Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The electrical conductivity of solution-processed nanosheet networks

Abstract

Solution-processed networks of 2D nanosheets are promising for a range of applications in the field of printed electronics. However, the electrical performance of these networks — represented, for example, by the mobility — is almost always inferior to that of the individual nanosheets. In this Review, we highlight the central role that the inter-sheet junctions play in determining the electrical characteristics of such networks. After briefly reviewing ink formulation and printing methods, we use a selection of electronic applications as examples to demonstrate the dependence of network conductivity on network morphology. We show the network morphology to be heavily influenced by the deposition method, the post-treatment regime and the nanosheet properties. In turn, the morphology of the network fundamentally determines the properties of the inter-sheet junctions, which, ultimately, control the electrical performance of the network. We use reported electrical data to show that three main conduction regimes exist: the network conductivity can be limited by the junctions, by a combination of junction and material properties or, very rarely, by the material properties. Using a meta-analysis of published data, we propose simple models relating network conductivity and mobility to the junction resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Exfoliation and inks.
Fig. 2: Nanosheet-network properties.
Fig. 3: Network morphology.
Fig. 4: Nanosheet dimensions.
Fig. 5: Summary of electrical properties of nanosheet networks extracted from the literature.
Fig. 6: Properties affecting junction resistance.

Similar content being viewed by others

References

  1. Akinwande, D. et al. A review on mechanics and mechanical properties of 2D materials — Graphene and beyond. Extreme Mech. Lett. 13, 42–77 (2017).

    Article  Google Scholar 

  2. Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015).

    Article  CAS  Google Scholar 

  3. Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018).

    Article  CAS  Google Scholar 

  4. Das, S., Chen, H.-Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013).

    Article  CAS  Google Scholar 

  5. Zhang, Y., Ye, J., Matsuhashi, Y. & Iwasa, Y. Ambipolar MoS2 thin flake transistors. Nano Lett. 12, 1136–1140 (2012).

    Article  CAS  Google Scholar 

  6. Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).

    Article  CAS  Google Scholar 

  7. Cheng, R. et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction pn diodes. Nano Lett. 14, 5590–5597 (2014).

    Article  CAS  Google Scholar 

  8. Salehzadeh, O., Tran, N. H., Liu, X., Shih, I. & Mi, Z. Exciton kinetics, quantum efficiency, and efficiency droop of monolayer MoS2 light-emitting devices. Nano Lett. 14, 4125–4130 (2014).

    Article  CAS  Google Scholar 

  9. Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol. 9, 268–272 (2014).

    Article  CAS  Google Scholar 

  10. Cho, A.-J., Song, M.-K., Kang, D.-W. & Kwon, J.-Y. Two-dimensional WSe2/MoS2 p–n heterojunction-based transparent photovoltaic cell and its performance enhancement by fluoropolymer passivation. ACS Appl. Mater. Interfaces 10, 35972–35977 (2018).

    Article  CAS  Google Scholar 

  11. Monajjemi, M. Metal-doped graphene layers composed with boron nitride–graphene as an insulator: a nano-capacitor. J. Mol. Model. 20, 2507 (2014).

    Article  Google Scholar 

  12. Xu, Z. et al. Large-area growth of multi-layer hexagonal boron nitride on polished cobalt foils by plasma-assisted molecular beam epitaxy. Sci. Rep. 7, 43100 (2017).

    Article  CAS  Google Scholar 

  13. Zheng, Y. et al. Gate-controlled nonvolatile graphene-ferroelectric memory. Appl. Phys. Lett. 94, 163505 (2009).

    Article  Google Scholar 

  14. Hong, A. J. et al. Graphene flash memory. ACS Nano 5, 7812–7817 (2011).

    Article  CAS  Google Scholar 

  15. Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

    Article  CAS  Google Scholar 

  16. Torrisi, F. et al. Inkjet-printed graphene electronics. ACS Nano 6, 2992–3006 (2012).

    Article  CAS  Google Scholar 

  17. Hu, G. et al. Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 47, 3265–3300 (2018).

    Article  CAS  Google Scholar 

  18. Garlapati, S. K. et al. Printed electronics based on inorganic semiconductors: from processes and materials to devices. Adv. Mater. 30, 1707600 (2018).

    Article  Google Scholar 

  19. Bonaccorso, F., Bartolotta, A., Coleman, J. N. & Backes, C. 2D-crystal-based functional inks. Adv. Mater. 28, 6136–6166 (2016).

    Article  CAS  Google Scholar 

  20. Barwich, S. et al. On the relationship between morphology and conductivity in nanosheet networks. Carbon 171, 306–319 (2021).

    Article  CAS  Google Scholar 

  21. Kelly, A. G. et al. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 356, 69–72 (2017).

    Article  CAS  Google Scholar 

  22. Higgins, T. M. et al. Electrolyte-gated n-type transistors produced from aqueous inks of WS2 nanosheets. Adv. Funct. Mater. 29, 1804387 (2018).

    Article  Google Scholar 

  23. Finn, D. J. et al. Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications. J. Mater. Chem. C 2, 925–932 (2014).

    Article  CAS  Google Scholar 

  24. Ghosh, S. et al. Ultrafast intrinsic photoresponse and direct evidence of sub-gap states in liquid phase exfoliated MoS2 thin films. Sci. Rep. 5, 1172 (2015).

    Article  Google Scholar 

  25. Kelly, A. G., Finn, D., Harvey, A., Hallam, T. & Coleman, J. N. All-printed capacitors from graphene-BN-graphene nanosheet heterostructures. Appl. Phys. Lett. 109, 023107 (2016).

    Article  Google Scholar 

  26. Worsley, R. et al. All-2D material inkjet-printed capacitors: toward fully printed integrated circuits. ACS Nano 13, 54–60 (2018).

    Article  Google Scholar 

  27. Carey, T. et al. Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nat. Commun. 8, 1202 (2017).

    Article  Google Scholar 

  28. Zhang, C. et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10, 1795 (2019).

    Article  Google Scholar 

  29. Parvez, K. et al. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136, 6083–6091 (2014).

    Article  CAS  Google Scholar 

  30. Guyot-Sionnest, P. Electrical transport in colloidal quantum dot films. J. Phys. Chem. Lett. 3, 1169–1175 (2012).

    Article  CAS  Google Scholar 

  31. Nirmalraj, P. N., Lyons, P. E., De, S., Coleman, J. N. & Boland, J. J. Electrical connectivity in single-walled carbon nanotube networks. Nano Lett. 9, 3890–3895 (2009).

    Article  CAS  Google Scholar 

  32. Nirmalraj, P. N., Lutz, T., Kumar, S., Duesberg, G. S. & Boland, J. J. Nanoscale mapping of electrical resistivity and connectivity in graphene strips and networks. Nano Lett. 11, 16–22 (2011).

    Article  CAS  Google Scholar 

  33. Cunningham, G., Hanlon, D., McEvoy, N., Duesberg, G. S. & Coleman, J. N. Large variations in both dark- and photoconductivity in nanosheet networks as nanomaterial is varied from MoS2 to WTe2. Nanoscale 7, 198–208 (2014).

    Article  Google Scholar 

  34. Huang, Q. & Zhu, Y. Printing conductive nanomaterials for flexible and stretchable electronics: a review of materials, processes, and applications. Adv. Mater. Technol. 4, 1800546 (2019).

    Article  Google Scholar 

  35. Ng, L. W. T. et al. Printing of Graphene and Related 2D Materials (Springer, 2019).

  36. Torrisi, F. & Carey, T. Graphene, related two-dimensional crystals and hybrid systems for printed and wearable electronics. Nano Today 23, 73–96 (2018).

    Article  CAS  Google Scholar 

  37. Witomska, S., Leydecker, T., Ciesielski, A. & Samorì, P. Production and patterning of liquid phase–exfoliated 2D sheets for applications in optoelectronics. Adv. Funct. Mater. 29, 1901126 (2019).

    Article  Google Scholar 

  38. Paton, K. R. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624–630 (2014).

    Article  CAS  Google Scholar 

  39. Varrla, E. et al. Large-scale production of size-controlled MoS2 nanosheets by shear exfoliation. Chem. Mater. 27, 1129–1139 (2015).

    Article  CAS  Google Scholar 

  40. Secor, E. B. et al. Enhanced conductivity, adhesion, and environmental stability of printed graphene inks with nitrocellulose. Chem. Mater. 29, 2332–2340 (2017).

    Article  CAS  Google Scholar 

  41. Biccai, S. et al. Exfoliation of 2D materials by high shear mixing. 2D Mater. 6, 015008 (2018).

    Article  Google Scholar 

  42. Del Rio Castillo, A. E. et al. High-yield production of 2D crystals by wet-jet milling. Mater. Horiz. 5, 890–904 (2018).

    Article  Google Scholar 

  43. Bellani, S. et al. Scalable production of graphene inks via wet-jet milling exfoliation for screen-printed micro-supercapacitors. Adv. Funct. Mater. 29, 1807659 (2019).

    Article  Google Scholar 

  44. Paton, K. R., Anderson, J., Pollard, A. J. & Sainsbury, T. Production of few-layer graphene by microfluidization. Mater. Res. Express 4, 025604 (2017).

    Article  Google Scholar 

  45. Karagiannidis, P. G. et al. Microfluidization of graphite and formulation of graphene-based conductive inks. ACS Nano 11, 2742–2755 (2017).

    Article  CAS  Google Scholar 

  46. Xu, Y., Cao, H., Xue, Y., Li, B. & Cai, W. Liquid-phase exfoliation of graphene: an overview on exfoliation media, techniques, and challenges. Nanomaterials 8, 942 (2018).

    Article  Google Scholar 

  47. Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008).

    Article  CAS  Google Scholar 

  48. Lotya, M. et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611–3620 (2009).

    Article  CAS  Google Scholar 

  49. May, P., Khan, U., Hughes, J. M. & Coleman, J. N. Correction to “Role of solubility parameters in understanding the steric stabilization of exfoliated two-dimensional nanosheets by adsorbed polymers”. J. Phys. Chem. C 116, 24390–24391 (2012).

    Article  CAS  Google Scholar 

  50. Backes, C. et al. Equipartition of energy defines the size–thickness relationship in liquid-exfoliated nanosheets. ACS Nano 13, 7050–7061 (2019).

    Article  CAS  Google Scholar 

  51. Li, Z. et al. Mechanisms of liquid-phase exfoliation for the production of graphene. ACS Nano 14, 10976–10985 (2020).

    Article  CAS  Google Scholar 

  52. Backes, C. et al. Production of highly monolayer enriched dispersions of liquid-exfoliated nanosheets by liquid cascade centrifugation. ACS Nano 10, 1589–1601 (2016).

    Article  CAS  Google Scholar 

  53. Ott, S. et al. Impact of the MoS2 starting material on the dispersion quality and quantity after liquid phase exfoliation. Chem. Mater. 31, 8424–8431 (2019).

    Article  CAS  Google Scholar 

  54. García-Dalí, S. et al. Aqueous cathodic exfoliation strategy toward solution-processable and phase-preserved MoS2 nanosheets for energy storage and catalytic applications. ACS Appl. Mater. Interfaces 11, 36991–37003 (2019).

    Article  Google Scholar 

  55. Cooper, A. J., Wilson, N. R., Kinloch, I. A. & Dryfe, R. A. W. Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations. Carbon 66, 340–350 (2014).

    Article  CAS  Google Scholar 

  56. El Garah, M. et al. MoS2 nanosheets via electrochemical lithium-ion intercalation under ambient conditions. FlatChem 9, 33–39 (2018).

    Article  CAS  Google Scholar 

  57. Zeng, Z. et al. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. 123, 11289–11293 (2011).

    Article  Google Scholar 

  58. Lin, Z. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018).

    Article  CAS  Google Scholar 

  59. Xu, Y. Z. et al. Monolayer MoS2 with S vacancies from interlayer spacing expanded counterparts for highly efficient electrochemical hydrogen production. J. Mater. Chem. A 4, 16524–16530 (2016).

    Article  CAS  Google Scholar 

  60. Li, F. et al. Advanced composite 2D energy materials by simultaneous anodic and cathodic exfoliation. Adv. Energy Mater. 8, 1702794 (2018).

    Article  Google Scholar 

  61. Parvez, K., Worsley, R., Alieva, A., Felten, A. & Casiraghi, C. Water-based and inkjet printable inks made by electrochemically exfoliated graphene. Carbon 149, 213–221 (2019).

    Article  CAS  Google Scholar 

  62. Yakimchuk, E., Soots, R., Kotin, I. & Antonova, I. 2D printed graphene conductive layers with high carrier mobility. Curr. Appl. Phys. 17, 1655–1661 (2017).

    Article  Google Scholar 

  63. Capasso, A. et al. Ink-jet printing of graphene for flexible electronics: an environmentally-friendly approach. Solid State Commun. 224, 53–63 (2015).

    Article  CAS  Google Scholar 

  64. Kelly, A. G., Vega-Mayoral, V., Boland, J. B. & Coleman, J. N. Whiskey-phase exfoliation: exfoliation and printing of nanosheets using Irish whiskey. 2D Mater. 6, 045036 (2019).

    Article  CAS  Google Scholar 

  65. Arapov, K. et al. Conductive screen printing inks by gelation of graphene dispersions. Adv. Funct. Mater. 26, 586–593 (2016).

    Article  CAS  Google Scholar 

  66. Hyun, W. J., Secor, E. B., Hersam, M. C., Frisbie, C. D. & Francis, L. F. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv. Mater. 27, 109–115 (2015).

    Article  CAS  Google Scholar 

  67. Xu, Y. et al. Screen-printable thin film supercapacitor device utilizing graphene/polyaniline inks. Adv. Energy Mater. 3, 1035–1040 (2013).

    Article  CAS  Google Scholar 

  68. Juntunen, T. et al. Inkjet printed large-area flexible few-layer graphene thermoelectrics. Adv. Funct. Mater. 28, 1800480 (2018).

    Article  Google Scholar 

  69. Secor, E. B., Prabhumirashi, P. L., Puntambekar, K., Geier, M. L. & Hersam, M. C. Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett. 4, 1347–1351 (2013).

    Article  CAS  Google Scholar 

  70. Li, J. et al. Efficient inkjet printing of graphene. Adv. Mater. 25, 3985–3992 (2013).

    Article  CAS  Google Scholar 

  71. McManus, D. et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol. 12, 343–350 (2017).

    Article  CAS  Google Scholar 

  72. Majee, S., Liu, C., Wu, B., Zhang, S. L. & Zhang, Z. B. Ink-jet printed highly conductive pristine graphene patterns achieved with water-based ink and aqueous doping processing. Carbon 114, 77–83 (2017).

    Article  CAS  Google Scholar 

  73. Ding, H. et al. Water-based highly conductive graphene inks for fully printed humidity sensors. J. Phys. D 53, 455304 (2020).

    Article  CAS  Google Scholar 

  74. Large, M. J. et al. Large-scale surfactant exfoliation of graphene and conductivity-optimized graphite enabling wireless connectivity. Adv. Mater. Technol. 5, 000284 (2020).

    Article  Google Scholar 

  75. Carey, T., Jones, C., Le Moal, F., Deganello, D. & Torrisi, F. Spray-coating thin films on three-dimensional surfaces for a semitransparent capacitive-touch device. ACS Appl. Mater. Interfaces 10, 19948–19956 (2018).

    Article  CAS  Google Scholar 

  76. Barwich, S., Coleman, J. N. & Möbius, M. E. Yielding and flow of highly concentrated, few-layer graphene suspensions. Soft Matter 11, 3159–3164 (2015).

    Article  CAS  Google Scholar 

  77. He, P. et al. Screen-printing of a highly conductive graphene ink for flexible printed electronics. ACS Appl. Mater. Interfaces 11, 32225–32234 (2019).

    Article  CAS  Google Scholar 

  78. Leng, T. et al. Screen-printed graphite nanoplate conductive ink for machine learning enabled wireless radiofrequency-identification sensors. ACS Appl. Nano Mater. 2, 6197–6208 (2019).

    Article  CAS  Google Scholar 

  79. Pan, K. et al. Sustainable production of highly conductive multilayer graphene ink for wireless connectivity and IoT applications. Nat. Commun. 9, 5197 (2018).

    Article  Google Scholar 

  80. Lynch, P. J. et al. Graphene-based printable conductors for cyclable strain sensors on elastomeric substrates. Carbon 169, 25–31 (2020).

    Article  CAS  Google Scholar 

  81. Zhang, J. et al. Scalable manufacturing of free-standing, strong Ti3C2TX MXene films with outstanding conductivity. Adv. Mater. 32, 2001093 (2020).

    Article  CAS  Google Scholar 

  82. Akbari, M. et al. Fabrication and characterization of graphene antenna for low-cost and environmentally friendly RFID tags. IEEE Antennas Wirel. Propag. Lett. 15, 1569–1572 (2016).

    Article  Google Scholar 

  83. Chang, Q., Li, L., Sai, L., Shi, W. & Huang, L. Water-soluble hybrid graphene ink for gravure-printed planar supercapacitors. Adv. Electron. Mater. 4, 1800059 (2018).

    Article  Google Scholar 

  84. Suganuma, K. in Introduction to Printed Electronics 23–48 (Springer, 2014).

  85. Huang, X. et al. Binder-free highly conductive graphene laminate for low cost printed radio frequency applications. Appl. Phys. Lett. 106, 203105 (2015).

    Article  Google Scholar 

  86. O’Suilleabhain, D. et al. Effect of the gate volume on the performance of printed nanosheet network-based transistors. ACS Appl. Electron. Mater. 2, 2164–2170 (2020).

    Article  Google Scholar 

  87. Li, J., Lemme, M. C. & Östling, M. Inkjet printing of 2D layered materials. ChemPhysChem 15, 3427–3434 (2014).

    Article  CAS  Google Scholar 

  88. Lu, S. et al. Flexible, print-in-place 1D–2D thin-film transistors using aerosol jet printing. ACS Nano 13, 11263–11272 (2019).

    Article  CAS  Google Scholar 

  89. van Osch, T. H. J., Perelaer, J., de Laat, A. W. M. & Schubert, U. S. Inkjet printing of narrow conductive tracks on untreated polymeric substrates. Adv. Mater. 20, 343–345 (2008).

    Article  Google Scholar 

  90. Tekin, E., Smith, P. J. & Schubert, U. S. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 4, 703–713 (2008).

    Article  CAS  Google Scholar 

  91. Calvert, P. Inkjet printing for materials and devices. Chem. Mater. 13, 3299–3305 (2001).

    Article  CAS  Google Scholar 

  92. Sirringhaus, H. & Shimoda, T. Inkjet printing of functional materials. MRS Bull. 28, 802–806 (2011).

    Article  Google Scholar 

  93. Del Rio Castillo, A. E. et al. Exfoliation of few-layer black phosphorus in low-boiling-point solvents and its application in Li-ion batteries. Chem. Mater. 30, 506–516 (2018).

    Article  Google Scholar 

  94. Khan, U., May, P., O’Neill, A. & Coleman, J. N. Development of stiff, strong, yet tough composites by the addition of solvent exfoliated graphene to polyurethane. Carbon 48, 4035–4041 (2010).

    Article  CAS  Google Scholar 

  95. O’Neill, A., Khan, U. & Coleman, J. N. Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size. Chem. Mater. 24, 2414–2421 (2012).

    Article  Google Scholar 

  96. Eredia, M. et al. Morphology and electronic properties of electrochemically exfoliated graphene. J. Phys. Chem. Lett. 8, 3347–3355 (2017).

    Article  CAS  Google Scholar 

  97. Zheng, J. et al. High quality graphene with large flakes exfoliated by oleyl amine. Chem. Commun. 46, 5728–5730 (2010).

    Article  CAS  Google Scholar 

  98. Xia, X. et al. Aligning graphene sheets in PDMS for improving output performance of triboelectric nanogenerator. Carbon 111, 569–576 (2017).

    Article  CAS  Google Scholar 

  99. Cunningham, G. et al. Photoconductivity of solution-processed MoS2 films. J. Mater. Chem. C 1, 6899–6904 (2013).

    Article  CAS  Google Scholar 

  100. Osada, M. et al. High-κ dielectric nanofilms fabricated from titania nanosheets. Adv. Mater. 18, 1023–1027 (2006).

    Article  CAS  Google Scholar 

  101. Neilson, J., Avery, M. & Derby, B. Tiled monolayer films of 2D molybdenum disulfide nanoflakes assembled at liquid/liquid interfaces. ACS Appl. Mater. Interfaces 12, 25125–25134 (2020).

    Article  CAS  Google Scholar 

  102. Mikolajek, M., Friedrich, A., Bauer, W. & Binder, J. R. Requirements to ceramic suspensions for inkjet printing. Ceram. Forum Int. 92, 25–29 (2015).

    Google Scholar 

  103. de Gans, B.-J. & Schubert, U. S. Inkjet printing of well-defined polymer dots and arrays. Langmuir 20, 7789–7793 (2004).

    Article  Google Scholar 

  104. Pack, M., Hu, H., Kim, D.-O., Yang, X. & Sun, Y. Colloidal drop deposition on porous substrates: competition among particle motion, evaporation, and infiltration. Langmuir 31, 7953–7961 (2015).

    Article  CAS  Google Scholar 

  105. Calabrese, G. et al. Inkjet-printed graphene Hall mobility measurements and low-frequency noise characterization. Nanoscale 12, 6708–6716 (2020).

    Article  CAS  Google Scholar 

  106. Halim, J. et al. Variable range hopping and thermally activated transport in molybdenum-based MXenes. Phys. Rev. B 98, 104202 (2018).

    Article  CAS  Google Scholar 

  107. Richter, N. et al. Charge transport mechanism in networks of armchair graphene nanoribbons. Sci. Rep. 10, 1988 (2020).

    Article  CAS  Google Scholar 

  108. Bellew, A. T., Manning, H. G., da Rocha, C. G., Ferreira, M. S. & Boland, J. J. Resistance of single Ag nanowire junctions and their role in the conductivity of nanowire networks. ACS Nano 9, 11422–11429 (2015).

    Article  CAS  Google Scholar 

  109. da Rocha, C. G. et al. Ultimate conductivity performance in metallic nanowire networks. Nanoscale 7, 13011–13016 (2015).

    Article  Google Scholar 

  110. Mutiso, R. M., Sherrott, M. C., Rathmell, A. R., Wiley, B. J. & Winey, K. I. Integrating simulations and experiments to predict sheet resistance and optical transmittance in nanowire films for transparent conductors. ACS Nano 7, 7654–7663 (2013).

    Article  CAS  Google Scholar 

  111. Yao, H. M., Hsieh, Y. P., Kong, J. & Hofmann, M. Modelling electrical conduction in nanostructure assemblies through complex networks. Nat. Mater. 19, 745–751 (2020).

    Article  CAS  Google Scholar 

  112. Znidarsic, A. et al. Spatially resolved transport properties of pristine and doped single-walled carbon nanotube networks. J. Phys. Chem. C 117, 13324–13330 (2013).

    Article  CAS  Google Scholar 

  113. Biccai, S. et al. Negative gauge factor piezoresistive composites based on polymers filled with MoS2 nanosheets. ACS Nano 13, 6845–6855 (2019).

    Article  CAS  Google Scholar 

  114. Ponzoni, A. The contributions of junctions and nanowires/nanotubes in conductive networks. Appl. Phys. Lett. 114, 153105 (2019).

    Article  Google Scholar 

  115. Stern, A. et al. Conductivity enhancement of transparent 2D carbon nanotube networks occurs by resistance reduction in all junctions. J. Phys. Chem. C 122, 14872–14876 (2018).

    Article  CAS  Google Scholar 

  116. Hauquier, F. et al. Conductive-probe AFM characterization of graphene sheets bonded to gold surfaces. Appl. Surf. Sci. 258, 2920–2926 (2012).

    Article  CAS  Google Scholar 

  117. Hu, L. B., Kim, H. S., Lee, J. Y., Peumans, P. & Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4, 2955–2963 (2010).

    Article  CAS  Google Scholar 

  118. Selzer, F. et al. Electrical limit of silver nanowire electrodes: direct measurement of the nanowire junction resistance. Appl. Phys. Lett. 108, 163302 (2016).

    Article  Google Scholar 

  119. Li, J. et al. Printable two-dimensional superconducting monolayers. Nat. Mater. 20, 181–187 (2020).

    Article  CAS  Google Scholar 

  120. Shanmugam, M., Bansal, T., Durcan, C. A. & Yu, B. Molybdenum disulphide/titanium dioxide nanocomposite-poly 3-hexylthiophene bulk heterojunction solar cell. Appl. Phys. Lett. 100, 153901 (2012).

    Article  Google Scholar 

  121. Sneha, V. R. et al. Interlayer coupling and diode characteristics of heterostructures of solution processed MoS2:ReS2 nanocrystals. Appl. Surf. Sci. 505, 144475 (2020).

    Article  CAS  Google Scholar 

  122. Wang, D. et al. Hierarchical nanostructured core–shell Sn@C nanoparticles embedded in graphene nanosheets: spectroscopic view and their application in lithium ion batteries. Phys. Chem. Chem. Phys. 15, 3535 (2013).

    Article  CAS  Google Scholar 

  123. Hossain, R. F., Deaguero, I. G., Boland, T. & Kaul, A. B. Biocompatible, large-format, inkjet printed heterostructure MoS2-graphene photodetectors on conformable substrates. npj 2D Mater. Appl. 1, 28 (2017).

    Article  Google Scholar 

  124. Wróblewski, G. & Janczak, D. Screen printed, transparent, and flexible electrodes based on graphene nanoplatelet pastes. Proc. SPIE 8454, 84541E (2012).

    Article  Google Scholar 

  125. Manjakkal, L., Núñez, C. G., Dang, W. & Dahiya, R. Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes. Nano Energy 51, 604–612 (2018).

    Article  CAS  Google Scholar 

  126. De, S. & Coleman, J. N. Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano 4, 2713–2720 (2010).

    Article  CAS  Google Scholar 

  127. Kong, D., Le, L. T., Li, Y., Zunino, J. L. & Lee, W. Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials. Langmuir 28, 13467–13472 (2012).

    Article  CAS  Google Scholar 

  128. Arapov, K. et al. Graphene screen-printed radio-frequency identification devices on flexible substrates. Phys. Status Solidi RRL 10, 812–818 (2016).

    Article  CAS  Google Scholar 

  129. Shen, B., Zhai, W. & Zheng, W. Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater. 24, 4542–4548 (2014).

    Article  CAS  Google Scholar 

  130. Sankaran, S., Deshmukh, K., Ahamed, M. B. & Khadheer Pasha, S. K. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos. Part A Appl. Sci. Manuf. 114, 49–71 (2018).

    Article  CAS  Google Scholar 

  131. Li, G., Mo, X., Law, W.-C. & Chan, K. C. 3D printed graphene/nickel electrodes for high areal capacitance electrochemical storage. J. Mater. Chem. A 7, 4055–4062 (2019).

    Article  CAS  Google Scholar 

  132. Ervin, M. H., Le, L. T. & Lee, W. Y. Inkjet-printed flexible graphene-based supercapacitor. Electrochim. Acta 147, 610–616 (2014).

    Article  CAS  Google Scholar 

  133. Santra, S. et al. CMOS integration of inkjet-printed graphene for humidity sensing. Sci. Rep. 5, 17374 (2015).

    Article  CAS  Google Scholar 

  134. Xu, K. et al. Nanomaterial-based gas sensors: a review. Instrum. Sci. Technol. 46, 115–145 (2017).

    Article  CAS  Google Scholar 

  135. Yun, J. et al. Stretchable patterned graphene gas sensor driven by integrated micro-supercapacitor array. Nano Energy 19, 401–414 (2016).

    Article  CAS  Google Scholar 

  136. Seekaew, Y. & Wongchoosuk, C. A novel graphene-based electroluminescent gas sensor for carbon dioxide detection. Appl. Surf. Sci. 479, 525–531 (2019).

    Article  CAS  Google Scholar 

  137. Teengam, P. et al. Electrochemical paper-based peptide nucleic acid biosensor for detecting human papillomavirus. Anal. Chim. Acta 952, 32–40 (2017).

    Article  CAS  Google Scholar 

  138. Nikoleli, G.-P. et al. Structural characterization of graphene nanosheets for miniaturization of potentiometric urea lipid film based biosensors. Electroanalysis 24, 1285–1295 (2012).

    Article  CAS  Google Scholar 

  139. Feng, J. et al. Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors. J. Am. Chem. Soc. 133, 17832–17838 (2011).

    Article  CAS  Google Scholar 

  140. Yang, C. et al. Metallic graphene-like VSe2 ultrathin nanosheets: superior potassium-ion storage and their working mechanism. Adv. Mater. 30, 1800036 (2018).

    Article  Google Scholar 

  141. Liang, H. et al. Solution growth of vertical VS2 nanoplate arrays for electrocatalytic hydrogen evolution. Chem. Mater. 28, 5587–5591 (2016).

    Article  CAS  Google Scholar 

  142. Ming, F., Liang, H., Lei, Y., Zhang, W. & Alshareef, H. N. Solution synthesis of VSe2 nanosheets and their alkali metal ion storage performance. Nano Energy 53, 11–16 (2018).

    Article  CAS  Google Scholar 

  143. Ji, Q. et al. Metallic vanadium disulfide nanosheets as a platform material for multifunctional electrode applications. Nano Lett. 17, 4908–4916 (2017).

    Article  CAS  Google Scholar 

  144. Voiry, D. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013).

    Article  CAS  Google Scholar 

  145. Lukowski, M. A. et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013).

    Article  CAS  Google Scholar 

  146. Lukowski, M. A. et al. Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ. Sci. 7, 2608–2613 (2014).

    Article  CAS  Google Scholar 

  147. Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).

    Article  CAS  Google Scholar 

  148. Anasori, B. & Gogotsi, Y. (eds) 2D Metal Carbides and Nitrides (MXenes): Structure, Properties and Applications (Springer, 2019).

  149. Vural, M. et al. Inkjet printing of self-assembled 2D titanium carbide and protein electrodes for stimuli-responsive electromagnetic shielding. Adv. Funct. Mater. 28, 1801972 (2018).

    Article  Google Scholar 

  150. Mariano, M. et al. Solution-processed titanium carbide MXene films examined as highly transparent conductors. Nanoscale 8, 16371–16378 (2016).

    Article  CAS  Google Scholar 

  151. Han, M. et al. Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Interfaces 8, 21011–21019 (2016).

    Article  CAS  Google Scholar 

  152. Li, G. et al. Dynamical control over terahertz electromagnetic interference shielding with 2D Ti3C2TY MXene by ultrafast optical pulses. Nano Lett. 20, 636–643 (2019).

    Article  Google Scholar 

  153. Li, X. et al. 2D carbide MXene Ti2CTX as a novel high-performance electromagnetic interference shielding material. Carbon 146, 210–217 (2019).

    Article  CAS  Google Scholar 

  154. Shahzad, F. et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016).

    Article  CAS  Google Scholar 

  155. Simon, R. M. EMI shielding through conductive plastics. Polym. Plast. Technol. Eng. 17, 1–10 (2006).

    Article  Google Scholar 

  156. Liu, J. et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29, 1702367 (2017).

    Article  Google Scholar 

  157. Zhou, Z. et al. Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding. Adv. Mater. Interfaces 6, 1802040 (2019).

    Article  Google Scholar 

  158. Iqbal, A. et al. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020).

    Article  CAS  Google Scholar 

  159. Zhu, J. et al. Layer-by-layer assembled 2D montmorillonite dielectrics for solution-processed electronics. Adv. Mater. 28, 63–68 (2016).

    Article  CAS  Google Scholar 

  160. Nalawade, Y. et al. All-printed dielectric capacitors from high-permittivity, liquid-exfoliated BiOCl nanosheets. ACS Appl. Electron. Mater. 2, 3233–3241 (2020).

    Article  CAS  Google Scholar 

  161. Moraes, A. C. M. et al. Ion-conductive, viscosity-tunable hexagonal boron nitride nanosheet inks. Adv. Funct. Mater. 29, 1902245 (2019).

    Article  Google Scholar 

  162. Withers, F. et al. Heterostructures produced from nanosheet-based inks. Nano Lett. 14, 3987–3992 (2014).

    Article  CAS  Google Scholar 

  163. Ding, Z., Xing, R., Fu, Q., Ma, D. & Han, Y. Patterning of pinhole free small molecular organic light-emitting films by ink-jet printing. Org. Electron. 12, 703–709 (2011).

    Article  CAS  Google Scholar 

  164. Joseph, A. M., Nagendra, B., Bhoje Gowd, E. & Surendran, K. P. Screen-printable electronic ink of ultrathin boron nitride nanosheets. ACS Omega 1, 1220–1228 (2016).

    Article  CAS  Google Scholar 

  165. Zhu, X. et al. Hexagonal boron nitride–enhanced optically transparent polymer dielectric inks for printable electronics. Adv. Funct. Mater. 30, 2002339 (2020).

    Article  CAS  Google Scholar 

  166. Gupta, B. & Matte, H. S. S. R. Solution-processed layered hexagonal boron nitride dielectrics: a route toward fabrication of high performance flexible devices. ACS Appl. Electron. Mater. 1, 2130–2139 (2019).

    Article  CAS  Google Scholar 

  167. Hu, H. & Larson, R. G. Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B 110, 7090–7094 (2006).

    Article  CAS  Google Scholar 

  168. Brohmann, M. et al. Temperature-dependent charge transport in polymer-sorted semiconducting carbon nanotube networks with different diameter distributions. J. Phys. Chem. C 122, 19886–19896 (2018).

    Article  CAS  Google Scholar 

  169. Castellanos-Gomez, A. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014).

    Article  CAS  Google Scholar 

  170. Hanlon, D. et al. Production of molybdenum trioxide nanosheets by liquid exfoliation and their application in high-performance supercapacitors. Chem. Mater. 26, 1751–1763 (2014).

    Article  CAS  Google Scholar 

  171. Synnatschke, K. et al. Length- and thickness-dependent optical response of liquid-exfoliated transition metal dichalcogenides. Chem. Mater. 31, 10049–10062 (2019).

    Article  CAS  Google Scholar 

  172. Li, J., Naiini, M. M., Vaziri, S., Lemme, M. C. & Östling, M. Inkjet printing of MoS2. Adv. Funct. Mater. 24, 6524–6531 (2014).

    Article  CAS  Google Scholar 

  173. Lee, S. K., Chu, D., Song, D. Y., Pak, S. W. & Kim, E. K. Electrical and photovoltaic properties of residue-free MoS2 thin films by liquid exfoliation method. Nanotechnology 28, 195703 (2017).

    Article  Google Scholar 

  174. Lee, S. K., Chu, D., Yoo, J. & Kim, E. K. Formation of transition metal dichalcogenides thin films with liquid phase exfoliation technique and photovoltaic applications. Sol. Energy Mater. Sol. Cell 184, 9–14 (2018).

    Article  CAS  Google Scholar 

  175. Pataniya, P. M. et al. Photovoltaic activity of WSe2/Si hetero junction. Mater. Res. Bull. 120, 110602 (2019).

    Article  CAS  Google Scholar 

  176. Adilbekova, B. et al. Liquid phase exfoliation of MoS2 and WS2 in aqueous ammonia and their application in highly efficient organic solar cells. J. Mater. Chem. C 8, 5259–5264 (2020).

    Article  CAS  Google Scholar 

  177. Tulsani, S. R., Rath, A. K. & Late, D. J. 2D-MoS2 nanosheets as effective hole transport materials for colloidal PbS quantum dot solar cells. Nanoscale Adv. 1, 1387–1394 (2019).

    Article  CAS  Google Scholar 

  178. Feng, X. et al. A fully printed flexible MoS2 memristive artificial synapse with femtojoule switching energy. Adv. Electron. Mater. 5, 1900740 (2019).

    Article  CAS  Google Scholar 

  179. Zaumseil, J. Single-walled carbon nanotube networks for flexible and printed electronics. Semicond. Sci. Technol. 30, 074001 (2015).

    Article  Google Scholar 

  180. Braga, D. & Horowitz, G. High-performance organic field-effect transistors. Adv. Mater. 21, 1473–1486 (2009).

    Article  CAS  Google Scholar 

  181. O’Suilleabhain, D., Vega-Mayoral, V., Kelly, A. G., Harvey, A. & Coleman, J. N. Percolation effects in electrolytically gated WS2/graphene nano:nano composites. ACS Appl. Mater. Interfaces 11, 8545–8555 (2019).

    Article  Google Scholar 

  182. Zeng, X., Hirwa, H., Metel, S., Nicolosi, V. & Wagner, V. Solution processed thin film transistor from liquid phase exfoliated MoS2 flakes. Solid State Electron. 141, 58–64 (2018).

    Article  CAS  Google Scholar 

  183. van Hecke, M. Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J. Phys. Condens. Matter 22, 033101 (2010).

    Article  Google Scholar 

  184. Gao, X. et al. High-mobility patternable MoS2 percolating nanofilms. Nano Res. 14, 2255–2263 (2021).

    Article  CAS  Google Scholar 

  185. Arapov, K. et al. Conductivity enhancement of binder-based graphene inks by photonic annealing and subsequent compression rolling. Adv. Eng. Mater. 18, 1234–1239 (2016).

    Article  CAS  Google Scholar 

  186. Jabari, E. & Toyserkani, E. Micro-scale aerosol-jet printing of graphene interconnects. Carbon 91, 321–329 (2015).

    Article  CAS  Google Scholar 

  187. Pandhi, T. et al. Electrical transport and power dissipation in aerosol-jet-printed graphene interconnects. Sci. Rep. 8, 10842 (2018).

    Article  Google Scholar 

  188. Secor, E. B. et al. Gravure printing of graphene for large-area flexible electronics. Adv. Mater. 26, 4533–4538 (2014).

    Article  CAS  Google Scholar 

  189. Zhang, Q. et al. Gravure-printed interdigital microsupercapacitors on a flexible polyimide substrate using crumpled graphene ink. Nanotechnology 27, 105401 (2016).

    Article  Google Scholar 

  190. Marchand, D. et al. Surface structure and electrical conductivity of natural and artificial graphites. Carbon 22, 497–506 (1984).

    Article  CAS  Google Scholar 

  191. Arapov, K., Abbel, R., de With, G. & Friedrich, H. Inkjet printing of graphene. Faraday Discuss. 173, 323–336 (2014).

    Article  CAS  Google Scholar 

  192. Arkhireyeva, A. & Hashemi, S. Effect of temperature on fracture properties of an amorphous poly(ethylene terephthalate) (PET) film. J. Mater. Sci. 37, 3675–3683 (2002).

    Article  CAS  Google Scholar 

  193. Luo, P. et al. Doping engineering and functionalization of two-dimensional metal chalcogenides. Nanoscale Horiz. 4, 26–51 (2019).

    Article  CAS  Google Scholar 

  194. Yamamoto, M., Einstein, T. L., Fuhrer, M. S. & Cullen, W. G. Anisotropic etching of atomically thin MoS2. J. Phys. Chem. C 117, 25643–25649 (2013).

    Article  CAS  Google Scholar 

  195. Wu, J. et al. Layer thinning and etching of mechanically exfoliated MoS2 nanosheets by thermal annealing in air. Small 9, 3314–3319 (2013).

    CAS  Google Scholar 

  196. Potts, S.-J., Lau, Y. C., Dunlop, T., Claypole, T. & Phillips, C. Effect of photonic flash annealing with subsequent compression rolling on the topography, microstructure and electrical performance of carbon-based inks. J. Mater. Sci. 54, 8163–8176 (2019).

    Article  CAS  Google Scholar 

  197. Secor, E. B., Ahn, B. Y., Gao, T. Z., Lewis, J. A. & Hersam, M. C. Rapid and versatile photonic annealing of graphene inks for flexible printed electronics. Adv. Mater. 27, 6683–6688 (2015).

    Article  CAS  Google Scholar 

  198. Secor, E. B. et al. Combustion-assisted photonic annealing of printable graphene inks via exothermic binders. ACS Appl. Mater. Interfaces 9, 29418–29423 (2017).

    Article  CAS  Google Scholar 

  199. Zhai, P.-Y. et al. Calendering of free-standing electrode for lithium-sulfur batteries with high volumetric energy density. Carbon 111, 493–501 (2017).

    Article  CAS  Google Scholar 

  200. Huang, X. et al. Highly flexible and conductive printed graphene for wireless wearable communications applications. Sci. Rep. 5, 18298 (2016).

    Article  Google Scholar 

  201. Lin, X. et al. Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets. ACS Nano 6, 10708–10719 (2012).

    Article  CAS  Google Scholar 

  202. Eda, G. & Chhowalla, M. Graphene-based composite thin films for electronics. Nano Lett. 9, 814–818 (2009).

    Article  CAS  Google Scholar 

  203. Kuwahara, Y., Nihey, F., Ohmori, S. & Saito, T. Length dependent performance of single-wall carbon nanotube thin film transistors. Carbon 91, 370–377 (2015).

    Article  CAS  Google Scholar 

  204. Zhu, J. et al. Thickness-dependent bandgap tunable molybdenum disulfide films for optoelectronics. RSC Adv. 6, 110604–110609 (2016).

    Article  CAS  Google Scholar 

  205. Brohmann, M. et al. Charge transport in mixed semiconducting carbon nanotube networks with tailored mixing ratios. ACS Nano 13, 7323–7332 (2019).

    Article  CAS  Google Scholar 

  206. Wood, A. J. Witten’s lectures on crumpling. Physica A 313, 83–109 (2002).

    Article  CAS  Google Scholar 

  207. Lu, Q., Arroyo, M. & Huang, R. Elastic bending modulus of monolayer graphene. J. Phys. D 42, 102002 (2009).

    Article  Google Scholar 

  208. Koenig, S. P., Boddeti, N. G., Dunn, M. L. & Bunch, J. S. Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 6, 543–546 (2011).

    Article  CAS  Google Scholar 

  209. Lai, K., Zhang, W.-B., Zhou, F., Zeng, F. & Tang, B.-Y. Bending rigidity of transition metal dichalcogenide monolayers from first-principles. J. Phys. D 49, 185301 (2016).

    Article  Google Scholar 

  210. Lin, Z. et al. Solution processable colloidal nanoplates as building blocks for high-performance electronic thin films on flexible substrates. Nano Lett. 14, 6547–6553 (2014).

    Article  CAS  Google Scholar 

  211. Han, E. et al. Ultrasoft slip-mediated bending in few-layer graphene. Nat. Mater. 19, 305–309 (2020).

    Article  CAS  Google Scholar 

  212. Huang, Y., Wu, J. & Hwang, K. C. Thickness of graphene and single-wall carbon nanotubes. Phys. Rev. B 74, 245413 (2006).

    Article  Google Scholar 

  213. Wang, G. et al. Bending of multilayer van der Waals materials. Phys. Rev. Lett. 123, 116101 (2019).

    Article  CAS  Google Scholar 

  214. Lindahl, N. et al. Determination of the bending rigidity of graphene via electrostatic actuation of buckled membranes. Nano Lett. 12, 3526–3531 (2012).

    Article  CAS  Google Scholar 

  215. Poot, M. & van der Zant, H. S. J. Nanomechanical properties of few-layer graphene membranes. Appl. Phys. Lett. 92, 063111 (2008).

    Article  Google Scholar 

  216. Han, E. et al. Ultrasoft slip-mediated bending in few-layer graphene. Nat. Mater. 19, 305–309 (2019).

    Article  Google Scholar 

  217. Jiang, J.-W., Qi, Z., Park, H. S. & Rabczuk, T. Elastic bending modulus of single-layer molybdenum disulfide (MoS2): finite thickness effect. Nanotechnology 24, 435705 (2013).

    Article  Google Scholar 

  218. Cunningham, G. et al. Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano 6, 3468–3480 (2012).

    Article  CAS  Google Scholar 

  219. Chiu, F. C. A review on conduction mechanisms in dielectric films. Adv. Mater. Sci. Eng. 2014, 578168 (2014).

    Article  Google Scholar 

  220. Quereda, J., Palacios, J. J., Agrait, N., Castellanos-Gomez, A. & Rubio-Bollinger, G. Strain engineering of Schottky barriers in single- and few-layer MoS2 vertical devices. 2D Mater. 4, 021006 (2017).

    Article  Google Scholar 

  221. Zeng, X., Hirwa, H., Metel, S., Nicolosi, V. & Wagner, V. Solution processed thin film transistor from liquid phase exfoliated MoS2 flakes. Solid State Electron. 141, 58–64 (2018).

    Article  CAS  Google Scholar 

  222. Klein, C. A. & Straub, W. D. Carrier densities and mobilities in pyrolytic graphite. Phys. Rev. 123, 1581–1583 (1961).

    Article  CAS  Google Scholar 

  223. Barsoum, M. W. MAX Phases: Properties of Machinable Ternary Carbides and Nitrides (Wiley, 2013).

  224. Kam, K.-K. Electrical Properties of WSe2, WS2, MoSe2, MoS2, and Their Use as Photoanodes in a Semiconductor Liquid Junction Solar Cell. Thesis, Iowa State Univ. (1982).

  225. Morozov, S. V. et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008).

    Article  CAS  Google Scholar 

  226. Wang, M. C. et al. Unveiling electronic properties in metal-phthalocyanine-based pyrazine-linked conjugated two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 141, 16810–16816 (2019).

    Article  CAS  Google Scholar 

  227. Wang, M. C. et al. High-mobility semiconducting two-dimensional conjugated covalent organic frameworks with p-type doping. J. Am. Chem. Soc. 142, 21622–21627 (2020).

    Article  CAS  Google Scholar 

  228. Kagan, C. R. Flexible colloidal nanocrystal electronics. Chem. Soc. Rev. 48, 1626–1641 (2019).

    Article  CAS  Google Scholar 

  229. Schiess, S. P. et al. Modeling carrier density dependent charge transport in semiconducting carbon nanotube networks. Phys. Rev. Mater. 1, 046003 (2017).

    Article  Google Scholar 

  230. Aigner, W. et al. Intra- and inter-nanocrystal charge transport in nanocrystal films. Nanoscale 10, 8042–8057 (2018).

    Article  CAS  Google Scholar 

  231. Kagan, C. R. & Murray, C. B. Charge transport in strongly coupled quantum dot solids. Nat. Nanotechnol. 10, 1013–1026 (2015).

    Article  CAS  Google Scholar 

  232. Lanigan, D. & Thimsen, E. Contact radius and the insulator–metal transition in films comprised of touching semiconductor nanocrystals. ACS Nano 10, 6744–6752 (2016).

    Article  CAS  Google Scholar 

  233. Baranovskii, S. & Rubel, O. in Springer Handbook of Electronic and Photonic Materials (eds Kasap, S. & Capper, P.) (Springer, 2017).

  234. Bhaskaram, D. S. & Govindaraj, G. Carrier transport in reduced graphene oxide probed using Raman spectroscopy. J. Phys. Chem. C 122, 10303–10308 (2018).

    Article  CAS  Google Scholar 

  235. Blake, P. et al. Graphene-based liquid crystal device. Nano Lett. 8, 1704–1708 (2008).

    Article  Google Scholar 

  236. Muchharla, B., Narayanan, T. N., Balakrishnan, K., Ajayan, P. M. & Talapatra, S. Temperature dependent electrical transport of disordered reduced graphene oxide. 2D Mater. 1, 011008 (2014).

    Article  CAS  Google Scholar 

  237. Seo, H. et al. Multi-resistive reduced graphene oxide diode with reversible surface electrochemical reaction induced carrier control. Sci. Rep. 4, 5642 (2014).

    Article  CAS  Google Scholar 

  238. Asada, Y., Nihey, F., Ohmori, S., Shinohara, H. & Saito, T. Diameter-dependent performance of single-walled carbon nanotube thin-film transistors. Adv. Mater. 23, 4631 (2011).

    Article  CAS  Google Scholar 

  239. Gao, J. & Loo, Y.-L. Temperature-dependent electrical transport in polymer-sorted semiconducting carbon nanotube networks. Adv. Funct. Mater. 25, 105–110 (2015).

    Article  CAS  Google Scholar 

  240. Nakamura, S., Ohishi, M., Shiraishi, M., Takenobu, T. & Iwasa, Y. Band structure modulation by carrier doping in random-network carbon nanotube transistors. Appl. Phys. Lett. 89, 013112 (2006).

    Article  Google Scholar 

  241. Li, Y., Paulsen, A., Yamada, I., Koide, Y. & Delaunay, J.-J. Bascule nanobridges self-assembled with ZnO nanowires as double Schottky barrier UV switches. Nanotechnology 21, 295502 (2010).

    Article  Google Scholar 

  242. Nguyen Minh, V., Kim, D. & Kim, H. Porous Au-embedded WO3 nanowire structure for efficient detection of CH4 and H2S. Sci. Rep. 5, 11040 (2015).

    Article  Google Scholar 

  243. Reddy, K. M., Manorama, S. V. & Reddy, A. R. Bandgap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 78, 239–245 (2003).

    Article  Google Scholar 

  244. Kumar, V., Sharma, M. K., Gaur, J. & Sharma, T. P. Polycrystalline ZnS thin films by screen printing method and its characterization. Chalcogenide Lett. 5, 289–295 (2008).

    CAS  Google Scholar 

  245. Myung, Y., Wu, F., Banerjee, S., Park, J. & Banerjee, P. Electrical conductivity of p-type BiOCl nanosheets. Chem. Commun. 51, 2629–2632 (2015).

    Article  CAS  Google Scholar 

  246. Hanlon, D. et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 6, 8563 (2015).

    Article  CAS  Google Scholar 

  247. Ippolito, S. et al. Covalently interconnected transition metal dichalcogenides networks via defect engineering for high-performance electronic devices. Nat. Nanotechnol. 16, 592–598 (2021).

    Article  CAS  Google Scholar 

  248. Hyun, W. J. et al. Scalable, self-aligned printing of flexible graphene micro-supercapacitors. Adv. Energy Mater. 7, 1700285 (2017).

    Article  Google Scholar 

  249. Majee, S., Song, M., Zhang, S.-L. & Zhang, Z.-B. Scalable inkjet printing of shear-exfoliated graphene transparent conductive films. Carbon 102, 51–57 (2016).

    Article  CAS  Google Scholar 

  250. Gao, Y., Shi, W., Wang, W., Leng, Y. & Zhao, Y. Inkjet printing patterns of highly conductive pristine graphene on flexible substrates. Ind. Eng. Chem. Res. 53, 16777–16784 (2014).

    Article  CAS  Google Scholar 

  251. Miao, F. et al. Inkjet printing of electrochemically-exfoliated graphene nano-platelets. Synth. Met. 220, 318–322 (2016).

    Article  CAS  Google Scholar 

  252. Michel, M., Biswas, C. & Kaul, A. B. High-performance ink-jet printed graphene resistors formed with environmentally-friendly surfactant-free inks for extreme thermal environments. Appl. Mater. Today 6, 16–21 (2017).

    Article  Google Scholar 

  253. Soots, R. A., Yakimchuk, E. A., Nebogatikova, N. A., Kotin, I. A. & Antonova, I. V. Graphene suspensions for 2D printing. Tech. Phys. Lett. 42, 438–441 (2016).

    Article  CAS  Google Scholar 

  254. Leng, T. et al. Graphene nanoflakes printed flexible meandered-line dipole antenna on paper substrate for low-cost RFID and sensing applications. IEEE Antennas Wirel. Propag. Lett. 15, 1565–1568 (2016).

    Article  Google Scholar 

  255. Huang, X. et al. Graphene radio frequency and microwave passive components for low cost wearable electronics. 2D Mater. 3, 025021 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the European Research Council Advanced Grant (FUTURE-PRINT) and the European Union under grant agreement no. 785219 Graphene Flagship Core 2. The authors have also received support from the Science Foundation Ireland (SFI) funded centre AMBER (SFI/12/RC/2278). The authors would also like to thank K. Stachura for preparing the graphics in Figs 2 and 6.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article; A.G.K. and J.N.C. discussed the content and wrote and edited the manuscript.

Corresponding author

Correspondence to Jonathan N. Coleman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Materials thanks Xiangfeng Duan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelly, A.G., O’Suilleabhain, D., Gabbett, C. et al. The electrical conductivity of solution-processed nanosheet networks. Nat Rev Mater 7, 217–234 (2022). https://doi.org/10.1038/s41578-021-00386-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00386-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing