Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Exploiting the paddle-wheel mechanism for the design of fast ion conductors

Abstract

As an indispensable component in solid-state devices, superionic conductors can exhibit liquid-like and exceptionally high alkali cation conductivity in their crystalline lattices. A fundamental understanding of the nature of superionic behaviour at the atomic level is crucial for exploiting this behaviour in new technologies such as solid-state batteries, but remains a major challenge. Studies of ion transport in numerous materials over the past three decades have provided insight into cation conduction mechanisms. These efforts have mainly emphasized the impact of the static framework on cation diffusivity, whereas the contribution from cation–anion interplay has been largely overlooked. However, recent reports have revealed intriguing observations of the influence of anion rotational dynamics on cation translational processes through the paddle-wheel mechanism. This Review aims to illuminate this rapidly evolving topic, providing a perspective and direction for future breakthroughs. We summarize the polyanion groups that exhibit anion rotational or reorientational features and describe the advanced techniques available for studying the interaction between cation diffusion and anion rotation. Moreover, we identify strategies to stabilize disordered superionic phases at room temperature, thus enabling the paddle-wheel mechanism to be exploited to achieve super-high conductivity in solid electrolytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Features of plastic crystals.
Fig. 2: Timeline of the discovery of rotor phases in simple organic and inorganic salts.
Fig. 3: Rotation of [SO4]2– and [PO4]3– polyanions in inorganic alkali ion conductors.
Fig. 4: Rotation of [BH4] and [BnHn]2– polyanions in inorganic alkali ion conductors.
Fig. 5: Rotation of [PnS4]3– polyanions in Na11Sn2PnX12 (where Pn = P, Sb; X = S, Se) Na-ion conductors.
Fig. 6: Strategies for stabilizing rotor phases to room temperature.
Fig. 7: Evaluating the use of rotor phases in ASSBs.

Similar content being viewed by others

References

  1. Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  Google Scholar 

  2. Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    Article  CAS  Google Scholar 

  3. Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).

    Article  Google Scholar 

  4. Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1287–1291 (2019).

    Article  CAS  Google Scholar 

  5. Kasemchainan, J. et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 18, 1105–1111 (2019).

    Article  CAS  Google Scholar 

  6. Abakumov, A. M., Fedotov, S. S., Antipov, E. V. & Tarascon, J.-M. Solid state chemistry for developing better metal-ion batteries. Nat. Commun. 11, 1–14 (2020).

    Article  CAS  Google Scholar 

  7. Han, F. et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019).

    Article  CAS  Google Scholar 

  8. Yue, J. & Guo, Y.-G. The devil is in the electrons. Nat. Energy 4, 174–175 (2019).

    Article  Google Scholar 

  9. Zhang, Z. et al. New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 11, 1945–1976 (2018).

    Article  CAS  Google Scholar 

  10. Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    Article  CAS  Google Scholar 

  11. Bachman, J. C. et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016).

    Article  CAS  Google Scholar 

  12. Chen, R., Li, Q., Yu, X., Chen, L. & Li, H. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. 120, 6820–6877 (2019).

    Article  CAS  Google Scholar 

  13. Gao, Y. et al. Classical and emerging characterization techniques for investigation of ion transport mechanisms in crystalline fast ionic conductors. Chem. Rev. 120, 5954–6008 (2020).

    Article  CAS  Google Scholar 

  14. Deng, Y. et al. Structural and mechanistic insights into fast lithium-ion conduction in Li4SiO4–Li3PO4 solid electrolytes. J. Am. Chem. Soc. 137, 9136–9145 (2015).

    Article  CAS  Google Scholar 

  15. Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007).

    Article  CAS  Google Scholar 

  16. Zhang, Z. et al. A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life. Adv. Energy Mater. 7, 1601196 (2017).

    Article  CAS  Google Scholar 

  17. Zhang, Z. et al. Correlated migration invokes higher Na+-ion conductivity in NaSICON-type solid electrolytes. Adv. Energy Mater. 9, 1902373 (2019).

    Article  CAS  Google Scholar 

  18. Ma, Q. et al. Scandium-substituted Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid-state reaction method as sodium-ion conductors. Chem. Mater. 28, 4821–4828 (2016).

    Article  CAS  Google Scholar 

  19. Thangadurai, V., Narayanan, S. & Pinzaru, D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43, 4714–4727 (2014).

    Article  CAS  Google Scholar 

  20. Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

    Article  CAS  Google Scholar 

  21. Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    Article  CAS  Google Scholar 

  22. Zhang, Z. et al. Na11Sn2PS12: a new solid state sodium superionic conductor. Energy Environ. Sci. 11, 87–93 (2018).

    Article  CAS  Google Scholar 

  23. Duchardt, M., Ruschewitz, U., Adams, S., Dehnen, S. & Roling, B. Vacancy-controlled Na+ superion conduction in Na11Sn2PS12. Angew. Chem. Int. Ed. 57, 1351–1355 (2018).

    Article  CAS  Google Scholar 

  24. Ramos, E. P. et al. Correlating ion mobility and single crystal structure in sodium-ion chalcogenide-based solid state fast ion conductors: Na11Sn2PnS12 (Pn = Sb, P). Chem. Mater. 30, 7413–7417 (2018).

    Article  CAS  Google Scholar 

  25. Duchardt, M. et al. Superion conductor Na11.1Sn2.1P0.9Se12: lowering the activation barrier of Na+ conduction in quaternary 1–4–5–6 electrolytes. Chem. Mater. 30, 4134–4139 (2018).

    Article  CAS  Google Scholar 

  26. Hayashi, A., Noi, K., Sakuda, A. & Tatsumisago, M. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun. 3, 856 (2012).

    Article  CAS  Google Scholar 

  27. Krauskopf, T. et al. Comparing the descriptors for investigating the influence of lattice dynamics on ionic transport using the superionic conductor Na3PS4–xSex. J. Am. Chem. Soc. 140, 14464–14473 (2018).

    Article  CAS  Google Scholar 

  28. Banerjee, A. et al. Na3SbS4: a solution processable sodium superionic conductor for all-solid-state sodium-ion batteries. Angew. Chem. Int. Ed. 128, 9786–9790 (2016).

    Article  Google Scholar 

  29. Wang, H. et al. An air-stable Na3SbS4 superionic conductor prepared by a rapid and economic synthetic procedure. Angew. Chem. Int. Ed. 55, 8551–8555 (2016).

    Article  CAS  Google Scholar 

  30. Zhang, L. et al. Vacancy-contained tetragonal Na3SbS4 superionic conductor. Adv. Sci. 3, 1600089 (2016).

    Article  CAS  Google Scholar 

  31. Zhang, L. et al. Na3PSe4: a novel chalcogenide solid electrolyte with high ionic conductivity. Adv. Energy Mater. 5, 1501294 (2015).

    Article  CAS  Google Scholar 

  32. Hayashi, A. et al. A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature. Nat. Commun. 10, 5266 (2019).

    Article  CAS  Google Scholar 

  33. Fuchs, T., Culver, S. P., Till, P. & Zeier, W. G. Defect-mediated conductivity enhancements in Na3-xPn1-xWxS4 (Pn = P, Sb) using aliovalent substitutions. ACS Energy Lett. 5, 146–151 (2019).

    Article  CAS  Google Scholar 

  34. Rao, R. P. & Adams, S. Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. Phys. Status Solidi A 208, 1804–1807 (2011).

    Article  CAS  Google Scholar 

  35. Kraft, M. A. et al. Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I). J. Am. Chem. Soc. 139, 10909–10918 (2017).

    Article  CAS  Google Scholar 

  36. Kraft, M. A. et al. I Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1–x Ge xS5I for all-solid-state batteries. J. Am. Chem. Soc. 140, 16330–16339 (2018).

    Article  CAS  Google Scholar 

  37. Adeli, P. et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew. Chem. Int. Ed. 58, 8681–8686 (2019).

    Article  CAS  Google Scholar 

  38. Udovic, T. J. et al. Sodium superionic conduction in Na2B12H12. Chem. Commun. 50, 3750–3752 (2014).

    Article  CAS  Google Scholar 

  39. Udovic, T. J. et al. Exceptional superionic conductivity in disordered sodium decahydro-closo-decaborate. Adv. Mater. 26, 7622–7626 (2014).

    Article  CAS  Google Scholar 

  40. Tang, W. S. et al. Liquid-like ionic conduction in solid lithium and sodium monocarba-closo-decaborates near or at room temperature. Adv. Energy Mater. 6, 1502237 (2016).

    Article  CAS  Google Scholar 

  41. Tang, W. S. et al. Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions. Energy Environ. Sci. 8, 3637–3645 (2015).

    Article  CAS  Google Scholar 

  42. Kim, S. et al. A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries. Nat. Commun. 10, 1081 (2019).

    Article  CAS  Google Scholar 

  43. Fenton, D. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14, 589 (1973).

    Article  CAS  Google Scholar 

  44. Armand, M., Chabagno, J. & Duclot, M. in Fast Ion Transport in Solids: Electrodes and Electrolytes (ed. Vashista, P.) 131 (Elsevier, 1979).

  45. Gray, F. M. Solid Polymer Electrolytes: Fundamentals and Technological Applications (Wiley, 1991).

  46. McLin, M. & Angell, C. Frequency-dependent conductivity, relaxation times, and the conductivity/viscosity coupling problem, in polymer-electrolyte solutions: LiClO4 and NaCF3SO3 in PPO 4000. Solid State Ion. 53, 1027–1036 (1992).

    Article  Google Scholar 

  47. Macfarlane, D. R., Meakin, P., Amini, N. & Forsyth, M. Structural studies of ambient temperature plastic crystal ion conductors. J. Phys. Condens. Matter 13, 8257 (2001).

    Article  CAS  Google Scholar 

  48. MacFarlane, D. R. & Forsyth, M. Plastic crystal electrolyte materials: new perspectives on solid state ionics. Adv. Mater. 13, 957–966 (2001).

    Article  CAS  Google Scholar 

  49. Klein, I. S., Zhao, Z., Davidowski, S. K., Yarger, J. L. & Angell, C. A. A new version of the lithium ion conducting plastic crystal solid electrolyte. Adv. Energy Mater. 8, 1801324 (2018).

    Article  CAS  Google Scholar 

  50. Oh, K. & Kang, K. Planting repulsion centers for faster ionic diffusion in superionic conductors. Angew. Chem. Int. Ed. 59, 18457–18462 (2020).

    Article  CAS  Google Scholar 

  51. Wang, Y. et al. Design principles for solid-state lithium superionic conductors. Nat. Mater. 14, 1026–1031 (2015).

    Article  CAS  Google Scholar 

  52. Muy, S. et al. Lithium conductivity and Meyer–Neldel rule in Li3PO4–Li3VO4–Li4GeO4 lithium superionic conductors. Chem. Mater. 30, 5573–5582 (2018).

    Article  CAS  Google Scholar 

  53. Liu, Y., Wang, S., Nolan, A. M., Ling, C. & Mo, Y. Tailoring the cation lattice for chloride lithium-ion conductors. Adv. Energy Mater. 10, 2002356 (2020).

    Article  CAS  Google Scholar 

  54. Famprikis, T. et al. Under pressure: mechanochemical effects on structure and ion conduction in the sodium-ion solid electrolyte Na3PS4. J. Am. Chem. Soc. 142, 18422–18436 (2020).

    Article  CAS  Google Scholar 

  55. Goodenough, J., Hong, H.-P. & Kafalas, J. Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 11, 203–220 (1976).

    Article  CAS  Google Scholar 

  56. Krauskopf, T., Pompe, C., Kraft, M. A. & Zeier, W. G. Influence of lattice dynamics on Na+ transport in the solid electrolyte Na3PS4-xSex. Chem. Mater. 29, 8859–8869 (2017).

    Article  CAS  Google Scholar 

  57. He, X., Zhu, Y. & Mo, Y. Origin of fast ion diffusion in super-ionic conductors. Nat. Commun. 8, 15893 (2017).

    Article  CAS  Google Scholar 

  58. Aronsson, R. et al. Fast ion conductors with rotating sulphate ions. J. Phys. Colloq. 41, 635–637 (1980).

    Article  Google Scholar 

  59. Lunden, A. Evidence for and against the paddle-wheel mechanism of ion transport in superionic sulphate phases. Solid State Commun. 65, 1237–1240 (1988).

    Article  CAS  Google Scholar 

  60. Wiench, V. D. & Jansen, M. Über Na3PO4: Versuche zur Reindarstellung, Kristallstruktur der Hochtemperaturform. Z. Anorg. Allg. Chem. 461, 101–108 (1980).

    Article  CAS  Google Scholar 

  61. Jansen, M. Volume effect or paddle-wheel mechanism-fast alkali-metal ionic conduction in solids with rotationally disordered complex anions. Angew. Chem. Int. Ed. 30, 1547–1558 (1991).

    Article  Google Scholar 

  62. Kweon, K. E. et al. Structural, chemical, and dynamical frustration: origins of superionic conductivity in closo-borate solid electrolytes. Chem. Mater. 29, 9142–9153 (2017).

    Article  CAS  Google Scholar 

  63. Dimitrievska, M. et al. Carbon incorporation and anion dynamics as synergistic drivers for ultrafast diffusion in superionic LiCB11H12 and NaCB11H12. Adv. Energy Mater. 8, 1703422 (2018).

    Article  CAS  Google Scholar 

  64. Zhang, Z., Roy, P.-N., Li, H., Avdeev, M. & Nazar, L. F. Coupled cation–anion dynamics enhances cation mobility in room-temperature superionic solid-state electrolytes. J. Am. Chem. Soc. 141, 19360–19372 (2019).

    Article  CAS  Google Scholar 

  65. Zhang, Z. et al. Targeting superionic conductivity by turning on anion rotation at room temperature in fast ion conductors. Matter 2, 1667–1684 (2020).

    Article  Google Scholar 

  66. Smith, J. G. & Siegel, D. J. Low-temperature paddlewheel effect in glassy solid electrolytes. Nat. Commun. 11, 1–11 (2020).

    Article  CAS  Google Scholar 

  67. Sun, Y. et al. Rotational cluster anion enabling superionic conductivity in sodium-rich antiperovskite Na3OBH4. J. Am. Chem. Soc. 141, 5640–5644 (2019).

    Article  CAS  Google Scholar 

  68. Famprikis, T. et al. A new superionic plastic polymorph of the Na+ conductor Na3PS4. ACS Mater. Lett. 1, 641–646 (2019).

    Article  CAS  Google Scholar 

  69. Even, J., Carignano, M. & Katan, C. Molecular disorder and translation/rotation coupling in the plastic crystal phase of hybrid perovskites. Nanoscale 8, 6222–6236 (2016).

    Article  CAS  Google Scholar 

  70. Furukawa, Y., Sasaki, A. & Nakamura, D. Electrical conductivity due to ammonium ion transport in (NH4)3[MF6](M: Al, Ga, In) and (NH4)2K[AlF6] crystals. Solid State Ion. 42, 223–226 (1990).

    Article  CAS  Google Scholar 

  71. Cazorla, C. Refrigeration based on plastic crystals. Nature 567, 471 (2019).

    Article  CAS  Google Scholar 

  72. Kvist, A., Bengtzelius, A. & Trolle, U. Diffusion in cubic sulphates. Z. Naturforsch. A 23, 2042–2044 (1968).

    Article  Google Scholar 

  73. Timmermans, J. Plastic crystals: a historical review. J. Phys. Chem. Solids 18, 1–8 (1961).

    Article  CAS  Google Scholar 

  74. Chandra, D., Ding, W., Lynch, R. A. & Tomilinson, J. J. Phase transitions in “plastic crystals”. J. Less Common. Met. 168, 159–167 (1991).

    Article  CAS  Google Scholar 

  75. Murrill, E. & Breed, L. Solid–solid phase transitions determined by differential scanning calorimetry: part I. Tetrahedral substances. Thermochim. Acta 1, 239–246 (1970).

    Article  CAS  Google Scholar 

  76. Tamarit, J. L., Perez-Jubindo, M. & De La Fuente, M. Dielectric studies on orientationally disordered phases of neopentylglycol (and tris(hydroxymethyl aminomethane). J. Phys. Condens. Matter 9, 5469 (1997).

    Article  CAS  Google Scholar 

  77. Desai, P. D. Thermodynamic properties of iron and silicon. J. Phys. Chem. Ref. Data 15, 967–983 (1986).

    Article  CAS  Google Scholar 

  78. Desai, P. D. Thermodynamic properties of manganese and molybdenum. J. Phys. Chem. Ref. Data 16, 91–108 (1987).

    Article  CAS  Google Scholar 

  79. Desai, P. Thermodynamic properties of titanium. Int. J. Thermophys. 8, 781–794 (1987).

    Article  CAS  Google Scholar 

  80. Yamaguchi, K., Kameda, K., Takeda, Y. & Itagaki, K. Measurements of high temperature heat content of the II–VI and IV–VI (II: Zn, Cd IV: Sn, Pb VI: Se, Te) compounds. Mater. Trans. 35, 118–124 (1994).

    Article  CAS  Google Scholar 

  81. Li, B. et al. Colossal barocaloric effects in plastic crystals. Nature 567, 506–510 (2019).

    Article  CAS  Google Scholar 

  82. Macfarlane, D. R., Meakin, P., Sun, J., Amini, N. & Forsyth, M. Pyrrolidinium imides: a new family of molten salts and conductive plastic crystal phases. J. Phys. Chem. B 103, 4164–4170 (1999).

    Article  CAS  Google Scholar 

  83. Marquardt, D., Alsop, R. J., Rheinstädter, M. C. & Harroun, T. A. Neutron scattering at the intersection of heart health science and biophysics. J. Cardiovasc. Dev. Dis. 2, 125–140 (2015).

    Article  CAS  Google Scholar 

  84. Parker, S. F. & Collier, P. Applications of neutron scattering in catalysis. Johns. Matthey Technol. Rev. 60, 132–144 (2016).

    Article  Google Scholar 

  85. Xiang, Y.-X. et al. Toward understanding of ion dynamics in highly conductive lithium ion conductors: some perspectives by solid state NMR techniques. Solid State Ion. 318, 19–26 (2018).

    Article  CAS  Google Scholar 

  86. Epp, V., Gün, O. Z. L., Deiseroth, H.-J. R. & Wilkening, M. Highly mobile ions: low-temperature NMR directly probes extremely fast Li+ hopping in argyrodite-type Li6PS5Br. J. Phys. Chem. Lett. 4, 2118–2123 (2013).

    Article  CAS  Google Scholar 

  87. Hanghofer, I., Gadermaier, B. & Wilkening, H. M. R. Fast rotational dynamics in argyrodite-type Li6PS5X (X: Cl, Br, I) as seen by 31P nuclear magnetic relaxation — on cation–anion coupled transport in thiophosphates. Chem. Mater. 31, 4591–4597 (2019).

    Article  CAS  Google Scholar 

  88. Brinek, M., Hiebl, C., Hogrefe, K., Hanghofer, I. & Wilkening, H. M. R. Structural disorder in Li6PS5I speeds 7Li nuclear spin recovery and slows down 31P relaxation — implications for translational and rotational jumps as seen by nuclear magnetic resonance. J. Phys. Chem. C. 124, 22934–22940 (2020).

    Article  CAS  Google Scholar 

  89. Bée, M. Quasielastic Neutron Scattering: Principles and Applications in Solid State Chemistry, Biology and Materials Science (Adam Hilger, 1988).

  90. Wilmer, D., Feldmann, H., Lechner, R. & Combet, J. Sodium ion conduction in plastic phases: dynamic coupling of cations and anions in the picosecond range. J. Mater. Res. 20, 1973–1978 (2005).

    Article  CAS  Google Scholar 

  91. Belushkin, A., Carlile, C. & Shuvalov, L. The diffusion of protons in the superionic conductor CsHSO4 by quasielastic neutron scattering. J. Phys. Condens. Matter 4, 389 (1992).

    Article  CAS  Google Scholar 

  92. Nishimura, S.-i et al. Experimental visualization of lithium diffusion in LixFePO4. Nat. Mater. 7, 707–711 (2008).

    Article  CAS  Google Scholar 

  93. Gull, S. F. & Daniell, G. J. Image reconstruction from incomplete and noisy data. Nature 272, 686–690 (1978).

    Article  Google Scholar 

  94. Schotte, K.-D., Schotte, U., Bleif, H.-J. & Papoular, R. Maximum-entropy analysis of the cubic phases of KOH and KOD, NaOH and NaOD. Acta Crystallogr. A 51, 739–746 (1995).

    Article  Google Scholar 

  95. Shikanai, F. et al. Neutron powder diffraction study on the high-temperature phase of K3H(SeO4)2. Phys. B 385, 156–159 (2006).

    Article  CAS  Google Scholar 

  96. Yashima, M., Itoh, M., Inaguma, Y. & Morii, Y. Crystal structure and diffusion path in the fast lithium-ion conductor La0.62Li0.16TiO3. J. Am. Chem. Soc. 127, 3491–3495 (2005).

    Article  CAS  Google Scholar 

  97. Yashima, M. et al. Conduction path and disorder in the fast oxide-ion conductor (La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)O2.8. Chem. Phys. Lett. 380, 391–396 (2003).

    Article  CAS  Google Scholar 

  98. Kvist, A. & Lundén, A. Electrical conductivity of solid and molten lithium sulfate. Z. Naturforsch. A 20, 235–238 (1965).

    Article  Google Scholar 

  99. Lunden A. in Fast Ion Transport in Solids. NATO ASI Series E: Applied Sciences Vol. 250 (eds Scrosati, B., Magistris, A., Mari, C. M. & Mariotto, G.) 181–201 (Springer, 1993).

  100. Jansson, B. & Sjoblom, C.-A. Thermal expansion of alkali sulphate mixtures. Z. Naturforsch. 25, 1115–1119 (1970).

    Article  CAS  Google Scholar 

  101. Cohen, M. H. & Turnbull, D. Molecular transport in liquids and glasses. J. Chem. Phys. 31, 1164–1169 (1959).

    Article  CAS  Google Scholar 

  102. Nilsson, L., Thomas, J. & Tofield, B. The structure of the high-temperature solid electrolyte lithium sulphate at 908 K. J. Phys. C 13, 6441 (1980).

    Article  CAS  Google Scholar 

  103. Börjesson, L. & Torell, L. Raman scattering evidence of rotating SO42− in solid sulphate electrolytes. Solid State Ion. 18, 582–586 (1986).

    Article  Google Scholar 

  104. Kvist, A. & Bengtzelius, A. Fast Ion Transport in Solids (ed. Van Gool, W.) 193 (North-Holland, 1973).

  105. Aronsson, R. et al. Solid sulphate electrolytes; the first examples of a strange ion transport mechanism. Radiat. Eff. 75, 79–84 (1983).

    Article  CAS  Google Scholar 

  106. Gundusharma, U. M., Charles, M. & Secco, E. A. Rotating sulfate ion contribution to electrical conductivity in Li2SO4 and LiNaSO4? Solid State Commun. 57, 479–481 (1986).

    Article  CAS  Google Scholar 

  107. Brice, J.-F., Majidi, B. & Kessler, H. Contribution a l’etude de la conductivite ionique de l’orthophosphate Na3PO4. Mater. Res. Bull. 17, 143–150 (1982).

    Article  CAS  Google Scholar 

  108. Irvine, J. & West, A. Sodium ion-conducting solid electrolytes in the system Na3PO4–Na2SO4. J. Solid State Chem. 69, 126–134 (1987).

    Article  CAS  Google Scholar 

  109. Newsam, J. M., Cheetham, A. K. & Tofield, B. C. Structural studies of the high-temperature modifications of sodium and silver orthophosphates, II-Na3PO4 and II-Ag3PO4, and of the low-temperature form I-Ag3PO4. Solid State Ion. 1, 377–393 (1980).

    Article  CAS  Google Scholar 

  110. Milne, S. & West, A. Conductivity of Zr-doped Na3PO4: a new Na+ ion conductor. Mater. Res. Bull. 19, 705–710 (1984).

    Article  CAS  Google Scholar 

  111. Saha, S. et al. Structural polymorphism in Na4Zn(PO4)2 driven by rotational order–disorder transitions and the impact of heterovalent substitutions on Na-ion conductivity. Inorg. Chem. 59, 6528–6540 (2020).

    Article  CAS  Google Scholar 

  112. Orimo, S.-i, Nakamori, Y., Eliseo, J. R., Züttel, A. & Jensen, C. M. Complex hydrides for hydrogen storage. Chem. Rev. 107, 4111–4132 (2007).

    Article  CAS  Google Scholar 

  113. Mohtadi, R. & Orimo, S. The renaissance of hydrides as energy materials. Nat. Rev. Mater. 2, 16091 (2017).

    Article  Google Scholar 

  114. Ikeshoji, T. et al. Diffuse and doubly split atom occupation in hexagonal LiBH4. Appl. Phys. Lett. 95, 221901 (2009).

    Article  CAS  Google Scholar 

  115. Schlesinger, H. I. et al. New developments in the chemistry of diborane and the borohydrides. I. General summary. J. Am. Chem. Soc. 75, 186–190 (1953).

    Article  CAS  Google Scholar 

  116. Matsuo, M., Nakamori, Y., Orimo, S.-I., Maekawa, H. & Takamura, H. Lithium superionic conduction in lithium borohydride accompanied by structural transition. Appl. Phys. Lett. 91, 224103 (2007).

    Article  CAS  Google Scholar 

  117. Filinchuk, Y., Chernyshov, D. & Cerny, R. Lightest borohydride probed by synchrotron X-ray diffraction: experiment calls for a new theoretical revision. J. Phys. Chem. C 112, 10579–10584 (2008).

    Article  CAS  Google Scholar 

  118. Hartman, M. R., Rush, J. J., Udovic, T. J., Bowman, R. C. Jr & Hwang, S.-J. Structure and vibrational dynamics of isotopically labeled lithium borohydride using neutron diffraction and spectroscopy. J. Solid State Chem. 180, 1298–1305 (2007).

    Article  CAS  Google Scholar 

  119. Buchter, F. et al. Dynamical properties and temperature induced molecular disordering of LiBH4 and LiBD4. Phys. Rev. B 78, 094302 (2008).

    Article  CAS  Google Scholar 

  120. Matsuo, M., Takamura, H., Maekawa, H., Li, H.-W. & Orimo, S.-I. Stabilization of lithium superionic conduction phase and enhancement of conductivity of LiBH4 by LiCl addition. Appl. Phys. Lett. 94, 084103 (2009).

    Article  CAS  Google Scholar 

  121. Oguchi, H. et al. Experimental and computational studies on structural transitions in the LiBH4–LiI pseudobinary system. Appl. Phys. Lett. 94, 141912 (2009).

    Article  CAS  Google Scholar 

  122. Maekawa, H. et al. Halide-stabilized LiBH4, a room-temperature lithium fast-ion conductor. J. Am. Chem. Soc. 131, 894–895 (2009).

    Article  CAS  Google Scholar 

  123. Sveinbjörnsson, D. et al. Effect of heat treatment on the lithium ion conduction of the LiBH4–LiI solid solution. J. Phys. Chem. C 117, 3249–3257 (2013).

    Article  CAS  Google Scholar 

  124. Martelli, P. et al. Rotational motion in LiBH4/LiI solid solutions. J. Phys. Chem. A 115, 5329–5334 (2011).

    Article  CAS  Google Scholar 

  125. Chater, P. A., David, W. I., Johnson, S. R., Edwards, P. P. & Anderson, P. A. Synthesis and crystal structure of Li4BH4(NH2)3. Chem. Commun. 19, 2439–2441 (2006).

    Article  CAS  Google Scholar 

  126. Wu, H., Zhou, W., Udovic, T. J., Rush, J. J. & Yildirim, T. Structures and crystal chemistry of Li2BNH6 and Li4BN3H10. Chem. Mater. 20, 1245–1247 (2008).

    Article  CAS  Google Scholar 

  127. Yan, Y. et al. A lithium amide-borohydride solid-state electrolyte with lithium-ion conductivities comparable to liquid electrolytes. Adv. Energy Mater. 7, 1700294 (2017).

    Article  CAS  Google Scholar 

  128. Matsuo, M. et al. Complex hydrides with (BH4) and (NH2) anions as new lithium fast-ion conductors. J. Am. Chem. Soc. 131, 16389–16391 (2009).

    Article  CAS  Google Scholar 

  129. Burankova, T. et al. Reorientational hydrogen dynamics in complex hydrides with enhanced Li+ conduction. J. Phys. Chem. C 121, 17693–17702 (2017).

    Article  CAS  Google Scholar 

  130. Abrahams, S. C. & Kalnajs, J. The lattice constants of the alkali borohydrides and the low-temperature phase of sodium borohydride. J. Chem. Phys. 22, 434–436 (1954).

    Article  CAS  Google Scholar 

  131. Davis, R. L. & Kennard, C. H. Structure of sodium tetradeuteroborate, NaBD4. J. Solid State Chem. 59, 393–396 (1985).

    Article  CAS  Google Scholar 

  132. Verdal, N. et al. Reorientational dynamics of NaBH4 and KBH4. J. Phys. Chem. C 114, 10027–10033 (2010).

    Article  CAS  Google Scholar 

  133. Babanova, O. A., Soloninin, A. V., Stepanov, A. P., Skripov, A. V. & Filinchuk, Y. Structural and dynamical properties of NaBH4 and KBH4: NMR and synchrotron X-ray diffraction studies. J. Phys. Chem. C 114, 3712–3718 (2010).

    Article  CAS  Google Scholar 

  134. Remhof, A. et al. Rotational diffusion in NaBH4. J. Phys. Chem. C 113, 16834–16837 (2009).

    Article  CAS  Google Scholar 

  135. Matsuo, M. et al. Sodium ionic conduction in complex hydrides with [BH4] and [NH2] anions. Appl. Phys. Lett. 100, 203904 (2012).

    Article  CAS  Google Scholar 

  136. Llamas-Jansa, I. et al. Chloride substitution induced by mechano-chemical reactions between NaBH4 and transition metal chlorides. J. Alloys Compd. 530, 186–192 (2012).

    Article  CAS  Google Scholar 

  137. Ravnsbæk, D. B., Rude, L. H. & Jensen, T. R. Chloride substitution in sodium borohydride. J. Solid State Chem. 184, 1858–1866 (2011).

    Article  CAS  Google Scholar 

  138. Verdal, N., Udovic, T. J., Rush, J. J. & Skripov, A. V. Quasielastic neutron scattering study of tetrahydroborate anion dynamical perturbations in sodium borohydride due to partial halide anion substitution. J. Alloys Compd. 645, S513–S517 (2015).

    Article  CAS  Google Scholar 

  139. Lu, Z. & Ciucci, F. Metal borohydrides as electrolytes for solid-state Li, Na, Mg, and Ca batteries: a first-principles study. Chem. Mater. 29, 9308–9319 (2017).

    Article  CAS  Google Scholar 

  140. Orimo, S.-I. et al. Experimental studies on intermediate compound of LiBH4. Appl. Phys. Lett. 89, 021920 (2006).

    Article  CAS  Google Scholar 

  141. Ohba, N. et al. First-principles study on the stability of intermediate compounds of LiBH4. Phys. Rev. B 74, 075110 (2006).

    Article  CAS  Google Scholar 

  142. Hwang, S.-J. et al. NMR confirmation for formation of [B12H12]2- complexes during hydrogen desorption from metal borohydrides. J. Phys. Chem. C 112, 3164–3169 (2008).

    Article  CAS  Google Scholar 

  143. Ellis, I. A., Gaines, D. F. & Schaeffer, R. A convenient preparation of B12H122- salts. J. Am. Chem. Soc. 85, 3885–3885 (1963).

    Article  CAS  Google Scholar 

  144. Verdal, N. et al. Complex high-temperature phase transitions in Li2B12H12 and Na2B12H12. J. Solid State Chem. 212, 81–91 (2014).

    Article  CAS  Google Scholar 

  145. Lu, Z. & Ciucci, F. Structural origin of the superionic Na conduction in Na2B10H10 closo-borates and enhanced conductivity by Na deficiency for high performance solid electrolytes. J. Mater. Chem. A4, 17740–17748 (2016).

    Article  CAS  Google Scholar 

  146. Paskevicius, M. et al. First-order phase transition in the Li2B12H12 system. Phys. Chem. Chem. Phys. 15, 15825–15828 (2013).

    Article  CAS  Google Scholar 

  147. Wu, H. et al. Structural behavior of Li2B10H10. J. Phys. Chem. C 119, 6481–6487 (2015).

    Article  CAS  Google Scholar 

  148. Hanghofer, I. et al. Untangling the structure and dynamics of lithium-rich anti-perovskites envisaged as solid electrolytes for batteries. Chem. Mater. 30, 8134–8144 (2018).

    Article  CAS  Google Scholar 

  149. Wang, F. et al. Dynamics of hydroxyl anions promotes lithium ion conduction in antiperovskite Li2OHCl. Chem. Mater. 32, 8481–8491 (2020).

    Article  CAS  Google Scholar 

  150. Sau, K. & Ikeshoji, T. Origin of fast ion conduction in Na3PS4: insight from molecular dynamics study. J. Phys. Chem. C 124, 20671–20681 (2020).

    Article  CAS  Google Scholar 

  151. Zhou, L. et al. An entropically stabilized fast-ion conductor: Li3.25[Si0.25P0.75]S4. Chem. Mater. 31, 7801–7811 (2019).

    Article  CAS  Google Scholar 

  152. Adams, S. & Rao, R. P. Structural requirements for fast lithium ion migration in Li10GeP2S12. J. Mater. Chem. 22, 7687–7691 (2012).

    Article  CAS  Google Scholar 

  153. Adelstein, N. & Wood, B. C. Role of dynamically frustrated bond disorder in a Li+ superionic solid electrolyte. Chem. Mater. 28, 7218–7231 (2016).

    Article  CAS  Google Scholar 

  154. Wu, E. et al. A stable cathode-solid electrolyte composite for long-cycle-life, high voltage solid-state sodium-ion batteries. Nat. Commun. 12, 1256 (2021).

    Article  CAS  Google Scholar 

  155. Sarkar, A. et al. High-entropy oxides: fundamental aspects and electrochemical properties. Adv. Mater. 31, 1806236 (2019).

    Article  CAS  Google Scholar 

  156. Wang, Y. et al. Structural manipulation approaches towards enhanced sodium ionic conductivity in Na-rich antiperovskites. J. Power Sources 293, 735–740 (2015).

    Article  CAS  Google Scholar 

  157. Soloninin, A. V. et al. Nuclear magnetic resonance study of atomic motion in the mixed borohydride–amide Na2(BH4)(NH2). J. Phys. Chem. C 118, 14805–14812 (2014).

    Article  CAS  Google Scholar 

  158. Kim, S. et al. Fast lithium-ion conduction in atom-deficient closo-type complex hydride solid electrolytes. Chem. Mater. 30, 386–391 (2018).

    Article  CAS  Google Scholar 

  159. Tang, W. S. et al. Stabilizing lithium and sodium fast-ion conduction in solid polyhedral-borate salts at device-relevant temperatures. Energy Storage Mater. 4, 79–83 (2016).

    Article  Google Scholar 

  160. Sorkin, A. & Adams, S. First-principles study of superionic Na9+xSnxM3−xS12 (M = P, Sb). Mater. Adv. 1, 184–196 (2020).

    Article  CAS  Google Scholar 

  161. Kvist, A. & Bengtzelius, A. Diffusion in cubic sulphates: I. Univalent cations in pure lithium sulphate. Z. Naturforsch. A 23, 679–682 (1968).

    Article  CAS  Google Scholar 

  162. Lundén, A. Enhancement of cation mobility in some sulphate phases due to a paddle-wheel mechanism. Solid State Ion. 28, 163–167 (1988).

    Article  Google Scholar 

  163. Lundén, A. & Dissanayake, M. On the ionic conductivity and phase transitions in the Li2SO4–Li2WO4 system and their relation to ion transport mechanism. J. Solid State Chem. 90, 179–184 (1991).

    Article  Google Scholar 

  164. Lundén, A. Cation transport mechanisms in high-temperature rotor phases of sulfates. J. Solid. State Chem. 107, 296–298 (1993).

    Article  Google Scholar 

  165. Lundén, A. Paddle-wheel versus percolation model, revisited. Solid State Ion. 68, 77–80 (1994).

    Article  Google Scholar 

  166. Secco, E. Fast cation conductivity by percolation in alkali sulfate compositions. Solid State Ion. 28, 168–172 (1988).

    Article  Google Scholar 

  167. Secco, E. Paddle wheel mechanism in lithium sulfates: arguments in defense and evidence against. J. Solid State Chem. 96, 366–375 (1992).

    Article  CAS  Google Scholar 

  168. Secco, E. Comments on electrical conductivity and phase diagram of the system Li2SO4–Li3PO4. Solid State Ion. 45, 335–336 (1991).

    Article  CAS  Google Scholar 

  169. Park, K.-H. et al. High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries. ACS Energy Lett. 5, 533–539 (2020).

    Article  CAS  Google Scholar 

  170. Zhou, L. et al. A new halospinel superionic conductor for high-voltage all solid state lithium batteries. Energy Environ. Sci. 13, 2056–2063 (2020).

    Article  CAS  Google Scholar 

  171. Zhou, L. et al. High areal capacity long cycle life 4 V ceramic all solid state Li ion batteries enabled by chloride solid electrolyte. Nat. Energy https://doi.org/10.1038/s41560-021-00952-0 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

L.F.N. gratefully acknowledges generous financial support from the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the US Department of Energy (DOE), the Office of Science, Basic Energy Sciences. L.F.N. also thanks the Natural Sciences and Engineering Research Council of Canada (NSERC) for platform support through the Discovery Grant and Canada Research Chair programmes. Z.Z. acknowledges support from the National Natural Science Foundation of China (22109185) during the final stages of manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. researched the data, and wrote the initial draft of the manuscript with input from L.F.N. All authors discussed the content, edited and reviewed the manuscript before submission.

Corresponding author

Correspondence to Linda F. Nazar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Materials thanks C. Chan, C. Masquelier and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Nazar, L.F. Exploiting the paddle-wheel mechanism for the design of fast ion conductors. Nat Rev Mater 7, 389–405 (2022). https://doi.org/10.1038/s41578-021-00401-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00401-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing