478–11482 (2014).

    Article  CAS  Google Scholar 

  29. Ogura, K. & Kataoka, M. Photochemical conversion of methane. J. Mol. Catal. 43, 371–379 (1988).

    Article  CAS  Google Scholar 

  30. Pignatello, J. J., Oliveros, E. & MacKay, A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol. 36, 1–84 (2006).

    Article  CAS  Google Scholar 

  31. Hu, A., Guo, J.-J., Pan, H. & Zuo, Z. Selective functionalization of methane, ethane, and higher alkanes by cerium photocatalysis. Science 361, 668–672 (2018).

    Article  CAS  Google Scholar 

  32. Yu, X. et al. Stoichiometric methane conversion to ethane using photochemical looping at ambient temperature. Nat. Energy 5, 511–519 (2020). First photochemical looping mechanism for photocatalytic methane conversion to ethane.

    Article  CAS  Google Scholar 

  33. Jiang, W. et al. Pd-modified ZnO–Au enabling alkoxy intermediates formation and dehydrogenation for photocatalytic conversion of methane to ethylene. J. Am. Chem. Soc. 143, 269–278 (2021).

    Article  CAS  Google Scholar 

  34. Yu, X., De Waele, V., Löfberg, A., Ordomsky, V. & Khodakov, A. Y. Selective photocatalytic conversion of methane into carbon monoxide over zinc-heteropolyacid-titania nanocomposites. Nat. Commun. 10, 700 (2019).

    Article  CAS  Google Scholar 

  35. Gondal, M. A., Hameed, A., Yamani, Z. H. & Arfaj, A. Photocatalytic transformation of methane into methanol under UV laser irradiation over WO3, TiO2 and NiO catalysts. Chem. Phys. Lett. 392, 372–377 (2004).

    Article  CAS  Google Scholar 

  36. Yoshida, H. et al. Hydrogen production from methane and water on platinum loaded titanium oxide photocatalysts. J. Phys. Chem. C 112, 5542–5551 (2008).

    Article  CAS  Google Scholar 

  37. Zhang, W., Yu, Y. & Yi, Z. Controllable synthesis of SrCO3 with different morphologies and their co-catalytic activities for photocatalytic oxidation of hydrocarbon gases over TiO2. J. Mater. Sci. 52, 5106–5116 (2017).

    Article  CAS  Google Scholar 

  38. Kaliaguine, S. L., Shelimov, B. N. & Kazansky, V. B. Reactions of methane and ethane with hole centers O−. J. Catal. 55, 384–393 (1978). First attempt of photocatalytic CH4 conversion over TiO2.

    Article  CAS  Google Scholar 

  39. Yu, L. & Li, D. Photocatalytic methane conversion coupled with hydrogen evolution from water over Pd/TiO2. Catal. Sci. Technol. 7, 635–640 (2017).

    Article  CAS  Google Scholar 

  40. Yu, L., Shao, Y. & Li, D. Direct combination of hydrogen evolution from water and methane conversion in a photocatalytic system over Pt/TiO2. Appl. Catal. B Environ. 204, 216–223 (2017).

    Article  CAS  Google Scholar 

  41. Reiche, H. & Bard, A. J. Heterogeneous photosynthetic production of amino acids from methane-ammonia-water at platinum/titanium dioxide. Implications in chemical evolution. J. Am. Chem. Soc. 101, 3127–3128 (1979).

    Article  CAS  Google Scholar 

  42. Yazdanpour, N. & Sharifnia, S. Photocatalytic conversion of greenhouse gases (CO2 and CH4) using copper phthalocyanine modified TiO2. Sol. Energy Mater. Sol. Cells 118, 1–8 (2013).

    Article  CAS  Google Scholar 

  43. Song, H. et al. Direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on cocatalysts/ZnO at room temperature in water. J. Am. Chem. Soc. 141, 20507–20515 (2019).

    Article  CAS  Google Scholar 

  44. Li, Z., Pan, X. & Yi, Z. Photocatalytic oxidation of methane over CuO-decorated ZnO nanocatalysts. J. Mater. Chem. A 7, 469–475 (2019).

    Article  Google Scholar 

  45. Zhang, B. et al. Anisotropic photoelectrochemical (PEC) performances of ZnO single-crystalline photoanode: Effect of internal electrostatic fields on the separation of photogenerated charge carriers during PEC water splitting. Chem. Mater. 28, 6613–6620 (2016).

    Article  CAS  Google Scholar 

  46. Noel, Y., Zicovich-Wilson, C. M., Civalleri, B., D’Arco, P. & Dovesi, R. Polarization properties of ZnO and BeO: An ab initio study through the Berry phase and Wannier functions approaches. Phys. Rev. B Condens. Matter Mater. Phys. 65, 014111 (2001).

    Article  CAS  Google Scholar 

  47. Li, Z., Boda, M. A., Pan, X. & Yi, Z. Photocatalytic oxidation of small molecular hydrocarbons over ZnO nanostructures: the difference between methane and ethylene and the impact of polar and nonpolar facets. ACS Sustain. Chem. Eng. 7, 19042–19049 (2019).

    Article  CAS  Google Scholar 

  48. Yang, J. et al. Solar-driven efficient methane catalytic oxidation over epitaxial ZnO/La0.8Sr0.2CoO3 heterojunctions. Appl. Catal. B Environ. 265, 118469 (2020).

    Article  CAS  Google Scholar 

  49. Noceti, R. P., Taylor, C. E. & D’Este, J. R. Photocatalytic conversion of methane. Catal. Today 33, 199–204 (1997).

    Article  CAS  Google Scholar 

  50. Taylor, C. E. & Noceti, R. P. New developments in the photocatalytic conversion of methane to methanol. Catal. Today 55, 259–267 (2000).

    Article  CAS  Google Scholar 

  51. Gondal, M. A., Hameed, A. & Suwaiyan, A. Photo-catalytic conversion of methane into methanol using visible laser. Appl. Catal. A Gen. 243, 165–174 (2003).

    Article  CAS  Google Scholar 

  52. Hameed, A., Ismail, I. M. I., Aslam, M. & Gondal, M. A. Photocatalytic conversion of methane into methanol: Performance of silver impregnated WO3. Appl. Catal. A Gen. 470, 327–335 (2014).

    Article  CAS  Google Scholar 

  53. Villa, K., Murcia-López, S., Andreu, T. & Morante, J. R. Mesoporous WO3 photocatalyst for the partial oxidation of methane to methanol using electron scavengers. Appl. Catal. B Environ. 163, 150–155 (2015).

    Article  CAS  Google Scholar 

  54. Villa, K., Murcia-López, S., Andreu, T. & Morante, J. R. On the role of WO3 surface hydroxyl groups for the photocatalytic partial oxidation of methane to methanol. Catal. Commun. 58, 200–203 (2015).

    Article  CAS  Google Scholar 

  55. Villa, K., Murcia-López, S., Morante, J. R. & Andreu, T. An insight on the role of La in mesoporous WO3 for the photocatalytic conversion of methane into methanol. Appl. Catal. B Environ. 187, 30–36 (2016).

    Article  CAS  Google Scholar 

  56. Yang, J., Hao, J., Wei, J., Dai, J. & Li, Y. Visible-light-driven selective oxidation of methane to methanol on amorphous FeOOH coupled m-WO3. Fuel 266, 117104 (2020).

    Article  CAS  Google Scholar 

  57. Ozin, G. A. & Hugues, F. Selective photoactivation of carbon-hydrogen bonds in paraffinic hydrocarbons. Dimerization of alkanes. J. Phys. Chem. 86, 5174–5179 (1982).

    Article  CAS  Google Scholar 

  58. Hill, W., Shelimov, B. N. & Kazansky, V. B. Photoinduced reactions of methane with molybdena supported on silica. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 83, 2381–2389 (1987).

    CAS  Google Scholar 

  59. Kato, Y., Yoshida, H. & Hattori, T. Photoinduced non-oxidative coupling of methane over silica-alumina and alumina around room temperature. Chem. Commun. https://doi.org/10.1039/A806825I (1998).

    Article  Google Scholar 

  60. Li, L. et al. Synergistic effect on the photoactivation of the methane C–H bond over Ga3+-modified ETS-10. Angew. Chem. Int. Ed. 51, 4702–4706 (2012).

    Article  CAS  Google Scholar 

  61. Kato, Y., Matsushita, N., Yoshida, H. & Hattori, T. Highly active silica–alumina–titania catalyst for photoinduced non-oxidative methane coupling. Catal. Commun. 3, 99–103 (2002).

    Article  CAS  Google Scholar 

  62. Yuliati, L., Itoh, H. & Yoshida, H. Modification of highly dispersed cerium oxides on silica with highly dispersed titanium oxides as a new photocatalyst design for nonoxidative direct methane coupling. Chem. Lett. 35, 932–933 (2006).

    Article  CAS  Google Scholar 

  63. Yuliati, L., Hamajima, T., Hattori, T. & Yoshida, H. Highly dispersed Ce(III) species on silica and alumina as new photocatalysts for non-oxidative direct methane coupling. Chem. Commun. https://doi.org/10.1039/B507698F (2005).

    Article  Google Scholar 

  64. Yoshida, H. et al. Active Ag species in MFI zeolite for direct methane conversion in the light and dark. Res. Chem. Intermed. 29, 897–910 (2003).

    Article  CAS  Google Scholar 

  65. Yuliati, L., Hattori, T., Itoh, H. & Yoshida, H. Photocatalytic nonoxidative coupling of methane on gallium oxide and silica-supported gallium oxide. J. Catal. 257, 396–402 (2008).

    Article  CAS  Google Scholar 

  66. Yuliati, L., Hamajima, T., Hattori, T. & Yoshida, H. Nonoxidative coupling of methane over supported ceria photocatalysts. J. Phys. Chem. C 112, 7223–7232 (2008).

    Article  CAS  Google Scholar 

  67. Yoshida, H., Chaskar, M. G., Kato, Y. & Hattori, T. Fine structural photoluminescence spectra of silica-supported zirconium oxide and its photoactivity in direct methane conversion. Chem. Commun. 2, 2014–2015 (2002). Very early work reporting nearly 100% selectivity to C2H6, achieved through photocatalytic NOCM.

    Article  CAS  Google Scholar 

  68. Li, L. et al. Efficient sunlight-driven dehydrogenative coupling of methane to ethane over a Zn+-modified zeolite. Angew. Chem. Int. Ed. 50, 8299–8303 (2011).

    Article  CAS  Google Scholar 

  69. Murcia-López, S. et al. Controlled photocatalytic oxidation of methane to methanol through surface modification of beta zeolites. ACS Catal. 7, 2878–2885 (2017).

    Article  CAS  Google Scholar 

  70. Guo, X. et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344, 616–619 (2014).

    Article  CAS  Google Scholar 

  71. Sushkevich, V. L., Palagin, D., Ranocchiari, M. & van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 356, 523–527 (2017).

    Article  CAS  Google Scholar 

  72. Jin, Z. et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 367, 193–197 (2020).

    Article  CAS  Google Scholar 

  73. Singh, S. P., Anzai, A., Kawaharasaki, S., Yamamoto, A. & Yoshida, H. Non-oxidative coupling of methane over Pd-loaded gallium oxide photocatalysts in a flow reactor. Catal. Today 375, 264–272 (2020).

    Article  CAS  Google Scholar 

  74. Kohno, Y., Tanaka, T., Funabiki, T. & Yoshida, S. Reaction mechanism in the photoreduction of CO2 with CH4 over ZrO2. Phys. Chem. Chem. Phys. 2, 5302–5307 (2000).

    Article  CAS  Google Scholar 

  75. Shimura, K., Yoshida, T. & Yoshida, H. Photocatalytic activation of water and methane over modified gallium oxide for hydrogen production. J. Phys. Chem. C 114, 11466–11474 (2010).

    Article  CAS  Google Scholar 

  76. Yuliati, L., Itoh, H. & Yoshida, H. Photocatalytic conversion of methane and carbon dioxide over gallium oxide. Chem. Phys. Lett. 452, 178–182 (2008).

    Article  CAS  Google Scholar 

  77. Teramura, K., Tanaka, T., Ishikawa, H., Kohno, Y. & Funabiki, T. Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO. J. Phys. Chem. B 108, 346–354 (2004).

    Article  CAS  Google Scholar 

  78. Yoshida, H., Chaskar, M. G., Kato, Y. & Hattori, T. Active sites on silica-supported zirconium oxide for photoinduced direct methane conversion and photoluminescence. J. Photochem. Photobiol. A Chem. 160, 47–53 (2003).

    Article  CAS  Google Scholar 

  79. Murcia-López, S., Villa, K., Andreu, T. & Morante, J. R. R. Partial oxidation of methane to methanol using bismuth-based photocatalysts. ACS Catal. 4, 3013–3019 (2014).

    Article  CAS  Google Scholar 

  80. Murcia-López, S., Villa, K., Andreu, T. & Morante, J. R. R. Improved selectivity for partial oxidation of methane to methanol in the presence of nitrite ions and BiVO4 photocatalyst. Chem. Commun. 51, 7249–7252 (2015).

    Article  CAS  Google Scholar 

  81. Zhu, W. et al. Facet-dependent enhancement in the activity of bismuth vanadate microcrystals for the photocatalytic conversion of methane to methanol. ACS Appl. Nano Mater. 1, 6683–6691 (2018).

    Article  CAS  Google Scholar 

  82. Shoji, S. et al. Photocatalytic uphill conversion of natural gas beyond the limitation of thermal reaction systems. Nat. Catal. 3, 148–153 (2020).

    Article  CAS  Google Scholar 

  83. Pan, X., Chen, X. & Yi, Z. Photocatalytic oxidation of methane over SrCO3 decorated SrTiO3 nanocatalysts via a synergistic effect. Phys. Chem. Chem. Phys. 18, 31400–31409 (2016).

    Article  CAS  Google Scholar 

  84. Li, N., Li, Y., Jiang, R., Zhou, J. & Liu, M. Photocatalytic coupling of methane and CO2 into C2-hydrocarbons over Zn doped g-C3N4 catalysts. Appl. Surf. Sci. 498, 143861 (2019).

    Article  CAS  Google Scholar 

  85. Tahir, B., Tahir, M. & Amin, N. A. S. Photo-induced CO2 reduction by CH4/H2O to fuels over Cu-modified g-C3N4 nanorods under simulated solar energy. Appl. Surf. Sci. 419, 875–885 (2017).

    Article  CAS  Google Scholar 

  86. Muhammad, A., Tahir, M., Al-Shahrani, S. S., Mahmood Ali, A. & Rather, S. U. Template free synthesis of graphitic carbon nitride nanotubes mediated by lanthanum (La/g-CNT) for selective photocatalytic CO2 reduction via dry reforming of methane (DRM) to fuels. Appl. Surf. Sci. 504, 144177 (2020).

    Article  CAS  Google Scholar 

  87. Shi, S., Sun, Z., Bao, C., Gao, T. & Hu, Y. H. The special route toward conversion of methane to methanol on a fluffy metal-free carbon nitride photocatalyst in the presence of H2O2. Int. J. Energy Res. 44, 2740–2753 (2020).

    Article  CAS  Google Scholar 

  88. Liu, H. et al. Light assisted CO2 reduction with methane over SiO2 encapsulated Ni nanocatalysts for boosted activity and stability. J. Mater. Chem. A 5, 10567–10573 (2017).

    Article  CAS  Google Scholar 

  89. Liu, H., Song, H., Meng, X., Yang, L. & Ye, J. Light irradiation enhanced CO2 reduction with methane: A case study in size-dependent optical property of Ni nanoparticles. Catal. Today 335, 187–192 (2019).

    Article  CAS  Google Scholar 

  90. Huang, H. et al. Solar-light-driven CO2 reduction by CH4 on silica-cluster-modified Ni nanocrystals with a high solar-to-fuel efficiency and excellent durability. Adv. Energy Mater. 8, 1702472 (2018).

    Article  CAS  Google Scholar 

  91. Liu, H. et al. Light assisted CO2 reduction with methane over group VIII metals: Universality of metal localized surface plasmon resonance in reactant activation. Appl. Catal. B Environ. 209, 183–189 (2017).

    Article  CAS  Google Scholar 

  92. Liu, H. et al. Conversion of carbon dioxide by methane reforming under visible-light irradiation: surface-plasmon-mediated nonpolar molecule activation. Angew. Chem. Int. Ed. 54, 11545–11549 (2015).

    Article  CAS  Google Scholar 

  93. Li, X., Xie, J., Rao, H., Wang, C. & Tang, J. Platinum-and CuOx-decorated TiO2 photocatalyst for oxidative coupling of methane to C2 hydrocarbons in a flow reactor. Angew. Chem. Int. Ed. 59, 19702–19707 (2020). Photocatalytic OCM in a flow reactor with the highest C2 yield rate among all TiO2-based photocatalysts under ambient conditions.

    Article  CAS  Google Scholar 

  94. Shimura, K., Kawai, H., Yoshida, T. & Yoshida, H. Bifunctional rhodium cocatalysts for photocatalytic steam reforming of methane over alkaline titanate. ACS Catal. 2, 2126–2134 (2012).

    Article  CAS  Google Scholar 

  95. Li, N. et al. Plasma-assisted photocatalysis of CH4 and CO2 into ethylene. ACS Sustain. Chem. Eng. 7, 11455–11463 (2019).

    Article  CAS  Google Scholar 

  96. Ohkubo, K. & Hirose, K. Light-driven C–H oxygenation of methane into methanol and formic acid by molecular oxygen using a perfluorinated solvent. Angew. Chem. Int. Ed. 130, 2148–2151 (2018).

    Article  Google Scholar 

  97. Isaka, Y., Kawase, Y., Kuwahara, Y., Mori, K. & Yamashita, H. Two-phase system utilizing hydrophobic metal–organic frameworks (MOFs) for photocatalytic synthesis of hydrogen peroxide. Angew. Chem. Int. Ed. 58, 5402–5406 (2019).

    Article  CAS  Google Scholar 

  98. Miao, T. J. & Tang, J. Characterization of charge carrier behavior in photocatalysis using transient absorption spectroscopy. J. Chem. Phys. 152, 194201 (2020).

    Article  CAS  Google Scholar 

  99. Vl-ek, A., Kvapilová, H., Towrie, M. & Záliš, S. Electron-transfer acceleration investigated by time resolved infrared spectroscopy. Acc. Chem. Res. 48, 868–876 (2015).

    Article  CAS  Google Scholar 

  100. Buhrke, D. & Hildebrandt, P. Probing structure and reaction dynamics of proteins using time-resolved resonance Raman spectroscopy. Chem. Rev. 120, 3577–3630 (2020).

    Article  CAS  Google Scholar 

  101. Sahoo, S. K., Umapathy, S. & Parker, A. W. Time-resolved resonance Raman spectroscopy: Exploring reactive intermediates. Appl. Spectrosc. 65, 1087–1115 (2011).

    Article  Google Scholar 

  102. Hao, L. et al. Surface-halogenation-induced atomic-site activation and local charge separation for superb CO2 photoreduction. Adv. Mater. 31, 1900546 (2019).

    Article  CAS  Google Scholar 

  103. Tang, J., Durrant, J. R. & Klug, D. R. Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. J. Am. Chem. Soc. 130, 13885–13891 (2008).

    Article  CAS  Google Scholar 

  104. Grigioni, I. et al. In operando photoelectrochemical femtosecond transient absorption spectroscopy of WO3/BiVO4 heterojunctions. ACS Energy Lett. 4, 2213–2219 (2019).

    Article  CAS  Google Scholar 

  105. Murthy, D. H. K. et al. Origin of the overall water splitting activity of Ta3N5 revealed by ultrafast transient absorption spectroscopy. Chem. Sci. 10, 5353–5362 (2019).

    Article  CAS  Google Scholar 

  106. Sprick, R. S. et al. Water oxidation with cobalt-loaded linear conjugated polymer photocatalysts. Angew. Chem. Int. Ed. 59, 18695–18700 (2020).

    Article  CAS  Google Scholar 

  107. Shen, S., Wang, X., Chen, T., Feng, Z. & Li, C. Transfer of photoinduced electrons in anatase-rutile TiO2 determined by time-resolved mid-infrared spectroscopy. J. Phys. Chem. C 118, 12661–12668 (2014).

    Article  CAS  Google Scholar 

  108. Dai, X. et al. Capturing the long-lived photogenerated electrons in Au/TiO2 upon UV or visible irradiation by time-resolved infrared spectroscopy. J. Phys. Chem. C 123, 20325–20332 (2019).

    Article  CAS  Google Scholar 

  109. Yamakata, A., Ishibashi, T. A. & Onishi, H. Water- and oxygen-induced decay kinetics of photogenerated electrons in TiO2 and Pt/TiO2: A time-resolved infrared absorption study. J. Phys. Chem. B 105, 7258–7262 (2001).

    Article  CAS  Google Scholar 

  110. Ma, J. et al. How and when does an unusual and efficient photoredox reaction of 2-(1-hydroxyethyl) 9,10-anthraquinone occur? A combined time-resolved spectroscopic and DFT study. J. Am. Chem. Soc. 134, 14858–14868 (2012).

    Article  CAS  Google Scholar 

  111. Wang, Y., Hu, P., Yang, J., Zhu, Y. & Chen, D. C–H bond activation in light alkanes: a theoretical perspective. Chem. Soc. Rev. 50, 4299–4358 (2021).

    Article  CAS  Google Scholar 

  112. Ma, J. et al. Exploring the size effect of Pt nanoparticles on the photocatalytic nonoxidative coupling of methane. ACS Catal. 11, 3352–3360 (2021).

    Article  CAS  Google Scholar 

  113. Luo, L. et al. Water enables mild oxidation of methane to methanol on gold single-atom catalysts. Nat. Commun. 12, 1218 (2021).

    Article  CAS  Google Scholar 

  114. Fan, Y. et al. Selective photocatalytic oxidation of methane by quantum-sized bismuth vanadate. Nat. Sustain. 4, 509–515 (2021).

    Article  Google Scholar 

  115. Song, H. et al. Selective photo-oxidation of methane to methanol with oxygen over dual-cocatalyst-modified titanium dioxide. ACS Catal. 10, 14318–14326 (2020).

    Article  CAS  Google Scholar 

  116. Cui, X. et al. Room-temperature methane conversion by graphene-confined single iron atoms. Chem 4, 1902–1910 (2018).

    Article  CAS  Google Scholar 

  117. Meunier, F. C. Pitfalls and benefits of in situ and operando diffuse reflectance FT-IR spectroscopy (DRIFTS) applied to catalytic reactions. React. Chem. Eng. 1, 134–141 (2016).

    Article  CAS  Google Scholar 

  118. Álvarez M., A., Bobadilla, L. F., Garcilaso, V., Centeno, M. A. & Odriozola, J. A. CO2 reforming of methane over Ni-Ru supported catalysts: On the nature of active sites by operando DRIFTS study. J. CO2 Util. 24, 509–515 (2018).

    Article  CAS  Google Scholar 

  119. Li, X., Yang, X., Zhang, J., Huang, Y. & Liu, B. In situ/operando techniques for characterization of single-atom catalysts. ACS Catal. 9, 2521–2531 (2019).

    Article  CAS  Google Scholar 

  120. Matam, S. K., Aguirre, M. H., Weidenkaff, A. & Ferri, D. Revisiting the problem of active sites for methane combustion on Pd/Al2O3 by operando XANES in a lab-scale fixed-bed reactor. J. Phys. Chem. C 114, 9439–9443 (2010).

    Article  CAS  Google Scholar 

  121. Wolfbeisser, A. et al. Surface composition changes of CuNi-ZrO2 during methane decomposition: An operando NAP-XPS and density functional study. Catal. Today 283, 134–143 (2017).

    Article  CAS  Google Scholar 

  122. Han, B., Wei, W., Li, M., Sun, K. & Hu, Y. H. A thermo-photo hybrid process for steam reforming of methane: Highly efficient visible light photocatalysis. Chem. Commun. 55, 7816–7819 (2019). Highest apparent quantum efficiency of 60% for H2 generation through SRM over Pt/black TiO2.

    Article  CAS  Google Scholar 

  123. Takata, T. et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581, 411–414 (2020).

    Article  CAS  Google Scholar 

  124. Wang, Y. et al. Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nat. Energy 4, 746–760 (2019).

    Article  CAS  Google Scholar 

  125. Xie, C., Niu, Z., Kim, D., Li, M. & Yang, P. Surface and interface control in nanoparticle catalysis. Chem. Rev. 120, 1184–1249 (2020).

    Article  CAS  Google Scholar 

  126. Low, J., Yu, J., Jaroniec, M., Wageh, S. & Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater. 29, 1601694 (2017).

    Article  CAS  Google Scholar 

  127. Wang, D., Pan, Y., Xu, L. & Li, Z. PdAu@MIL-100(Fe) cooperatively catalyze tandem reactions between amines and alcohols for efficient N-alkyl amines syntheses under visible light. J. Catal. 361, 248–254 (2018).

    Article  CAS  Google Scholar 

  128. Ohyama, J., Nishimura, S. & Takahashi, K. Data driven determination of reaction conditions in oxidative coupling of methane via machine learning. ChemCatChem 11, 4307–4313 (2019).

    Article  CAS  Google Scholar 

  129. Bai, Y. et al. Accelerated discovery of organic polymer photocatalysts for hydrogen evolution from water through the integration of experiment and theory. J. Am. Chem. Soc. 141, 9063–9071 (2019).

    Article  CAS  Google Scholar 

  130. Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).

    Article  CAS  Google Scholar 

  131. Tran, K. & Ulissi, Z. W. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat. Catal. 1, 696–703 (2018).

    Article  CAS  Google Scholar 

  132. Zhang, X. et al. A stable low-temperature H2-production catalyst by crowding Pt on α-MoC. Nature 589, 396–401 (2021).

    Article  CAS  Google Scholar 

  133. Kuo, J. C. W., Kresge, C. T. & Palermo, R. E. Evaluation of direct methane conversion to higher hydrocarbons and oxygenates. Catal. Today 4, 463–470 (1989).

    Article  CAS  Google Scholar 

  134. Tavasoli, A. V., Preston, M. & Ozin, G. Photocatalytic dry reforming: what is it good for? Energy Environ. Sci. 14, 3098–3109 (2021).

    Article  CAS  Google Scholar 

  135. Zhou, Y. et al. Defect engineering of metal–oxide interface for proximity of photooxidation and photoreduction. Proc. Natl Acad. Sci. USA 116, 10232–10237 (2019).

    Article  CAS  Google Scholar 

  136. Boudart, M. Turnover rates in heterogeneous catalysis. Chem. Rev. 95, 661–666 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All authors are thankful for financial support from the UK EPSRC (EP/N009533/1 and EP/S018204/2), the Leverhulme Trust (RPG-2017-122) and the Royal Society Newton Advanced Fellowship grant (NAF\R1\191163 and NA170422). X.L. acknowledges a UCL PhD studentship (GRS and ORS). They are also grateful for graphic design and embellishment of pictures by Z. Wu.

Author information

Authors and Affiliations

Authors

Contributions

J.T. conceived and supervised the progress of the entire project. X.L. drafted and revised the majority of the paper. C.W. participated in drafting and revising the article, mainly the part of material development. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Junwang Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Joan Ramon Morante and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

International Energy Outlook 2019: https://www.eia.gov/outlooks/aeo/data/browser/#/?id=6-IEO2019&region=0-0&cases=Reference&start=2010&end=2050&f=A&linechart=Reference-d080819.26-6-IEO2019&map=&ctype=linechart&sourcekey=0

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, C. & Tang, J. Methane transformation by photocatalysis. Nat Rev Mater 7, 617–632 (2022). https://doi.org/10.1038/s41578-022-00422-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-022-00422-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing