Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nanoreactors for particle synthesis

Abstract

An emerging strategy for synthesizing nanoclusters and nanoparticles involves the confinement of particle precursors within small volumes and the subsequent reduction and aggregation of those precursors into discrete particles. These spatially isolated volumes are termed nanoreactors, and they impose barriers that not only restrict the movement of metal atoms and other reactants but also provide reaction conditions that are distinct from those of the surrounding environment. Nanoreactors for particle syntheses can be prepared by various strategies, which fall generally into two categories: solution-based and substrate-confined. Solution-based nanoreactors are broadly defined as 3D capsules that can be manipulated in solution, whereas substrate-confined nanoreactors are isolated volumes on a macroscopic substrate or surface. Here, we survey and analyse the merits of different nanoreactor techniques used to synthesize clusters and nanoparticles that cannot easily be made using traditional methods. We look at how the focus in this field has expanded beyond pure synthesis to making massive and complex libraries of materials and enabling exploration of the materials genome through high-throughput screening techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nanoreactor strategies.
Fig. 2: Polymeric nanoreactors.
Fig. 3: Droplet nanoreactors.
Fig. 4: Protein nanoreactors.
Fig. 5: Block copolymer micelle nanolithography.
Fig. 6: Scanning probe block copolymer lithography.
Fig. 7: 3D porous solid templates.
Fig. 8: Lithographically defined nanoreactor templates.

Similar content being viewed by others

References

  1. Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

    Article  CAS  Google Scholar 

  2. Davis, M. E., Chen, Z. & Shin, D. M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7, 771–782 (2008).

    Article  CAS  Google Scholar 

  3. Liu, J. et al. Recent advances of plasmonic nanoparticles and their applications. Materials 11, 1833 (2018).

    Article  CAS  Google Scholar 

  4. Jin, R., Zeng, C., Zhou, M. & Chen, Y. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem. Rev. 116, 10346–10413 (2016).

    Article  CAS  Google Scholar 

  5. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mat. Sci. 30, 545–610 (2000).

    Article  CAS  Google Scholar 

  6. Jiang, Q. & Ward, M. D. Crystallization under nanoscale confinement. Chem. Soc. Rev. 43, 2066–2079 (2014).

    Article  CAS  Google Scholar 

  7. Petrosko, S. H., Johnson, R., White, H. & Mirkin, C. A. Nanoreactors: small spaces, big implications in chemistry. J. Am. Chem. Soc. 138, 7443–7445 (2016).

    Article  CAS  Google Scholar 

  8. Thanh, N. T. K., Maclean, N. & Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 114, 7610–7630 (2014).

    Article  CAS  Google Scholar 

  9. Brown, K. A., Hedrick, J. L., Eichelsdoerfer, D. J. & Mirkin, C. A. Nanocombinatorics with cantilever-free scanning probe arrays. ACS Nano 13, 8–17 (2019).

    Article  CAS  Google Scholar 

  10. Kim, K. T., Meeuwissen, S. A., Nolte, R. J. M. & van Hest, J. C. M. Smart nanocontainers and nanoreactors. Nanoscale 2, 844–858 (2010).

    Article  CAS  Google Scholar 

  11. Li, B. et al. Organic templates for inorganic nanocrystal growth. Energy Environ. Mater. 2, 38–54 (2019).

    Article  CAS  Google Scholar 

  12. Liu, Y., Goebl, J. & Yin, Y. Templated synthesis of nanostructured materials. Chem. Soc. Rev. 42, 2610–2653 (2013).

    Article  CAS  Google Scholar 

  13. Qiu, L., McCaffrey, R. & Zhang, W. Synthesis of metallic nanoparticles using closed-shell structures as templates. Chem. Asian J. 13, 362–372 (2018).

    Article  CAS  Google Scholar 

  14. Vriezema, D. M. et al. Self-assembled nanoreactors. Chem. Rev. 105, 1445–1490 (2005).

    Article  CAS  Google Scholar 

  15. Jones, M. R., Osberg, K. D., Macfarlane, R. J., Langille, M. R. & Mirkin, C. A. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev. 111, 3736–3827 (2011).

    Article  CAS  Google Scholar 

  16. Farrusseng, D. & Tuel, A. Perspectives on zeolite-encapsulated metal nanoparticles and their applications in catalysis. New J. Chem. 40, 3933–3949 (2016).

    Article  CAS  Google Scholar 

  17. Jagadeesh, R. V. et al. MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science 358, 326–332 (2017).

    Article  CAS  Google Scholar 

  18. McCaffrey, R. et al. Template synthesis of gold nanoparticles with an organic molecular cage. J. Am. Chem. Soc. 136, 1782–1785 (2014).

    Article  CAS  Google Scholar 

  19. Antonietti, M., Wenz, E., Bronstein, L. & Seregina, M. Synthesis and characterization of noble metal colloids in block copolymer micelles. Adv. Mater. 7, 1000–1005 (1995).

    Article  CAS  Google Scholar 

  20. Seregina, M. V. et al. Preparation of noble-metal colloids in block copolymer micelles and their catalytic properties in hydrogenation. Chem. Mater. 9, 923–931 (1997).

    Article  CAS  Google Scholar 

  21. Qi, L., Cölfen, H. & Antonietti, M. Synthesis and characterization of CdS nanoparticles stabilized by double-hydrophilic block copolymers. Nano Lett. 1, 61–65 (2001).

    Article  CAS  Google Scholar 

  22. Liu, S., Weaver, J. V. M., Save, M. & Armes, S. P. Synthesis of pH-responsive shell cross-linked micelles and their use as nanoreactors for the preparation of gold nanoparticles. Langmuir 18, 8350–8357 (2002).

    Article  CAS  Google Scholar 

  23. Sakai, T. & Alexandridis, P. Mechanism of gold metal ion reduction, nanoparticle growth and size control in aqueous amphiphilic block copolymer solutions at ambient conditions. J. Phys. Chem. B 109, 7766–7777 (2005).

    Article  CAS  Google Scholar 

  24. Vamvakaki, M. et al. Micellization in pH-sensitive amphiphilic block copolymers in aqueous media and the formation of metal nanoparticles. Faraday Discuss. 128, 129–147 (2005).

    Article  CAS  Google Scholar 

  25. Bouyer, F., Sanson, N., Destarac, M. & Gérardin, C. Hydrophilic block copolymer-directed growth of lanthanum hydroxide nanoparticles. New J. Chem. 30, 399–408 (2006).

    Article  CAS  Google Scholar 

  26. Chen, S. et al. Effect of hydrophobicity inside PEO–PPO–PEO block copolymer micelles on the stabilization of gold nanoparticles: experiments. Langmuir 22, 9704–9711 (2006).

    Article  CAS  Google Scholar 

  27. Bakshi, M. S. Engineered nanomaterials growth control by monomers and micelles: from surfactants to surface active polymers. Adv. Colloid Interface Sci. 256, 101–110 (2018).

    Article  CAS  Google Scholar 

  28. Podhorska, L. et al. Mechanisms of polymer-templated nanoparticle synthesis: contrasting ZnS and Au. Langmuir 32, 9216–9222 (2016).

    Article  CAS  Google Scholar 

  29. Evers, M. V., Bernal, M., Roldan Cuenya, B. & Tschulik, K. Piece by piece — electrochemical synthesis of individual nanoparticles and their performance in ORR electrocatalysis. Angew. Chem. Int. Ed. 58, 8221–8225 (2019).

    Article  CAS  Google Scholar 

  30. Behafarid, F. et al. Structural and electronic properties of micellar Au nanoparticles: size and ligand effects. ACS Nano 8, 6671–6681 (2014).

    Article  CAS  Google Scholar 

  31. Zhang, J., Gao, Y., Alvarez-Puebla, R. A., Buriak, J. M. & Fenniri, H. Synthesis and SERS properties of nanocrystalline gold octahedra generated from thermal decomposition of HAuCl4 in block copolymers. Adv. Mater. 18, 3233–3237 (2006).

    Article  CAS  Google Scholar 

  32. Menezes, W. G. et al. Synthesis of stable AuAg bimetallic nanoparticles encapsulated by diblock copolymer micelles. Nanoscale 4, 1658–1664 (2012).

    Article  CAS  Google Scholar 

  33. Li, X., Fu, X. & Yang, H. Preparation and photocatalytic activity of eccentric Au–titania core–shell nanoparticles by block copolymer templates. Phys. Chem. Chem. Phys. 13, 2809–2814 (2011).

    Article  CAS  Google Scholar 

  34. Dunlop, I. E. et al. Direct synthesis of PEG-encapsulated gold nanoparticles using branched copolymer nanoreactors. RSC Adv. 4, 27702–27707 (2014).

    Article  CAS  Google Scholar 

  35. Seo, E. et al. Highly stable Au nanoparticles with double hydrophilic block copolymer templates: correlation between structure and stability. Polym. Chem. 8, 4528–4537 (2017).

    Article  CAS  Google Scholar 

  36. Black, K. C. L., Liu, Z. & Messersmith, P. B. Catechol redox induced formation of metal core–polymer shell nanoparticles. Chem. Mater. 23, 1130–1135 (2011).

    Article  CAS  Google Scholar 

  37. Bastakoti, B. P., Guragain, S., Yusa, S.-I. & Nakashima, K. Novel synthesis route for Ag@SiO2 core–shell nanoparticles via micelle template of double hydrophilic block copolymer. RSC Adv. 2, 5938–5940 (2012).

    Article  CAS  Google Scholar 

  38. Xu, H. et al. An unconventional route to monodisperse and intimately contacted semiconducting organic–inorganic nanocomposites. Angew. Chem. Int. Ed. 54, 4636–4640 (2015).

    Article  CAS  Google Scholar 

  39. Iocozzia, J. & Lin, Z. Solution-stable colloidal gold nanoparticles via surfactant-free, hyperbranched polyglycerol-b-polystyrene unimolecular templates. Langmuir 32, 7180–7188 (2016).

    Article  CAS  Google Scholar 

  40. Lin, W. et al. Facile in situ preparation and in vitro antibacterial activity of PDMAEMA-based silver-bearing copolymer micelles. Nanoscale Res. Lett. 14, 256 (2019).

    Article  CAS  Google Scholar 

  41. Dellinger, T. M. & Braun, P. V. Lyotropic liquid crystals as nanoreactors for nanoparticle synthesis. Chem. Mater. 16, 2201–2207 (2004).

    Article  CAS  Google Scholar 

  42. Pena dos Santos, E. et al. Existence and stability of new nanoreactors: highly swollen hexagonal liquid crystals. Langmuir 21, 4362–4369 (2005).

    Article  CAS  Google Scholar 

  43. Dutt, S., Siril, P. F. & Remita, S. Swollen liquid crystals (SLCs): a versatile template for the synthesis of nano structured materials. RSC Adv. 7, 5733–5750 (2017).

    Article  CAS  Google Scholar 

  44. Lu, Y., Lin, J., Wang, L., Zhang, L. & Cai, C. Self-assembly of copolymer micelles: higher-level assembly for constructing hierarchical structure. Chem. Rev. 120, 4111–4140 (2020).

    Article  CAS  Google Scholar 

  45. Zhao, Z. et al. General synthesis of ultrafine monodispersed hybrid nanoparticles from highly stable monomicelles. Adv. Mater. 33, 2100820 (2021).

    Article  CAS  Google Scholar 

  46. Wang, H. et al. Rhodium nanoparticles inside well-defined unimolecular amphiphilic polymeric nanoreactors: synthesis and biphasic hydrogenation catalysis. Nanoscale Adv. 3, 2554–2566 (2021).

    Article  CAS  Google Scholar 

  47. Li, Z., Peng, J. & Lin, Z. One-dimensional hairy CNT/polymer/Au nanocomposites via ligating with amphiphilic crosslinkable block copolymers. Giant 5, 100048 (2021).

    Article  CAS  Google Scholar 

  48. Wang, Y. & Zhu, X. Nanofabrication within unimolecular nanoreactors. Nanoscale 12, 12698–12711 (2020).

    Article  CAS  Google Scholar 

  49. Myers, V. S. et al. Dendrimer-encapsulated nanoparticles: new synthetic and characterization methods and catalytic applications. Chem. Sci. 2, 1632–1646 (2011).

    Article  CAS  Google Scholar 

  50. Bronstein, L. M. & Shifrina, Z. B. Dendrimers as encapsulating, stabilizing, or directing agents for inorganic nanoparticles. Chem. Rev. 111, 5301–5344 (2011).

    Article  CAS  Google Scholar 

  51. Yamamoto, K., Imaoka, T., Tanabe, M. & Kambe, T. New horizon of nanoparticle and cluster catalysis with dendrimers. Chem. Rev. 120, 1397–1437 (2020).

    Article  CAS  Google Scholar 

  52. Crooks, R. M., Zhao, M., Sun, L., Chechik, V. & Yeung, L. K. Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc. Chem. Res. 34, 181–190 (2001).

    Article  CAS  Google Scholar 

  53. Scott, R. W. J., Wilson, O. M. & Crooks, R. M. Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J. Phys. Chem. B 109, 692–704 (2005).

    Article  CAS  Google Scholar 

  54. Zhang, L., Iyyamperumal, R., Yancey, D. F., Crooks, R. M. & Henkelman, G. Design of Pt-shell nanoparticles with alloy cores for the oxygen reduction reaction. ACS Nano 7, 9168–9172 (2013).

    Article  CAS  Google Scholar 

  55. Ballauff, M. & Likos, C. N. Dendrimers in solution: insight from theory and simulation. Angew. Chem. Int. Ed. 43, 2998–3020 (2004).

    Article  CAS  Google Scholar 

  56. Yamamoto, K. & Imaoka, T. Precision synthesis of subnanoparticles using dendrimers as a superatom synthesizer. Acc. Chem. Res. 47, 1127–1136 (2014).

    Article  CAS  Google Scholar 

  57. Tsukamoto, T., Kambe, T., Nakao, A., Imaoka, T. & Yamamoto, K. Atom-hybridization for synthesis of polymetallic clusters. Nat. Commun. 9, 3873 (2018).

    Article  CAS  Google Scholar 

  58. Imaoka, T. & Yamamoto, K. Wet-chemical strategy for atom-precise metal cluster catalysts. Bull. Chem. Soc. Jpn 92, 941–948 (2019).

    Article  CAS  Google Scholar 

  59. Albrecht, K., Sakane, N., Inomata, Y. & Yamamoto, K. Effect of the core structure on the sequential coordination of phenylazomethine dendrimer. J. Inorg. Organomet. Polym. Mater. 25, 133–139 (2015).

    Article  CAS  Google Scholar 

  60. Yamamoto, K., Higuchi, M., Shiki, S., Tsuruta, M. & Chiba, H. Stepwise radial complexation of imine groups in phenylazomethine dendrimers. Nature 415, 509–511 (2002).

    Article  CAS  Google Scholar 

  61. Imaoka, T. et al. Probing stepwise complexation in phenylazomethine dendrimers by a metallo-porphyrin core. J. Am. Chem. Soc. 127, 13896–13905 (2005).

    Article  CAS  Google Scholar 

  62. Imaoka, T., Horiguchi, H. & Yamamoto, K. Metal assembly in novel dendrimers with porphyrin cores. J. Am. Chem. Soc. 125, 340–341 (2003).

    Article  CAS  Google Scholar 

  63. Imaoka, T., Tanaka, R. & Yamamoto, K. Investigation of a molecular morphology effect on polyphenylazomethine dendrimers; physical properties and metal-assembling processes. Chem. Eur. J. 12, 7328–7336 (2006).

    Article  CAS  Google Scholar 

  64. Tsukamoto, T., Kuzume, A., Nagasaka, M., Kambe, T. & Yamamoto, K. Quantum materials exploration by sequential screening technique of heteroatomicity. J. Am. Chem. Soc. 142, 19078–19084 (2020).

    Article  CAS  Google Scholar 

  65. Pang, X., Zhao, L., Han, W., Xin, X. & Lin, Z. A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals. Nat. Nanotechnol. 8, 426–431 (2013).

    Article  CAS  Google Scholar 

  66. Chen, Y. et al. Precisely size-tunable monodisperse hairy plasmonic nanoparticles via amphiphilic star-like block copolymers. Small 12, 6714–6723 (2016).

    Article  CAS  Google Scholar 

  67. Yang, K., Feng, L. & Liu, Z. Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy. Adv. Drug Deliv. Rev. 105, 228–241 (2016).

    Article  CAS  Google Scholar 

  68. Chen, Y. et al. Hairy uniform permanently ligated hollow nanoparticles with precise dimension control and tunable optical properties. J. Am. Chem. Soc. 139, 12956–12967 (2017).

    Article  CAS  Google Scholar 

  69. Bai, J. et al. Highly water-dispersed superparamagnetic magnetite colloidal nanocrystal clusters from multifunctional polymeric nanoreactors: synthesis and properties. RSC Adv. 6, 9429–9435 (2016).

    Article  CAS  Google Scholar 

  70. Chen, M. et al. Cyclodextrin-based polymer-assisted Ru nanoparticles for the aqueous hydrogenation of biomass-derived platform molecules. ChemistrySelect 2, 10537–10545 (2017).

    Article  CAS  Google Scholar 

  71. Liang, T. et al. Unconventional approach to fabricating a TiO2 nanoring with precise dimension control based on starlike polymeric nanoreactors. J. Phys. Chem. Lett. 12, 3456–3463 (2021).

    Article  CAS  Google Scholar 

  72. Pang, X., He, Y., Jung, J. & Lin, Z. 1D nanocrystals with precisely controlled dimensions, compositions, and architectures. Science 353, 1268–1272 (2016).

    Article  CAS  Google Scholar 

  73. Xing, H. et al. Bottom-up strategy to prepare nanoparticles with a single DNA strand. J. Am. Chem. Soc. 139, 3623–3626 (2017).

    Article  CAS  Google Scholar 

  74. Bai, Y. et al. Independent control over size, valence, and elemental composition in the synthesis of DNA–nanoparticle conjugates. Chem. Sci. 11, 1564–1572 (2020).

    Article  CAS  Google Scholar 

  75. Morita, T. et al. Impact of temperature on the fusion growth of bimetallic Au–Pt nanoparticles from each nanocluster conjugated with a thermoresponsive polymer. Cryst. Growth Des. 19, 6199–6206 (2019).

    Article  CAS  Google Scholar 

  76. Eastoe, J., Hollamby, M. J. & Hudson, L. Recent advances in nanoparticle synthesis with reversed micelles. Adv. Colloid Interface Sci. 128-130, 5–15 (2006).

    Article  CAS  Google Scholar 

  77. Ganguli, A. K., Ganguly, A. & Vaidya, S. Microemulsion-based synthesis of nanocrystalline materials. Chem. Soc. Rev. 39, 474–485 (2010).

    Article  CAS  Google Scholar 

  78. Wolf, S. & Feldmann, C. Microemulsions: options to expand the synthesis of inorganic nanoparticles. Angew. Chem. Int. Ed. 55, 15728–15752 (2016).

    Article  CAS  Google Scholar 

  79. Boutonnet, M. & Sanchez-Dominguez, M. Microemulsion droplets to catalytically active nanoparticles. How the application of colloidal tools in catalysis aims to well designed and efficient catalysts. Catal. Today 285, 89–103 (2017).

    Article  CAS  Google Scholar 

  80. Das, A., Yadav, N., Manchala, S., Bungla, M. & Ganguli, A. K. Mechanistic investigations of growth of anisotropic nanostructures in reverse micelles. ACS Omega 6, 1007–1029 (2021).

    Article  CAS  Google Scholar 

  81. Richard, B., Lemyre, J.-L. & Ritcey, A. M. Nanoparticle size control in microemulsion synthesis. Langmuir 33, 4748–4757 (2017).

    Article  CAS  Google Scholar 

  82. Bryant, K., Ibrahim, G. & Saunders, S. R. Switchable surfactants for the preparation of monodisperse, supported nanoparticle catalysts. Langmuir 33, 12982–12988 (2017).

    Article  CAS  Google Scholar 

  83. Yadav, N., Chowdhury, P. K. & Ganguli, A. K. Mechanistic insights into the growth of anisotropic nanostructures inside reverse micelles: a solvation perspective. J. Phys. Chem. B 123, 5324–5336 (2019).

    Article  CAS  Google Scholar 

  84. Sharma, S., Yadav, N., Chowdhury, P. K. & Ganguli, A. K. Controlling the microstructure of reverse micelles and their templating effect on shaping nanostructures. J. Phys. Chem. B 119, 11295–11306 (2015).

    Article  CAS  Google Scholar 

  85. Kaur, R. & Mehta, S. K. Metallomicelle templated transition metal nanostructures: synthesis, characterization, DFT study and catalytic activity. Phys. Chem. Chem. Phys. 19, 18372–18382 (2017).

    Article  CAS  Google Scholar 

  86. Koninti, R. K., Satpathi, S. & Hazra, P. Ultrafast fluorescence dynamics of highly stable copper nanoclusters synthesized inside the aqueous nanopool of reverse micelles. J. Phys. Chem. C 122, 5742–5752 (2018).

    Article  CAS  Google Scholar 

  87. Glasscott, M. W., Pendergast, A. D. & Dick, J. E. A universal platform for the electrodeposition of ligand-free metal nanoparticles from a water-in-oil emulsion system. ACS Appl. Nano Mater. 1, 5702–5711 (2018).

    Article  CAS  Google Scholar 

  88. Glasscott, M. W. et al. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nat. Commun. 10, 2650 (2019).

    Article  CAS  Google Scholar 

  89. Jeun, Y. E., Baek, B., Lee, M. W. & Ahn, H. S. Surfactant-free electrochemical synthesis of metallic nanoparticles via stochastic collisions of aqueous nanodroplet reactors. Chem. Commun. 54, 10052–10055 (2018).

    Article  CAS  Google Scholar 

  90. Park, J. H. & Ahn, H. S. Electrochemical synthesis of multimetallic nanoparticles and their application in alkaline oxygen reduction catalysis. Appl. Surf. Sci. 504, 144517 (2020).

    Article  CAS  Google Scholar 

  91. Damarla, K., Rachuri, Y., Suresh, E. & Kumar, A. Nanoemulsions with all ionic liquid components as recyclable nanoreactors. Langmuir 34, 10081–10091 (2018).

    Article  CAS  Google Scholar 

  92. Pei, Y. et al. Nanoreactors stable up to 200°C: a class of high temperature microemulsions composed solely of ionic liquids. Chem. Commun. 54, 6260–6263 (2018).

    Article  CAS  Google Scholar 

  93. Boken, J., Soni, S. K. & Kumar, D. Microfluidic synthesis of nanoparticles and their biosensing applications. Crit. Rev. Anal. Chem. 46, 538–561 (2016).

    Article  CAS  Google Scholar 

  94. Pan, L.-J. et al. Controllable synthesis of nanocrystals in droplet reactors. Lab Chip 18, 41–56 (2018).

    Article  CAS  Google Scholar 

  95. Santana, J. S. & Skrabalak, S. E. Continuous flow routes toward designer metal nanocatalysts. Adv. Energy Mater. 10, 1902051 (2020).

    Article  CAS  Google Scholar 

  96. Sui, J., Yan, J., Liu, D., Wang, K. & Luo, G. Continuous synthesis of nanocrystals via flow chemistry technology. Small 16, 1902828 (2020).

    Article  CAS  Google Scholar 

  97. Roberts, E. J., Karadaghi, L. R., Wang, L., Malmstadt, N. & Brutchey, R. L. Continuous flow methods of fabricating catalytically active metal nanoparticles. ACS Appl. Mater. Interfaces 11, 27479–27502 (2019).

    Article  CAS  Google Scholar 

  98. Solsona, M. et al. Microfluidics and catalyst particles. Lab Chip 19, 3575–3601 (2019).

    Article  CAS  Google Scholar 

  99. Gao, Y., Pinho, B. & Torrente-Murciano, L. Recent progress on the manufacturing of nanoparticles in multi-phase and single-phase flow reactors. Curr. Opin. Chem. Eng. 29, 26–33 (2020).

    Article  Google Scholar 

  100. Ding, Y., Howes, P. D. & deMello, A. J. Recent advances in droplet microfluidics. Anal. Chem. 92, 132–149 (2020).

    Article  CAS  Google Scholar 

  101. Suea-Ngam, A., Howes, P. D., Srisa-Art, M. & deMello, A. J. Droplet microfluidics: from proof-of-concept to real-world utility? Chem. Commun. 55, 9895–9903 (2019).

    Article  CAS  Google Scholar 

  102. Niu, G., Ruditskiy, A., Vara, M. & Xia, Y. Toward continuous and scalable production of colloidal nanocrystals by switching from batch to droplet reactors. Chem. Soc. Rev. 44, 5806–5820 (2015).

    Article  CAS  Google Scholar 

  103. Khan, S. A., Günther, A., Schmidt, M. A. & Jensen, K. F. Microfluidic synthesis of colloidal silica. Langmuir 20, 8604–8611 (2004).

    Article  CAS  Google Scholar 

  104. Wang, H., Nakamura, H., Uehara, M., Miyazaki, M. & Maeda, H. Preparation of titania particles utilizing the insoluble phase interface in a microchannel reactor. Chem. Commun. 2002, 1462–1463 (2002).

    Article  CAS  Google Scholar 

  105. Takagi, M., Maki, T., Miyahara, M. & Mae, K. Production of titania nanoparticles by using a new microreactor assembled with same axle dual pipe. Chem. Eng. J. 101, 269–276 (2004).

    Article  CAS  Google Scholar 

  106. Shestopalov, I., Tice, J. D. & Ismagilov, R. F. Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip 4, 316–321 (2004).

    Article  CAS  Google Scholar 

  107. Hung, L.-H. et al. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab Chip 6, 174–178 (2006).

    Article  CAS  Google Scholar 

  108. Chan, E. M., Alivisatos, A. P. & Mathies, R. A. High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. J. Am. Chem. Soc. 127, 13854–13861 (2005).

    Article  CAS  Google Scholar 

  109. Yen, B. K. H., Günther, A., Schmidt, M. A., Jensen, K. F. & Bawendi, M. G. A microfabricated gas–liquid segmented flow reactor for high-temperature synthesis: the case of CdSe quantum dots. Angew. Chem. Int. Ed. 44, 5447–5451 (2005).

    Article  CAS  Google Scholar 

  110. Panariello, L. et al. Highly reproducible, high-yield flow synthesis of gold nanoparticles based on a rational reactor design exploiting the reduction of passivated Au(iii). React. Chem. Eng. 5, 663–676 (2020).

    Article  CAS  Google Scholar 

  111. Ahrberg, C. D., Wook Choi, J. & Geun Chung, B. Automated droplet reactor for the synthesis of iron oxide/gold core-shell nanoparticles. Sci. Rep. 10, 1737 (2020).

    Article  CAS  Google Scholar 

  112. Santana, J. S., Gamler, J. T. L. & Skrabalak, S. E. Integration of sequential reactions in a continuous flow droplet reactor: a route to architecturally defined bimetallic nanostructures. Part. Part. Syst. Charact. 36, 1900142 (2019).

    Article  CAS  Google Scholar 

  113. Tofighi, G. et al. Microfluidic synthesis of ultrasmall AuPd nanoparticles with a homogeneously mixed alloy structure in fast continuous flow for catalytic applications. J. Phys. Chem. C 122, 1721–1731 (2018).

    Article  CAS  Google Scholar 

  114. Li, X. et al. Microfluidically assisted construction of hierarchical multicomponent microparticles for short intermediate diffusion paths in heterogeneous catalysis. ACS Appl. Nano Mater. 1, 6398–6406 (2018).

    Article  CAS  Google Scholar 

  115. Kwak, C. H. et al. Customized microfluidic reactor based on droplet formation for the synthesis of monodispersed silver nanoparticles. J. Ind. Eng. Chem. 63, 405–410 (2018).

    Article  CAS  Google Scholar 

  116. Gu, T. et al. Electrically controlled mass transport into microfluidic droplets from nanodroplet carriers with application in controlled nanoparticle flow synthesis. Lab Chip 18, 1330–1340 (2018).

    Article  CAS  Google Scholar 

  117. Abalde-Cela, S., Taladriz-Blanco, P., de Oliveira, M. G. & Abell, C. Droplet microfluidics for the highly controlled synthesis of branched gold nanoparticles. Sci. Rep. 8, 2440 (2018).

    Article  CAS  Google Scholar 

  118. Wang, Z. et al. Microfluidic synthesis and characterization of FePtSn/C catalysts with enhanced electro-catalytic performance for direct methanol fuel cells. Electrochim. Acta 230, 245–254 (2017).

    Article  CAS  Google Scholar 

  119. Tao, S., Yang, M., Chen, H., Ren, M. & Chen, G. Microfluidic synthesis of Ag@Cu2O core-shell nanoparticles with enhanced photocatalytic activity. J. Colloid Interface Sci. 486, 16–26 (2017).

    Article  CAS  Google Scholar 

  120. Santana, J. S., Koczkur, K. M. & Skrabalak, S. E. Synthesis of core@shell nanostructures in a continuous flow droplet reactor: controlling structure through relative flow rates. Langmuir 33, 6054–6061 (2017).

    Article  CAS  Google Scholar 

  121. Maguire, P. et al. Continuous in-flight synthesis for on-demand delivery of ligand-free colloidal gold nanoparticles. Nano Lett. 17, 1336–1343 (2017).

    Article  CAS  Google Scholar 

  122. Li, X. et al. Hierarchically structured particles for micro flow catalysis. Chem. Eng. J. 326, 1058–1065 (2017).

    Article  CAS  Google Scholar 

  123. Kunal, P. et al. Continuous flow synthesis of Rh and RhAg alloy nanoparticle catalysts enables scalable production and improved morphological control. Chem. Mater. 29, 4341–4350 (2017).

    Article  CAS  Google Scholar 

  124. Kulkarni, A. A. & Sebastian Cabeza, V. Insights in the diffusion controlled interfacial flow synthesis of Au nanostructures in a microfluidic system. Langmuir 33, 14315–14324 (2017).

    Article  CAS  Google Scholar 

  125. He, X. et al. Overview of the application of flow microreactors in the synthesis of silver nanomaterials. Nano 12, 1730002 (2017).

    Article  CAS  Google Scholar 

  126. Xu, L., Peng, J., Yan, M., Zhang, D. & Shen, A. Q. Droplet synthesis of silver nanoparticles by a microfluidic device. Chem. Eng. Process. 102, 186–193 (2016).

    Article  CAS  Google Scholar 

  127. Sebastian, V., Smith, C. D. & Jensen, K. F. Shape-controlled continuous synthesis of metal nanostructures. Nanoscale 8, 7534–7543 (2016).

    Article  CAS  Google Scholar 

  128. Riche, C. T., Roberts, E. J., Gupta, M., Brutchey, R. L. & Malmstadt, N. Flow invariant droplet formation for stable parallel microreactors. Nat. Commun. 7, 10780 (2016).

    Article  CAS  Google Scholar 

  129. Niu, G. et al. Synthesis of Pt–Ni octahedra in continuous-flow droplet reactors for the scalable production of highly active catalysts toward oxygen reduction. Nano Lett. 16, 3850–3857 (2016).

    Article  CAS  Google Scholar 

  130. Zhang, D. et al. One-step, facile and ultrafast synthesis of phase- and size-controlled Pt–Bi intermetallic nanocatalysts through continuous-flow microfluidics. J. Am. Chem. Soc. 137, 6263–6269 (2015).

    Article  CAS  Google Scholar 

  131. Hafermann, L. & Köhler, J. M. Photochemical micro continuous-flow synthesis of noble metal nanoparticles of the platinum group. Chem. Eng. Tehcnol. 38, 1138–1143 (2015).

    CAS  Google Scholar 

  132. Hafermann, L. & Michael Köhler, J. Small gold nanoparticles formed by rapid photochemical flow-through synthesis using microfluid segment technique. J. Nanopart. Res. 17, 99 (2015).

    Article  CAS  Google Scholar 

  133. Larrea, A., Sebastian, V., Ibarra, A., Arruebo, M. & Santamaria, J. Gas slug microfluidics: a unique tool for ultrafast, highly controlled growth of iron oxide nanostructures. Chem. Mater. 27, 4254–4260 (2015).

    Article  CAS  Google Scholar 

  134. Zukas, B. G. & Gupta, N. R. Interphase synthesis of zinc oxide nanoparticles in a droplet flow reactor. Ind. Eng. Chem. Res. 56, 7184–7191 (2017).

    Article  CAS  Google Scholar 

  135. Yashina, A., Lignos, I., Stavrakis, S., Choo, J. & deMello, A. J. Scalable production of CuInS2/ZnS quantum dots in a two-step droplet-based microfluidic platform. J. Mater. Chem. C 4, 6401–6408 (2016).

    Article  CAS  Google Scholar 

  136. Wang, J., Zhao, H., Zhu, Y. & Song, Y. Shape-controlled synthesis of CdSe nanocrystals via a programmed microfluidic process. J. Phys. Chem. C 121, 3567–3572 (2017).

    Article  CAS  Google Scholar 

  137. Lignos, I., Maceiczyk, R. M., Kovalenko, M. V. & Stavrakis, S. Tracking the fluorescence lifetimes of cesium lead halide perovskite nanocrystals during their synthesis using a fully automated optofluidic platform. Chem. Mater. 32, 27–37 (2020).

    Article  CAS  Google Scholar 

  138. Abdel-Latif, K. et al. Facile room-temperature anion exchange reactions of inorganic perovskite quantum dots enabled by a modular microfluidic platform. Adv. Funct. Mater. 29, 1900712 (2019).

    Article  CAS  Google Scholar 

  139. Lignos, I. et al. Exploration of near-infrared-emissive colloidal multinary lead halide perovskite nanocrystals using an automated microfluidic platform. ACS Nano 12, 5504–5517 (2018).

    Article  CAS  Google Scholar 

  140. Bezinge, L., Maceiczyk, R. M., Lignos, I., Kovalenko, M. V. & deMello, A. J. Pick a color MARIA: adaptive sampling enables the rapid identification of complex perovskite nanocrystal compositions with defined emission characteristics. ACS Appl. Mater. Interfaces 10, 18869–18878 (2018).

    Article  CAS  Google Scholar 

  141. Maceiczyk, R. M. et al. Microfluidic reactors provide preparative and mechanistic insights into the synthesis of formamidinium lead halide perovskite nanocrystals. Chem. Mater. 29, 8433–8439 (2017).

    Article  CAS  Google Scholar 

  142. Lignos, I. et al. Synthesis of cesium lead halide perovskite nanocrystals in a droplet-based microfluidic platform: fast parametric space mapping. Nano Lett. 16, 1869–1877 (2016).

    Article  CAS  Google Scholar 

  143. Abdel-Latif, K., Bateni, F., Crouse, S. & Abolhasani, M. Flow synthesis of metal halide perovskite quantum dots: from rapid parameter space mapping to AI-guided modular manufacturing. Matter 3, 1053–1086 (2020).

    Article  Google Scholar 

  144. Wang, L., Karadaghi, L. R., Brutchey, R. L. & Malmstadt, N. Self-optimizing parallel millifluidic reactor for scaling nanoparticle synthesis. Chem. Commun. 56, 3745–3748 (2020).

    Article  CAS  Google Scholar 

  145. Ma, H., Pan, L., Wang, J., Zhang, L. & Zhang, Z. Synthesis of AgInS2 QDs in droplet microreactors: online fluorescence regulating through temperature control. Chin. Chem. Lett. 30, 79–82 (2019).

    Article  CAS  Google Scholar 

  146. Guidelli, E. J. et al. Mechanistic insights and controlled synthesis of radioluminescent ZnSe quantum dots using a microfluidic reactor. Chem. Mater. 30, 8562–8570 (2018).

    Article  CAS  Google Scholar 

  147. Swain, B. et al. Optimization of CdSe nanocrystals synthesis with a microfluidic reactor and development of combinatorial synthesis process for industrial production. Chem. Eng. J. 308, 311–321 (2017).

    Article  CAS  Google Scholar 

  148. Lignos, I., Maceiczyk, R. & deMello, A. J. Microfluidic technology: uncovering the mechanisms of nanocrystal nucleation and growth. Acc. Chem. Res. 50, 1248–1257 (2017).

    Article  CAS  Google Scholar 

  149. Tian, Z.-H., Wang, Y.-J., Xu, J.-H. & Luo, G.-S. Intensification of nucleation stage for synthesizing high quality CdSe quantum dots by using preheated precursors in microfluidic devices. Chem. Eng. J. 302, 498–502 (2016).

    Article  CAS  Google Scholar 

  150. Tian, Z.-H., Xu, J.-H., Wang, Y.-J. & Luo, G.-S. Microfluidic synthesis of monodispersed CdSe quantum dots nanocrystals by using mixed fatty amines as ligands. Chem. Eng. J. 285, 20–26 (2016).

    Article  CAS  Google Scholar 

  151. Shu, Y., Jiang, P., Pang, D.-W. & Zhang, Z.-L. Droplet-based microreactor for synthesis of water-soluble Ag2S quantum dots. Nanotechnology 26, 275701 (2015).

    Article  CAS  Google Scholar 

  152. Lignos, I. et al. Millisecond-timescale monitoring of PbS nanoparticle nucleation and growth using droplet-based microfluidics. Small 11, 4009–4017 (2015).

    Article  CAS  Google Scholar 

  153. Cheng, Y., Ling, S. D., Geng, Y., Wang, Y. & Xu, J. Microfluidic synthesis of quantum dots and their applications in bio-sensing and bio-imaging. Nanoscale Adv. 3, 2180–2195 (2021).

    Article  CAS  Google Scholar 

  154. Jambovane, S. R. et al. Continuous, one-pot synthesis and post-synthetic modification of nanoMOFs using droplet nanoreactors. Sci. Rep. 6, 36657 (2016).

    Article  CAS  Google Scholar 

  155. González-Estefan, J. H., Gonidec, M., Daro, N., Marchivie, M. & Chastanet, G. Extreme downsizing in the surfactant-free synthesis of spin-crossover nanoparticles in a microfluidic flow-focusing junction. Chem. Commun. 54, 8040–8043 (2018).

    Article  Google Scholar 

  156. Zhu, P. & Wang, L. Passive and active droplet generation with microfluidics: a review. Lab Chip 17, 34–75 (2017).

    Article  CAS  Google Scholar 

  157. Liu, J. et al. Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem. Commun. 47, 12578–12591 (2011).

    Article  CAS  Google Scholar 

  158. Wang, X., Feng, J., Bai, Y., Zhang, Q. & Yin, Y. Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev. 116, 10983–11060 (2016).

    Article  CAS  Google Scholar 

  159. Kumar, A., Jeon, K.-W., Kumari, N. & Lee, I. S. Spatially confined formation and transformation of nanocrystals within nanometer-sized reaction media. Acc. Chem. Res. 51, 2867–2879 (2018).

    Article  CAS  Google Scholar 

  160. Lou, X. W., Archer, L. A. & Yang, Z. Hollow micro-/nanostructures: synthesis and applications. Adv. Mater. 20, 3987–4019 (2008).

    Article  CAS  Google Scholar 

  161. Shaik, F. Ligand-free yolk-shell nanoparticles: synthesis and catalytic applications. ChemNanoMat 6, 1449–1473 (2020).

    Article  CAS  Google Scholar 

  162. Hah, H. J., Um, J. I., Han, S. H. & Koo, S. M. New synthetic route for preparing rattle-type silica particles with metal cores. Chem. Commun. 2004, 1012–1013 (2004).

    Article  CAS  Google Scholar 

  163. Cheng, D., Zhou, X., Xia, H. & Chan, H. S. O. Novel method for the preparation of polymeric hollow nanospheres containing silver cores with different sizes. Chem. Mater. 17, 3578–3581 (2005).

    Article  CAS  Google Scholar 

  164. Gao, C., Zhang, Q., Lu, Z. & Yin, Y. Templated synthesis of metal nanorods in silica nanotubes. J. Am. Chem. Soc. 133, 19706–19709 (2011).

    Article  CAS  Google Scholar 

  165. Shaik, F., Zhang, W. & Niu, W. A novel photochemical method for the synthesis of Au triangular nanoplates inside nanocavity of mesoporous silica shells. J. Phys. Chem. C 121, 9572–9578 (2017).

    Article  CAS  Google Scholar 

  166. Shaik, F., Zhang, W., Niu, W. & Lu, X. Volume-confined synthesis of ligand-free gold nanoparticles with tailored sizes for enhanced catalytic activity. Chem. Phys. Lett. 613, 95–99 (2014).

    Article  CAS  Google Scholar 

  167. Shaik, F., Zhang, W. & Niu, W. A generalized method for the synthesis of ligand-free M@SiO2 (M = Ag, Au, Pd, Pt) Yolk–shell nanoparticles. Langmuir 33, 3281–3286 (2017).

    Article  CAS  Google Scholar 

  168. Zhang, L. et al. Spatially controlled reduction and growth of silver in hollow gold nanoshell particles. J. Phys. Chem. C 123, 10614–10621 (2019).

    Article  CAS  Google Scholar 

  169. Yeo, K. M., Choi, S., Anisur, R. M., Kim, J. & Lee, I. S. Surfactant-free platinum-on-gold nanodendrites with enhanced catalytic performance for oxygen reduction. Angew. Chem. Int. Ed. 50, 745–748 (2011).

    Article  CAS  Google Scholar 

  170. Kim, D. et al. Confined nucleation and growth of PdO nanocrystals in a seed-free solution inside hollow nanoreactor. ACS Appl. Mater. Interfaces 9, 29992–30001 (2017).

    Article  CAS  Google Scholar 

  171. Jeong, K., Kim, S. M. & Lee, I. S. A seed-engineering approach toward a hollow nanoreactor suitable for the confined synthesis of less-noble Ni-based nanocrystals. Chem. Commun. 51, 499–502 (2015).

    Article  CAS  Google Scholar 

  172. Wu, S.-H. et al. Catalytic nano-rattle of Au@hollow silica: towards a poison-resistant nanocatalyst. J. Mater. Chem. 21, 789–794 (2011).

    Article  CAS  Google Scholar 

  173. Uchida, M. et al. Biological containers: protein cages as multifunctional nanoplatforms. Adv. Mater. 19, 1025–1042 (2007).

    Article  CAS  Google Scholar 

  174. Jutz, G., van Rijn, P., Santos Miranda, B. & Böker, A. Ferritin: a versatile building block for bionanotechnology. Chem. Rev. 115, 1653–1701 (2015).

    Article  CAS  Google Scholar 

  175. Yamashita, I. in Biological Magnetic Materials and Applications 1st edn Ch. 6 (eds Matsunaga T., Tanaka T. & Kisailus D.) 135–153 (Springer, 2018).

  176. Abe, S., Maity, B. & Ueno, T. Design of a confined environment using protein cages and crystals for the development of biohybrid materials. Chem. Commun. 52, 6496–6512 (2016).

    Article  CAS  Google Scholar 

  177. Huang, J. et al. Bio-inspired synthesis of metal nanomaterials and applications. Chem. Soc. Rev. 44, 6330–6374 (2015).

    Article  CAS  Google Scholar 

  178. Dickerson, M. B., Sandhage, K. H. & Naik, R. R. Protein- and peptide-directed syntheses of inorganic materials. Chem. Rev. 108, 4935–4978 (2008).

    Article  CAS  Google Scholar 

  179. Pan, Y., Paschoalino, W. J., Szuchmacher Blum, A. & Mauzeroll, J. Recent advances in bio-templated metallic nanomaterial synthesis and electrocatalytic applications. ChemSusChem 14, 758–791 (2021).

    Article  CAS  Google Scholar 

  180. Douglas, T. & Young, M. Host–guest encapsulation of materials by assembled virus protein cages. Nature 393, 152–155 (1998).

    Article  CAS  Google Scholar 

  181. Zhou, Z., Bedwell, G. J., Li, R., Prevelige, P. E. & Gupta, A. Formation mechanism of chalcogenide nanocrystals confined inside genetically engineered virus-like particles. Sci. Rep. 4, 3832 (2014).

    Article  CAS  Google Scholar 

  182. Peng, T., Paramelle, D., Sana, B., Lee, C. F. & Lim, S. Designing non-native iron-binding site on a protein cage for biological synthesis of nanoparticles. Small 10, 3131–3138 (2014).

    Article  CAS  Google Scholar 

  183. Douglas, T. et al. Protein engineering of a viral cage for constrained nanomaterials synthesis. Adv. Mater. 14, 415–418 (2002).

    Article  CAS  Google Scholar 

  184. Melman, A. in Fine Particles in Medicine and Pharmacy (ed. Matijević, E.) 195–221 (Springer, 2012).

  185. Jin, Y., He, J., Fan, K. & Yan, X. Ferritin variants: inspirations for rationally designing protein nanocarriers. Nanoscale 11, 12449–12459 (2019).

    Article  CAS  Google Scholar 

  186. Meldrum, F. C., Wade, V. J., Nimmo, D. L., Heywood, B. R. & Mann, S. Synthesis of inorganic nanophase materials in supramolecular protein cages. Nature 349, 684–687 (1991).

    Article  CAS  Google Scholar 

  187. Mann, S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry (Oxford Univ. Press, 2001).

  188. Wang, Z. et al. Biomineralization-inspired synthesis of copper sulfide–ferritin nanocages as cancer theranostics. ACS Nano 10, 3453–3460 (2016).

    Article  CAS  Google Scholar 

  189. Li, T. et al. Synthesis and characterization of Au-core Ag-shell nanoparticles from unmodified apoferritin. J. Mater. Chem. 22, 14458–14464 (2012).

    Article  CAS  Google Scholar 

  190. Wu, H., Engelhard, M. H., Wang, J., Fisher, D. R. & Lin, Y. Synthesis of lutetium phosphate–apoferritin core–shell nanoparticles for potential applications in radioimmunoimaging and radioimmunotherapy of cancers. J. Mater. Chem. 18, 1779–1783 (2008).

    Article  CAS  Google Scholar 

  191. Suzuki, M. et al. Preparation and catalytic reaction of Au/Pd bimetallic nanoparticles in Apo-ferritin. Chem. Commun. 2009, 4871–4873 (2009).

    Article  CAS  Google Scholar 

  192. Shin, Y., Dohnalkova, A. & Lin, Y. Preparation of homogeneous gold–silver alloy nanoparticles using the apoferritin cavity as a nanoreactor. J. Phys. Chem. C 114, 5985–5989 (2010).

    Article  CAS  Google Scholar 

  193. Allen, M., Willits, D., Mosolf, J., Young, M. & Douglas, T. Protein cage constrained synthesis of ferrimagnetic iron oxide nanoparticles. Adv. Mater. 14, 1562–1565 (2002).

    Article  CAS  Google Scholar 

  194. Allen, M., Willits, D., Young, M. & Douglas, T. Constrained synthesis of cobalt oxide nanomaterials in the 12-subunit protein cage from Listeria innocua. Inorg. Chem. 42, 6300–6305 (2003).

    Article  CAS  Google Scholar 

  195. Iwahori, K. et al. Cadmium sulfide nanoparticle synthesis in Dps protein from Listeria innocua. Chem. Mater. 19, 3105–3111 (2007).

    Article  CAS  Google Scholar 

  196. Matsuura, K. Synthetic approaches to construct viral capsid-like spherical nanomaterials. Chem. Commun. 54, 8944–8959 (2018).

    Article  CAS  Google Scholar 

  197. Klem, M. T., Young, M. & Douglas, T. Biomimetic synthesis of β-TiO2 inside a viral capsid. J. Mater. Chem. 18, 3821–3823 (2008).

    Article  CAS  Google Scholar 

  198. Bedwell, G. J. et al. Selective biotemplated synthesis of TiO2 inside a protein cage. Biomacromolecules 16, 214–218 (2015).

    Article  CAS  Google Scholar 

  199. Zhang, W., Zhang, Z.-P., Zhang, X.-E. & Li, F. Reaction inside a viral protein nanocage: mineralization on a nanoparticle seed after encapsulation via self-assembly. Nano Res. 10, 3285–3294 (2017).

    Article  CAS  Google Scholar 

  200. Liu, A., Yang, L., Verwegen, M., Reardon, D. & Cornelissen, J. J. L. M. Construction of core-shell hybrid nanoparticles templated by virus-like particles. RSC Adv. 7, 56328–56334 (2017).

    Article  CAS  Google Scholar 

  201. Fendler, J. H. Atomic and molecular clusters in membrane mimetic chemistry. Chem. Rev. 87, 877–899 (1987).

    Article  CAS  Google Scholar 

  202. Vargas, K. M. & Shon, Y.-S. Hybrid lipid–nanoparticle complexes for biomedical applications. J. Mater. Chem. B 7, 695–708 (2019).

    Article  CAS  Google Scholar 

  203. Dong, R., Liu, W. & Hao, J. Soft vesicles in the synthesis of hard materials. Acc. Chem. Res. 45, 504–513 (2012).

    Article  CAS  Google Scholar 

  204. Mann, S., Hannington, J. P. & Williams, R. J. P. Phospholipid vesicles as a model system for biomineralization. Nature 324, 565–567 (1986).

    Article  CAS  Google Scholar 

  205. Korgel, B. A. & Monbouquette, H. G. Synthesis of size-monodisperse CdS nanocrystals using phosphatidylcholine vesicles as true reaction compartments. J. Phys. Chem. 100, 346–351 (1996).

    Article  CAS  Google Scholar 

  206. Kennedy, M. T., Korgel, B. A., Monbouquette, H. G. & Zasadzinski, J. A. Cryo-transmission electron microscopy confirms controlled synthesis of cadmium sulfide nanocrystals within lecithin vesicles. Chem. Mater. 10, 2116–2119 (1998).

    Article  CAS  Google Scholar 

  207. Korgel, B. A. & Monbouquette, H. G. Controlled synthesis of mixed core and layered (Zn,Cd)S and (Hg,Cd)S nanocrystals within phosphatidylcholine vesicles. Langmuir 16, 3588–3594 (2000).

    Article  CAS  Google Scholar 

  208. Genç, R., Clergeaud, G., Ortiz, M. & O’Sullivan, C. K. Green synthesis of gold nanoparticles using glycerol-incorporated nanosized liposomes. Langmuir 27, 10894–10900 (2011).

    Article  CAS  Google Scholar 

  209. Clergeaud, G., Genç, R., Ortiz, M. & O’Sullivan, C. K. Liposomal nanoreactors for the synthesis of monodisperse palladium nanoparticles using glycerol. Langmuir 29, 15405–15413 (2013).

    Article  CAS  Google Scholar 

  210. Genç, R., Ortiz, M. & O’Sullivan, C. K. Diffusion-controlled synthesis of gold nanoparticles: nano-liposomes as mass transfer barrier. J. Nanopart. Res. 16, 2329 (2014).

    Article  CAS  Google Scholar 

  211. Genc, R., Clergeaud, G., Ortiz, M. & O’Sullivan, C. Shape directed biomineralization of gold nanoparticles using self-assembled lipid structures. Biomater. Sci. 2, 1128–1134 (2014).

    Article  CAS  Google Scholar 

  212. Witzigmann, D. et al. Formation of lipid and polymer based gold nanohybrids using a nanoreactor approach. RSC Adv. 5, 74320–74328 (2015).

    Article  CAS  Google Scholar 

  213. Song, W., Liu, X., Yang, Y., Han, X. & Deng, Q. Synthesis of magnetic core–shell structure Fe3O4@MCM-41 nanoparticle by vesicles in aqueous solutions. Chin. J. Chem. Eng. 23, 1398–1402 (2015).

    Article  CAS  Google Scholar 

  214. Lee, J.-H. et al. General and programmable synthesis of hybrid liposome/metal nanoparticles. Sci. Adv. 2, e1601838 (2016).

    Article  CAS  Google Scholar 

  215. Hawker, C. J. & Russell, T. P. Block copolymer lithography: merging “bottom-up” with “top-down” processes. MRS Bull. 30, 952–966 (2011).

    Article  Google Scholar 

  216. Dai, Y., Lu, P., Cao, Z., Campbell, C. T. & Xia, Y. The physical chemistry and materials science behind sinter-resistant catalysts. Chem. Soc. Rev. 47, 4314–4331 (2018).

    Article  CAS  Google Scholar 

  217. Glass, R., Möller, M. & Spatz, J. P. Block copolymer micelle nanolithography. Nanotechnology 14, 1153–1160 (2003).

    Article  CAS  Google Scholar 

  218. Möller, M., Spatz, J. P. & Roescher, A. Gold nanoparticles in micellar poly(styrene)-b-poly(ethylene oxide) films — size and interparticle distance control in monoparticulate films. Adv. Mater. 8, 337–340 (1996).

    Article  Google Scholar 

  219. Spatz, J. P. et al. Ordered deposition of inorganic clusters from micellar block copolymer films. Langmuir 16, 407–415 (2000).

    Article  CAS  Google Scholar 

  220. Arnold, M. et al. Activation of integrin function by nanopatterned adhesive interfaces. ChemPhysChem 5, 383–388 (2004).

    Article  CAS  Google Scholar 

  221. Glass, R. et al. Micro-nanostructured interfaces fabricated by the use of inorganic block copolymer micellar monolayers as negative resist for electron-beam lithography. Adv. Funct. Mater. 13, 569–575 (2003).

    Article  CAS  Google Scholar 

  222. Liu, P. & Ding, J. Fabrication of micro–nano hybrid patterns on a solid surface. Langmuir 26, 492–497 (2010).

    Article  CAS  Google Scholar 

  223. Lohmueller, T., Bock, E. & Spatz, J. P. Synthesis of quasi-hexagonal ordered arrays of metallic nanoparticles with tuneable particle size. Adv. Mater. 20, 2297–2302 (2008).

    Article  CAS  Google Scholar 

  224. Gorzolnik, B., Mela, P. & Moeller, M. Nano-structured micropatterns by combination of block copolymer self-assembly and UV photolithography. Nanotechnology 17, 5027–5032 (2006).

    Article  CAS  Google Scholar 

  225. Cummins, C., Ghoshal, T., Holmes, J. D. & Morris, M. A. Strategies for inorganic incorporation using neat block copolymer thin films for etch mask function and nanotechnological application. Adv. Mater. 28, 5586–5618 (2016).

    Article  CAS  Google Scholar 

  226. Lohmüller, T. et al. Nanopatterning by block copolymer micelle nanolithography and bioinspired applications. Biointerphases 6, MR1–MR12 (2011).

    Article  CAS  Google Scholar 

  227. Yap, F. L. & Krishnamoorthy, S. Fabricating 2D arrays of chemical templates for in situ synthesis of inorganic nanostructures using self-assembly based nanolithography. J. Mater. Chem. 20, 10211–10216 (2010).

    Article  CAS  Google Scholar 

  228. Aizawa, M. & Buriak, J. M. Block copolymer templated chemistry for the formation of metallic nanoparticle arrays on semiconductor. Surf. Chem. Mater. 19, 5090–5101 (2007).

    Article  CAS  Google Scholar 

  229. Pan, D., Fu, Q. & Lu, J. Nanolithography through mixture of block copolymer micelles. Nanotechnology 23, 305302 (2012).

    Article  CAS  Google Scholar 

  230. Bosworth, J. K. et al. Control of self-assembly of lithographically patternable block copolymer films. ACS Nano 2, 1396–1402 (2008).

    Article  CAS  Google Scholar 

  231. Zu, X., Tu, W. & Deng, Y. General approach for fabricating nanoparticle arrays via patterned block copolymer nanoreactors. J. Nanopart. Res. 13, 1–13 (2011).

    Article  CAS  Google Scholar 

  232. Shin, I., Han, K. H., Cha, S. K., Kim, S. O. & Seo, M. Synthesis of carboxylic acid-functionalized polymethacrylate-b-polystyrene as an Ag ion-loadable block copolymer thin film template. Polymer 217, 123462 (2021).

    Article  CAS  Google Scholar 

  233. Roulet, M., Vayer, M. & Sinturel, C. A simple route to ordered metal oxide nanoparticle arrays using block copolymer thin films. Eur. Polym. J. 49, 3897–3903 (2013).

    Article  CAS  Google Scholar 

  234. Mendoza, C. et al. In situ synthesis and alignment of Au nanoparticles within hexagonally packed cylindrical domains of diblock copolymers in bulk. Langmuir 25, 9571–9578 (2009).

    Article  CAS  Google Scholar 

  235. Kruss, S., Srot, V., van Aken, P. A. & Spatz, J. P. Au–Ag hybrid nanoparticle patterns of tunable size and density on glass and polymeric supports. Langmuir 28, 1562–1568 (2012).

    Article  CAS  Google Scholar 

  236. Cha, S. K. et al. Au–Ag core–shell nanoparticle array by block copolymer lithography for synergistic broadband plasmonic properties. ACS Nano 9, 5536–5543 (2015).

    Article  CAS  Google Scholar 

  237. Tang, Z. et al. Fabrication of Au nanoparticle arrays on flexible substrate for tunable localized surface plasmon resonance. ACS Appl. Mater. Interfaces 13, 9281–9288 (2021).

    Article  CAS  Google Scholar 

  238. Daripa, S. et al. Metal-immobilized micellar aggregates of a block copolymer from a mixed solvent for a SERS-active sensing substrate and versatile dip catalysis. Langmuir 37, 2445–2456 (2021).

    Article  CAS  Google Scholar 

  239. Darhuber, A. A., Troian, S. M., Miller, S. M. & Wagner, S. Morphology of liquid microstructures on chemically patterned surfaces. J. Appl. Phys. 87, 7768–7775 (2000).

    Article  CAS  Google Scholar 

  240. Tebbe, M., Galati, E., Walker, G. C. & Kumacheva, E. Homopolymer nanolithography. Small 13, 1702043 (2017).

    Article  CAS  Google Scholar 

  241. Yan, N., Liu, X., Zhu, J., Zhu, Y. & Jiang, W. Well-ordered inorganic nanoparticle arrays directed by block copolymer nanosheets. ACS Nano 13, 6638–6646 (2019).

    Article  CAS  Google Scholar 

  242. Chang, T., Du, B., Huang, H. & He, T. Highly tunable complementary micro/submicro-nanopatterned surfaces combining block copolymer self-assembly and colloidal lithography. ACS Appl. Mater. Interfaces 8, 22705–22713 (2016).

    Article  CAS  Google Scholar 

  243. Kim, S.-S. & Sohn, B.-H. Template-assisted self-assembly of diblock copolymer micelles for non-hexagonal arrays of Au nanoparticles. RSC Adv. 6, 41331–41339 (2016).

    Article  CAS  Google Scholar 

  244. Han, S. T. et al. Microcontact printing of ultrahigh density gold nanoparticle monolayer for flexible flash memories. Adv. Mater. 24, 3556–3561 (2012).

    Article  CAS  Google Scholar 

  245. Liu, P. & Ding, J. Fabrication of micro–nano hybrid patterns on a solid surface. Langmuir 26, 492–497 (2010).

    Article  CAS  Google Scholar 

  246. Kästle, G. et al. Micellar nanoreactors — preparation and characterization of hexagonally ordered arrays of metallic nanodots. Adv. Funct. Mater. 13, 853–861 (2003).

    Article  CAS  Google Scholar 

  247. Möller, M. & Spatz, J. P. Mineralization of nanoparticles in block copolymer micelles. Curr. Opin. Colloid Interface Sci. 2, 177–187 (1997).

    Article  Google Scholar 

  248. Bera, A., Bhattacharya, A., Tiwari, N., Jha, S. N. & Bhattacharyya, D. Morphology, stability, and X-ray absorption spectroscopic study of iron oxide (hematite) nanoparticles prepared by micelle nanolithography. Surf. Sci. 669, 145–153 (2018).

    Article  CAS  Google Scholar 

  249. Li, X., Lau, K. H., Kim, D. H. & Knoll, W. High-density arrays of titania nanoparticles using monolayer micellar films of diblock copolymers as templates. Langmuir 21, 5212–5217 (2005).

    Article  CAS  Google Scholar 

  250. Zhao, H., Douglas, E. P., Harrison, B. S. & Schanze, K. S. Preparation of CdS nanoparticles in salt-induced block copolymer micelles. Langmuir 17, 8428–8433 (2001).

    Article  CAS  Google Scholar 

  251. Cha, S. K. et al. Au–Ag core–shell nanoparticle array by block copolymer lithography for synergistic broadband plasmonic properties. ACS Nano 9, 5536–5543 (2015).

    Article  CAS  Google Scholar 

  252. Mbenkum, B. N., Diaz-Ortiz, A., Gu, L., van Aken, P. A. & Schutz, G. Expanding micelle nanolithography to the self-assembly of multicomponent core–shell nanoparticles. J. Am. Chem. Soc. 132, 10671–10673 (2010).

    Article  CAS  Google Scholar 

  253. Ethirajan, A. et al. A micellar approach to magnetic ultrahigh-density data-storage media: extending the limits of current colloidal methods. Adv. Mater. 19, 406–410 (2007).

    Article  CAS  Google Scholar 

  254. Jahn, S., Lechner, S. J., Freichels, H., Moller, M. & Spatz, J. P. Precise AuxPt1−x alloy nanoparticle array of tunable composition for catalytic applications. Sci. Rep. 6, 20536 (2016).

    Article  CAS  Google Scholar 

  255. Piner, R. D., Zhu, J., Xu, F., Hong, S. & Mirkin, C. A. “Dip-pen” nanolithography. Science 283, 661–663 (1999).

    Article  CAS  Google Scholar 

  256. Liu, G., Petrosko, S. H., Zheng, Z. & Mirkin, C. A. Evolution of dip-pen nanolithography (DPN): from molecular patterning to materials discovery. Chem. Rev. 120, 6009–6047 (2020).

    Article  CAS  Google Scholar 

  257. Maynor, B. W., Li, Y. & Liu, J. Au “ink” for AFM “dip-pen” nanolithography. Langmuir 17, 2575–2578 (2001).

    Article  CAS  Google Scholar 

  258. Li, Y., Maynor, B. W. & Liu, J. Electrochemical AFM “dip-pen” nanolithography. J. Am. Chem. Soc. 123, 2105–2106 (2001).

    Article  CAS  Google Scholar 

  259. Ding, L., Li, Y., Chu, H., Li, X. & Liu, J. Creation of cadmium sulfide nanostructures using AFM dip-pen nanolithography. J. Phys. Chem. B 109, 22337–22340 (2005).

    Article  CAS  Google Scholar 

  260. Basnar, B. & Willner, I. Dip-pen-nanolithographic patterning of metallic, semiconductor, and metal oxide nanostructures on surfaces. Small 5, 28–44 (2009).

    Article  CAS  Google Scholar 

  261. Chai, J. et al. Scanning probe block copolymer lithography. Proc. Natl Acad. Sci. USA 107, 20202–20206 (2010).

    Article  CAS  Google Scholar 

  262. Huo, F. et al. Polymer pen lithography. Science 321, 1658–1660 (2008).

    Article  CAS  Google Scholar 

  263. Liu, G. et al. Delineating the pathways for the site-directed synthesis of individual nanoparticles on surfaces. Proc. Natl Acad. Sci. USA 110, 887–891 (2013).

    Article  CAS  Google Scholar 

  264. Chai, J., Liao, X., Giam, L. R. & Mirkin, C. A. Nanoreactors for studying single nanoparticle coarsening. J. Am. Chem. Soc. 134, 158–161 (2012).

    Article  CAS  Google Scholar 

  265. Du, J. S., Chen, P.-C., Dravid, V. P. & Mirkin, C. A. Using STEM to probe the in-situ dynamics of multimetallic nanoparticles grown in polymer nanoreactors. Microsc. Microanal. 23, 872–873 (2017).

    Article  Google Scholar 

  266. Chen, P. C. et al. Tip-directed synthesis of multimetallic nanoparticles. J. Am. Chem. Soc. 137, 9167–9173 (2015).

    Article  CAS  Google Scholar 

  267. Behafarid, F. & Roldan Cuenya, B. Towards the understanding of sintering phenomena at the nanoscale: geometric and environmental effects. Top. Catal. 56, 1542–1559 (2013).

    Article  CAS  Google Scholar 

  268. Chen, P.-C. et al. Polyelemental nanoparticle libraries. Science 352, 1565–1569 (2016).

    Article  CAS  Google Scholar 

  269. Chen, P.-C. et al. Interface and heterostructure design in polyelemental nanoparticles. Science 363, 959–964 (2019).

    Article  CAS  Google Scholar 

  270. Kluender, E. J., Bourgeois, M. R., Cherqui, C. R., Schatz, G. C. & Mirkin, C. A. Multimetallic nanoparticles on mirrors for SERS detection. J. Phys. Chem. C 125, 12784–12791 (2021).

    Article  CAS  Google Scholar 

  271. Chen, P.-C. et al. Structural evolution of three-component nanoparticles in polymer nanoreactors. J. Am. Chem. Soc. 139, 9876–9884 (2017).

    Article  CAS  Google Scholar 

  272. Du, J. S. et al. The structural fate of individual multicomponent metal-oxide nanoparticles in polymer nanoreactors. Angew. Chem. Int. Ed. 56, 7625–7629 (2017).

    Article  CAS  Google Scholar 

  273. Kluender, E. J. et al. Catalyst discovery through megalibraries of nanomaterials. Proc. Natl Acad. Sci. USA 116, 40–45 (2019).

    Article  CAS  Google Scholar 

  274. Huang, L. et al. Catalyst design by scanning probe block copolymer lithography. Proc. Natl Acad. Sci. USA 115, 3764–3769 (2018).

    Article  CAS  Google Scholar 

  275. Shen, B. et al. Synthesis of metal-capped semiconductor nanowires from heterodimer nanoparticle catalysts. J. Am. Chem. Soc. 142, 18324–18329 (2020).

    Article  CAS  Google Scholar 

  276. Yao, Y. et al. High-throughput, combinatorial synthesis of multimetallic nanoclusters. Proc. Natl Acad. Sci. USA 117, 6316–6322 (2020).

    Article  CAS  Google Scholar 

  277. Li, T. et al. Denary oxide nanoparticles as highly stable catalysts for methane combustion. Nat. Catal. 4, 62–70 (2021).

    Article  CAS  Google Scholar 

  278. Yang, C. et al. Overcoming immiscibility toward bimetallic catalyst library. Sci. Adv. 6, eaaz6844 (2020).

    Article  Google Scholar 

  279. Yao, Y. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489–1494 (2018).

    Article  CAS  Google Scholar 

  280. Yao, Y. et al. Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts. Sci. Adv. 6, eaaz0510 (2020).

    Article  CAS  Google Scholar 

  281. Aslam, U., Chavez, S. & Linic, S. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nat. Nanotechnol. 12, 1000–1005 (2017).

    Article  CAS  Google Scholar 

  282. Wang, X. et al. Pd@Pt core–shell concave decahedra: a class of catalysts for the oxygen reduction reaction with enhanced activity and durability. J. Am. Chem. Soc. 137, 15036–15042 (2015).

    Article  CAS  Google Scholar 

  283. Wang, X. et al. Palladium–platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nat. Commun. 6, 7594 (2015).

    Article  Google Scholar 

  284. Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    Article  CAS  Google Scholar 

  285. Huang, L. et al. Multimetallic high-index faceted heterostructured nanoparticles. J. Am. Chem. Soc. 142, 4570–4575 (2020).

    Article  CAS  Google Scholar 

  286. Chen, P.-C. et al. Chain-end functionalized polymers for the controlled synthesis of sub-2 nm particles. J. Am. Chem. Soc. 142, 7350–7355 (2020).

    Article  CAS  Google Scholar 

  287. Oh, E., Golnabi, R., Walker, D. A. & Mirkin, C. A. Electrochemical polymer pen lithography. Small 17, 2100662 (2021).

    Article  CAS  Google Scholar 

  288. Schneider, J. et al. Site-specific deposition of single gold nanoparticles by individual growth in electrohydrodynamically-printed attoliter droplet reactors. Nanoscale 7, 9510–9519 (2015).

    Article  CAS  Google Scholar 

  289. Guardingo, M. et al. Synthesis of nanoscale coordination polymers in femtoliter reactors on surfaces. ACS Nano 10, 3206–3213 (2016).

    Article  CAS  Google Scholar 

  290. Bellido, E., Cardona-Serra, S., Coronado, E. & Ruiz-Molina, D. Assisted-assembly of coordination materials into advanced nanoarchitectures by Dip Pen nanolithography. Chem. Commun. 47, 5175–5177 (2011).

    Article  CAS  Google Scholar 

  291. Carbonell, C. et al. Femtolitre chemistry assisted by microfluidic pen lithography. Nat. Commun. 4, 2173 (2013).

    Article  CAS  Google Scholar 

  292. Du, J. S. et al. Halide perovskite nanocrystal arrays: multiplexed synthesis and size-dependent emission. Sci. Adv. 6, eabc4959 (2020).

    Article  CAS  Google Scholar 

  293. Ibanez, A., Maximov, S., Guiu, A., Chaillout, C. & Baldeck, P. L. Controlled nanocrystallization of organic molecules in sol-gel glasses. Adv. Mater. 10, 1540–1543 (1998).

    Article  CAS  Google Scholar 

  294. Sawitowski, T., Miquel, Y., Heilmann, A. & Schmid, G. Optical properties of quasi one-dimensional chains of gold nanoparticles. Adv. Funct. Mater. 11, 435–440 (2001).

    Article  CAS  Google Scholar 

  295. Wei, Q. et al. Rational design of novel nanostructured arrays based on porous AAO templates for electrochemical energy storage and conversion. Nano Energy 55, 234–259 (2019).

    Article  CAS  Google Scholar 

  296. Kong, X., Zong, K. & Lee, S. S. Nanoconfining optoelectronic materials for enhanced performance and stability. Chem. Mater. 31, 4953–4970 (2019).

    Article  CAS  Google Scholar 

  297. Cheng, S. et al. Facile synthesis of mesoporous gold–silica nanocomposite materials via sol–gel process with nonsurfactant templates. Chem. Mater. 15, 1560–1566 (2003).

    Article  CAS  Google Scholar 

  298. Monnier, V., Sanz, N., Botzung-Appert, E., Bacia, M. & Ibanez, A. Confined nucleation and growth of organic nanocrystals in sol–gel matrices. J. Mater. Chem. 16, 1401–1409 (2006).

    Article  CAS  Google Scholar 

  299. Sanz, N., Baldeck, P. L. & Ibanez, A. Organic nanocrystals embedded in sol–gel glasses for optical applications. Synth. Met. 115, 229–234 (2000).

    Article  CAS  Google Scholar 

  300. Zhao, X.-G., Shi, J.-L., Hu, B., Zhang, L.-X. & Hua, Z.-L. In situ formation of silver nanoparticles inside pore channels of ordered mesoporous silica. Mater. Lett. 58, 2152–2156 (2004).

    Article  CAS  Google Scholar 

  301. Chen, W., Cai, W., Zhang, L., Wang, G. & Zhang, L. Sonochemical processes and formation of gold nanoparticles within pores of mesoporous silica. J. Colloid Interface Sci. 238, 291–295 (2001).

    Article  CAS  Google Scholar 

  302. Zhang, Y., Yuwono, A. H., Li, J. & Wang, J. Highly dispersed gold nanoparticles assembled in mesoporous titania films of cubic configuration. Microporous Mesoporous Mater. 110, 242–249 (2008).

    Article  CAS  Google Scholar 

  303. Fan, W. et al. Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nat. Mater. 7, 984–991 (2008).

    Article  CAS  Google Scholar 

  304. Kumai, Y. et al. Highly ordered platinum nanodot arrays with cubic symmetry in mesoporous thin films. Adv. Mater. 18, 760–762 (2006).

    Article  CAS  Google Scholar 

  305. Fukuoka, A. et al. Template synthesis of nanoparticle arrays of gold and platinum in mesoporous silica films. Nano Lett. 2, 793–795 (2002).

    Article  CAS  Google Scholar 

  306. Fukuoka, A. et al. Template synthesis of nanoparticle arrays of gold, platinum and palladium in mesoporous silica films and powders. J. Mater. Chem. 14, 752–756 (2004).

    Article  CAS  Google Scholar 

  307. Besson, S., Gacoin, T., Ricolleau, C. & Boilot, J.-P. Silver nanoparticle growth in 3D-hexagonal mesoporous silica films. Chem. Commun. 2003, 360–361 (2003).

    Article  CAS  Google Scholar 

  308. Wang, I., Baldeck, P. L., Botzung, E., Sanz, N. & Ibanez, A. Electric-field induced orientation of organic nanocrystals in sol–gel matrix. Opt. Mater. 21, 569–572 (2002).

    Article  Google Scholar 

  309. Li, R., Zhu, X., Shou, D., Zhou, X. & Yan, X. The interparticle coupling effect of gold nanoparticles in confined ordered mesopores enhances high temperature catalytic oxidation. RSC Adv. 6, 88486–88489 (2016).

    Article  CAS  Google Scholar 

  310. Wang, H. H., Han, C. Y., Willing, G. A. & Xiao, Z. Nanowire and nanotube syntheses through self-assembled nanoporous AAO templates. MRS Proc. 775, 4.8 (2003).

    Article  Google Scholar 

  311. Zaraska, L., Sulka, G. D. & Jaskuła, M. Anodic alumina membranes with defined pore diameters and thicknesses obtained by adjusting the anodizing duration and pore opening/widening time. J. Solid State Electrochem. 15, 2427–2436 (2011).

    Article  CAS  Google Scholar 

  312. Lv, X., Hu, G., Tang, J. & Wang, Y. New thoughts into the fabrication of ZnO nanoparticles: confined growth in the channels of AAO membrane and its formation mechanisms. J. Mater. Sci. Mater. Electron. 28, 14163–14169 (2017).

    Article  CAS  Google Scholar 

  313. Ashley, M. J. et al. Templated synthesis of uniform perovskite nanowire arrays. J. Am. Chem. Soc. 138, 10096–10099 (2016).

    Article  CAS  Google Scholar 

  314. Ozel, T., Bourret, G. R. & Mirkin, C. A. Coaxial lithography. Nat. Nanotechnol. 10, 319–324 (2015).

    Article  CAS  Google Scholar 

  315. Fang, J. et al. A general soft-enveloping strategy in the templating synthesis of mesoporous metal nanostructures. Nat. Commun. 9, 521 (2018).

    Article  CAS  Google Scholar 

  316. Kitahara, M. & Kuroda, K. Preparation of highly controlled nanostructured Au within mesopores using reductive deposition in non-polar environments. RSC Adv. 4, 27201–27206 (2014).

    Article  CAS  Google Scholar 

  317. Anaya, M. et al. Strong quantum confinement and fast photoemission activation in CH3NH3PbI3 perovskite nanocrystals grown within periodically mesostructured films. Adv. Opt. Mater. 5, 1601087 (2017).

    Article  CAS  Google Scholar 

  318. Demchyshyn, S. et al. Confining metal-halide perovskites in nanoporous thin films. Sci. Adv. 3, e1700738 (2017).

    Article  CAS  Google Scholar 

  319. Malgras, V. et al. Observation of quantum confinement in monodisperse methylammonium lead halide perovskite nanocrystals embedded in mesoporous silica. J. Am. Chem. Soc. 138, 13874–13881 (2016).

    Article  CAS  Google Scholar 

  320. Malgras, V., Henzie, J., Takei, T. & Yamauchi, Y. Stable blue luminescent CsPbBr3 perovskite nanocrystals confined in mesoporous thin films. Angew. Chem. Int. Ed. 130, 9019–9023 (2018).

    Article  Google Scholar 

  321. Rubino, A. et al. Highly efficient and environmentally stable flexible color converters based on confined CH3NH3PbBr3 nanocrystals. ACS Appl. Mater. Interfaces 10, 38334–38340 (2018).

    Article  CAS  Google Scholar 

  322. Rubino, A., Caliò, L., García-Bennett, A., Calvo, M. E. & Míguez, H. Mesoporous matrices as hosts for metal halide perovskite nanocrystals. Adv. Opt. Mater. 8, 1901868 (2020).

    Article  CAS  Google Scholar 

  323. Qin, L., Park, S., Huang, L. & Mirkin, C. A. On-wire lithography. Science 309, 113–115 (2005).

    Article  CAS  Google Scholar 

  324. Banholzer, M. J., Qin, L., Millstone, J. E., Osberg, K. D. & Mirkin, C. A. On-wire lithography: synthesis, encoding and biological applications. Nat. Protoc. 4, 838–848 (2009).

    Article  CAS  Google Scholar 

  325. Aizenberg, J., Black, A. J. & Whitesides, G. M. Oriented growth of calcite controlled by self-assembled monolayers of functionalized alkanethiols supported on gold and silver. J. Am. Chem. Soc. 121, 4500–4509 (1999).

    Article  CAS  Google Scholar 

  326. Jackman, R. J., Duffy, D. C., Ostuni, E., Willmore, N. D. & Whitesides, G. M. Fabricating large arrays of microwells with arbitrary dimensions and filling them using discontinuous dewetting. Anal. Chem. 70, 2280–2287 (1998).

    Article  CAS  Google Scholar 

  327. Barton, J. E. & Odom, T. W. Mass-limited growth in zeptoliter beakers: a general approach for the synthesis of nanocrystals. Nano Lett. 4, 1525–1528 (2004).

    Article  CAS  Google Scholar 

  328. Wang, L., Lee, M. H., Barton, J., Hughes, L. & Odom, T. W. Shape-control of protein crystals in patterned microwells. J. Am. Chem. Soc. 130, 2142–2143 (2008).

    Article  CAS  Google Scholar 

  329. Briseno, A. L. et al. Patterning organic single-crystal transistor arrays. Nature 444, 913–917 (2006).

    Article  CAS  Google Scholar 

  330. Yoo, W. C., Kumar, S., Penn, R. L., Tsapatsis, M. & Stein, A. Growth patterns and shape development of zeolite nanocrystals in confined syntheses. J. Am. Chem. Soc. 131, 12377–12383 (2009).

    Article  CAS  Google Scholar 

  331. Lin, C. K. et al. Two-step patterning of scalable all-inorganic halide perovskite arrays. ACS Nano 14, 3500–3508 (2020).

    Article  CAS  Google Scholar 

  332. Messina, G. M., Passiu, C., Rossi, A. & Marletta, G. Selective protein trapping within hybrid nanowells. Nanoscale 8, 16511–16519 (2016).

    Article  CAS  Google Scholar 

  333. Wang, Y., Yu, Y., Liu, Y. & Yang, S. Template-confined site-specific electrodeposition of nanoparticle cluster-in-bowl arrays as surface enhanced Raman spectroscopy substrates. ACS Sens. 3, 2343–2350 (2018).

    Article  CAS  Google Scholar 

  334. Zhu, C. et al. Silver nanoparticle-assembled micro-bowl arrays for sensitive SERS detection of pesticide residue. Nanotechnology 31, 205303 (2020).

    Article  CAS  Google Scholar 

  335. Bi, K. et al. Direct electron-beam patterning of transferrable plasmonic gold nanoparticles using a HAuCl4/PVP composite resist. Nanoscale 11, 1245–1252 (2019).

    Article  CAS  Google Scholar 

  336. Liao, X., Huang, Y. K., Mirkin, C. A. & Dravid, V. P. High throughput synthesis of multifunctional oxide nanostructures within nanoreactors defined by beam pen lithography. ACS Nano 11, 4439–4444 (2017).

    Article  CAS  Google Scholar 

  337. Milliron, D. J., Caldwell, M. A. & Wong, H. S. P. Synthesis of metal chalcogenide nanodot arrays using block copolymer-derived nanoreactors. Nano Lett. 7, 3504–3507 (2007).

    Article  CAS  Google Scholar 

  338. Jibril, L., Chen, P.-C., Hu, J., Odom, T. W. & Mirkin, C. A. Massively parallel nanoparticle synthesis in anisotropic nanoreactors. ACS Nano 13, 12408–12414 (2019).

    Article  CAS  Google Scholar 

  339. Wang, D. & Schaaf, P. Solid-state dewetting for fabrication of metallic nanoparticles and influences of nanostructured substrates and dealloying. Phys. Status Solidi A 210, 1544–1551 (2013).

    Article  CAS  Google Scholar 

  340. Thalladi, V. R. & Whitesides, G. M. Crystals of crystals: fabrication of encapsulated and ordered two-dimensional arrays of microcrystals. J. Am. Chem. Soc. 124, 3520–3521 (2002).

    Article  CAS  Google Scholar 

  341. Han, D. et al. Nanopore-templated silver nanoparticle arrays photopolymerized in zero-mode waveguides. Front. Chem. 7, 216 (2019).

    Article  CAS  Google Scholar 

  342. Laramy, C. R., O’Brien, M. N. & Mirkin, C. A. Crystal engineering with DNA. Nat. Rev. Mater. 4, 201–224 (2019).

    Article  CAS  Google Scholar 

  343. McMillan, J. R., Hayes, O. G., Winegar, P. H. & Mirkin, C. A. Protein materials engineering with DNA. Acc. Chem. Res. 52, 1939–1948 (2019).

    Article  CAS  Google Scholar 

  344. Zheng, B. et al. Sterically controlled docking of gold nanoparticles on ferritin surface by DNA hybridization. Nanotechnology 22, 275312 (2011).

    Article  CAS  Google Scholar 

  345. Beyeh, N. K. et al. Crystalline cyclophane–protein cage frameworks. ACS Nano 12, 8029–8036 (2018).

    Article  CAS  Google Scholar 

  346. Kostiainen, M. A. et al. Hierarchical self-assembly and optical disassembly for controlled switching of magnetoferritin nanoparticle magnetism. ACS Nano 5, 6394–6402 (2011).

    Article  CAS  Google Scholar 

  347. Künzle, M., Eckert, T. & Beck, T. Binary protein crystals for the assembly of inorganic nanoparticle superlattices. J. Am. Chem. Soc. 138, 12731–12734 (2016).

    Article  CAS  Google Scholar 

  348. Lach, M., Künzle, M. & Beck, T. Free-standing metal oxide nanoparticle superlattices constructed with engineered protein containers show in crystallo catalytic activity. Chem. Eur. J. 23, 17482–17486 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Sherman Fairchild Foundation, the Air Force Office of Scientific Research award FA9550-16-1-0150, Kairos Ventures and the Air Force Research Laboratory agreement FA8650-15-2-5518. The US Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Research Laboratory or the US Government. L.J. was supported by the National Science Foundation through the National Science Foundation Graduate Research Fellowship Program under grant no. DGE-1842165. Any opinions, findings and conclusions or recommendations expressed in this work are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.A.M., J.H.S., L.J. and S.H.P. wrote and edited the manuscript. J.H.S. and L.J. prepared the first drafts of the figures.

Corresponding author

Correspondence to Chad A. Mirkin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Materials thanks Jeroen Cornelissen, Yadong Yin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swisher, J.H., Jibril, L., Petrosko, S.H. et al. Nanoreactors for particle synthesis. Nat Rev Mater 7, 428–448 (2022). https://doi.org/10.1038/s41578-021-00402-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00402-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing