Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Risk assessment of microplastic particles

Abstract

Microplastic particles are ubiquitous in the environment, from the air we breathe to the food we eat. The key question with respect to these particles is to what extent they cause risks for the environment and human health. There is no risk assessment framework that takes into account the multidimensionality of microplastic particles against the background of numerous natural particles, which together encompass an infinite combination of sizes, shapes, densities and chemical signatures. We review the current tenets in defining microplastic characteristics and effects, emphasizing advances in the analysis of the diversity of microplastic particles. We summarize the unique characteristics of microplastic compared with those of other environmental particles, the main mechanisms of microplastic particle effects and the relevant dose metrics for these effects. To characterize risks consistently, we propose how exposure and effect thresholds can be aligned and quantified using probability density functions describing microplastic particle diversity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Relationships between processes and characteristics of environmental microplastic particles.
Fig. 2: Comparison of lengths for natural and microplastic fibres.
Fig. 3: Interactions of microplastic with biota.
Fig. 4: Risk assessment scheme addressing the multidimensionality of microplastics.
Fig. 5: The concept of simultaneously acting effect mechanisms.

Similar content being viewed by others

References

  1. Science Advice for Policy by European Academies. A scientific perspective on microplastics in nature and society (SAPEA, 2019). Expert group report summarizing the state of the science regarding microplastics in nature and society.

  2. Koelmans, A. A. et al. Risks of plastic debris: Unravelling fact, opinion, perception and belief. Environ. Sci. Technol. 51, 11513–11519 (2017).

    Article  CAS  Google Scholar 

  3. Henderson, L. & Green, C. Making sense of microplastics? Public understandings of plastic pollution. Mar. Pollut. Bull. 152, 110908 (2020).

    Article  CAS  Google Scholar 

  4. Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP). Sources, fate and effects of microplastics in the marine environment. Part two of a global assessment (eds Kershaw, P. J. & Rochman, C. M.) (IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP, 2016).

  5. Arthur, C., Baker, J. & Bamford, H. (eds) NOAA technical memorandum NOS-OR&R-30. In Proc. Int. Res. Worksh. Occurrence, Effects and Fate of Microplastic Marine Debris (NOAA, 2009).

  6. European Chemicals Agency. Annex XV restriction report proposal for a restriction: intentionally added microplastics. Version 1.2. Proposal 1.2. ECA https://echa.europa.eu/documents/10162/05bd96e3-b969-0a7c-c6d0-441182893720 (2019).

  7. Coffin, S. Proposed definition of ‘microplastics in drinking water’. California Water Boards https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/docs/stffrprt_jun3.pdf (2020).

  8. Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605 (2011).

    Article  CAS  Google Scholar 

  9. Kooi, M. & Koelmans, A. A. Simplifying microplastic via continuous probability distributions for size, shape and density. Environ. Sci. Technol. Lett. 6, 551–557 (2019). This paper introduces the concept of describing microplastic characteristics through continuous PDFs, allowing us to capture the diversity of microplastics as a single contaminant in transport, exposure and risk assessment, rather than across many separate categories.

    Article  CAS  Google Scholar 

  10. Rochman, C. M. et al. Rethinking microplastics as a diverse contaminant suite. Environ. Toxicol. Chem. 38, 703–711 (2019).

    Article  CAS  Google Scholar 

  11. Kooi, M., Besseling, E., Kroeze, C., van Wezel, A. P. & Koelmans, A. A. Modelling the fate and transport of plastic debris in fresh waters. Review and guidance. In Freshwater Microplastics. The Handbook of Environmental Chemistry Vol. 58 (eds Wagner M. & Lambert S.) 125–152 (Springer, 2017).

  12. Hardesty, B. D. et al. Using numerical model simulations to improve the understanding of micro-plastic distribution and pathways in the marine environment. Front. Mar. Sci. 4, 1–30 (2017).

    Article  Google Scholar 

  13. Redondo-Hasselerharm, P. E., Falahudin, D., Peeters, E. T. H. M. & Koelmans, A. A. Microplastic effect thresholds for freshwater benthic macroinvertebrates. Environ. Sci. Technol. 52, 2278–2286 (2018).

    Article  CAS  Google Scholar 

  14. Adam, V., Yang, T. & Nowack, B. Toward an ecotoxicological risk assessment of microplastics: comparison of available hazard and exposure data in freshwaters. Environ. Toxicol. Chem. 38, 436–447 (2019). This paper introduces probabilistic SSDs for microplastic particles.

    Article  CAS  Google Scholar 

  15. Koelmans, A. A., Diepens N. J. & Mohamed Nor, N. H. Weight of evidence for the microplastic vector effect in the context of chemical risk assessment. In Microplastic in the Environment: Pattern and Process (ed. Bank, M. S.) (Springer, 2021).

  16. Besseling, E., Redondo-Hasselerharm, P. E., Foekema, E. M. & Koelmans, A. A. Quantifying ecological risks of aquatic micro- and nanoplastic. Crit. Rev. Environ. Sci. Technol. 49, 32–80 (2019).

    Article  Google Scholar 

  17. Burns, E. E. & Boxall, A. B. A. Microplastics in the aquatic environment: evidence for or against adverse impacts and major knowledge gaps. Environ. Toxicol. Chem. 37, 2776–2796 (2018).

    Article  CAS  Google Scholar 

  18. Wright, S. L. & Kelly, F. J. Plastic and human health: a micro issue? Environ. Sci. Technol. 51, 6634–6647 (2017). This is a thorough review and outlook on the implications of plastic for human health.

    Article  CAS  Google Scholar 

  19. Mohamed Nor, N. H., Kooi, M., Diepens, N. J. & Koelmans, A. A. Lifetime accumulation of nano- and microplastic in children and adults. Environ. Sci. Technol. 55, 5084–5096 (2021). This paper is the first probabilistic and aligned microplastic exposure assessment for humans, using PDFs.

    Article  CAS  Google Scholar 

  20. Noventa, S. et al. Paradigms to assess the human health risks of nano- and microplastics. Micropl. Nanopl. 1, 9 (2021).

    Article  Google Scholar 

  21. Ramsperger, A. F. R. M. et al. Environmental exposure enhances the internalization of microplastic particles into cells. Sci. Adv. 6, eabd1211 (2020).

    Article  CAS  Google Scholar 

  22. Rejman, J., Oberle, V., Zuhorn, I. S. & Hoekstra, D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 377, 159–169 (2004).

    Article  CAS  Google Scholar 

  23. Ragusa, A. et al. Plasticenta: first evidence of microplastics in human placenta. Environ. Int. 146, 106274 (2021).

    Article  CAS  Google Scholar 

  24. Schwabl, P. et al. Detection of various microplastics in human stool: a prospective case series. Ann. Intern. Med. 171, 453–457 (2019).

    Article  Google Scholar 

  25. Connors, K. A., Dyer, S. D. & Belanger, S. E. Advancing the quality of environmental microplastic research. Environ. Toxicol. Chem. 36, 1697–1703 (2017). This paper highlights the need for better quality in microplastic research.

    Article  CAS  Google Scholar 

  26. Wesch, C., Bredimus, K., Paulus, M. & Klein, R. Towards the suitable monitoring of ingestion of microplastics by marine biota: a review. Environ. Pollut. 218, 1200–1208 (2016).

    Article  CAS  Google Scholar 

  27. O’Connor, J. et al. Microplastics in freshwater biota: a critical review of isolation, characterization and assessment methods. Glob. Challeng. https://doi.org/10.1002/gch2.201800118 (2019).

  28. de Ruijter, V. N., Redondo-Hasselerharm, P. E., Gouin, T. & Koelmans, A. A. Quality criteria for microplastic effect studies in the context of risk assessment: a critical review. Environ. Sci. Technol. 54, 11692–11705 (2020).

    Article  Google Scholar 

  29. Hartmann, N. B. et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 53, 1039–1047 (2019).

    Article  CAS  Google Scholar 

  30. Kögel, T., Bjorøy, Ø., Toto, B., Bienfait, A. M. & Sanden, M. Micro- and nanoplastic toxicity on aquatic life: determining factors. Sci. Total. Environ. 709, 136050 (2020).

    Article  Google Scholar 

  31. Bond, T., Ferrandiz-Mas, V., Felipe-Sotelo, M. & van Sebille, E. The occurrence and degradation of aquatic plastic litter based on polymer physicochemical properties: a review. Crit. Rev. Environ. Sci. Technol. 48, 685 (2018).

    Article  Google Scholar 

  32. Riediker, M. et al. Particle toxicology and health — where are we? Part. Fibre Toxicol. 16, 1–33 (2019).

    Google Scholar 

  33. Kooi, M. et al. Characterizing the multidimensionality of microplastics across environmental compartments. Water Res. 202, 117429 (2021).

    Article  CAS  Google Scholar 

  34. Wiesinger, H., Wang, Z. & Hellweg, S. Deep dive into plastic monomers, additives, and processing aids. Environ. Sci. Technol. 55, 9339–9351 (2021).

    Article  CAS  Google Scholar 

  35. Gouin, T. Addressing the importance of microplastic particles as vectors for long-range transport of chemical contaminants: perspective in relation to prioritizing research and regulatory actions. Micropl. Nanopl. 1, 14 (2021).

    Article  Google Scholar 

  36. Hermabessiere, L. et al. Occurrence and effects of plastic additives on marine environments and organisms: a review. Chemosphere 182, 781–793 (2017).

    Article  CAS  Google Scholar 

  37. Gouin, T., Roche, N., Lohmann, R. & Hodges, G. A thermodynamic approach for assessing the environmental exposure of chemicals absorbed to microplastic. Environ. Sci. Technol. 45, 1466–1472 (2011).

    Article  CAS  Google Scholar 

  38. Lohmann, R. Microplastics are not important for the cycling and bioaccumulation of organic pollutants in the oceans — but should microplastics be considered POPs themselves? Int. Environ. Assess. Manag. 13, 460–465 (2017).

    Article  CAS  Google Scholar 

  39. Takada, H. & Karapanagioti, H. K. (eds) Hazardous Chemicals Associated with Plastics in the Marine Environment (Springer International Publishing, 2016).

  40. Hong, S. H., Shim, W. J. & Hong, K. Methods of analysing chemicals associated with microplastics: a review. Anal. Methods 9, 1361–1368 (2017).

    Article  Google Scholar 

  41. Koelmans, A. A., Bakir, A., Burton, G. A. & Janssen, C. R. Microplastic as a vector for chemicals in the aquatic environment. critical review and model-supported re-interpretation of empirical studies. Environ. Sci. Technol. 50, 3315–3326 (2016).

    Article  CAS  Google Scholar 

  42. Jahnke, A. et al. Reducing uncertainty and confronting ignorance about the possible impacts of weathering plastic in the marine environment. Environ. Sci. Technol. Lett. 4, 85–90 (2017).

    Article  CAS  Google Scholar 

  43. Boucher, J. and Friot D. Primary Microplastics in the Oceans: A Global Evaluation of Sources 43 (IUCN, 2017).

  44. Koelmans, A. A., Kooi, M., Lavender-Law, K. & Van Sebille, E. All is not lost: deriving a top-down mass budget of plastic at sea. Environ. Res. Lett. 12, 114028 (2017).

    Article  Google Scholar 

  45. Kawecki, D. & Nowack, D. Polymer-specific modeling of the environmental emissions of seven commodity plastics as macro- and microplastics. Environ. Sci. Technol. 53, 9664–9676 (2019).

    Article  CAS  Google Scholar 

  46. Kooi, M., Van Nes, E. H., Scheffer, M. & Koelmans, A. A. Ups and downs in the ocean: effects of biofouling on vertical transport of microplastics. Environ. Sci. Technol. 51, 7963–7971 (2017).

    Article  CAS  Google Scholar 

  47. Mateos-Cárdenas, A., O’Halloran, J., van Pelt, F. N. A. M. & Jansen, M. A. K. Rapid fragmentation of microplastics by the freshwater amphipod Gammarus duebeni (Lillj.). Sci. Rep. 10, 12799 (2020).

    Article  Google Scholar 

  48. Julienne, F., Delorme, N. & Lagarde, F. From macroplastics to microplastics: role of water in the fragmentation of polyethylene. Chemosphere 236, 124409 (2019).

    Article  CAS  Google Scholar 

  49. Koelmans, A. A., Redondo-Hasselerharm, P. E., Mohamed Nor, N. H. & Kooi, M. Solving the non-alignment of methods and approaches used in microplastic research in order to consistently characterize risk. Environ. Sci. Technol. 54, 12307–12315 (2020).

    Article  CAS  Google Scholar 

  50. Cózar, A. et al. Plastic debris in the open ocean. Proc. Natl Acad. Sci. USA 111, 10239–10244 (2014).

    Article  Google Scholar 

  51. Mattsson, K., Björkroth, F., Karlsson, T. & Hassellöv, M. Nanofragmentation of expanded polystyrene under simulated environmental weathering (thermooxidative degradation and hydrodynamic turbulence). Front. Mar. Sci., 7, 1–9 (2021). This paper demonstrates log linear particle size distributions extending to the nanoparticle scale.

    Article  Google Scholar 

  52. Kaandorp, M. L. A., Dijkstra, H. A. & van Sebille, E. Modelling size distributions of marine plastics under the influence of continuous cascading fragmentation. Environ. Res. Lett. 16, 054075 (2021).

    Article  Google Scholar 

  53. Koelmans, A. A., Besseling, E. & Shim, W. J. Nanoplastics in the aquatic environment. Critical review. In Marine Anthropogenic Litter (eds Bergmann, M., Gutow, L. & Klages, M.) 325–340 (Springer, 2015).

  54. Koelmans, A. A. et al. Microplastics in freshwaters and drinking water: critical review and assessment of data quality. Water Res. 155, 410–422 (2019).

    Article  CAS  Google Scholar 

  55. Chamas, A. et al. Degradation rates of plastics in the environment. ACS Sust. Chem. Engin. 8, 3494–3511 (2020). This paper provides a rare estimate of degradation rates for plastic items in the environment.

    Article  CAS  Google Scholar 

  56. Unice, K. M. et al. Characterizing export of land-based microplastics to the estuary — Part II: Sensitivity analysis of an integrated geospatial microplastic transport modeling assessment of tire and road wear particles. Sci. Total. Environ. 646, 1650–1659 (2019).

    Article  CAS  Google Scholar 

  57. Buffle, J. & van Leeuwen, H. P. Environmental Particles Vol. 1 76 (CRC Press, 1992).

  58. Chamley, H., Clay formation through weathering. In Clay Sedimentology (Springer, 1989).

  59. Blott, S. J. & Pye, K. Particle size scales and classification of sediment types based on particle size distributions: review and recommended procedures. Sedimentology 59, 2071–2096 (2012).

    Article  Google Scholar 

  60. Boyd, C. E. Suspended solids, color, turbidity, and light. In Water Quality 119–133 (Springer, 2020).

  61. Konrad, K. et al. Chemical composition and complex refractive index of Saharan mineral dust at Izaña, Tenerife (Spain) derived by electron microscopy. Atmos. Env. 41, 8058–8074 (2007).

    Article  Google Scholar 

  62. Mahowald, N. et al. The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Res. 15, 53–71 (2014).

    Article  Google Scholar 

  63. De Wit, C. T. & Arens, P. L. Moisture content and density of some clay minerals and some remarks on the hydration pattern of clay. Trans. Int. Congr. Soil Science 2, 59–62 (1951).

    Google Scholar 

  64. Utembe, W., Potgieter, K., Stefaniak, A. B. & Gulumian, M. Dissolution and biodurability: important parameters needed for risk assessment of nanomaterials. Part. Fiber Toxicol. 12, 11 (2015).

    Article  Google Scholar 

  65. Köhler, S. J., Bosbach, D. & Oelkers, E. H. Do clay mineral dissolution rates reach steady state? Geochim. Cosmochim. Acta 69, 1997–2006 (2005).

    Article  Google Scholar 

  66. Torrey, M. L. S. T. Chemistry of Lake Michigan (Argonne National Laboratory, 1976).

  67. Prestigiacomo, A. R. et al. Turbidity and suspended solids levels and loads in a sediment enriched stream: implications for impacted lotic and lentic ecosystems. Lake Res. Manag. 23, 231–244 (2007).

    Article  Google Scholar 

  68. Baran, A. et al. The influence of the quantity and quality of sediment organic matter on the potential mobility and toxicity of trace elements in bottom sediment. Environ. Geochem. Health 41, 2893–2910 (2019).

    Article  CAS  Google Scholar 

  69. Schwarzenbach, R. P., Gschwend, P. M. & Imboden, D. M. Environmental Organic Chemistr 3rd edn 1024 (Wiley, 2016).

  70. Van Valkenburg, S. D., Jones, J. K. & Heinle, D. R. A comparison by size class and volume of detritus versus phytoplankton in Chesapeake Bay. Estuar. Coast. Mar. Sci. 6, 569–582 (1978).

    Article  Google Scholar 

  71. Hamilton, S. K., Sippel, S. J. & Bunn, S. E. Separation of algae from detritus for stable isotope or ecological stoichiometry studies using density fractionation in colloidal silica. Limnol. Oceanogr. Methods 3, 149–157 (2005).

    Article  CAS  Google Scholar 

  72. Zimmer, M. Detritus. Encyclopedia of Ecology 903–911 (Elsevier, 2008).

  73. Zhao, H.-C., Wang, S.-R., Jiao, L.-X., Yang, S.-W. & Cui, C.-N. Characteristics of composition and spatial distribution of organic matter in the sediment of Erhai Lake. Res. Environ. Sci. 26, 243–249 (2013).

    CAS  Google Scholar 

  74. Duan, H., Feng, L., Ma, R., Zhang, Y. & Loiselle, S. A. Variability of particulate organic carbon in inland waters observed from MODIS Aqua imagery. Environ. Res. Lett. 9, 084011 (2014).

    Article  CAS  Google Scholar 

  75. Suaria, G. et al. Microfibers in oceanic surface waters: a global characterization. Sci. Adv. 6, eaay8493 (2020). This paper identifies the relative proportion of microplastic fibres in the oceans.

    Article  Google Scholar 

  76. Le Guen, C. et al. Microplastic study reveals the presence of natural and synthetic fibres in the diet of King penguins (Aptenodytes patagonicus) foraging from South Georgia. Environ. Intern. 134, 105303 (2020).

    Article  Google Scholar 

  77. Stanton, T., Johnson, M., Nathanail, P., MacNaughtan, W. & Gomes, R. L. Sci. Total. Environ. 666, 377–389 (2019).

    Article  CAS  Google Scholar 

  78. Comnea-Stancu, L. R., Wieland, H., Ramer, G., Schwaighofer, A. & Lendl, B. On the identification of rayon/viscose as a major fraction of microplastics in the marine environment: discrimination between natural and manmade cellulosic fibers using Fourier transform infrared spectroscopy. Appl. Spectrosc. 71, 939–950 (2017).

    Article  CAS  Google Scholar 

  79. Seiler, W. & Crutzen, P. J. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim. Change 2, 207–247 (1980).

    Article  CAS  Google Scholar 

  80. Cornelissen, G. et al. Critical review. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation and biodegradation. Environ. Sci. Technol. 39, 6881–6895 (2005).

    Article  CAS  Google Scholar 

  81. Jonker, M. T. O., Hawthorne, S. B. & Koelmans, A. A. Extremely slow desorption and limited bioaccumulation of BC-associated PAHs. ACS Div. Environ. Chem. 45, 381–384 (2005).

    CAS  Google Scholar 

  82. Shrestha, G., Traina, S. J., Swanson & C., W. Black carbons properties and role in the environment: a comprehensive review. Sustainability 2, 294–320 (2010).

    Article  CAS  Google Scholar 

  83. Bisiaux, M. M. et al. Stormwater and fire as sources of black carbon nanoparticles to Lake Tahoe. Environ. Sci. Technol. 45, 2065–2071 (2011). This paper identifies black carbon abundance in surface waters.

    Article  CAS  Google Scholar 

  84. World Health Organization. Health effects of black carbon. (WHO, 2012).

  85. Jonker, M. T. O. & Koelmans, A. A. Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment. Mechanistic considerations. Environ. Sci. Technol. 36, 3725–3734 (2002).

    Article  CAS  Google Scholar 

  86. Liu, H. et al. Mixing characteristics of refractory black carbon aerosols at an urban site in Beijing. Atmos. Chem. Phys. 20, 5771–5785 (2020).

    Article  CAS  Google Scholar 

  87. Ouf, F.-X. et al. True density of soot particles: a comparison of results highlighting the influence of the organic contents. J. Aerosol Sci. 134, 1–13 (2019).

    Article  CAS  Google Scholar 

  88. Wu, Y. et al. A study of the morphology and effective density of externally mixed black carbon aerosols in ambient air using a size-resolved single-particle soot photometer (SP2). Atmos. Meas. Tech. 12, 4347–4359 (2019).

    Article  CAS  Google Scholar 

  89. Kuzyakov, Y., Subbotina, I., Chen, H., Bogomolova, I. & Xu, X. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil. Biol. Biochem. 41, 210–219 (2009).

    Article  CAS  Google Scholar 

  90. Middelburg, J. J., Nieuwenhuize, J. & Van Breugel, P. Black carbon in marine sediments. Mar. Chem. 65, 245–252 (1999).

    Article  CAS  Google Scholar 

  91. Murr, L. E., Bang, J. J., Esquivel, E. V., Guerrero, P. A. & Lopez, D. A. Carbon nanotubes, nanocrystal forms and complex nanoparticle aggregates in common fuel gas combustion streams. J. Nanopart. Res. 6, 241–251 (2004).

    Article  CAS  Google Scholar 

  92. Koelmans, A. A., Nowack, B. & Wiesner, M. Comparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments. Environ. Pollut. 157, 1110–1116 (2009).

    Article  CAS  Google Scholar 

  93. Dickens, A. F., Gelinas, Y., Masiello, C. A., Wakeham, S. & Hedges, J. I. Reburial of fossil organic carbon in marine sediments. Nature 427, 336–339 (2004).

    Article  CAS  Google Scholar 

  94. Kharbush, J. J. et al. Particulate organic carbon deconstructed: molecular and chemical composition of particulate organic carbon in the ocean. Front. Mar. Sci. 7, 518 (2020).

    Article  Google Scholar 

  95. Redondo-Hasselerharm, P. E. Effect assessment of nano- and microplastics in freshwater ecosystems. Thesis, Wageningen Univ. (2020).

  96. Allen, S. et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 12, 339–344 (2019).

    Article  CAS  Google Scholar 

  97. Evangeliou, N. et al. Atmospheric transport is a major pathway of microplastics to remote regions. Nat. Commun. 11, 3381 (2020).

    Article  CAS  Google Scholar 

  98. Velzeboer, I., Kwadijk, C. J. A. F. & Koelmans, A. A. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes and fullerenes. Environ. Sci. Technol. 48, 4869–4876 (2014).

    Article  CAS  Google Scholar 

  99. Beckingham, B. & Ghosh, U. Differential bioavailability of polychlorinated biphenyls associated with environmental particles: microplastic in comparison to wood, coal and biochar. Environ. Pollut. 220, 150–158 (2017).

    Article  CAS  Google Scholar 

  100. Liping, L. et al. Mechanism of and relation between the sorption and desorption of nonylphenol on black carbon-inclusive sediment. Environ. Pollut. 190, 101–108 (2014).

    Article  Google Scholar 

  101. Voparil, I. M. et al. Digestive bioavailability to a deposit feeder (Arenicola marina) of polycyclic aromatic hydrocarbons associated with anthropogenic particles. Environ. Toxicol. Chem. 23, 2618–2626 (2004).

    Article  CAS  Google Scholar 

  102. Birdwell, J., Cook, R. L. & Thibodeaux, L. J. Desorption kinetics of hydrophobic organic chemicals from sediment to water: a review of data and models. Environ. Toxicol. Chem. 26, 424–434 (2007).

    Article  CAS  Google Scholar 

  103. Koelmans, A. A., Besseling, E. & Foekema, E. M. Leaching of plastic additives to marine organisms. Environ. Pollut. 187, 49–54 (2014).

    Article  CAS  Google Scholar 

  104. Bundschuh, M. et al. Nanoparticles in the environment: where do we come from, where do we go to? Environ. Sci. Eur. 30, 6 (2018).

    Article  Google Scholar 

  105. Peijnenburg, W. J. G. M. et al. A review of the properties and processes determining the fate of engineered nanomaterials in the aquatic environment. Crit. Rev. Environ. Sci. Technol. 45, 2084–2134 (2015).

    Article  CAS  Google Scholar 

  106. Gigault, J. et al. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat. Nanotechnol. 16, 501–507 (2021).

    Article  CAS  Google Scholar 

  107. Ter Halle, A. et al. Nanoplastic in the North Atlantic Subtropical Gyre. Environ. Sci. Technol. 51, 13689–13697 (2017).

    Article  Google Scholar 

  108. Sengul, A. B. & Asmatulu, E. Toxicity of metal and metal oxide nanoparticles: a review. Environ. Chem. Lett. 18, 1659–1683 (2020).

    Article  CAS  Google Scholar 

  109. Botterell, Z. L. R. et al. Bioavailability and effects of microplastics on marine zooplankton: a review. Environ. Pollut. 245, 98–110 (2019).

    Article  CAS  Google Scholar 

  110. Ribeiro, F., O’Brien, J. W., Galloway, T. & Thomas, K. V. Accumulation and fate of nano- and micro-plastics and associated contaminants in organisms. TrAC 111, 139–147 (2019).

    CAS  Google Scholar 

  111. da Costa Araújo, A. P. et al. How much are microplastics harmful to the health of amphibians? A study with pristine polyethylene microplastics and Physalaemus cuvieri. J. Hazard. Mater. 382, 121066 (2020).

    Article  Google Scholar 

  112. Jovanović, B. Ingestion of microplastics by fish and its potential consequences from a physical perspective. Integr. Environ. Assess. Manag. 13, 510–515 (2017).

    Article  Google Scholar 

  113. Windsor, F. M., Tilley, R. M., Tyler, C. R. & Ormerod, S. J. Microplastic ingestion by riverine macroinvertebrates. Sci. Total. Environ. 646, 68–74 (2018).

    Article  Google Scholar 

  114. Hu, L., Chernick, M., Hinton, D. E. & Shi, H. Microplastics in small waterbodies and tadpoles from Yangtze River Delta, China. Environ. Sci. Technol. 52, 8885–8893 (2018).

    Article  CAS  Google Scholar 

  115. McNeish, R. E. et al. Microplastic in riverine fish is connected to species traits. Sci. Rep. 8, 11639 (2018).

    Article  CAS  Google Scholar 

  116. Duncan, E. M. et al. Microplastic ingestion ubiquitous in marine turtles. Glob. Chang. Biol. 25, 744–752 (2019).

    Article  Google Scholar 

  117. Kühn, S., Bravo Rebolledo, E. L. & Van Franeker, J. A. Deleterious effects of litter on marine life. In Marine Anthropogenic Litter (eds Bergmann, M., Gutow, L. & Klages, M.) 75–116 (Springer International Publishing, 2015).

  118. Nelms, S. E. et al. Microplastics in marine mammals stranded around the British coast: ubiquitous but transitory? Sci. Rep. 9, 1–9 (2019).

    Article  CAS  Google Scholar 

  119. O’Connor, J. D. et al. Microplastics in freshwater biota: a critical review of isolation, characterization, and assessment methods. Glob. Challen. 4, 1800118 (2019).

    Article  Google Scholar 

  120. Vroom, R. J. E., Koelmans, A. A., Besseling, E. & Halsband, C. Aging of microplastics promotes their ingestion by marine zooplankton. Environ. Pollut. 231, 987–996 (2017).

    Article  CAS  Google Scholar 

  121. Bour, A., Haarr, A., Keiter, S. & Hylland, K. Environmentally relevant microplastic exposure affects sediment-dwelling bivalves. Environ. Pollut. 236, 652–660 (2018).

    Article  CAS  Google Scholar 

  122. Kaposi, K. L., Mos, B., Kelaher, B. P. & Dworjanyn, S. A. Ingestion of microplastic has limited impact on a marine larva. Environ. Sci. Technol. 48, 1638–1645 (2014).

    Article  CAS  Google Scholar 

  123. Lu, Y. et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environ. Sci. Technol. 50, 4054–4060 (2016).

    Article  CAS  Google Scholar 

  124. Ribeiro, F. et al. Microplastics effects in Scrobicularia plana. Mar. Pollut. Bull. 122, 379–391 (2017).

    Article  CAS  Google Scholar 

  125. Von Moos, N., Burkhardt-Holm, P. & Köhler, A. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ. Sci. Technol. 46, 11327–11335 (2012).

    Article  Google Scholar 

  126. Browne, M. A., Dissanayake, A., Galloway, T. S., Lowe, D. M. & Thompson, R. C. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ. Sci. Technol. 42, 5026–5031 (2008).

    Article  CAS  Google Scholar 

  127. Dawson, A. L. et al. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nat. Commun. 9, 1001 (2018).

    Article  Google Scholar 

  128. Zhang, C., Chen, X., Wang, J. & Tan, L. Toxic effects of microplastic on marine microalgae Skeletonema costatum: interactions between microplastic and algae. Environ. Pollut. 220, 1282–1288 (2017).

    Article  CAS  Google Scholar 

  129. Mateos-Cárdenas, A. et al. Polyethylene microplastics adhere to Lemna minor (L.), yet have no effects on plant growth or feeding by Gammarus duebeni (Lillj.). Sci. Total. Environ. 689, 413–421 (2019).

    Article  Google Scholar 

  130. Murphy, F. & Quinn, B. The effects of microplastic on freshwater Hydra attenuata feeding, morphology and reproduction. Environ. Pollut. 234, 487–494 (2018).

    Article  CAS  Google Scholar 

  131. Cole, M. et al. Microplastic ingestion by zooplankton. Environ. Sci. Technol. 47, 6646–6655 (2013).

    Article  CAS  Google Scholar 

  132. Green, D. S., Boots, B., O’Connor, N. E. & Thompson, R. Microplastics affect the ecological functioning of an important biogenic habitat. Environ. Sci. Technol. 51, 68–77 (2017).

    Article  CAS  Google Scholar 

  133. Senga Green, D. Effects of microplastics on European flat oysters, Ostrea edulis and their associated benthic communities. Environ. Pollut. 216, 95–103 (2016).

    Article  Google Scholar 

  134. Ziajahromi, S., Kumar, A., Neale, P. A. & Leusch, F. D. L. Environmentally relevant concentrations of polyethylene microplastics negatively impact the survival, growth and emergence of sediment-dwelling invertebrates. Environ. Pollut. 236, 425–431 (2018).

    Article  CAS  Google Scholar 

  135. Ogonowski, M., Schür, C., Jarsén, Å. & Gorokhova, E. The effects of natural and anthropogenic microparticles on individual fitness in daphnia magna. PLoS ONE 11, e0155063 (2016). This paper systematically addresses the differences between the biological effects of microplastic and natural particles.

    Article  Google Scholar 

  136. Mazurais, D. et al. Evaluation of the impact of polyethylene microbeads ingestion in European sea bass (Dicentrarchus labrax) larvae. Mar. Environ. Res. 112, 78–85 (2015).

    Article  CAS  Google Scholar 

  137. Lee, K.-W., Shim, W. J., Kwon, O. Y. & Kang, J.-H. Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. Env. Sci. Technol. 47, 11278–11283 (2013).

    Article  CAS  Google Scholar 

  138. Au, S. Y., Bruce, T. F., Bridges, W. C. & Klaine, S. J. Responses of Hyalella azteca to acute and chronic microplastic exposures. Environ. Toxicol. Chem. 34, 2564–2572 (2015).

    Article  CAS  Google Scholar 

  139. Cole, M., Lindeque, P., Fileman, E., Halsband, C. & Galloway, T. S. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environ. Sci. Technol. 49, 1130–1137 (2015).

    Article  CAS  Google Scholar 

  140. Sussarellu, R. et al. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc. Natl Acad. Sci. USA 113, 2430–2435 (2016).

    Article  CAS  Google Scholar 

  141. Jeong, C. B. et al. Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus). Environ. Sci. Technol. 50, 8849–8857 (2016).

    Article  CAS  Google Scholar 

  142. Blarer, P. & Burkhardt-Holm, P. Microplastics affect assimilation efficiency in the freshwater amphipod Gammarus fossarum. Environ. Sci. Pollut. Res. 23, 23522–23532 (2016).

    Article  CAS  Google Scholar 

  143. Wright, S. L., Rowe, D., Thompson, R. C. & Galloway, T. S. Microplastic ingestion decreases energy reserves in marine worms. Curr. Biol. 23, R1031–R1033 (2013).

    Article  CAS  Google Scholar 

  144. Straub, S., Hirsch, P. E. & Burkhardt-Holm, P. Biodegradable and petroleum-based microplastics do not differ in their ingestion and excretion but in their biological effects in a freshwater invertebrate Gammarus fossarum. Int. J. Environ. Res. Public Health 14, 774 (2017).

    Article  Google Scholar 

  145. Green, D. S., Boots, B., Sigwart, J., Jiang, S. & Rocha, C. Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling. Environ. Pollut. 208, 426–434 (2016).

    Article  CAS  Google Scholar 

  146. Ziajahromi, S., Kumar, A., Neale, P. A. & Leusch, F. D. L. Impact of microplastic beads and fibers on waterflea (Ceriodaphnia dubia) survival, growth, and reproduction: implications of single and mixture exposures. Environ. Sci. Technol. 51, 13397–13406 (2017).

    Article  CAS  Google Scholar 

  147. Nobre, C. R. et al. Assessment of microplastic toxicity to embryonic development of the sea urchin Lytechinus variegatus (Echinodermata: Echinoidea). Mar. Pollut. Bull. 92, 99–104 (2015).

    Article  CAS  Google Scholar 

  148. Rehse, S., Kloas, W. & Zarfl, C. Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna. Chemosphere 153, 91–99 (2016).

    Article  CAS  Google Scholar 

  149. Gambardella, C. et al. Effects of polystyrene microbeads in marine planktonic crustaceans. Ecotoxicol. Environ. Saf. 145, 250–257 (2017).

    Article  CAS  Google Scholar 

  150. Watts, A. J. R. et al. Effect of microplastic on the gills of the shore crab Carcinus maenas. Environ. Sci. Technol. 50, 5364–5369 (2016).

    Article  CAS  Google Scholar 

  151. Espinosa, C., Cuesta, A. & Esteban, M. Á. Effects of dietary polyvinylchloride microparticles on general health, immune status and expression of several genes related to stress in gilthead seabream (Sparus aurata L.). Fish. Shellfish. Immunol. 68, 251–259 (2017).

    Article  CAS  Google Scholar 

  152. Jin, Y., Lu, L., Tu, W., Luo, T. & Fu, Z. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci. Total. Environ. 649, 308–317 (2019).

    Article  CAS  Google Scholar 

  153. Jin, Y. et al. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environ. Pollut. 235, 322–329 (2018).

    Article  CAS  Google Scholar 

  154. Bucci, K., Tulio, M. & Rochman, C. M. What is known and unknown about the effects of plastic pollution: a meta-analysis and systematic review. Ecol. Appl. 30, e02044 (2020). This paper reviews the evidence for effects of plastic pollution across endpoints, organisms and levels of biological organization.

    Article  CAS  Google Scholar 

  155. Kjelland, M. E., Woodley, C. M., Swannack, T. M. & Smith, D. L. A review of the potential effects of suspended sediment on fishes: potential dredging-related physiological, behavioral, and transgenerational implications. Environ. Syst. Decis. 35, 334–350 (2015).

    Article  Google Scholar 

  156. Michel, C., Herzog, S., de Capitani, C., Burkhardt-Holm, P. & Pietsch, C. Natural mineral particles are cytotoxic to rainbow trout gill epithelial cells in vitro. PLoS ONE 9, e100856 (2014).

    Article  Google Scholar 

  157. Gordon, A. K. & Palmer, C. G. Defining an exposure-response relationship for suspended kaolin clay particulates and aquatic organisms: work toward defining a water quality guideline for suspended solids. Environ. Toxicol. Chem. 34, 907–912 (2015).

    Article  CAS  Google Scholar 

  158. Lu, C., Kania, P. W. & Buchmann, K. Particle effects on fish gills: an immunogenetic approach for rainbow trout and zebrafish. Aquaculture 484, 98–104 (2018).

    Article  CAS  Google Scholar 

  159. Ogonowski, M., Gerdes, Z. & Gorokhova, E. What we know and what we think we know about microplastic effects — a critical perspective. Curr. Opin. Environ. Sci. Health 1, 41–46 (2018).

    Article  Google Scholar 

  160. Albarano, L. et al. Comparison of in situ sediment remediation amendments: risk perspectives from species sensitivity distribution. Environ. Pollut. 272, 115995 (2021).

    Article  CAS  Google Scholar 

  161. Newcombe, C. P. & Macdonald, D. D. Effects of suspended sediments on aquatic ecosystems. North. Am. J. Fish. Manag. 11, 72–82 (1991).

    Article  Google Scholar 

  162. Yap, V. H. et al. A comparison with natural particles reveals a small specific effect of PVC microplastics on mussel performance. Mar. Pollut. Bull. 160, 111703 (2020).

    Article  CAS  Google Scholar 

  163. Schür, C., Zipp, S., Thalau, T. & Wagner, M. Microplastics but not natural particles induce multigenerational effects in Daphnia magna. Environ. Pollut. 260, 113904 (2020).

    Article  Google Scholar 

  164. Gerdes, Z., Hermann, M., Ogonowski, M. & Gorokhova, E. A novel method for assessing microplastic effect in suspension through mixing test and reference materials. Sci. Rep. 9, 1–9 (2019).

    Article  CAS  Google Scholar 

  165. Niranjan, R. & Thakur, A. K. The toxicological mechanisms of environmental soot (black carbon) and carbon black: focus on oxidative stress and inflammatory pathways. Front. Immunol. 8, 763 (2017).

    Article  Google Scholar 

  166. Tsuji, J. S. et al. Research strategies for safety evaluation of nanomaterials. Part IV: Risk assessment of nanoparticles. Toxicol. Sci. 89, 42–50 (2006).

    Article  CAS  Google Scholar 

  167. Schwarze, P. E. et al. Importance of size and composition of particles for effects on cells in vitro. Inhal. Toxicol. 19, 17–22 (2007).

    Article  CAS  Google Scholar 

  168. Schmid, O. & Stoeger, T. Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. J. Aerosol Sci. 99, 133–143 (2016). This paper identifies the toxicologically relevant dose metric for particle effects.

    Article  CAS  Google Scholar 

  169. Fubini, B. Surface reactivity in the pathogenic response to particulates. Environ. Health Perspect. 105, 1013–1020 (1997).

    Google Scholar 

  170. Poland, C. A., Duffin, R. & Donaldson, K. High aspect ratio nanoparticles and the fibre pathogenicity paradigm. In Nanotoxicity Vivo and In Vitro Models to Health Risks 61–80 (John Wiley and Sons, 2009).

  171. Gualtieri, A. F. Bridging the gap between toxicity and carcinogenicity of mineral fibres by connecting the fibre crystal-chemical and physical parameters to the key characteristics of cancer. Curr. Res. Toxicol. 2, 42–52 (2021).

    Article  Google Scholar 

  172. Shao, X. R. et al. Independent effect of polymeric nanoparticle zeta potential/surface charge, on their cytotoxicity and affinity to cells. Cell Prolif. 48, 465–474 (2015).

    Article  CAS  Google Scholar 

  173. Motskin, M. et al. Hydroxyapatite nano and microparticles: correlation of particle properties with cytotoxicity and biostability. Biomaterials 30, 3307–3317 (2009).

    Article  CAS  Google Scholar 

  174. Cox, K. D. et al. Human consumption of microplastics. Environ. Sci. Technol. 53, 7068–7074 (2019).

    Article  CAS  Google Scholar 

  175. Zhang, Q. et al. A review of microplastics in table salt, drinking water, and air: direct human exposure. Environ. Sci. Technol. 54, 3740–3751 (2020).

    Article  CAS  Google Scholar 

  176. Everaert, G. et al. Risk assessment of microplastics in the ocean: modelling approach and first conclusions. Environ. Pollut. 242, 1930–1938 (2018).

    Article  CAS  Google Scholar 

  177. Everaert, G. et al. Risks of floating microplastic in the global ocean. Environ. Pollut. 267, 115499 (2020).

    Article  CAS  Google Scholar 

  178. Zhang, X., Leng, Y., Liu, X., Huang, K. & Wang, J. Microplastics’ pollution and risk assessment in an urban river: a case study in the Yongjiang River, Nanning City, South China. Exposure Health 12, 141–151 (2020).

    Article  CAS  Google Scholar 

  179. Skåre, J. U. et al. Microplastics, occurrence, levels and implications for environment and human health related to food. Opinion of the steering committee of the Norwegian Scientific Committee for Food and Environment (VKM, 2019).

  180. Adam, V., von Wyl, A. & Nowack, B. Probabilistic environmental risk assessment of microplastics in marine habitats. Aq. Toxicol. 230, 105689 (2021).

    Article  CAS  Google Scholar 

  181. Jung, J.-W. et al. Ecological risk assessment of microplastics in coastal, shelf, and deep sea waters with a consideration of environmentally relevant size and shape. Environ. Pollut. 270, 116217 (2021).

    Article  CAS  Google Scholar 

  182. Posthuma, L., Suter, G. W. & Traas, T. P. Species Sensitivity Distributions In Ecotoxicology (Lewis, 2002).

  183. Gouin, T. et al. Toward the development and application of an environmental risk assessment framework for microplastic. Environ. Toxicol. Chem. 38, 2087–2100 (2019).

    Article  CAS  Google Scholar 

  184. Kong, X. & Koelmans, A. A. Effects of microplastic on shallow lake food webs. Environ. Sci. Technol. 53, 13822–13831 (2019).

    Article  CAS  Google Scholar 

  185. Zimmermann, L., Göttlich, S., Oehlmann, J., Wagner, M. & Völker, C. What are the drivers of microplastic toxicity? Comparing the toxicity of plastic chemicals and particles to Daphnia magna. Environ. Pollut. 267, 115392 (2020).

    Article  CAS  Google Scholar 

  186. Tian, Z. et al. A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon. Science 371, 185–189 (2021).

    Article  CAS  Google Scholar 

  187. Bakir, A., O’Connor, I. A., Rowland, S. J., Hendriks, A. J. & Thompson, R. C. Relative importance of microplastics as a pathway for the transfer of hydrophobic organic chemicals to marine life. Environ. Pollut. 219, 56–65 (2016).

    Article  CAS  Google Scholar 

  188. Capolupo, M., Sørensen, L., Jayasena, K., Booth, A. M. & Fabbri, E. Chemical composition and ecotoxicity of plastic and car tire rubber leachates to aquatic organisms. Water Res. 169, 115270 (2020).

    Article  CAS  Google Scholar 

  189. Zimmermann, L. et al. Plastic products leach chemicals that induce in vitro toxicity under realistic use conditions. Environ. Sci. Technol. 55, 11814–11823 (2021).

    Article  CAS  Google Scholar 

  190. Bucci, K. & Rochman, C. M. A proposed framework for microplastics risk assessment [abstract 07.05.02]. Society of Environmental Toxicology and Chemistry North America 42nd Annual Meeting – SETAC SciCon4 https://scicon4.setac.org/wp-content/uploads/2021/11/SciCon4-abstract-book.pdf (2021).

  191. Primpke, S., Lorenz, C., Rascher-Friesenhausen, R. & Gerdts, G. An automated approach for microplastics analysis using focal plane array (FPA) FTIR microscopy and image analysis. Anal. Methods 9, 1499–1511 (2017).

    Article  CAS  Google Scholar 

  192. Rauchschwalbe, M.-T., Fueser, H., Traunspurger, W. & Höss, S. Bacterial consumption by nematodes is disturbed by the presence of polystyrene beads: the roles of food dilution and pharyngeal pumping. Environ. Pollut. 273, 116471 (2021).

    Article  CAS  Google Scholar 

  193. Donaldson, K. & Seaton, A. A short history of the toxicology of inhaled particles. Part. Fibre Toxicol. 9, 13 (2012).

    Article  Google Scholar 

  194. Primpke, S., Dias, A. P. & Gerdts, G. Automated identification and quantification of microfibers and microplastics. Anal. Methods 11, 2138–2147 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.A.K. contributed to conceptualization and design. A.A.K., N.H.M.N., P.E.R.-H., V.N.d.R. and S.M.M. conducted the literature search. A.A.K. and P.E.R.-H. wrote the Review. M.K., N.H.M.N. and A.A.K. prepared the figures. A.A.K., N.H.M.N., S.M.M., P.E.R.-H., V.N.d.R. and M.K. edited and revised the manuscript.

Corresponding author

Correspondence to Albert A. Koelmans.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Materials thanks June-Woo Park and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koelmans, A.A., Redondo-Hasselerharm, P.E., Nor, N.H.M. et al. Risk assessment of microplastic particles. Nat Rev Mater 7, 138–152 (2022). https://doi.org/10.1038/s41578-021-00411-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00411-y

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology