Abstract
Plastics are a ubiquitous class of synthetic polymer materials used in virtually all commercial and industrial sectors. The majority of global plastics consists of polymers with carbon–carbon backbones, whose environmental persistence and low cost have resulted in a massive reservoir of plastic waste that resides in landfills and the environment. Although plastic debris contaminating the ocean has been documented for decades, details about plastic debris composition, distribution, impact and ultimate fate in the environment remain elusive. In this Review, we present an overview of environmental plastic contamination and discuss the origin (feedstock) and degradation behaviour of plastics to help inform material design principles addressing end-of-life management. We argue that designing materials to be ‘marine biodegradable’ or universally biodegradable is not, in itself, a solution to plastic pollution. Instead, material and product design principles must include a feasible plan for recovery and treatment based upon existing (or, possibly, simultaneously developed) systems.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).
International Energy Agency (IEA). The future of petrochemicals. IEA https://www.iea.org/reports/the-future-of-petrochemicals (2018).
Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E. & Svendsen, C. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 586, 127–141 (2017).
Law, K. L. Plastics in the marine environment. Ann. Rev. Mar. Sci. 9, 205–229 (2017).
Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).
Kaza, S., Yao, L., Bhada-Tata, P. & Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 (World Bank, 2018).
Law, K. L. et al. The United States’ contribution of plastic waste to land and ocean. Sci. Adv. 6, eabd0288 (2020).
Carr, S. A., Liu, J. & Tesoro, A. G. Transport and fate of microplastic particles in wastewater treatment plants. Water Res. 91, 174–182 (2016).
World Health Organization (WHO). Microplastics in drinking-water. WHO https://apps.who.int/iris/handle/10665/326499. License: CC BY-NC-SA 3.0 IGO (2019).
Zubris, K. A. V. & Richards, B. K. Synthetic fibers as an indicator of land application of sludge. Environ. Poll. 138, 201–211 (2005).
Dris, R. et al. Microplastic contamination in an urban area: a case study in Greater Paris. Environ. Chem. 12, 529–599 (2015).
Bergmann, M. et al. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 5, eaax1157 (2019).
Brahney, J., Hallerud, M., Heim, E., Hahnenberger, M. & Sukumaran, S. Plastic rain in protected areas of the United States. Science 368, 1257–1260 (2020).
Sharma, R. & Ghoshal, G. Emerging trends in food packaging. Nutr. Food Sci. 48, 764–779 (2018).
Matthews, C., Moran, F. & Jaiswal, A. K. A review on European Union’s strategy for plastics in a circular economy and its impact on food safety. J. Clean. Prod. 283, 125263 (2021).
Kenyon, K. W. & Kridler, E. Laysan albatrosses swallow indigestible matter. Auk 86, 339–343 (1969).
Kartar, S., Milne, R. A. & Sainsbury, M. Polystyrene waste in the Severn Estuary. Mar. Pollut. Bull. 4, 144 (1973).
Buchanan, J. B. Pollution by synthetic fibres. Mar. Pollut. Bull. 2, 23 (1971).
Carpenter, E. J., Anderson, S. J., Harvey, G. R., Miklas, H. P. & Peck, B. B. Polystyrene spherules in coastal waters. Science 178, 749–750 (1972).
Carpenter, E. J. & Smith, K. L. Plastics on the Sargasso sea surface. Science 175, 1240–1241 (1972).
Holmstrom, A. Plastic films on the bottom of the Skagerack. Nature 255, 622–623 (1975).
Venrick, E. L. et al. Man-made objects on the surface of the central North Pacific Ocean. Nature 241, 271 (1973).
National Research Council. Assessing Potential Ocean Pollutants: A Report of the Study Panel on Assessing Potential Ocean Pollutants to the Ocean Affairs Board, Commission on Natural Resources, National Research Council (National Academy of Sciences, 1975).
Rochman, C. M. et al. The ecological impacts of marine debris: unraveling the demonstrated evidence from what is perceived. Ecology 97, 302–312 (2016).
Bucci, K., Tulio, M. & Rochman, C. M. What is known and unknown about the effects of plastic pollution: a meta-analysis and systematic review. Ecol. Appl. 2, e02044 (2020).
Zhang, D. et al. Plastic pollution in croplands threatens long-term food security. Glob. Change Biol. 26, 3356–3367 (2020).
Zhang, Q. et al. A review of microplastics in table salt, drinking water, and air: direct human exposure. Environ. Sci. Technol. 54, 3740–3751 (2020).
Rochman, C. M. et al. Anthropogenic debris in seafood: plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci. Rep. 5, 14340 (2015).
Ribeiro, F. et al. Quantitative analysis of selected plastics in high-commercial-value Australian seafood by pyrolysis gas chromatography mass spectrometry. Environ. Sci. Technol. 54, 9408–9417 (2020).
Mintenig, S. M., Löder, M. G. J., Primpke, S. & Gerdts, G. Low numbers of microplastics detected in drinking water from ground water sources. Sci. Total Environ. 648, 631–635 (2019).
Cox, K. D. et al. Human consumption of microplastics. Environ. Sci. Technol. 53, 7068–7074 (2019).
Woodall, L. C. et al. Using a forensic science approach to minimize environmental contamination and to identify microfibres in marine sediments. Mar. Pollut. Bull. 95, 40–46 (2015).
Allen, S. et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 12, 339–344 (2019).
United States Environmental Protection Agency. Plastic Pellets in the Aquatic Environment: Sources and Recommendations (United States Environmental Protection Agency, 1993).
Sutton, R., et al. Understanding microplastic levels, pathways, and transport in the San Francisco Bay region. San Francisco Estuary Institute (SFEI) https://www.sfei.org/documents/understanding-microplastics. SFEI Contribution No. 950 (2019).
Sherrington, C. Plastics in the marine environment. Eunomia https://www.eunomia.co.uk/reports-tools/plastics-in-the-marine-environment/ (2016).
Boucher, J. & Friot, D. Primary microplastics in the oceans: a global evaluation of sources. International Union for Conservation of Nature (IUCN) https://www.iucn.org/content/primary-microplastics-oceans (2017).
Lebreton, L. C. M. et al. River plastic emissions to the world’s oceans. Nat. Commun. 8, 15611 (2017).
Schmidt, C., Krauth, T. & Wagner, S. Export of plastic debris by rivers into the sea. Environ. Sci. Technol. 51, 12246–12253 (2017).
Hoellein, T. J. & Rochman, C. M. The “plastic cycle”: a watershed-scale model of plastic pools and fluxes. Front. Ecol. Environ. 19, 176–183 (2021).
van Sebille, E. et al. The physical oceanography of the transport of floating marine debris. Environ. Res. Lett. 15, 023003 (2020).
Ribic, C. A., Sheavly, S. B., Rugg, D. J. & Erdmann, E. S. Trends and drivers of marine debris on the Atlantic coast of the United States 1997–2007. Mar. Pollut. Bull. 60, 1231–1242 (2010).
Day, R. H., Shaw, D. G. & Ignell, S. E. in Proceedings of the Second International Conference on Marine Debris (eds Shomura, R. S. & Godfrey, M. L.) 185–211 (U.S. Department of Commerce, 1990).
Pham, C. K. et al. Marine litter distribution and density in European seas, from the shelves to deep basins. PLoS ONE 9, e95839 (2014).
Hidalgo-Ruz, V., Gutow, L., Thompson, R. C. & Thiel, M. Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ. Sci. Technol. 46, 3060–3075 (2012).
Zhu, X. et al. Identification of microfibers in the environment using multiple lines of evidence. Environ. Sci. Technol. 53, 11877–11887 (2019).
Primpke, S., Lorenz, C., Rascher-Friesenhausen, R. & Gerdts, G. An automated approach for microplastics analysis using focal plane array (FPA) FTIR microscopy and image analysis. Anal. Methods 9, 1499–1511 (2017).
Morét-Ferguson, S. et al. The size, mass, and composition of plastic debris in the western North Atlantic Ocean. Mar. Pollut. Bull. 60, 1873–1878 (2010).
Bergmann, M. et al. High quantities of microplastic in Arctic deep-sea sediments from the HAUSGARTEN observatory. Environ. Sci. Technol. 51, 11000–11010 (2017).
Lehner, R., Weder, C., Petri-Fink, A. & Rothen-Rutishauser, B. Emergence of nanoplastic in the environment and possible impact on human health. Environ. Sci. Technol. 53, 1748–1765 (2019).
Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605 (2011).
Ward, C. P., Armstrong, C. J., Walsh, A. N., Jackson, J. H. & Reddy, C. M. Sunlight converts polystyrene to carbon dioxide and dissolved organic carbon. Environ. Sci. Technol. Lett. 6, 669–674 (2019).
Zhu, L., Zhao, S., Bittar, T. B., Stubbins, A. & Li, D. Photochemical dissolution of buoyant microplastics to dissolved organic carbon: rates and microbial impacts. J. Hazard. Mater. 383, 121065 (2020).
Lebreton, L. et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci. Rep. 8, 4666 (2018).
Andrady, A. L. The plastic in microplastics: a review. Mar. Pollut. Bull. 119, 12–22 (2017).
ter Halle, A. et al. Understanding the fragmentation pattern of marine plastic debris. Environ. Sci. Technol. 50, 5668–5675 (2016).
Ward, C. P. & Reddy, C. M. Opinion: we need better data about the environmental persistence of plastic goods. Proc. Natl Acad. Sci. USA 117, 14618–14621 (2020).
Jahnke, A. et al. Reducing uncertainty and confronting ignorance about the possible impacts of weathering plastic in the marine environment. Environ. Sci. Technol. Lett. 4, 85–90 (2017).
Chamas, A. et al. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 8, 3494–3511 (2020).
Bioplastics Magazine. The global bio-based polymer market in 2019–a revised view. Bioplastics Magazine https://www.bioplasticsmagazine.com/en/news/meldungen/20200127-The-global-bio-based-polymer-market-in-2019-A-revised-view.php (2020).
Narayan, R. Carbon footprint of bioplastics using biocarbon content analysis and life-cycle assessment. MRS Bull. 36, 716–721 (2011).
Folino, A., Karageorgiou, A., Calabrò, P. S. & Komilis, D. Biodegradation of wasted bioplastics in natural and industrial environments: a review. Sustainability 12, 6030 (2020).
Albertsson, A.-C. & Hakkarainen, M. Designed to degrade. Science 358, 872–873 (2017).
Zumstein, M. T., Narayan, R., Kohler, H.-P. E., McNeill, K. & Sander, M. Dos and do nots when assessing the biodegradation of plastics. Environ. Sci. Technol. 53, 9967–9969 (2019).
Yang, Y. et al. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 1. Chemical and physical characterization and isotopic tests. Environ. Sci. Technol. 49, 12080–12086 (2015).
Pagga, U., Schäfer, A., Müller, R.-J. & Pantke, M. Determination of the aerobic biodegradability of polymeric material in aquatic batch tests. Chemosphere 42, 319–331 (2001).
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. & Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 15, 1609–1625 (2002).
Narayan, R. in Soil Degradable Bioplastics for a Sustainable Modern Agriculture Ch. 2 (ed. Malinconico, M.) 23–34 (Springer, 2017).
Harrison, J. P., Boardman, C., O’Callaghan, K., Delort, A.-M. & Song, J. Biodegradability standards for carrier bags and plastic films in aquatic environments: a critical review. R. Soc. Open Sci. 5, 171792 (2018).
Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).
Lau, W. W. Y. et al. Evaluating scenarios toward zero plastic pollution. Science 369, 1455–1461 (2020).
Stahel, W. R. Circular economy. Nature 531, 435–438 (2016).
Ellen MacArthur Foundation. The new plastics economy: rethinking the future of plastics. Ellen MacArthur Foundation https://ellenmacarthurfoundation.org/the-new-plastics-economy-rethinking-the-future-of-plastics (2016).
Zink, T. & Geyer, R. Circular economy rebound: circular economy rebound. J. Ind. Ecol. 21, 593–602 (2017).
Hong, M. & Chen, E. Y.-X. Future directions for sustainable polymers. Trends Chem. 1, 148–151 (2019).
Zumstein, M. T. et al. Biodegradation of synthetic polymers in soils: tracking carbon into CO2 and microbial biomass. Sci. Adv. 4, eaas9024 (2018).
Sintim, H. Y. & Flury, M. Is biodegradable plastic mulch the solution to agriculture’s plastic problem? Environ. Sci. Technol. 51, 1068–1069 (2017).
Wierckx, N. et al. Plastic waste as a novel substrate for industrial biotechnology: plastic waste as substrate for biotechnology. Microb. Biotechnol. 8, 900–903 (2015).
Wei, R. & Zimmermann, W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? Microb. Biotechnol. 10, 1308–1322 (2017).
Yoshida, S. et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351, 1196–1199 (2016).
Austin, H. P. et al. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc. Natl Acad. Sci. USA 115, E4350–E4357 (2018).
Knott, B. C. et al. Characterization and engineering of a two-enzyme system for plastics depolymerization. Proc. Natl Acad. Sci. USA 117, 25476–25485 (2020).
Tournier, V. et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216–219 (2020).
Rorrer, N. A. et al. Combining reclaimed PET with bio-based monomers enables plastics upcycling. Joule 3, 1006–1027 (2019).
Goldstein, N. Quantifying Existing Food Waste Composting Infrastructure in the U.S. (BioCycle, 2019).
International Solid Waste Association (ISWA). Waste and Climate Change: ISWA White Paper (International Solid Waste Association, 2009).
Rodrigues, L. C. et al. The impact of improper materials in biowaste on the quality of compost. J. Clean. Prod. 251, 119601 (2020).
Bandini, F. et al. Fate of biodegradable polymers under industrial conditions for anaerobic digestion and aerobic composting of food waste. J. Polym. Environ. 28, 2539–2550 (2020).
Taufik, D., Reinders, M. J., Molenveld, K. & Onwezen, M. C. The paradox between the environmental appeal of bio-based plastic packaging for consumers and their disposal behaviour. Sci. Total Environ. 705, 135820 (2020).
Coates, G. W. & Getzler, Y. D. Y. L. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020).
Zhang, X., Fevre, M., Jones, G. O. & Waymouth, R. M. Catalysis as an enabling science for sustainable polymers. Chem. Rev. 118, 839–885 (2018).
Zhu, J.-B., Watson, E. M., Tang, J. & Chen, E. Y.-X. A synthetic polymer system with repeatable chemical recyclability. Science 360, 398–403 (2018).
Rahimi, A. & García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1, 0046 (2017).
Ragaert, K., Delva, L. & Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 69, 24–58 (2017).
Thiounn, T. & Smith, R. C. Advances and approaches for chemical recycling of plastic waste. J. Polym. Sci. 58, 1347–1364 (2020).
Anastas, P. T. & Zimmerman, J. B. Design through the 12 principles of green engineering. Environ. Sci. Technol. 37, 94A–101A (2003).
Nicholson, S. R., Rorrer, N. A., Carpenter, A. C. & Beckham, G. T. Manufacturing energy and greenhouse gas emissions associated with plastics consumption. Joule 5, 1–14 (2021).
Al-Salem, S. M., Lettieri, P. & Baeyens, J. Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag. 29, 2625–2643 (2009).
Ignatyev, I. A., Thielemans, W. & Vander Beke, B. Recycling of polymers: a review. ChemSusChem 7, 1579–1593 (2014).
Rogoff, M. J. & Ross, D. E. The future of recycling in the United States. Waste Manag. Res. 34, 181–183 (2016).
Waste Management. WM Report on Recycling (Waste Management, 2020).
Zink, T. & Geyer, R. Material recycling and the myth of landfill diversion. J. Ind. Ecol. 23, 541–548 (2019).
Britt, P. F. et al. Report of the Basic Energy Sciences Roundtable on Chemical Upcycling of Polymers (U.S. Department of Energy, 2019).
Fullerton, D. & Wu, W. Policies for green design. J. Environ. Econ. Manag. 36, 131–148 (1998).
Allwood, J. M. Sustainable materials. Nat. Rev. Mater. 1, 15009 (2016).
Mitrano, D. M. & Wohlleben, W. Microplastic regulation should be more precise to incentivize both innovation and environmental safety. Nat. Commun. 11, 5324 (2020).
Jakovcevic, A. et al. Charges for plastic bags: motivational and behavioral effects. J. Environ. Psychol. 40, 372–380 (2014).
Consumer Brands Association. Achieving America’s Recycling Future: Consumer Brands Association Position on the Optimal Recycling System (Consumer Brands Association, 2020).
Coelho, P. M., Corona, B., ten Klooster, R. & Worrell, E. Sustainability of reusable packaging–Current situation and trends. Resour. Conserv. Recycl. X 6, 100037 (2020).
Kuhn, S., Bravo Rebolledo E. L. & van Franeker, J. A. in Marine Anthropogenic Litter Ch. 4 (eds. Bergmann, M., Gutow, L., & Klages, M.) 75–115 (Springer Open, 2015).
Fowler, C. Marine debris and northern fur seals: a case study. Mar. Pollut. Bull. 18, 326–335 (1987).
Nava, V. & Leoni, B. A critical review of interactions between microplastics, microalgae and aquatic ecosystem function. Water Res. 188, 116476 (2021).
Amaral-Zettler, L. A., Zettler, E. R. & Mincer, T. J. Ecology of the plastisphere. Nat. Rev. Microbiol. 18, 139–151 (2020).
Goldstein, M. C. & Goodwin, D. S. Gooseneck barnacles (Lepas spp.) ingest microplastic debris in the North Pacific Subtropical Gyre. PeerJ 1, e184 (2013).
Kiessling, T., Gutow, L., Thiel, M. in Marine Anthropogenic Litter Ch. 6 (eds. Bergmann, M., Gutow, L., & Klages, M.) 141–181 (Springer Open, 2015).
Carlton, J. T. et al. Tsunami-driven rafting: transoceanic species dispersal and implications for marine biogeography. Science 357, 1402–1406 (2017).
de Stephanis, R., Giménez, J., Carpinelli, E., Gutierrez-Exposito, C. & Cañadas, A. As main meal for sperm whales: plastics debris. Mar. Pollut. Bull. 69, 206–214 (2013).
Rochman, C. M., Kurobe, T., Flores, I. & Teh, S. J. Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment. Sci. Total Environ. 493, 656–661 (2014).
Browne, M. A., Niven, S. J., Galloway, T. S., Rowland, S. J. & Thompson, R. C. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Curr. Biol. 23, 2388–2392 (2013).
Hirai, H. et al. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar. Pollut. Bull. 62, 1683–1692 (2011).
Sussarellu, R. et al. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc. Natl Acad. Sci. USA 113, 2430–2435 (2016).
Ogonowski, M., Schür, C., Jarsén, Å. & Gorokhova, E. The effects of natural and anthropogenic microparticles on individual fitness in Daphnia magna. PLoS One 11, e0155063 (2016).
Burns, E. E. & Boxall, A. B. A. Microplastics in the aquatic environment: evidence for or against adverse impacts and major knowledge gaps: microplastics in the environment. Environ. Toxicol. Chem. 37, 2776–2796 (2018).
Hanke, U. M., Ward, C. P. & Reddy, C. M. Leveraging lessons learned from black carbon research to study plastics in the environment. Environ. Sci. Technol. 53, 6599–6600 (2019).
Koelmans, A. A. et al. Risks of plastic debris: unravelling fact, opinion, perception, and belief. Environ. Sci. Technol. 51, 11513–11519 (2017).
Thompson, R. C. et al. Lost at sea: where is all the plastic? Science 304, 838–838 (2004).
Arthur, C., Baker, J. & Bamford, H. in Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris (eds Baker, C. J. & Bamford, H.) 49 (National Oceanic and Atmospheric Administration, 2009).
Enders, K., Lenz, R., Stedmon, C. A. & Nielsen, T. G. Abundance, size and polymer composition of marine microplastics ≥10 μm in the Atlantic Ocean and their modelled vertical distribution. Mar. Pollut. Bull. 100, 70–81 (2015).
Hartmann, N. B. et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 53, 1039–1047 (2019).
Filella, M. Questions of size and numbers in environmental research on microplastics: methodological and conceptual aspects. Environ. Chem. 12, 527–538 (2015).
Lambert, S. & Wagner, M. Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere 145, 265–268 (2016).
ter Halle, A. et al. Nanoplastic in the North Atlantic subtropical gyre. Environ. Sci. Technol. 51, 13689–13697 (2017).
Alimi, O. S., Farner Budarz, J., Hernandez, L. M. & Tufenkji, N. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 52, 1704–1724 (2018).
Acknowledgements
Funding for K.L.L. was provided by the March Marine Initiative, a project of March Limited in Hamilton, Bermuda. The authors thank R. Geyer for providing updated global plastic production data (2016–2018) from the model published in Geyer et al. (2017)1. The authors thank Apoorva Kulkarni, PhD student in chemical engineering at Michigan State University, for compiling data on cellulose biodegradation. They also thank T. R. Siegler and N. Starr for helpful discussion, and E. Wolman and the reviewers for comments that improved the manuscript.
Author information
Authors and Affiliations
Contributions
Both authors contributed to the design and content of the manuscript. K.L.L. wrote the manuscript and both authors edited and revised the manuscript prior to submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Materials thanks Denise Mitrano and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Alliance to End Plastic Waste: https://endplasticwaste.org/
ASTM (D6866): https://www.astm.org/Standards/D6866.htm
Biodegradable Products Institute: https://bpiworld.org/
Collection of initiatives: https://www.newplasticseconomy.org/projects/plastics-pact
Industrial composters: https://www.oregon.gov/deq/mm/Documents/MessagefromComposter-En.pdf
ReSouce Plastic: https://resource-plastic.com/
Sustainable development goals: https://www.undp.org/content/undp/en/home/sustainable-development-goals/goal-12-responsible-consumption-and-production.html
The Association of Plastic Recyclers (APR) Design Guide for Plastics Recyclability: https://plasticsrecycling.org/apr-design-guide
TÜV Austria: https://www.tuv-at.be/green-marks/certifications/
Rights and permissions
About this article
Cite this article
Law, K.L., Narayan, R. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nat Rev Mater 7, 104–116 (2022). https://doi.org/10.1038/s41578-021-00382-0
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41578-021-00382-0