Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pushing the limit of 3d transition metal-based layered oxides that use both cation and anion redox for energy storage

Abstract

Intercalation chemistry has dominated electrochemical energy storage for decades, and storage capacity worldwide has now reached the terawatt-hour level. State-of-the-art intercalation cathodes for Li-ion batteries operate within the limits of transition metal cation electrochemistry, but the discovery of anion-redox processes in recent decades suggests rich opportunities for substantially increasing stored energy densities. The diversity of compounds that exhibit anion redox in the solid state has inspired the exploration of new materials for next-generation cathodes. In this Review, we outline the mechanisms proposed to contribute to anion redox and the accompanying kinetic pathways that can occur in layered transition metal oxides. We discuss the crucial role of structural changes at both the atomic and mesoscopic scales with an emphasis on their impact on electrochemical performance. We emphasize the need for an integrated approach to studying the evolution of both the bulk structure and electrode–electrolyte interphase by combining characterization with computation. Building on the fundamental understanding of electrochemical reaction mechanisms, we discuss engineering strategies such as composition design, surface protection and structural control to achieve stable anion redox for next-generation energy storage devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structures of different types of layered oxides.
Fig. 2: Relationship between voltage curves and Gibbs free energy.
Fig. 3: Common features of voltage curves for Li-excess layered oxides.
Fig. 4: Distinct redox mechanisms for Li-excess layered oxides.
Fig. 5: Structural evolution scenarios during or after oxygen-redox activation.
Fig. 6: Characterization tools for addressing capacity contributions and assigning the oxygen-redox mechanism.
Fig. 7: Advanced analytical electron microscopy for studying anion-redox mechanisms in Li-excess layered oxides.
Fig. 8: Impact of sample composition on reversible and stable oxygen redox in Li-excess materials.

Similar content being viewed by others

References

  1. Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    Article  CAS  Google Scholar 

  2. Radin, M. D. et al. Narrowing the gap between theoretical and practical capacities in Li-ion layered oxide cathode materials. Adv. Energy Mater. 7, 1602888 (2017).

    Article  CAS  Google Scholar 

  3. Amatucci, G. G., Tarascon, J. M. & Klein, C. CoO2, the end member of the LiCoO2 solid solution. J. Electrochem. Soc. 143, 1114–1123 (1996).

    Article  CAS  Google Scholar 

  4. Liu, H. et al. Identifying the chemical and structural irreversibility in LiNi0.8Co0.15Al0.05O2 — a model compound for classical layered intercalation. J. Mater. Chem. A 6, 4189–4198 (2018).

    Article  CAS  Google Scholar 

  5. Lu, Z., MacNeil, D. D. & Dahn, J. R. Layered cathode materials Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 for lithium-ion batteries. Electrochem. Solid-State Lett. 4, A191 (2001).

    Article  CAS  Google Scholar 

  6. Hy, S. et al. Performance and design considerations for lithium excess layered oxide positive electrode materials for lithium ion batteries. Energy Environ. Sci. 9, 1931–1954 (2016).

    Article  CAS  Google Scholar 

  7. Grimaud, A., Hong, W. T., Shao-Horn, Y. & Tarascon, J. M. Anionic redox processes for electrochemical devices. Nat. Mater. 15, 121–126 (2016).

    Article  CAS  Google Scholar 

  8. Okubo, M. & Yamada, A. Molecular orbital principles of oxygen-redox battery electrodes. ACS Appl. Mater. Interfaces 9, 36463–36472 (2017).

    Article  CAS  Google Scholar 

  9. Li, B. & Xia, D. Anionic redox in rechargeable lithium batteries. Adv. Mater. 29, 1701054 (2017).

    Article  CAS  Google Scholar 

  10. Seo, D.-H. et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692–697 (2016).

    Article  CAS  Google Scholar 

  11. Luo, K. et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 8, 684–691 (2016).

    Article  CAS  Google Scholar 

  12. Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–835 (2013).

    Article  CAS  Google Scholar 

  13. Qiu, B. et al. Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat. Commun. 7, 12108 (2016).

    Article  CAS  Google Scholar 

  14. Radin, M. D., Vinckeviciute, J., Seshadri, R. & Van der Ven, A. Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode materials. Nat. Energy 4, 639–646 (2019).

    Article  CAS  Google Scholar 

  15. Kitchaev, D. A., Vinckeviciute, J. & Van der Ven, A. Delocalized metal–oxygen π-redox is the origin of anomalous nonhysteretic capacity in Li-Ion and Na-ion cathode materials. J. Am. Chem. Soc. 143, 1908–1916 (2021).

    Article  CAS  Google Scholar 

  16. Delmas, C., Fouassier, C. & Hagenmuller, P. Structural classification and properties of the layered oxides. Physica B+C 99, 81–85 (1980).

    Article  CAS  Google Scholar 

  17. Thackeray, M. M. et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem. 17, 3112–3125 (2007).

    Article  CAS  Google Scholar 

  18. Yoon, W. S. et al. Local structure and cation ordering in O3 lithium nickel manganese oxides with stoichiometry Li[NixMn(2–x)/3Li(1–2x)/3]O2 NMR studies and first principles calculations. Electrochem. Solid-State Lett. 7, A167–A171 (2004).

    Article  CAS  Google Scholar 

  19. Bréger, J. et al. High-resolution X-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li2MnO3 Li[Ni1/2Mn1/2]O2 solid solution. J. Solid State Chem. 178, 2575–2585 (2005).

    Article  CAS  Google Scholar 

  20. Mortemard de Boisse, B. et al. Highly reversible oxygen-redox chemistry at 4.1 V in Na4/7−x[□1/7Mn6/7]O2 (□: Mn vacancy). Adv. Energy Mater. 8, 1800409 (2018).

    Article  CAS  Google Scholar 

  21. Ben Yahia, M., Vergnet, J., Saubanère, M. & Doublet, M. L. Unified picture of anionic redox in Li/Na-ion batteries. Nat. Mater. 18, 496–502 (2019).

    Article  CAS  Google Scholar 

  22. Van Der Ven, A., Deng, Z., Banerjee, S. & Ong, S. P. Rechargeable alkali-ion battery materials: theory and computation. Chem. Rev. 120, 6977–7019 (2020).

    Article  CAS  Google Scholar 

  23. Gent, W. E. et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 8, 2091 (2017).

    Article  CAS  Google Scholar 

  24. Li, Y. et al. Regeneration of degraded Li-rich layered oxide materials through heat treatment-induced transition metal reordering. Energy Storage Mater. 35, 99–107 (2021).

    Article  Google Scholar 

  25. Croy, J. R., Balasubramanian, M., Gallagher, K. G. & Burrell, A. K. Review of the U.S. Department of Energy’s ‘deep dive’ effort to understand voltage fade in Li- and Mn-rich cathodes. Acc. Chem. Res. 48, 2813–2821 (2015).

    Article  CAS  Google Scholar 

  26. Sathiya, M. et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater. 14, 230–238 (2015).

    Article  CAS  Google Scholar 

  27. Vinckeviciute, J., Kitchaev, D. A. & Van Der Ven, A. A two-step oxidation mechanism controlled by Mn migration explains the first-cycle activation behavior of Li2MnO3-based Li-excess materials. Chem. Mater. 33, 1625–1636 (2021).

    Article  CAS  Google Scholar 

  28. Dogan, F. et al. Re-entrant lithium local environments and defect driven electrochemistry of Li- and Mn-rich Li-ion battery cathodes. J. Am. Chem. Soc. 137, 2328–2335 (2015).

    Article  CAS  Google Scholar 

  29. Eum, D. et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat. Mater. 19, 419–427 (2020).

    Article  CAS  Google Scholar 

  30. Aydinol, M., Kohan, A., Ceder, G., Cho, K. & Joannopoulos, J. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys. Rev. B 56, 1354–1365 (1997).

    Article  CAS  Google Scholar 

  31. Wolverton, C. & Zunger, A. First-principles prediction of vacancy order-disorder and intercalation battery voltages in LixCoO2. Phys. Rev. Lett. 81, 606–609 (1998).

    Article  CAS  Google Scholar 

  32. Van der Ven, A., Aydinol, M., Ceder, G., Kresse, G. & Hafner, J. First-principles investigation of phase stability. Phys. Rev. B 58, 2975–2987 (1998).

    Article  Google Scholar 

  33. Graetz, J. et al. Electronic structure of chemically-delithiated LiCoO2 studied by electron energy-loss spectrometry. J. Phys. Chem. B 106, 1286–1289 (2002).

    Article  CAS  Google Scholar 

  34. Roychoudhury, S. et al. Deciphering the oxygen absorption pre-edge: a caveat on its application for probing oxygen redox reactions in batteries. Energy Environ. Mater. 4, 246–254 (2020).

    Article  CAS  Google Scholar 

  35. Bo, S. H., Li, X., Toumar, A. J. & Ceder, G. Layered-to-rock-salt transformation in desodiated NaxCrO2(x 0.4). Chem. Mater. 28, 1419–1429 (2016).

    Article  CAS  Google Scholar 

  36. Kubota, K. et al. New insight into structural evolution in layered NaCrO2 during electrochemical sodium extraction. J. Phys. Chem. C 119, 166–175 (2015).

    Article  CAS  Google Scholar 

  37. Jones, C. D. W., Rossen, E. & Dahn, J. R. Structure and electrochemistry of LixCryCo1-yO2. Solid State Ion. 68, 65–69 (1994).

    Article  CAS  Google Scholar 

  38. Lyu, Y. et al. Atomic insight into electrochemical inactivity of lithium chromate (LiCrO2): irreversible migration of chromium into lithium layers in surface regions. J. Power Sources 273, 1218–1225 (2015).

    Article  CAS  Google Scholar 

  39. Pan, C., Lee, Y. J., Ammundsen, B. & Grey, C. P. 6Li MAS NMR studies of the local structure and electrochemical properties of Cr-doped lithium manganese and lithium cobalt oxide cathode materials for lithium-ion batteries. Chem. Mater. 14, 2289–2299 (2002).

    Article  CAS  Google Scholar 

  40. Croy, J. R., Garcia, J. C., Iddir, H., Trask, S. E. & Balasubramanian, M. Harbinger of hysteresis in lithium-rich oxides: anionic activity or defect chemistry of cation migration. J. Power Sources 471, 228335 (2020).

    Article  CAS  Google Scholar 

  41. Xie, Y., Saubanère, M. & Doublet, M.-L. Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries. Energy Environ. Sci. 10, 266–274 (2017).

    Article  CAS  Google Scholar 

  42. Hong, J. et al. Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat. Mater. 18, 256–265 (2019).

    Article  CAS  Google Scholar 

  43. Marusczyk, A. et al. Oxygen activity and peroxide formation as charge compensation mechanisms in Li2MnO3. J. Mater. Chem. A 5, 15183–15190 (2017).

    Article  CAS  Google Scholar 

  44. Chen, H. & Islam, M. S. Lithium extraction mechanism in Li-rich Li2MnO3 involving oxygen hole formation and dimerization. Chem. Mater. 28, 6656–6663 (2016).

    Article  CAS  Google Scholar 

  45. House, R. A. et al. First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk. Nat. Energy 5, 777–785 (2020).

    Article  CAS  Google Scholar 

  46. Oishi, M. et al. Direct observation of reversible oxygen anion redox reaction in Li-rich manganese oxide, Li2MnO3, studied by soft X-ray absorption spectroscopy. J. Mater. Chem. A 4, 9293–9302 (2016).

    Article  CAS  Google Scholar 

  47. Jiang, M., Key, B., Meng, Y. S. & Grey, C. P. Electrochemical and structural study of the layered, ‘Li-excess’ lithium-ion battery electrode material Li[Li1/9Ni1/3Mn5/9]O2. Chem. Mater. 21, 2733–2745 (2009).

    Article  CAS  Google Scholar 

  48. Grey, C. P., Yoon, W. S., Reed, J. & Ceder, G. Electrochemical activity of Li in the transition-metal sites of O3 Li[Li(1-2x)/3Mn(2-x)/3Nix]O2. Electrochem. Solid-State Lett. 7, A290 (2004).

    Article  CAS  Google Scholar 

  49. Liu, H. et al. Operando lithium dynamics in the Li-rich layered oxide cathode material via neutron diffraction. Adv. Energy Mater. 6, 1502143 (2016).

    Article  CAS  Google Scholar 

  50. Lu, Z. & Dahn, J. R. Understanding the anomalous capacity of Li/Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J. Electrochem. Soc. 149, A815 (2002).

    Article  CAS  Google Scholar 

  51. Rana, J. et al. Quantifying the capacity contributions during activation of Li2MnO3. ACS Energy Lett. 5, 634–641 (2020).

    Article  CAS  Google Scholar 

  52. Qiao, Y., Jiang, K., Deng, H. & Zhou, H. A high-energy-density and long-life lithium-ion battery via reversible oxide–peroxide conversion. Nat. Catal. 2, 1035–1044 (2019).

    Article  CAS  Google Scholar 

  53. Zhu, Z. et al. Anion-redox nanolithia cathodes for Li-ion batteries. Nat. Energy 1, 16111 (2016).

    Article  CAS  Google Scholar 

  54. Qiao, Y., Deng, H., He, P. & Zhou, H. A 500 Wh/kg Lithium-metal cell based on anionic redox. Joule 4, 1445–1458 (2020).

    Article  CAS  Google Scholar 

  55. Xu, B., Fell, C. R., Chi, M. & Meng, Y. S. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: a joint experimental and theoretical study. Energy Environ. Sci. 4, 2223–2233 (2011).

    Article  CAS  Google Scholar 

  56. Singer, A. et al. Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat. Energy 3, 641–647 (2018).

    Article  CAS  Google Scholar 

  57. Qiu, B. et al. Metastability and reversibility of anionic redox-based cathode for high-energy rechargeable batteries. Cell Rep. Phys. Sci. 1, 100028 (2020).

    Article  Google Scholar 

  58. Yu, H. et al. Electrochemical kinetics of the 0.5Li2MnO3·0.5LiMn0.42Ni0.42Co0.16O2 ‘composite’ layered cathode material for lithium-ion batteries. RSC Adv. 2, 8797–8807 (2012).

    Article  CAS  Google Scholar 

  59. Li, Q. et al. Dynamic imaging of crystalline defects in lithium-manganese oxide electrodes during electrochemical activation to high voltage. Nat. Commun. 10, 1692 (2019).

    Article  CAS  Google Scholar 

  60. Klinser, G. et al. Continuous monitoring of the bulk oxidation states in LixNi1/3Mn1/3Co1/3O2 during charging and discharging. Appl. Phys. Lett. 109, 213901 (2016).

    Article  CAS  Google Scholar 

  61. Klinser, G. et al. Charging of lithium cobalt oxide battery cathodes studied by means of magnetometry. Solid. State Ion. 293, 64–71 (2016).

    Article  CAS  Google Scholar 

  62. Balasubramanian, M., Sun, X., Yang, X. Q. & Mcbreen, J. In situ X-ray absorption studies of a high-rate LiNi0.85Co0.15O2 cathode material. J. Electrochem. Soc. 147, 2903–2909 (2000).

    Article  CAS  Google Scholar 

  63. Petersburg, C. F., Li, Z., Chernova, N. A., Whittingham, M. S. & Alamgir, F. M. Oxygen and transition metal involvement in the charge compensation mechanism of LiNi1/3Mn1/3Co1/3O2 cathodes. J. Mater. Chem. 22, 19993–20000 (2012).

    Article  CAS  Google Scholar 

  64. Li, W., Asl, H. Y., Xie, Q. & Manthiram, A. Collapse of LiNi1–x–yCoxMnyO2 lattice at deep charge irrespective of nickel content in lithium-ion batteries. J. Am. Chem. Soc. 141, 5097–5101 (2019).

    Article  CAS  Google Scholar 

  65. Lebens-Higgins, Z. W. et al. Revisiting the charge compensation mechanisms in LiNi0.8Co0.2−yAlyO2 systems. Mater. Horiz. 6, 2112–2123 (2019).

    Article  CAS  Google Scholar 

  66. Liu, X. et al. Why LiFePO4 is a safe battery electrode: Coulomb repulsion induced electron-state reshuffling upon lithiation. Phys. Chem. Chem. Phys. 17, 26369–26377 (2015).

    Article  CAS  Google Scholar 

  67. Qiao, R. et al. Transition-metal redox evolution in LiNi0.5Mn0.3Co0.2O2 electrodes at high potentials. J. Power Sources 360, 294–300 (2017).

    Article  CAS  Google Scholar 

  68. Zhuo, Z. et al. Effect of excess lithium in LiMn2O4 and Li1.15Mn1.85O4 electrodes revealed by quantitative analysis of soft X-ray absorption spectroscopy. Appl. Phys. Lett. 110, 093902 (2017).

    Article  CAS  Google Scholar 

  69. Lebens-Higgins, Z. W. et al. Distinction between intrinsic and X-ray-induced oxidized oxygen states in Li-rich 3d layered oxides and LiAlO2. J. Phys. Chem. C 123, 13201–13207 (2019).

    Article  CAS  Google Scholar 

  70. Koga, H. et al. Operando X-ray absorption study of the redox processes involved upon cycling of the Li-rich layered oxide Li1.20Mn0.54Co0.13Ni0.13O2 in Li ion batteries. J. Phys. Chem. C 118, 5700–5709 (2014).

    Article  CAS  Google Scholar 

  71. Ito, A. et al. In situ X-ray absorption spectroscopic study of Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2. J. Power Sources 196, 6828–6834 (2011).

    Article  CAS  Google Scholar 

  72. Oishi, M. et al. Charge compensation mechanisms in Li1.16Ni0.15Co0.19Mn0.50O2 positive electrode material for Li-ion batteries analyzed by a combination of hard and soft X-ray absorption near edge structure. J. Power Sources 222, 45–51 (2013).

    Article  CAS  Google Scholar 

  73. Renfrew, S. E. & McCloskey, B. D. Residual lithium carbonate predominantly accounts for first cycle CO2 and CO outgassing of Li-stoichiometric and Li-rich layered transition-metal oxides. J. Am. Chem. Soc. 139, 17853–17860 (2017).

    Article  CAS  Google Scholar 

  74. Renfrew, S. E. & McCloskey, B. D. Quantification of surface oxygen depletion and solid carbonate evolution on the first cycle of LiNi0.6Mn0.2Co0.2O2 electrodes. ACS Appl. Energy Mater. 2, 3762–3772 (2019).

    Article  CAS  Google Scholar 

  75. Rinkel, B. L. D., Hall, D. S., Temprano, I. & Grey, C. P. Electrolyte oxidation pathways in lithium-ion batteries. J. Am. Chem. Soc. 142, 15058–15074 (2020).

    Article  CAS  Google Scholar 

  76. Hatsukade, T., Schiele, A., Hartmann, P., Brezesinski, T. & Janek, J. Origin of carbon dioxide evolved during cycling of nickel-rich layered NCM cathodes. ACS Appl. Mater. Interfaces 10, 38892–38899 (2018).

    Article  CAS  Google Scholar 

  77. Wandt, J., Freiberg, A. T. S., Ogrodnik, A. & Gasteiger, H. A. Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries. Mater. Today 21, 825–833 (2018).

    Article  CAS  Google Scholar 

  78. Guerrini, N. et al. Charging mechanism of Li2MnO3. Chem. Mater. 32, 3733–3740 (2020).

    Article  CAS  Google Scholar 

  79. Massel, F. et al. Excess lithium in transition metal layers of epitaxially grown thin film cathodes of Li2MnO3 leads to rapid loss of covalency during first battery cycle. J. Phys. Chem. C 123, 28519–28526 (2019).

    Article  CAS  Google Scholar 

  80. Ramakrishnan, S., Park, B., Wu, J., Yang, W. & McCloskey, B. D. Extended interfacial stability through simple acid rinsing in a Li-rich oxide cathode material. J. Am. Chem. Soc. 142, 8522–8531 (2020).

    Article  CAS  Google Scholar 

  81. Yang, W. & Devereaux, T. P. Anionic and cationic redox and interfaces in batteries: advances from soft X-ray absorption spectroscopy to resonant inelastic scattering. J. Power Sources 389, 188–197 (2018).

    Article  CAS  Google Scholar 

  82. Gent, W. E., Abate, I. I., Yang, W., Nazar, L. F. & Chueh, W. C. Design rules for high-valent redox in intercalation electrodes. Joule 4, 1369–1397 (2020).

    Article  CAS  Google Scholar 

  83. Frati, F., Hunault, M. O. J. Y. & De Groot, F. M. F. Oxygen K-edge X-ray absorption spectra. Chem. Rev. 120, 4056–4110 (2020).

    Article  CAS  Google Scholar 

  84. Wu, J., Yang, Y. & Yang, W. Advances in soft X-ray RIXS for studying redox reaction states in batteries. Dalt. Trans. 49, 13519–13527 (2020).

    Article  CAS  Google Scholar 

  85. Kotani, A. & Shin, S. Resonant inelastic X-ray scattering spectra for electrons in solids. Rev. Mod. Phys. 73, 203–246 (2001).

    Article  CAS  Google Scholar 

  86. Zhuo, Z. et al. Full energy range resonant inelastic X-ray scattering of O2 and CO2: direct comparison with oxygen redox state in batteries. J. Phys. Chem. Lett. 11, 2618–2623 (2020).

    Article  CAS  Google Scholar 

  87. Maitra, U. et al. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. Nat. Chem. 10, 288–295 (2018).

    Article  CAS  Google Scholar 

  88. Dai, K. et al. High reversibility of lattice oxygen redox quantified by direct bulk probes of both anionic and cationic redox reactions. Joule 3, 518–541 (2019).

    Article  CAS  Google Scholar 

  89. Wu, J. et al. Dissociate lattice oxygen redox reactions from capacity and voltage drops of battery electrodes. Sci. Adv. 6, eaaw3871 (2020).

    Article  CAS  Google Scholar 

  90. House, R. A. et al. Lithium manganese oxyfluoride as a new cathode material exhibiting oxygen redox. Energy Environ. Sci. 11, 926–932 (2018).

    Article  CAS  Google Scholar 

  91. Zhang, J. N. et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat. Energy 4, 594–603 (2019).

    Article  CAS  Google Scholar 

  92. Li, N. et al. Unraveling the cationic and anionic redox reactions in a conventional layered oxide cathode. ACS Energy Lett. 4, 2836–2842 (2019).

    Article  CAS  Google Scholar 

  93. Lee, A. G., Wu, J., Kim, D. & Cho, K. Reversible anionic redox activities in conventional LiNi1/3Co1/3Mn1/3O2 cathodes. Angew. Chem. Int. Ed. 59, 8681–8688 (2020).

    Article  CAS  Google Scholar 

  94. Assat, G. et al. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes. Nat. Commun. 8, 2219 (2017).

    Article  CAS  Google Scholar 

  95. Uchimoto, Y. et al. Oxidation behaviour of lattice oxygen in Li-rich manganese-based layered oxide studied by hard X-ray photoelectron spectroscopy. J. Mater. Chem. A 4, 5909–5916 (2016).

    Article  CAS  Google Scholar 

  96. Lebens-higgins, Z. W. et al. How bulk sensitive is hard X‑ray photoelectron spectroscopy: accounting for the cathode−electrolyte interface when addressing oxygen redox. J. Phys. Chem. Lett. 11, 2106–2112 (2020).

    Article  CAS  Google Scholar 

  97. Naylor, A. J. et al. Depth-dependent oxygen redox activity in lithium-rich layered oxide cathodes. J. Mater. Chem. A 7, 25355–25368 (2019).

    Article  CAS  Google Scholar 

  98. Mccloskey, B. D. et al. Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li-O2 batteries. J. Phys. Chem. Lett. 4, 2989–2993 (2013).

    Article  CAS  Google Scholar 

  99. Sathiya, M. et al. Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries. Nat. Commun. 6, 6276 (2015).

    Article  CAS  Google Scholar 

  100. Che, M. & Tench, A. J. in Advances in Catalysis Vol. 32 (eds Eley, D. D., Pines, H. & Weisz, P. B.) 1–148 (Elsevier, 1983).

  101. Assat, G. & Tarascon, J. M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018).

    Article  CAS  Google Scholar 

  102. Zhao, E. et al. Local structure adaptability through multi cations for oxygen redox accommodation in Li-rich layered oxides. Energy Storage Mater. 24, 384–393 (2020).

    Article  Google Scholar 

  103. Rong, X. et al. Structure-induced reversible anionic redox activity in Na layered oxide cathode. Joule 2, 125–140 (2018).

    Article  CAS  Google Scholar 

  104. Li, X. et al. Direct visualization of the reversible O2−/O− redox process in Li-rich cathode materials. Adv. Mater. 30, 1705197 (2018).

    Article  CAS  Google Scholar 

  105. House, R. A. et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 577, 502–508 (2020).

    Article  CAS  Google Scholar 

  106. Assat, G., Iadecola, A., Delacourt, C., Dedryvère, R. & Tarascon, J.-M. Decoupling cationic–anionic redox processes in a model Li-rich cathode via operando X-ray absorption spectroscopy. Chem. Mater. 29, 9714–9724 (2017).

    Article  CAS  Google Scholar 

  107. McCalla, E. et al. Visualization of O–O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 350, 1516–1521 (2015).

    Article  CAS  Google Scholar 

  108. Wang, H. et al. Short O–O separation in layered oxide Na0.67CoO2 enables an ultrafast oxygen evolution reaction. Proc. Natl Acad. Sci. USA 116, 23473–23479 (2019).

    Article  CAS  Google Scholar 

  109. Luo, K. et al. Anion redox chemistry in the cobalt free 3d transition metal oxide intercalation electrode Li[Li0.2Ni0.2Mn0.6]O2. J. Am. Chem. Soc. 138, 11211–11218 (2016).

    Article  CAS  Google Scholar 

  110. Ruther, R. E., Callender, A. F., Zhou, H., Martha, S. K. & Nanda, J. Raman microscopy of lithium-manganese-rich transition metal oxide cathodes. J. Electrochem. Soc. 162, A98–A102 (2014).

    Article  CAS  Google Scholar 

  111. Arhammar, C. et al. Unveiling the complex electronic structure of amorphous metal oxides. Proc. Natl Acad. Sci. USA 108, 6355–6360 (2011).

    Article  Google Scholar 

  112. Li, Q. et al. Both cationic and anionic co-(de)intercalation into a metal-oxide material. Joule 2, 1134–1145 (2018).

    Article  CAS  Google Scholar 

  113. Zhang, X. et al. Manganese-based Na-rich materials boost anionic redox in high-performance layered cathodes for sodium-ion batteries. Adv. Mater. 31, 1807770 (2019).

    Article  CAS  Google Scholar 

  114. Cao, X. et al. Stabilizing reversible oxygen redox chemistry in layered oxides for sodium-ion batteries. Adv. Energy Mater. 10, 1903785 (2020).

    Article  CAS  Google Scholar 

  115. Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010).

    Article  CAS  Google Scholar 

  116. Breger, J., Kang, K., Cabana, J., Ceder, G. & Grey, C. P. NMR, PDF and RMC study of the positive electrode material Li(Ni0.5Mn0.5)O2 synthesized by ion-exchange methods. J. Mater. Chem. 17, 3167 (2007).

    Article  CAS  Google Scholar 

  117. Buzlukov, A. L. et al. Li-rich Mn/Ni layered oxide as electrode material for lithium batteries: a 7Li MAS NMR study revealing segregation into (nanoscale) domains with highly different electrochemical behaviors. J. Phys. Chem. C 120, 19049–19063 (2016).

    Article  CAS  Google Scholar 

  118. Iddir, H. et al. Pristine-state structure of lithium-ion-battery cathode material Li1.2Mn0.4Co0.4O2 derived from NMR bond pathway analysis. J. Mater. Chem. A 3, 11471–11477 (2015).

    Article  CAS  Google Scholar 

  119. Bréger, J. et al. Short- and long-range order in the positive electrode material, Li(NiMn)0.5O2: a joint X-ray and neutron diffraction, pair distribution function analysis and NMR study. J. Am. Chem. Soc. 127, 7529–7537 (2005).

    Article  CAS  Google Scholar 

  120. Seymour, I. D. et al. Characterizing oxygen local environments in paramagnetic battery materials via 17O NMR and DFT calculations. J. Am. Chem. Soc. 138, 9405–9408 (2016).

    Article  CAS  Google Scholar 

  121. Reeves, P. J., Seymour, I. D., Griffith, K. J. & Grey, C. P. Characterizing the structure and phase transition of Li2RuO3 using variable-temperature 17O and 7Li NMR spectroscopy. Chem. Mater. 31, 2814–2821 (2019).

    Article  CAS  Google Scholar 

  122. Geng, F. et al. Monitoring the evolution of local oxygen environments during LiCoO2 charging via ex situ 17O NMR. Chem. Commun. 55, 7550–7553 (2019).

    Article  CAS  Google Scholar 

  123. Dundon, J. M. 17O NMR in liquid O2. J. Chem. Phys. 76, 2171–2173 (1982).

    Article  CAS  Google Scholar 

  124. Yu, H. et al. Crystalline grain interior configuration affects lithium migration kinetics in Li-rich layered oxide. Nano Lett. 16, 2907–2915 (2016).

    Article  CAS  Google Scholar 

  125. Carroll, K. J. et al. Probing the electrode/electrolyte interface in the lithium excess layered oxide Li1.2Ni0.2Mn0.6O2. Phys. Chem. Chem. Phys. 15, 11128–11138 (2013).

    Article  CAS  Google Scholar 

  126. Yin, W. et al. Structural evolution at the oxidative and reductive limits in the first electrochemical cycle of Li1.2Ni0.13Mn0.54Co0.13O2. Nat. Commun. 11, 1252 (2020).

    Article  CAS  Google Scholar 

  127. Lyu, Y. et al. Correlations between transition-metal chemistry, local structure, and global structure in Li2Ru0.5Mn0.5O3 investigated in a wide voltage window. Chem. Mater. 29, 9053–9065 (2017).

    Article  CAS  Google Scholar 

  128. Hu, E. et al. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat. Energy 3, 690–698 (2018).

    Article  CAS  Google Scholar 

  129. Yan, P. et al. Injection of oxygen vacancies in the bulk lattice of layered cathodes. Nat. Nanotechnol. 14, 602–608 (2019).

    Article  CAS  Google Scholar 

  130. Urban, A., Seo, D.-H. & Ceder, G. Computational understanding of Li-ion batteries. npj Comput. Mater. 2, 16002 (2016).

    Article  CAS  Google Scholar 

  131. Zheng, C. et al. Automated generation and ensemble-learned matching of X-ray absorption spectra. npj Comput. Mater. 4, 12 (2018).

    Article  CAS  Google Scholar 

  132. Clément, R. J., Kitchaev, D., Lee, J. & Ceder, G. Short-range order and unusual modes of nickel redox in a fluorine-substituted disordered rocksalt oxide lithium-ion cathode. Chem. Mater. 30, 6945–6956 (2018).

    Article  CAS  Google Scholar 

  133. Ji, H. et al. Hidden structural and chemical order controls lithium transport in cation-disordered oxides for rechargeable batteries. Nat. Commun. 10, 592 (2019).

    Article  CAS  Google Scholar 

  134. Yabuuchi, N. et al. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries. Nat. Commun. 7, 13814 (2016).

    Article  CAS  Google Scholar 

  135. Lee, J. et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. Nature 556, 185–190 (2018).

    Article  CAS  Google Scholar 

  136. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  137. Dudarev, S. & Botton, G. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  CAS  Google Scholar 

  138. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207 (2003).

    Article  CAS  Google Scholar 

  139. Seo, D. H., Urban, A. & Ceder, G. Calibrating transition-metal energy levels and oxygen bands in first-principles calculations: accurate prediction of redox potentials and charge transfer in lithium transition-metal oxides. Phys. Rev. B 92, 115118 (2015).

    Article  CAS  Google Scholar 

  140. Jain, A. et al. Formation enthalpies by mixing GGA and GGA + U calculations. Phys. Rev. B 84, 045115 (2011).

    Article  CAS  Google Scholar 

  141. Sun, J., Ruzsinszky, A. & Perdew, J. P. Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 115, 036402 (2015).

    Article  CAS  Google Scholar 

  142. Zhang, Y. et al. Efficient first-principles prediction of solid stability: towards chemical accuracy. npj Comput. Mater. 4, 9 (2018).

    Article  CAS  Google Scholar 

  143. Liu, H. et al. Understanding the role of NH4F and Al2O3 surface co-modification on lithium-excess layered oxide Li1.2Ni0.2Mn0.6O2. ACS Appl. Mater. Interfaces 7, 19189–19200 (2015).

    Article  CAS  Google Scholar 

  144. Oh, P., Ko, M., Myeong, S., Kim, Y. & Cho, J. A novel surface treatment method and new insight into discharge voltage deterioration for high-performance 0.4Li2MnO3-0.6LiNi1/3Co1/3Mn1/3O2 cathode materials. Adv. Energy Mater. 4, 1400631 (2014).

    Article  CAS  Google Scholar 

  145. Zheng, F. et al. Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade. Angew. Chem. Int. Ed. 54, 13058–13062 (2015).

    Article  CAS  Google Scholar 

  146. Zhu, Z. et al. Gradient Li-rich oxide cathode particles immunized against oxygen release by a molten salt treatment. Nat. Energy 4, 1049–1058 (2019).

    Article  CAS  Google Scholar 

  147. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4417 (2004).

    Article  CAS  Google Scholar 

  148. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    Article  CAS  Google Scholar 

  149. von Cresce, A. & Xu, K. Electrolyte additive in support of 5 V Li ion chemistry. J. Electrochem. Soc. 158, A337 (2011).

    Article  CAS  Google Scholar 

  150. Fan, X. et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 13, 715–722 (2018).

    Article  CAS  Google Scholar 

  151. Alvarado, J. et al. A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries. Mater. Today 21, 341–353 (2018).

    Article  CAS  Google Scholar 

  152. Chen, S. et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30, 1706102 (2018).

    Article  CAS  Google Scholar 

  153. Song, B. et al. A facile cathode design combining Ni-rich layered oxides with Li-rich layered oxides for lithium-ion batteries. J. Power Sources 325, 620–629 (2016).

    Article  CAS  Google Scholar 

  154. Zhang, M. et al. High pressure effect on structural and electrochemical properties of anionic redox-based lithium transition metal oxides. Matter 4, 164–181 (2021).

    Article  CAS  Google Scholar 

  155. Li, J., Shunmugasundaram, R., Doig, R. & Dahn, J. R. In situ X-ray diffraction study of layered Li-Ni-Mn-Co oxides: effect of particle size and structural stability of core-shell materials. Chem. Mater. 28, 162–171 (2016).

    Article  CAS  Google Scholar 

  156. Kleiner, K. et al. Origin of high capacity and poor cycling stability of Li-rich layered oxides: a long-duration in situ synchrotron powder diffraction study. Chem. Mater. 30, 3656–3667 (2018).

    Article  CAS  Google Scholar 

  157. Croy, J. R., Gallagher, K. G., Balasubramanian, M., Long, B. R. & Thackeray, M. M. Quantifying hysteresis and voltage fade in xLi2MnO3•(1-x)LiMn0.5Ni0.5O2 electrodes as a function of Li2MnO3 content. J. Electrochem. Soc. 161, 318–325 (2014).

    Article  CAS  Google Scholar 

  158. Zhang, L., Borong, W., Ning, L. & Feng, W. Hierarchically porous micro-rod lithium-rich cathode material Li1.2Ni0.13Mn0.54Co0.13O2 for high performance lithium-ion batteries. Electrochim. Acta 118, 67–74 (2014).

    Article  CAS  Google Scholar 

  159. Jin, X., Xu, Q., Yuan, X., Zhou, L. & Xia, Y. Synthesis, characterization and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium-ion batteries. Electrochim. Acta 114, 605–610 (2013).

    Article  CAS  Google Scholar 

  160. Kim, D., Croy, J. R. & Thackeray, M. M. Comments on stabilizing layered manganese oxide electrodes for Li batteries. Electrochem. Commun. 36, 103–106 (2013).

    Article  CAS  Google Scholar 

  161. He, W. et al. Coprecipitation-gel synthesis and degradation mechanism of octahedral Li1.2Mn0.54Ni0.13Co0.13O2 as high-performance cathode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 10, 23018–23028 (2018).

    Article  CAS  Google Scholar 

  162. Zheng, F. et al. The effect of composite organic acid (citric acid & tartaric acid) on microstructure and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 Li-rich layered oxides. J. Power Sources 346, 31–39 (2017).

    Article  CAS  Google Scholar 

  163. Wang, M.-J., Yu, F.-D., Sun, G., Gu, D.-M. & Wang, Z.-B. Optimizing the structural evolution of Li-rich oxide cathode materials via microwave-assisted pre-activation. ACS Appl. Energy Mater. 1, 4158–4168 (2018).

    Article  CAS  Google Scholar 

  164. Tang, Z., Wang, Z., Li, X. & Peng, W. Preparation and electrochemical properties of Co-doped and none-doped Li[LixMn0.65(1-x)Ni0.35(1-x)]O2 cathode materials for lithium battery batteries. J. Power Sources 204, 187–192 (2012).

    Article  CAS  Google Scholar 

  165. Tang, Z., Wang, Z., Li, X. & Peng, W. Influence of lithium content on the electrochemical performance of Li1+x(Mn0.533Ni0.233Co0.233)1-xO2 cathode materials. J. Power Sources 208, 237–241 (2012).

    Article  CAS  Google Scholar 

  166. Martha, S. K., Nanda, J., Veith, G. M. & Dudney, N. J. Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2. J. Power Sources 199, 220–226 (2012).

    Article  CAS  Google Scholar 

  167. Oishi, M. et al. Direct observation of reversible charge compensation by oxygen ion in Li-rich manganese layered oxide positive electrode material, Li1.16Ni0.15Co0.19Mn0.50O2. J. Power Sources 276, 89–94 (2015).

    Article  CAS  Google Scholar 

  168. Li, B., Yu, Y. & Zhao, J. Facile synthesis of spherical xLi2MnO3·(1-x)Li(Mn0.33Co0.33Ni0.33)O2 as cathode materials for lithium-ion batteries with improved electrochemical performance. J. Power Sources 275, 64–72 (2015).

    Article  CAS  Google Scholar 

  169. Johnson, C. S., Li, N., Lefief, C., Vaughey, J. T. & Thackeray, M. M. Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1-x)LiMn0.333Ni0.333Co0.333O2 (0≤x≤0.7). Chem. Mater. 20, 6095–6106 (2008).

    Article  CAS  Google Scholar 

  170. Kang, S.-H. & Thackeray, M. M. Stabilization of xLi2MnO3⋅(1−x)LiMO2 electrode surfaces (M=Mn, Ni, Co) with mildly acidic, fluorinated solutions. J. Electrochem. Soc. 155, A269 (2008).

    Article  CAS  Google Scholar 

  171. Croy, J. R. et al. Countering the voltage decay in high capacity xLi2MnO3·(1-x)LiMO2 electrodes (M=Mn, Ni, Co) for Li+-ion batteries. J. Electrochem. Soc. 159, 781–790 (2012).

    Article  CAS  Google Scholar 

  172. Liu, J., Liu, J., Wang, R. & Xia, Y. Degradation and structural evolution of xLi2MnO3·(1–x)LiMn1/3Ni1/3Co1/3O2 during cycling. J. Electrochem. Soc. 161, A160–A167 (2014).

    Article  CAS  Google Scholar 

  173. R.N., R., Bosubabu, D., Karthick, K. B. & Ramesha, K. Tuning of Ni, Mn, and Co (NMC) content in 0.4(LiNixMnyCozO2)·0.4(Li2MnO3) toward stable high-capacity lithium-rich cathode materials. ACS Appl. Energy Mater. 3, 10872–10881 (2020).

    Article  CAS  Google Scholar 

  174. Shen, S. et al. Tuning electrochemical properties of Li-rich layered oxide cathodes by adjusting Co/Ni ratios and mechanism investigation using in situ X-ray diffraction and online continuous flow differential electrochemical mass spectrometry. ACS Appl. Mater. Interfaces 10, 12666–12677 (2018).

    Article  CAS  Google Scholar 

  175. Sun, G. et al. Local electronic structure modulation enhances operating voltage in Li-rich cathodes. Nano Energy 66, 104102 (2019).

    Article  CAS  Google Scholar 

  176. Konishi, H., Gunji, A., Feng, X. & Furutsuki, S. Effect of transition metal composition on electrochemical performance of nickel-manganese-based lithium-rich layer-structured cathode materials in lithium-ion batteries. J. Solid State Chem. 249, 80–86 (2017).

    Article  CAS  Google Scholar 

  177. Verde, M. G. et al. Effect of morphology and manganese valence on the voltage fade and capacity retention of Li[Li2/12Ni3/12Mn7/12]O2. ACS Appl. Mater. Interfaces 6, 18868–18877 (2014).

    Article  CAS  Google Scholar 

  178. Liu, H. et al. Communication-enhancing the electrochemical performance of lithium-excess layered oxide Li1.13Ni0.3Mn0.57O2 via a facile nanoscale surface modification. J. Electrochem. Soc. 163, 971–973 (2016).

    Article  CAS  Google Scholar 

  179. Lengyel, M. et al. Composition optimization of layered lithium nickel manganese cobalt oxide materials synthesized via ultrasonic spray pyrolysis. J. Electrochem. Soc. 161, A1338–A1349 (2014).

    Article  CAS  Google Scholar 

  180. Fell, C. R., Carroll, K. & Meng, Y. S. Synthesis-structure-property relations in layered ‘Li-Excess’ oxides electrode materials Li[Li1/3-2x/3NixMn2/3-x/3]O2 (x = 1/3, 1/4 and 1/5). J. Electrochem. Soc. 157, A1202 (2010).

    Article  CAS  Google Scholar 

  181. Zhang, M., Liu, H., Liu, Z., Fang, C. & Meng, Y. S. Modified coprecipitation synthesis of mesostructure-controlled Li-rich layered oxides for minimizing voltage degradation. ACS Appl. Energy Mater. 1, 3369–3376 (2018).

    Article  CAS  Google Scholar 

  182. Kim, D. et al. Composite ‘layered-layered-spinel’ cathode structures for lithium-ion batteries. J. Electrochem. Soc. 160, A31–A38 (2013).

    Article  CAS  Google Scholar 

  183. Liu, J. et al. General synthesis of xLi2MnO3·(1-x)LiMn1/3Ni1/3Co1/3O2 nanomaterials by a molten-salt method: towards a high capacity and high power cathode for rechargeable lithium batteries. J. Mater. Chem. 22, 25380–25387 (2012).

    Article  CAS  Google Scholar 

  184. Amalraj, F. et al. Synthesis of integrated cathode materials xLi2MnO3⋅(1−x)LiMn1/3Ni1/3Co1/3O2 (x=0.3, 0.5, 0.7) and studies of their electrochemical behavior. J. Electrochem. Soc. 157, A1121 (2010).

    Article  CAS  Google Scholar 

  185. Li, X. et al. Preparation and electrochemical performances of xLi2MnO3(1-x)LiNi0.45Co0.2Mn0.35O2 (0≤x≤1) for high-power lithium-ion batteries. Ceram. Int. 44, 17062–17068 (2018).

    Article  CAS  Google Scholar 

  186. Yuan, T., Liu, H. Q., Gu, Y. J., Cui, H. Z. & Wang, Y. M. The phase structure and electrochemical performance of xLi2MnO3·(1−x)LiNi1/3Co1/3Mn1/3O2 during the synthesis and charge–discharge process. Appl. Phys. A 122, 812 (2016).

    Article  CAS  Google Scholar 

  187. Riekehr, L. et al. Effect of pristine nanostructure on first cycle electrochemical characteristics of lithium-rich lithium-nickel-cobalt-manganese-oxide cathode ceramics for lithium ion batteries. J. Power Sources 306, 135–147 (2016).

    Article  CAS  Google Scholar 

  188. Li, J., Li, M., Zhang, L. & Wang, J. General synthesis of: xLi2MnO3·(1-x)LiNi1/3Co1/3Mn1/3O2 (x = 1/4, 1/3, and 1/2) hollow microspheres towards enhancing the performance of rechargeable lithium ion batteries. J. Mater. Chem. A 4, 12442–12450 (2016).

    Article  CAS  Google Scholar 

  189. Ates, M. N., Mukerjee, S. & Abraham, K. M. A search for the optimum lithium rich layered metal oxide cathode material for Li-ion batteries. J. Electrochem. Soc. 162, A1236–A1245 (2015).

    Article  CAS  Google Scholar 

  190. Li, J., Xu, Y., Li, X. & Zhang, Z. Li2MnO3 stabilized LiNi1/3Co1/3Mn1/3O2 cathode with improved performance for lithium ion batteries. Appl. Surf. Sci. 285, 235–240 (2013).

    Article  CAS  Google Scholar 

  191. Ma, D., Zhang, P., Li, Y. & Ren, X. Li1.2Mn0.54Ni0.13Co0.13O2-encapsulated carbon nanofiber network cathodes with improved stability and rate capability for Li-ion batteries. Sci. Rep. 5, 11257 (2015).

    Article  Google Scholar 

  192. Peralta, D. et al. Role of the composition of lithium-rich layered oxide materials on the voltage decay. J. Power Sources 280, 687–694 (2015).

    Article  CAS  Google Scholar 

  193. Noh, J. K. et al. Mechanochemical synthesis of Li2MnO3 shell/LiMO2 (M = Ni, Co, Mn) core-structured nanocomposites for lithium-ion batteries. Sci. Rep. 4, 4847 (2014).

    Article  CAS  Google Scholar 

  194. Ghanty, C., Basu, R. N. & Majumder, S. B. Performance of wet chemical synthesized xLi2MnO3-(1-x)Li(Mn0.375Ni0.375Co0.25)O2 (0.0≤x≤1.0) integrated cathode for lithium rechargeable battery. J. Electrochem. Soc. 159, 1125–1134 (2012).

    Article  CAS  Google Scholar 

  195. Pimenta, V. et al. Synthesis of Li-rich NMC: a comprehensive study. Chem. Mater. 29, 9923–9936 (2017).

    Article  CAS  Google Scholar 

  196. Dai, D. et al. Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 derived from transition metal carbonate with a micro-nanostructure as a cathode material for high-performance Li-ion batteries. RSC Adv. 6, 96714–96720 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding support from the NorthEast Center for Chemical Energy Storage (NECCES), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-SC0012583. The authors thank J.-M. Doux, W. Li, H. Chung and B. Sayahpour for their help in preparing the electrochemical performance summary (Supplementary Table 2) from published papers.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion of content, writing and editing of the manuscript prior to submission.

Corresponding authors

Correspondence to Louis F. J. Piper, Anton Van der Ven or Y. Shirley Meng.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Khalil Amine, Laurent Duda and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Kitchaev, D.A., Lebens-Higgins, Z. et al. Pushing the limit of 3d transition metal-based layered oxides that use both cation and anion redox for energy storage. Nat Rev Mater 7, 522–540 (2022). https://doi.org/10.1038/s41578-022-00416-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-022-00416-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing