Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Oxide spin-orbitronics: spin–charge interconversion and topological spin textures

Abstract

Oxide materials possess a vast range of functional properties, ranging from superconductivity to multiferroicity, that stem from the interplay between the lattice, charge, spin and orbital degrees of freedom, and electron correlations often play an important role in defining such properties. Historically, spin–orbit coupling was rarely a dominant energy scale in oxides. However, it recently became the focus of intense interest and was exploited to realize various exotic phenomena connected with real-space and reciprocal-space topology that may be harnessed in spintronics applications. In this Review, we survey the recent advances in the new field of oxide spin-orbitronics, with a special focus on spin–charge interconversion through the direct and inverse spin Hall and Edelstein effects, and on the generation and observation of topological spin textures, such as skyrmions. We also highlight the control of spin–orbit-driven effects by ferroelectricity and discuss the future perspectives for the field.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: SrTiO3-based 2D electron gas: origin and spin-dependent band structure.
Fig. 2: Spin-to-charge conversion in iridates and ruthenates.
Fig. 3: Non-volatile electrical control of spin-to-charge conversion in SrTiO3-based 2D electron gases.
Fig. 4: Chiral magnetic textures at ferroelectric domain walls in a BiFeO3 thin film.
Fig. 5: Topological Hall effect in manganite heterostructures.
Fig. 6: Topological Hall effect in SrRuO3 heterostructures.
Fig. 7: Electrical control of skyrmions and topological Hall effect in oxide systems.

References

  1. Soumyanarayanan, A., Reyren, N., Fert, A. & Panagopoulos, C. Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature 539, 509–517 (2016).

    CAS  Google Scholar 

  2. Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol. 8, 839–844 (2013).

    CAS  Google Scholar 

  3. Bibes, M., Villegas, J. E. & Barthélémy, A. Ultrathin oxide films and interfaces for electronics and spintronics. Adv. Phys. 60, 5–84 (2011).

    CAS  Google Scholar 

  4. Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

    CAS  Google Scholar 

  5. Gariglio, S., Caviglia, A. D., Triscone, J.-M. & Gabay, M. A spin–orbit playground: Surfaces and interfaces of transition metal oxides. Rep. Prog. Phys. 82, 012501 (2019).

    CAS  Google Scholar 

  6. Ramesh, R. & Schlom, D. G. Creating emergent phenomena in oxide superlattices. Nat. Rev. Mater. 4, 257–268 (2019).

    Google Scholar 

  7. Varignon, J., Vila, L., Barthélémy, A. & Bibes, M. A new spin for oxide interfaces. Nat. Phys. 14, 322–325 (2018).

    CAS  Google Scholar 

  8. Vaz, D. C. et al. Mapping spin–charge conversion to the band structure in a topological oxide two-dimensional electron gas. Nat. Mater. 18, 1187–1193 (2019).

    CAS  Google Scholar 

  9. Noël, P. et al. Non-volatile electric control of spin–charge conversion in a SrTiO3 Rashba system. Nature 580, 483–486 (2020).

    Google Scholar 

  10. Wang, L. et al. Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures. Nat. Mater. 17, 1087–1094 (2018).

    CAS  Google Scholar 

  11. Chauleau, J.-Y. et al. Electric and antiferromagnetic chiral textures at multiferroic domain walls. Nat. Mater. 19, 386–390 (2020).

    CAS  Google Scholar 

  12. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    CAS  Google Scholar 

  13. Stemmer, S. & James Allen, S. Two-dimensional electron gases at complex oxide interfaces. Annu. Rev. Mater. Res. 44, 151–171 (2014).

    CAS  Google Scholar 

  14. Yu, L. & Zunger, A. A polarity-induced defect mechanism for conductivity and magnetism at polar–nonpolar oxide interfaces. Nat. Commun. 5, 5118 (2014).

    CAS  Google Scholar 

  15. Bristowe, N. C., Ghosez, P., Littlewood, P. B. & Artacho, E. The origin of two-dimensional electron gases at oxide interfaces: Insights from theory. J. Phys. Condens. Matter 26, 143201 (2014).

    CAS  Google Scholar 

  16. Cantoni, C. et al. Electron transfer and ionic displacements at the origin of the 2D electron gas at the LAO/STO interface: direct measurements with atomic-column spatial resolution. Adv. Mater. 24, 3952–3957 (2012).

    CAS  Google Scholar 

  17. Li, L. et al. Very large capacitance enhancement in a two-dimensional electron system. Science 332, 825–828 (2011).

    CAS  Google Scholar 

  18. Chakhalian, J., Millis, A. J. & Rondinelli, J. Whither the oxide interface. Nat. Mater. 11, 92–94 (2012).

    CAS  Google Scholar 

  19. Cen, C. et al. Nanoscale control of an interfacial metal–insulator transition at room temperature. Nat. Mater. 7, 298–302 (2008).

    CAS  Google Scholar 

  20. Thiel, S. T. Quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942–1945 (2006).

    CAS  Google Scholar 

  21. Assmann, E. et al. Oxide heterostructures for efficient solar cells. Phys. Rev. Lett. 110, 078701 (2013).

    Google Scholar 

  22. Li, L., Richter, C., Mannhart, J. & Ashoori, R. C. Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces. Nat. Phys. 7, 762–766 (2011).

    CAS  Google Scholar 

  23. Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007).

    CAS  Google Scholar 

  24. Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008).

    CAS  Google Scholar 

  25. Brinkman, A. et al. Magnetic effects at the interface between non-magnetic oxides. Nat. Mater. 6, 493–496 (2007).

    CAS  Google Scholar 

  26. Trier, F. et al. Quantization of Hall resistance at the metallic interface between an oxide insulator and SrTiO3. Phys. Rev. Lett. 117, 096804 (2016).

    Google Scholar 

  27. Nakagawa, N., Hwang, H. Y. & Muller, D. A. Why some interfaces cannot be sharp. Nat. Mater. 5, 204–209 (2006).

    CAS  Google Scholar 

  28. Chen, Y., Pryds, N., Shen, B., Rijnders, G. & Linderoth, S. Metallic and insulating interfaces of amorphous SrTiO3-based oxide heterostructures. Nano Lett. 5, 3774–3778 (2011).

    Google Scholar 

  29. Lee, S. W., Liu, Y., Heo, J. & Gordon, R. G. Creation and control of two-dimensional electron gas using Al-based amorphous oxides/SrTiO3 heterostructures grown by atomic layer deposition. Nano Lett. 12, 4775–4783 (2012).

    CAS  Google Scholar 

  30. Liu, Z. Q. et al. Origin of the two-dimensional electron gas at LaAlO3/SrTiO3 interfaces: the role of oxygen vacancies and electronic reconstruction. Phys. Rev. X 3, 021010 (2013).

    CAS  Google Scholar 

  31. Sing, M. et al. Profiling the interface electron gas of LaAlO3/SrTiO3 heterostructures with hard X-ray photoelectron spectroscopy. Phys. Rev. Lett. 102, 176805 (2009).

    CAS  Google Scholar 

  32. Takizawa, M., Tsuda, S., Susaki, T., Hwang, H. Y. & Fujimori, A. Electronic charges and electric potential at LaAlO3/SrTiO3 interfaces studied by core-level photoemission spectroscopy. Phys. Rev. B 84, 245124 (2011).

    Google Scholar 

  33. Rubano, A. et al. Spectral and spatial distribution of polarization at the LaAlO3/SrTiO3 interface. Phys. Rev. B 83, 155405 (2011).

    Google Scholar 

  34. Slooten, E. et al. Hard x-ray photoemission and density functional theory study of the internal electric field in SrTiO3/LaAlO3 oxide heterostructures. Phys. Rev. B 87, 085128 (2013).

    Google Scholar 

  35. Xu, P. et al. Reversible formation of 2D electron gas at the LaFeO3/SrTiO3 interface via control of oxygen vacancies. Adv. Mater. 29, 1604447 (2017).

    Google Scholar 

  36. Maznichenko, I. V., Ostanin, S., Ernst, A., Henk, J. & Mertig, I. Formation and tuning of 2D electron gas in perovskite heterostructures. Phys. Status Solidi B 257, 1900540 (2020).

    CAS  Google Scholar 

  37. Oja, R. et al. d0 ferromagnetic interface between nonmagnetic perovskites. Phys. Rev. Lett. 19, 127207 (2012).

    Google Scholar 

  38. Ohtomo, A., Muller, D. A., Grazul, J. L. & Hwang, H. Y. Artificial charge-modulationin atomic-scale perovskite titanate superlattices. Nature 419, 378–380 (2002).

    CAS  Google Scholar 

  39. Ohtsuka, R., Matvejeff, M., Nishio, K., Takahashi, R. & Lippmaa, M. Transport properties of LaTiO3/SrTiO3 heterostructures. Appl. Phys. Lett. 96, 192111 (2010).

    Google Scholar 

  40. Perna, P. et al. Conducting interfaces between band insulating oxides: The LaGaO3/SrTiO3 heterostructure. Appl. Phys. Lett. 97, 152111 (2010).

    Google Scholar 

  41. Hotta, Y., Susaki, T. & Hwang, H. Y. Polar discontinuity doping of the LaVO3/SrTiO3 interface. Phys. Rev. Lett. 99, 236805 (2007).

    CAS  Google Scholar 

  42. Moetakef, P. et al. Transport in ferromagnetic GdTiO3/SrTiO3 heterostructures. Appl. Phys. Lett. 98, 112110 (2011).

    Google Scholar 

  43. He, C. et al. Metal-insulator transitions in epitaxial LaVO3 and LaTiO3 films. Phys. Rev. B 86, 081401 (2012).

    Google Scholar 

  44. Annadi, A. et al. Electronic correlation and strain effects at the interfaces between polar and nonpolar complex oxides. Phys. Rev. B 86, 085450 (2012).

    Google Scholar 

  45. Nazir, S., Singh, N. & Schwingenschlögl, U. Charge transfer mechanism for the formation of metallic states at the KtaO3/SrTiO3 interface. Phys. Rev. B 83, 113107 (2011).

    Google Scholar 

  46. Chen, Y. Z. et al. A high-mobility two-dimensional electron gas at the spinel/perovskite interface of γ-Al2O3/SrTiO3. Nat. Commun. 4, 1371 (2013).

    CAS  Google Scholar 

  47. Santander-Syro, A. F. et al. Two-dimensional electron gas with universal subbands at the surface of SrTiO3. Nature 469, 189–193 (2011).

    CAS  Google Scholar 

  48. Meevasana, W. et al. Creation and control of a two-dimensional electron liquid at the bare SrTiO3 surface. Nat. Mater. 10, 114–118 (2011).

    CAS  Google Scholar 

  49. Rödel, T. C. et al. Universal fabrication of 2D electron systems in functional oxides. Adv. Mater. 28, 1976–1980 (2016).

    Google Scholar 

  50. Vaz, D. C. et al. Tuning up or down the critical thickness in LaAlO3/SrTiO3 through in situ deposition of metal overlayers. Adv. Mater. 29, 1700486 (2017).

    Google Scholar 

  51. Trier, F., Christensen, D. V. & Pryds, N. Electron mobility in oxide heterostructures. J. Phys. D Appl. Phys. 51, 293002 (2018).

    Google Scholar 

  52. Hurand, S. et al. Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO3/SrTiO3 devices. Sci. Rep. 5, 12751 (2015).

    CAS  Google Scholar 

  53. Lesne, E. et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat. Mater. 15, 1261–1266 (2016).

    CAS  Google Scholar 

  54. King, P. D. C. et al. Quasiparticle dynamics and spin–orbital texture of the SrTiO3 two-dimensional electron gas. Nat. Commun. 5, 3414 (2014).

    CAS  Google Scholar 

  55. Zhong, Z., Tóth, A. & Held, K. Theory of spin-orbit coupling at LaAlO3/SrTiO3 interfaces and SrTiO3 surfaces. Phys. Rev. B 87, 161102 (2013).

    Google Scholar 

  56. Khalsa, G. & MacDonald, A. H. Theory of the SrTiO3 surface state two-dimensional electron gas. Phys. Rev. B 86, 125121 (2012).

    Google Scholar 

  57. Caviglia, A. D. et al. Tunable Rashba spin-orbit interaction at oxide interfaces. Phys. Rev. Lett. 104, 126803 (2010).

    CAS  Google Scholar 

  58. Ben Shalom, M. et al. Tuning spin-orbit coupling and superconductivity at the SrTiO3/LaAlO3 interface: a magnetotransport study. Phys. Rev. Lett. 104, 126802 (2010).

    Google Scholar 

  59. Shen, K., Vignale, G. & Raimondi, R. Microscopic theory of the inverse Edelstein effect. Phys. Rev. Lett. 112, 096601 (2014).

    Google Scholar 

  60. Zhang, S. & Fert, A. Conversion between spin and charge currents with topological insulators. Phys. Rev. B 94, 184423 (2016).

    Google Scholar 

  61. Chauleau, J.-Y. et al. Efficient spin-to-charge conversion in the 2D electron liquid at the LAO/STO interface. EPL 116, 17006 (2016).

    Google Scholar 

  62. Şahin, C., Vignale, G. & Flatté, M. E. Strain engineering of the intrinsic spin Hall conductivity in a SrTiO3 quantum well. Phys. Rev. Mater. 3, 014401 (2019).

    Google Scholar 

  63. Telesio, F. et al. Study of equilibrium carrier transfer in LaAlO3/SrTiO3 from an epitaxial La1−xSrxMnO3 ferromagnetic layer. J. Phys. Commun. 2, 025010 (2018).

    Google Scholar 

  64. Manipatruni, S. et al. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 565, 35–42 (2019).

    CAS  Google Scholar 

  65. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    CAS  Google Scholar 

  66. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    CAS  Google Scholar 

  67. Dieny, B. et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 3, 446–459 (2020).

    Google Scholar 

  68. Grollier, J. et al. Neuromorphic spintronics. Nat. Electron. 3, 360–370 (2020).

    Google Scholar 

  69. Wang, Y. et al. Room-temperature giant charge-to-spin conversion at the SrTiO3–LaAlO3 oxide interface. Nano Lett. 17, 7659–7664 (2017).

    CAS  Google Scholar 

  70. Yamanouchi, M., Oyamada, T. & Ohta, H. Current-induced effective magnetic field in La0.67Sr0.33MnO3/LaAlO3/SrTiO3 structures. AIP Adv. 10, 015129 (2020).

    CAS  Google Scholar 

  71. Sinova, J. et al. Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004).

    Google Scholar 

  72. Jin, M.-J. et al. Nonlocal spin diffusion driven by giant spin Hall effect at oxide heterointerfaces. Nano Lett. 17, 36–43 (2017).

    CAS  Google Scholar 

  73. Trier, F. et al. Electric-field control of spin current generation and detection in ferromagnet-free SrTiO3‑based nanodevices. Nano Lett. 20, 395–401 (2020).

    CAS  Google Scholar 

  74. Tokura, Y. & Nagaosa, N. Nonreciprocal responses from non-centrosymmetric quantum materials. Nat. Commun. 9, 3740 (2018).

    Google Scholar 

  75. Dyrdał, A., Barnaś, J. & Fert, A. Spin-momentum-locking inhomogeneities as a source of bilinear magnetoresistance in topological insulators. Phys. Rev. Lett. 124, 046802 (2020).

    Google Scholar 

  76. Vaz, D. C. et al. Determining the Rashba parameter from the bilinear magnetoresistance response in a two-dimensional electron gas. Phys. Rev. Mater. 4, 071001 (2020).

    CAS  Google Scholar 

  77. Choe, D. et al. Gate-tunable giant nonreciprocal charge transport in noncentrosymmetric oxide interfaces. Nat. Commun. 10, 4510 (2019).

    Google Scholar 

  78. He, P. et al. Observation of out-of-plane spin texture in a SrTiO3(111) two-dimensional electron gas. Phys. Rev. Lett. 120, 266802 (2018).

    CAS  Google Scholar 

  79. Zou, K. et al. LaTiO3/KTaO3 interfaces: A new two-dimensional electron gas system. APL Mater. 3, 036104 (2015).

    Google Scholar 

  80. Zhang, H. et al. Highly mobile two-dimensional electron gases with a strong gating effect at the amorphous LaAlO3/KTaO3 interface. ACS Appl. Mater. Interfaces 9, 36456–36461 (2017).

    CAS  Google Scholar 

  81. Zhang, H. et al. High-mobility spin-polarized two-dimensional electron gases at EuO/KTaO3 interfaces. Phys. Rev. Lett. 121, 116803 (2018).

    CAS  Google Scholar 

  82. Wadehra, N. et al. Planar Hall effect and anisotropic magnetoresistance in polar-polar interface of LaVO3-KTaO3 with strong spin-orbit coupling. Nat. Commun. 11, 874 (2020).

    CAS  Google Scholar 

  83. Nakamura, H. & Kimura, T. Electric field tuning of spin-orbit coupling in KTaO3 field-effect transistors. Phys. Rev. B 80, 121308 (2009).

    Google Scholar 

  84. King, P. D. C. et al. Subband structure of a two-dimensional electron gas formed at the polar surface of the strong spin-orbit perovskite KTaO3. Phys. Rev. Lett. 108, 117602 (2012).

    CAS  Google Scholar 

  85. Santander-Syro, A. F. et al. Orbital symmetry reconstruction and strong mass renormalization in the two-dimensional electron gas at the surface of KTaO3. Phys. Rev. B 86, 121107 (2012).

    Google Scholar 

  86. Zhang, H. et al. Thermal spin injection and inverse Edelstein effect of the two-dimensional electron gas at EuO–KTaO3 interfaces. Nano Lett. 19, 1605–1612 (2019).

    CAS  Google Scholar 

  87. Vicente-Arche, L. M. et al. Spin–charge interconversion in KTaO3 2D electron gases. Adv. Mater. 33, 2102102 (2021).

    CAS  Google Scholar 

  88. Liu, C. et al. Two-dimensional superconductivity and anisotropic transport at KTaO3 (111) interfaces. Science 371, 716–721 (2020).

    Google Scholar 

  89. Chen, Z. et al. Electric field control of disorder-tunable superconductivity and the emergence of quantum metal at an oxide interface. Science 372, 721–724 (2020).

    Google Scholar 

  90. Kim, U., Park, C., Kim, Y. M., Shin, J. & Char, K. Conducting interface states at LaInO3/BaSnO3 polar interface controlled by Fermi level. APL Mater. 4, 071102 (2016).

    Google Scholar 

  91. Kim, Y. M. et al. Interface polarization model for a 2-dimensional electron gas at the BaSnO3/LaInO3 interface. Sci. Rep. 9, 16202 (2019).

    Google Scholar 

  92. Kim, H. J. et al. Physical properties of transparent perovskite oxides (Ba,La)SnO3 with high electrical mobility at room temperature. Phys. Rev. B 86, 165205 (2012).

    Google Scholar 

  93. Tsukazaki, A. et al. Quantum Hall effect in polar oxide heterostructures. Science 315, 1388–1391 (2007).

    CAS  Google Scholar 

  94. Tsukazaki, A. et al. Observation of the fractional quantum Hall effect in an oxide. Nat. Mater. 9, 889–893 (2010).

    CAS  Google Scholar 

  95. Kozuka, Y. et al. Rashba spin-orbit interaction in a MgxZn1−xO/ZnO two-dimensional electron gas studied by electrically detected electron spin resonance. Phys. Rev. B 87, 205411 (2013).

    Google Scholar 

  96. Qiu, Z. et al. All-oxide system for spin pumping. Appl. Phys. Lett. 100, 022402 (2012).

    Google Scholar 

  97. Qiu, Z. et al. Experimental investigation of spin Hall effect in indium tin oxide thin film. Appl. Phys. Lett. 103, 182404 (2013).

    Google Scholar 

  98. Fujiwara, K. et al. 5d iridium oxide as a material for spin-current detection. Nat. Commun. 4, 2893 (2013).

    Google Scholar 

  99. Ueda, K. et al. Spin-orbit torque generation in NiFe/IrO2 bilayers. Phys. Rev. B 102, 134432 (2020).

    CAS  Google Scholar 

  100. Qiu, Z., Hou, D., Kikkawa, T., Uchida, K.-i & Saitoh, E. All-oxide spin Seebeck effects. Appl. Phys. Express 8, 083001 (2015).

    Google Scholar 

  101. Sun, Y., Zhang, Y., Liu, C.-X., Felser, C. & Yan, B. Dirac nodal lines and induced spin Hall effect in metallic rutile oxides. Phys. Rev. B 95, 235104 (2017).

    Google Scholar 

  102. Carter, J.-M., Shankar, V. V., Zeb, M. A. & Kee, H.-Y. Semimetal and topological insulator in perovskite iridates. Phys. Rev. B 85, 115105 (2012).

    Google Scholar 

  103. Zeb, M. A. & Kee, H.-Y. Interplay between spin-orbit coupling and Hubbard interaction in SrIrO3 and related Pbnm perovskites. Phys. Rev. B 86, 085149 (2012).

    Google Scholar 

  104. Nie, Y. F. et al. Interplay of spin-orbit interactions, dimensionality, and octahedral rotations in semimetallic SrIrO3. Phys. Rev. Lett. 114, 016401 (2015).

    CAS  Google Scholar 

  105. Liu, Z. T. et al. Direct observation of the Dirac nodes lifting in semimetallic perovskite SrIrO3 thin films. Sci. Rep. 6, 30309 (2016).

    CAS  Google Scholar 

  106. Patri, A. S., Hwang, K., Lee, H.-W. & Kim, Y. B. Theory of large intrinsic spin Hall effect in iridate semimetals. Sci. Rep. 8, 8052 (2018).

    Google Scholar 

  107. Nan, T. et al. Anisotropic spin-orbit torque generation in epitaxial SrIrO3 by symmetry design. Proc. Natl Acad. Sci. USA 116, 16186–16191 (2019).

    CAS  Google Scholar 

  108. Everhardt, A. S. et al. Tunable charge to spin conversion in strontium iridate thin films. Phys. Rev. Mater. 3, 051201 (2019).

    CAS  Google Scholar 

  109. Wang, H. et al. Large spin-orbit torque observed in epitaxial SrIrO3 thin films. Appl. Phys. Lett. 114, 232406 (2019).

    Google Scholar 

  110. Liu, L. et al. Current-induced magnetization switching in all-oxide heterostructures. Nat. Nanotechnol. 14, 939–944 (2019).

    CAS  Google Scholar 

  111. Kirihara, A. et al. Annealing-temperature-dependent voltage-sign reversal in all-oxide spin Seebeck devices using RuO2. J. Phys. D Appl. Phys. 51, 154002 (2018).

    Google Scholar 

  112. Haidar, S. M., Shiomi, Y., Lustikova, J. & Saitoh, E. Enhanced inverse spin Hall contribution at high microwave power levels in La0.67Sr0.33MnO3/SrRuO3 epitaxial bilayers. Appl. Phys. Lett. 107, 152408 (2015).

    Google Scholar 

  113. Richter, T. et al. Spin pumping and inverse spin Hall effect in ultrathin SrRuO3 films around the percolation limit. Phys. Rev. B 96, 184407 (2017).

    Google Scholar 

  114. Emori, S. et al. Spin transport and dynamics in all-oxide perovskite La2/3Sr1/3MnO3/SrRuO3 bilayers probed by ferromagnetic resonance. Phys. Rev. B 94, 224423 (2016).

    Google Scholar 

  115. Wahler, M. et al. Inverse spin Hall effect in a complex ferromagnetic oxide heterostructure. Sci. Rep. 6, 28727 (2016).

    CAS  Google Scholar 

  116. Ou, Y. et al. Exceptionally high, strongly temperature dependent, spin Hall conductivity of SrRuO3. Nano Lett. 19, 3663–3670 (2019).

    CAS  Google Scholar 

  117. Davidson, A., Amin, V. P., Aljuaid, W. S., Haney, P. M. & Fan, X. Perspectives of electrically generated spin currents in ferromagnetic materials. Phys. Lett. A 384, 126228 (2020).

    CAS  Google Scholar 

  118. Lee, J. H. Nonreciprocal transport in a Rashba ferromagnet, delafossite PdCoO2. Nano Lett. 21, 8687–8692 (2021).

    CAS  Google Scholar 

  119. Sunko, V. et al. Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking. Nature 549, 492–496 (2017).

    Google Scholar 

  120. Rojas Sánchez, J. C. et al. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials. Nat. Commun. 4, 2944 (2013).

    Google Scholar 

  121. Kondou, K., Tsai, H., Isshiki, H. & Otani, Y. Efficient spin current generation and suppression of magnetic damping due to fast spin ejection from nonmagnetic metal/indium-tin-oxide interfaces. APL Mater. 6, 101105 (2018).

    Google Scholar 

  122. Karube, S., Kondou, K. & Otani, Y. Experimental observation of spin-to-charge current conversion at non-magnetic metal/Bi2O3 interfaces. Appl. Phys. Express 9, 033001 (2016).

    Google Scholar 

  123. Tsai, H. et al. Clear variation of spin splitting by changing electron distribution at non-magnetic metal/Bi2O3 interfaces. Sci. Rep. 8, 5564 (2018).

    Google Scholar 

  124. Picozzi, S. Ferroelectric Rashba semiconductors as a novel class of multifunctional materials. Front. Phys. 2, 10 (2014).

    Google Scholar 

  125. Di Sante, D., Barone, P., Bertacco, R. & Picozzi, S. Electric control of the giant Rashba effect in bulk GeTe. Adv. Mater. 25, 509–513 (2013).

    Google Scholar 

  126. Kolobov, A. V. et al. Ferroelectric switching in epitaxial GeTe films. APL Mater. 2, 066101 (2014).

    Google Scholar 

  127. Rinaldi, C. et al. Ferroelectric control of the spin texture in GeTe. Nano Lett. 18, 2751–2758 (2018).

    CAS  Google Scholar 

  128. Krempaský, J. et al. Effects of three-dimensional band structure in angle-and spin-resolved photoemission from half-metallic La2/3Sr1/3MnO3. Phys. Rev. B 77, 165120 (2008).

    Google Scholar 

  129. Rinaldi, C. et al. Evidence for spin to charge conversion in GeTe(111). APL Mater. 4, 032501 (2016).

    Google Scholar 

  130. da Silveira, L. G. D., Barone, P. & Picozzi, S. Rashba-Dresselhaus spin-splitting in the bulk ferroelectric oxide BiAlO3. Phys. Rev. B 93, 245159 (2016).

    Google Scholar 

  131. Tao, L. L. & Wang, J. Strain-tunable ferroelectricity and its control of Rashba effect in KtaO3. J. Appl. Phys. 120, 234101 (2016).

    Google Scholar 

  132. Varignon, J., Santamaria, J. & Bibes, M. Electrically switchable and tunable Rashba-type spin splitting in covalent perovskite oxides. Phys. Rev. Lett. 122, 116401 (2019).

    CAS  Google Scholar 

  133. Arras, R. et al. Rashba-like spin-orbit and strain effects in tetragonal PbTiO3. Phys. Rev. B 100, 174415 (2019).

    CAS  Google Scholar 

  134. Djani, H. et al. Rationalizing and engineering Rashba spin-splitting in ferroelectric oxides. NPJ Quantum Mater. 4, 51 (2019).

    Google Scholar 

  135. Mirhosseini, H. et al. Toward a ferroelectric control of Rashba spin-orbit coupling: Bi on BaTiO3(001) from first principles. Phys. Rev. B 81, 073406 (2010).

    Google Scholar 

  136. Lutz, P., Figgemeier, T., El-Fattah, Z. M. A., Bentmann, H. & Reinert, F. Large spin splitting and interfacial states in a Bi/BaTiO3(001) Rashba ferroelectric heterostructure. Phys. Rev. Appl. 7, 044011 (2017).

    Google Scholar 

  137. Zhong, Z. et al. Giant switchable Rashba effect in oxide heterostructures. Adv. Mater. Interfaces 2, 1400445 (2015).

    Google Scholar 

  138. Hemberger, J., Lunkenheimer, P., Viana, R., Böhmer, R. & Loidl, A. Electric-field-dependent dielectric constant and nonlinear susceptibility in SrTiO3. Phys. Rev. B 52, 13159–13162 (1995).

    CAS  Google Scholar 

  139. Bednorz, J. G. & Müller, K. A. Sr1−xCaxTiO3: an XY quantum ferroelectric with transition to randomness. Phys. Rev. Lett. 52, 2289–2292 (1984).

    CAS  Google Scholar 

  140. Bréhin, J. et al. Switchable two-dimensional electron gas based on ferroelectric Ca:SrTiO3. Phys. Rev. Mater. 4, 041002 (2020).

    Google Scholar 

  141. Tuvia, G. et al. Ferroelectric exchange bias affects interfacial electronic states. Adv. Mater. 32, 2000216 (2020).

    CAS  Google Scholar 

  142. Varotto, S. et al. Room-temperature ferroelectric switching of spin-to-charge conversion in germanium telluride. Nat. Electron. 4, 740–747 (2021).

    CAS  Google Scholar 

  143. Manipatruni, S., Nikonov, D. E. & Young, I. A. Beyond CMOS computing with spin and polarization. Nat. Phys. 14, 338–343 (2018).

    CAS  Google Scholar 

  144. Coey, M. D. Noncollinear spin structures. Can. J. Phys. 65, 1210–1232 (1987).

    CAS  Google Scholar 

  145. Gardner, J. S., Gingras, M. J. P. & Greedan, J. E. Magnetic pyrochlore oxides. Rev. Mod. Phys. 82, 53 (2010).

    CAS  Google Scholar 

  146. Murthy, N. S. S., Natera, M. G., Youssef, S. I., Begum, R. J. & Srivastava, C. M. Yafet-Kittel angles in zinc-nickel ferrites. Phys. Rev. 181, 969–977 (1969).

    CAS  Google Scholar 

  147. Yafet, Y. & Kittel, C. Antiferromagnetic arrangements in ferrites. Phys. Rev. 87, 290–294 (1952).

    CAS  Google Scholar 

  148. Takeda, T., Yamaguchi, Y. & Watanabe, H. Magnetic structure of SrFeO3. J. Phys. Soc. Jpn. 33, 967–969 (1972).

    CAS  Google Scholar 

  149. Mostovoy, M. Helicoidal ordering in iron perovskites. Phys. Rev. Lett. 94, 137205 (2005).

    Google Scholar 

  150. Muhlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    CAS  Google Scholar 

  151. Izyumov, Y. A. Modulated, or long-periodic, magnetic structures of crystals. Sov. Phys. Usp. 27, 845 (1984).

    Google Scholar 

  152. Kimura, T. Spiral magnets as magnetoelectrics. Annu. Rev. Mater. Res. 37, 387–413 (2007).

    CAS  Google Scholar 

  153. Sosnowska, I., Neumaier, T. P. & Steichele, E. Spiral magnetic ordering in bismuth ferrite. J. Phys. C Solid State Phys. 15, 4835–4846 (1982).

    CAS  Google Scholar 

  154. Burns, S. R., Paull, O., Juraszek, J., Nagarajan, V. & Sando, D. The experimentalist’s guide to the cycloid, or noncollinear antiferromagnetism in epitaxial BiFeO3. Adv. Mater. 32, 2003711 (2020).

    CAS  Google Scholar 

  155. Sando, D. et al. Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nat. Mater. 12, 641–646 (2013).

    CAS  Google Scholar 

  156. Agbelele, A. et al. Strain and magnetic field induced spin-structure transitions in multiferroic BiFeO3. Adv. Mater. 29, 1602327 (2017).

    Google Scholar 

  157. Haykal, A. et al. Antiferromagnetic textures in BiFeO3 controlled by strain and electric field. Nat. Commun. 11, 1704 (2020).

    CAS  Google Scholar 

  158. Legrand, W. et al. Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets. Nat. Mater. 19, 34–42 (2020).

    CAS  Google Scholar 

  159. Zhang, X., Zhou, Y. & Ezawa, M. Antiferromagnetic skyrmion: stability, creation and manipulation. Sci. Rep. 6, 24795 (2016).

    CAS  Google Scholar 

  160. Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003).

    CAS  Google Scholar 

  161. Hur, N. et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004).

    CAS  Google Scholar 

  162. Katsura, H., Nagaosa, N. & Balatsky, A. V. Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95, 057205 (2005).

    Google Scholar 

  163. Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016).

    CAS  Google Scholar 

  164. Kurumaji, T. Spiral spin structures and skyrmions in multiferroics. Phys. Sci. Rev. https://doi.org/10.1515/psr-2019-0016 (2019).

    Article  Google Scholar 

  165. Seki, S., Yu, X. Z., Ishiwata, S. & Tokura, Y. Observation of skyrmions in a multiferroic material. Science 336, 198–201 (2012).

    CAS  Google Scholar 

  166. Tokura, Y. & Tomioka, Y. Colossal magnetoresistive manganites. J. Magn. Magn. Mater. 200, 1–23 (1999).

    CAS  Google Scholar 

  167. Bowen, M. et al. Spin-polarized tunneling spectroscopy in tunnel junctions with half-metallic electrodes. Phys. Rev. Lett. 95, 137203 (2005).

    CAS  Google Scholar 

  168. Bibes, M. & Barthelemy, A. Oxide spintronics. IEEE Trans. Electron. Devices 54, 1003–1023 (2007).

    CAS  Google Scholar 

  169. Sakai, H. et al. Electron doping in the cubic perovskite SrMnO3: Isotropic metal versus chainlike ordering of Jahn-Teller polarons. Phys. Rev. B 82, 180409 (2010).

    Google Scholar 

  170. Caspi, E. N. et al. Structural and magnetic phase diagram of the two-electron-doped (Ca1−xCex)MnO3 system: Effects of competition among charge, orbital, and spin ordering. Phys. Rev. B 69, 104402 (2004).

    Google Scholar 

  171. Nagai, T. et al. Formation of nanoscale magnetic bubbles in ferromagnetic insulating manganite La7/8Sr1/8MnO3. Appl. Phys. Lett. 101, 162401 (2012).

    Google Scholar 

  172. Yu, X. Z. et al. Biskyrmion states and their current-driven motion in a layered manganite. Nat. Commun. 5, 3198 (2014).

    CAS  Google Scholar 

  173. Yu, X., Tokunaga, Y., Taguchi, Y. & Tokura, Y. Variation of topology in magnetic bubbles in a colossal magnetoresistive manganite. Adv. Mater. 29, 1603958 (2017).

    Google Scholar 

  174. Kotani, A., Nakajima, H., Ishii, Y., Harada, K. & Mori, S. Observation of spin textures in La1−xSrxMnO3 (x = 0.175). AIP Adv. 6, 056403 (2016).

    Google Scholar 

  175. Nagao, M. et al. Direct observation and dynamics of spontaneous skyrmion-like magnetic domains in a ferromagnet. Nat. Nanotechnol. 8, 325–328 (2013).

    CAS  Google Scholar 

  176. Xiang, P.-H., Yamada, H., Akoh, H. & Sawa, A. Phase diagrams of strained Ca1−xCexMnO3 films. J. Appl. Phys. 112, 113703 (2012).

    Google Scholar 

  177. Vistoli, L. et al. Giant topological Hall effect in correlated oxide thin films. Nat. Phys. 15, 67–72 (2019).

    CAS  Google Scholar 

  178. Nakazawa, K. & Kohno, H. Weak coupling theory of topological Hall effect. Phys. Rev. B 99, 174425 (2019).

    CAS  Google Scholar 

  179. Nakazawa, K., Bibes, M. & Kohno, H. Topological Hall effect from strong to weak coupling. J. Phys. Soc. Jpn. 87, 033705 (2018).

    Google Scholar 

  180. Skoropata, E. et al. Interfacial tuning of chiral magnetic interactions for large topological Hall effects in LaMnO3/SrIrO3 heterostructures. Sci. Adv. 6, eaaz3902 (2020).

    CAS  Google Scholar 

  181. Li, Y. et al. Emergent topological Hall effect in La0.7Sr0.3MnO3/SrIrO3 heterostructures. ACS Appl. Mater. Interfaces 11, 21268–21274 (2019).

    CAS  Google Scholar 

  182. Mohanta, N., Dagotto, E. & Okamoto, S. Topological Hall effect and emergent skyrmion crystal at manganite-iridate oxide interfaces. Phys. Rev. B 100, 064429 (2019).

    CAS  Google Scholar 

  183. Koster, G. et al. Structure, physical properties, and applications of SrRuO3 thin films. Rev. Mod. Phys. 84, 253–298 (2012).

    CAS  Google Scholar 

  184. Matsuno, J. et al. Interface-driven topological Hall effect in SrRuO3-SrIrO3 bilayer. Sci. Adv. 2, e1600304 (2016).

    Google Scholar 

  185. Pang, B. et al. Spin-glass-like behavior and topological Hall effect in SrRuO3/SrIrO3 superlattices for oxide spintronics applications. ACS Appl. Mater. Interfaces 9, 3201–3207 (2017).

    CAS  Google Scholar 

  186. Meng, K.-Y. et al. Observation of nanoscale skyrmions in SrIrO3/SrRuO3 bilayers. Nano Lett. 19, 3169–3175 (2019).

    CAS  Google Scholar 

  187. Ziese, M., Jin, L. & Lindfors-Vrejoiu, I. Unconventional anomalous Hall effect driven by oxygen-octahedra-tailoring of the SrRuO3 structure. J. Phys. Mater. 2, 034008 (2019).

    CAS  Google Scholar 

  188. Gu, Y. et al. Interfacial oxygen-octahedral-tilting-driven electrically tunable topological Hall effect in ultrathin SrRuO3 films. J. Phys. D Appl. Phys. 52, 404001 (2019).

    CAS  Google Scholar 

  189. Qin, Q. et al. Emergence of topological Hall effect in a SrRuO3 single layer. Adv. Mater. 31, 1807008 (2019).

    Google Scholar 

  190. Kan, D., Kobayashi, K. & Shimakawa, Y. Electric field induced modulation of transverse resistivity anomalies in ultrathin SrRuO3 epitaxial films. Phys. Rev. B 101, 144405 (2020).

    CAS  Google Scholar 

  191. Wang, L. et al. Controllable thickness inhomogeneity and Berry curvature engineering of anomalous Hall effect in SrRuO3 ultrathin films. Nano Lett. 20, 2468–2477 (2020).

    CAS  Google Scholar 

  192. Huang, H. et al. Detection of the chiral spin structure in ferromagnetic SrRuO3 thin film. ACS Appl. Mater. Interfaces 12, 37757–37763 (2020).

    CAS  Google Scholar 

  193. Malsch, G. et al. Correlating the nanoscale structural, magnetic, and magneto-transport properties in SrRuO3-based perovskite thin films: implications for oxide skyrmion devices. ACS Appl. Nano Mater. 3, 1182–1190 (2020).

    CAS  Google Scholar 

  194. Seddon, S. D. et al. Real-space observation of ferroelectrically induced magnetic spin crystal in SrRuO3. Nat. Commun. 12, 2007 (2021).

    CAS  Google Scholar 

  195. Miao, L. et al. Strain relaxation induced transverse resistivity anomalies in SrRuO3 thin films. Phys. Rev. B 102, 064406 (2020).

    CAS  Google Scholar 

  196. Kimbell, G. et al. Two-channel anomalous Hall effect in SrRuO3. Phys. Rev. Mater. 4, 054414 (2020).

    CAS  Google Scholar 

  197. van Thiel, T. C., Groenendijk, D. J. & Caviglia, A. D. Extraordinary Hall balance in ultrathin SrRuO3 bilayers. J. Phys. Mater. 3, 025005 (2020).

    Google Scholar 

  198. Groenendijk, D. J. et al. Berry phase engineering at oxide interfaces. Phys. Rev. Res. 2, 023404 (2020).

    CAS  Google Scholar 

  199. Fang, Z. The anomalous Hall effect and magnetic monopoles in momentum space. Science 302, 92–95 (2003).

    CAS  Google Scholar 

  200. Thiaville, A., Rohart, S., Jué, É., Cros, V. & Fert, A. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. EPL 100, 57002 (2012).

    Google Scholar 

  201. Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. Chiral spin torque at magnetic domain walls. Nat. Nanotechnol. 8, 527–533 (2013).

    CAS  Google Scholar 

  202. Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).

    CAS  Google Scholar 

  203. Hamadeh, A. et al. Full control of the spin-wave damping in a magnetic insulator using spin-orbit torque. Phys. Rev. Lett. 113, 197203 (2014).

    CAS  Google Scholar 

  204. Demidov, V. E. et al. Direct observation of dynamic modes excited in a magnetic insulator by pure spin current. Sci. Rep. 6, 32781 (2016).

    CAS  Google Scholar 

  205. Collet, M. et al. Generation of coherent spin-wave modes in yttrium iron garnet microdiscs by spin–orbit torque. Nat. Commun. 7, 10377 (2016).

    CAS  Google Scholar 

  206. Avci, C. O. et al. Current-induced switching in a magnetic insulator. Nat. Mater. 16, 309–314 (2017).

    CAS  Google Scholar 

  207. Shao, Q. et al. Role of dimensional crossover on spin-orbit torque efficiency in magnetic insulator thin films. Nat. Commun. 9, 3612 (2018).

    Google Scholar 

  208. Vélez, S. et al. High-speed domain wall racetracks in a magnetic insulator. Nat. Commun. 10, 4750 (2019).

    Google Scholar 

  209. Avci, C. O. Interface-driven chiral magnetism and current-driven domain walls in insulating magnetic garnets. Nat. Nanotechnol. 14, 561–566 (2019).

    CAS  Google Scholar 

  210. Ahmed, A. S. et al. Spin-Hall topological Hall effect in highly tunable Pt/ferrimagnetic-insulator bilayers. Nano Lett. 19, 5683–5688 (2019).

    CAS  Google Scholar 

  211. Shao, Q. et al. Topological Hall effect at above room temperature in heterostructures composed of a magnetic insulator and a heavy metal. Nat. Electron. 2, 182–186 (2019).

    CAS  Google Scholar 

  212. Shao, Q. et al. Exploring interfacial exchange coupling and sublattice effect in heavy metal/ferrimagnetic insulator heterostructures using Hall measurements, x-ray magnetic circular dichroism, and neutron reflectometry. Phys. Rev. B 99, 104401 (2019).

    CAS  Google Scholar 

  213. Xia, S. et al. Interfacial Dzyaloshinskii-Moriya interaction between ferromagnetic insulator and heavy metal. Appl. Phys. Lett. 116, 052404 (2020).

    CAS  Google Scholar 

  214. Ding, S. et al. Interfacial Dzyaloshinskii-Moriya interaction and chiral magnetic textures in a ferrimagnetic insulator. Phys. Rev. B 100, 100406 (2019).

    CAS  Google Scholar 

  215. Büttner, F. et al. Thermal nucleation and high-resolution imaging of submicrometer magnetic bubbles in thin thulium iron garnet films with perpendicular anisotropy. Phys. Rev. Mater. 4, 011401 (2020).

    Google Scholar 

  216. Caretta, L. et al. Interfacial Dzyaloshinskii-Moriya interaction arising from rare-earth orbital magnetism in insulating magnetic oxides. Nat. Commun. 11, 1090 (2020).

    CAS  Google Scholar 

  217. Ding, S. et al. Identifying the origin of the nonmonotonic thickness dependence of spin-orbit torque and interfacial Dzyaloshinskii-Moriya interaction in a ferrimagnetic insulator heterostructure. Phys. Rev. B 102, 054425 (2020).

    CAS  Google Scholar 

  218. Wang, H. et al. Chiral spin-wave velocities induced by all-garnet interfacial Dzyaloshinskii-Moriya interaction in ultrathin yttrium iron garnet films. Phys. Rev. Lett. 124, 027203 (2020).

    CAS  Google Scholar 

  219. Gross, I. et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017).

    CAS  Google Scholar 

  220. Lee, A. J. et al. Investigation of the role of rare-earth elements in spin-Hall topological Hall effect in Pt/ferrimagnetic-garnet bilayers. Nano Lett. 20, 4667–4672 (2020).

    CAS  Google Scholar 

  221. Li, P. et al. Topological Hall effect in a topological insulator interfaced with a magnetic insulator. Nano Lett. 21, 84–90 (2020).

    Google Scholar 

  222. Jani, H. et al. Antiferromagnetic half-skyrmions and bimerons at room temperature. Nature 590, 74–79 (2021).

    CAS  Google Scholar 

  223. Maccariello, D. et al. Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature. Nat. Nanotechnol. 13, 233–237 (2018).

    CAS  Google Scholar 

  224. Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).

    CAS  Google Scholar 

  225. Legrand, W. et al. Room-temperature current-induced generation and motion of sub-100 nm skyrmions. Nano Lett. 17, 2703–2712 (2017).

    CAS  Google Scholar 

  226. Schott, M. et al. The skyrmion switch: turning magnetic skyrmion bubbles on and off with an electric field. Nano Lett. 17, 3006–3012 (2017).

    CAS  Google Scholar 

  227. White, J. S. et al. Electric-field-induced skyrmion distortion and giant lattice rotation in the magnetoelectric insulator Cu2OSeO3. Phys. Rev. Lett. 113, 107203 (2014).

    CAS  Google Scholar 

  228. Huang, P. et al. In situ electric field skyrmion creation in magnetoelectric Cu2OSeO3. Nano Lett. 18, 5167–5171 (2018).

    CAS  Google Scholar 

  229. Ohuchi, Y. et al. Electric-field control of anomalous and topological Hall effects in oxide bilayer thin films. Nat. Commun. 9, 213 (2018).

    Google Scholar 

  230. Vaz, D. C., Barthélémy, A. & Bibes, M. Oxide spin-orbitronics: New routes towards low-power electrical control of magnetization in oxide heterostructures. Jpn. J. Appl. Phys. 57, 0902A4 (2018).

    Google Scholar 

  231. Ahadi, K. et al. Enhancing superconductivity in SrTiO3 films with strain. Sci. Adv. 5, eaaw0120 (2019).

    CAS  Google Scholar 

  232. Barthelemy, A. et al. Quasi-two-dimensional electron gas at the oxide interfaces for topological quantum physics. EPL 133, 17001 (2021).

    CAS  Google Scholar 

  233. Ohya, S. et al. Efficient intrinsic spin-to-charge current conversion in an all-epitaxial single-crystal perovskite-oxide heterostructure of La0.67Sr0.33MnO3/LaAlO3/SrTiO3. Phys. Rev. Res. 2, 012014 (2020).

    CAS  Google Scholar 

  234. Zhang, W. et al. Spin galvanic effect at the conducting SrTiO3 surfaces. Appl. Phys. Lett. 109, 262402 (2016).

    Google Scholar 

  235. Nakamura, M. et al. Emergence of topological Hall effect in half-metallic manganite thin films by tuning perpendicular magnetic anisotropy. J. Phys. Soc. Jpn. 87, 074704 (2018).

    Google Scholar 

Download references

Acknowledgements

The authors thank A. Caviglia and M. Cuoco for fruitful discussions and S. Vélez for the critical reading of this manuscript. This work received support from the ERC Advanced Grant no. 833973 ‘FRESCO’, the QuantERA project ‘QUANTOX’, the French National Research Agency (ANR) as part of the ‘Investissement d’Avenir’ programme (LABEX NanoSaclay, ref. ANR-10-LABX-0035) through project ‘AXION’ and the Laboratoire d’Excellence LANEF (ANR-10-LABX-51-01), ANR project OISO (ANR-17-CE24-0026-03) and ANR project CONTRABASS (ANR-19-CE24-CE24-0023). F.T. acknowledges support by research grant 37338 (SANSIT) from Villum Fonden. P.N. acknowledges the support of the ETH Zurich Postdoctoral Fellowship programme. J.-P.A. acknowledges support from the ‘Institut Universitaire de France’ and from the French National Research Agency in the framework of the ‘Investissements d’avenir’ programme (ANR-15-IDEX-02).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of this Review.

Corresponding author

Correspondence to Manuel Bibes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Materials thanks Anand Bhattacharya and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trier, F., Noël, P., Kim, JV. et al. Oxide spin-orbitronics: spin–charge interconversion and topological spin textures. Nat Rev Mater 7, 258–274 (2022). https://doi.org/10.1038/s41578-021-00395-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00395-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing