Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Innovations to decarbonize materials industries


Materials science has had a key role in lowering CO2 emissions from the electricity sector through the development of technologies for renewable energy generation and high-performance energy storage. However, outside of the energy sector, there remain considerable greenhouse gas emissions linked to materials production, particularly due to growth in the built environment infrastructure, transportation and chemicals manufacture. This Review focuses on the challenge of reducing the emissions impact of materials production. We assess the potential for decarbonization in the cement, metals (including steel and aluminium) and chemicals manufacturing industries, including the potential to reduce emissions from the inputs to the production and the transformation processes, as well as through the design of desired outputs. We also address underexplored research areas and outline opportunities for the materials community to reduce emissions by leveraging innovations along length scales from atoms to materials markets.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Length-scale considerations in the decarbonization of cement, steel and petrochemicals.
Fig. 2: Estimating the decarbonization potential of materials production technologies.
Fig. 3: Mass flow dynamics and technical practice behind metal recycling from end-of-life vehicles.
Fig. 4: Challenges in producing bio-based plastics.
Fig. 5: Electrification of materials production.


  1. 1.

    Masson-Delmotte, V. et al. Global warming of 1.5 °C (IPCC, 2018).

  2. 2.

    Bataille, C. et al. A review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris Agreement. J. Clean. Prod. 187, 960–973 (2018).

    Article  Google Scholar 

  3. 3.

    International Energy Agency. Energy technology perspectives 2006: scenarios and strategies to 2050 (IEA, 2006).

  4. 4.

    Nikoleris, A., Åhman, M. & Nilsson, L. J. Sustainability transition in basic industries — the forgotten sector. in Int. Conf. Innov. Methods Innov. Manage. Policy (2012).

  5. 5.

    European Environment Agency. Trends and projections in Europe 2019: tracking progress towards Europe’s climate and energy targets (EEA, 2019).

  6. 6.

    Åhman, M., Nilsson, L. J. & Johansson, B. Global climate policy and deep decarbonization of energy-intensive industries. Clim. Policy 17, 634–649 (2017).

    Article  Google Scholar 

  7. 7.

    Fischedick, M. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 138–160 (IPCC, 2014).

  8. 8.

    Wesseling, J. H. et al. The transition of energy intensive processing industries towards deep decarbonization: characteristics and implications for future research. Renew. Sustain. Energy Rev. 79, 1303–1313 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    Davis, S. J. et al. Net-zero emissions energy systems. Science 360, eaas9793 (2018).

    Article  CAS  Google Scholar 

  10. 10.

    Axelson, M., Robson, I., Khandekar, G. & Wynys, T. Breaking through industrial low-CO2 technologies on the horizon. Inst. Eur. Stud. 135, 28–29 (2018).

    Google Scholar 

  11. 11.

    Rissman, J. et al. Technologies and policies to decarbonize global industry: review and assessment of mitigation drivers through 2070. Appl. Energy 266, 114848 (2020). Presents a broad roadmap to decarbonize the iron and steel, cement, and chemicals and plastics industries from 2020 to 2070.

    CAS  Article  Google Scholar 

  12. 12.

    Hertwich, E., Lifset, R., Pauliuk, S. & Heeren, N. Resource efficiency and climate change: material efficiency strategies for a low-carbon future (UNEP, 2020).

  13. 13.

    Unruh, G. C. Understanding carbon lock-in. Energy Policy 28, 817–830 (2000).

    Article  Google Scholar 

  14. 14.

    Thiel, G. P. & Stark, A. K. To decarbonize industry, we must decarbonize heat. Joule 5, 531–550 (2021).

    CAS  Article  Google Scholar 

  15. 15.

    Dave, S. H., Keller, B. D., Golmer, K. & Grossman, J. C. Six degrees of separation: connecting research with users and cost analysis. Joule 1, 410–415 (2017).

    Article  Google Scholar 

  16. 16.

    International Energy Agency. World energy outlook 2019 (IEA, 2019).

  17. 17.

    International Energy Agency. The role of critical minerals in clean energy transition (IEA, 2021). Global analysis of minerals requirement for the clean energy transition, revealing that current investment in critical minerals is insufficient to support the rapid deployment of solar and wind energy and electric vehicles, but policies and improved technologies can be pursued to ensure these minerals do not place constraints on renewable energy uptake.

  18. 18.

    Henckens, M. L. C. M. & Worrell, E. Reviewing the availability of copper and nickel for future generations. The balance between production growth, sustainability and recycling rates. J. Clean. Prod. 264, 121460 (2020).

    CAS  Article  Google Scholar 

  19. 19.

    Kleijn, R., van der Voet, E., Kramer, G. J., van Oers, L. & van der Giesen, C. Metal requirements of low-carbon power generation. Energy 36, 5640–5648 (2011).

    CAS  Article  Google Scholar 

  20. 20.

    de Koning, A. et al. Metal supply constraints for a low-carbon economy? Resour. Conserv. Recycl. 129, 202–208 (2018).

    Article  Google Scholar 

  21. 21.

    International Energy Agency. Energy technology perspectives 2020 (IEA, 2020).

  22. 22.

    World Steel Association. Steel solutions in the green economy (World Steel Association, 2012).

  23. 23.

    Material Economics. The circular economy — a powerful force for climate mitigation (Material Economics, 2018).

  24. 24.

    International Energy Agency. The future of petrochemicals (IEA, 2018).

  25. 25.

    International Energy Agency. Technology roadmap — low-carbon transition in the cement industry (IEA, 2018).

  26. 26.

    Lucas, B. Sectors that are challenging to decarbonise (Institute of Development Studies, 2020).

  27. 27.

    International Energy Agency. Iron and steel technology roadmap (IEA, 2020).

  28. 28.

    Feng, X., Pu, J., Yang, J. & Chu, K. H. Energy recovery in petrochemical complexes through heat integration retrofit analysis. Appl. Energy 88, 1965–1982 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    Bernardo, P., Drioli, E. & Golemme, G. Membrane gas separation: a review/state of the art. Ind. Eng. Chem. Res. 48, 4638–4663 (2009).

    CAS  Article  Google Scholar 

  30. 30.

    Zhu, X., Imtiaz, Q., Donat, F., Müller, C. R. & Li, F. Chemical looping beyond combustion–a perspective. Energy Environ. Sci. 13, 772–804 (2020).

    CAS  Article  Google Scholar 

  31. 31.

    Fisher, B., Nakicenovic, N. & Alfsen, K. Climate change 2007: mitigation of climate change (IPCC, 2007).

  32. 32.

    International Energy Agency. Energy technology perspectives 2017: catalysing energy technology transformations (IEA, 2017).

  33. 33.

    Smil, V. The long slow rise of solar and wind. Sci. Am. 310, 52–57 (2014).

    Article  Google Scholar 

  34. 34.

    Shi, C. et al. Performance enhancement of recycled concrete aggregate — A review. J. Clean. Prod. 112, 466–472 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    Yazdanbakhsh, A., Bank, L. C., Baez, T. & Wernick, I. Comparative LCA of concrete with natural and recycled coarse aggregate in the New York City area. Int. J. Life Cycle Assess. 23, 1163–1173 (2018).

    CAS  Article  Google Scholar 

  36. 36.

    Basuhi, R. et al. Environmental and economic implications of U.S. postconsumer plastic waste management. Resour. Conserv. Recycl. 167, 105391 (2021).

    Article  Google Scholar 

  37. 37.

    Welle, F. Twenty years of PET bottle to bottle recycling — An overview. Resour. Conserv. Recycl. 55, 865–875 (2011).

    Article  Google Scholar 

  38. 38.

    Rahimi, A. & García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1, 0046 (2017).

    Article  CAS  Google Scholar 

  39. 39.

    Güçlü, G., Yalçinyuva, T., Özgümüş, S. & Orbay, M. Hydrolysis of waste polyethylene terephthalate and characterization of products by differential scanning calorimetry. Thermochim. Acta 404, 193–205 (2003).

    Article  CAS  Google Scholar 

  40. 40.

    Kurokawa, H., Ohshima, M. A., Sugiyama, K. & Miura, H. Methanolysis of polyethylene terephthalate (PET) in the presence of aluminium tiisopropoxide catalyst to form dimethyl terephthalate and ethylene glycol. Polym. Degrad. Stab. 79, 529–533 (2003).

    CAS  Article  Google Scholar 

  41. 41.

    Fukushima, K. et al. Advanced chemical recycling of poly(ethylene terephthalate) through organocatalytic aminolysis. Polym. Chem. 4, 1610–1616 (2013).

    CAS  Article  Google Scholar 

  42. 42.

    Anuar Sharuddin, S. D., Abnisa, F., Wan Daud, W. M. A. & Aroua, M. K. A review on pyrolysis of plastic wastes. Energy Convers. Manag. 115, 308–326 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    Metecan, I. H. et al. Naphtha derived from polyolefins. Fuel 84, 619–628 (2005).

    Article  CAS  Google Scholar 

  44. 44.

    Sharma, B. K., Moser, B. R., Vermillion, K. E., Doll, K. M. & Rajagopalan, N. Production, characterization and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags. Fuel Process. Technol. 122, 79–90 (2014).

    CAS  Article  Google Scholar 

  45. 45.

    Demirbas, A. Pyrolysis of municipal plastic wastes for recovery of gasoline-range hydrocarbons. J. Anal. Appl. Pyrolysis 72, 97–102 (2004).

    CAS  Article  Google Scholar 

  46. 46.

    Zhang, Z. et al. Chemical recycling of waste polystyrene into styrene over solid acids and bases. Ind. Eng. Chem. Res. 34, 4514–4519 (1995).

    CAS  Article  Google Scholar 

  47. 47.

    Sato, Y., Kondo, Y., Tsujita, K. & Kawai, N. Degradation behaviour and recovery of bisphenol-A from epoxy resin and polycarbonate resin by liquid-phase chemical recycling. Polym. Degrad. Stab. 89, 317–326 (2005).

    CAS  Article  Google Scholar 

  48. 48.

    Shieh, P. et al. Cleavable comonomers enable degradable, recyclable thermoset plastics. Nature 583, 542–547 (2020).

    CAS  Article  Google Scholar 

  49. 49.

    Nakatani, J., Fujii, M., Moriguchi, Y. & Hirao, M. Life-cycle assessment of domestic and transboundary recycling of post-consumer PET bottles. Int. J. Life Cycle Assess. 15, 590–597 (2010).

    CAS  Article  Google Scholar 

  50. 50.

    Vollmer, I. et al. Beyond mechanical recycling: giving new life to plastic waste. Angew. Chem. Int. Ed. 59, 15402–15423 (2020).

    CAS  Article  Google Scholar 

  51. 51.

    Chen, C. C., Dai, L., Ma, L. & Guo, R. T. Enzymatic degradation of plant biomass and synthetic polymers. Nat. Rev. Chem. 4, 114–126 (2020).

    Article  Google Scholar 

  52. 52.

    Ronkvist, Å. M., Xie, W., Lu, W. & Gross, R. A. Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules 42, 5128–5138 (2009).

    CAS  Article  Google Scholar 

  53. 53.

    Tournier, V. et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216–219 (2020).

    CAS  Article  Google Scholar 

  54. 54.

    Taniguchi, I. et al. Biodegradation of PET: current status and application aspects. ACS Catal. 9, 4089–4105 (2019).

    CAS  Article  Google Scholar 

  55. 55.

    Krueger, M. C., Harms, H. & Schlosser, D. Prospects for microbiological solutions to environmental pollution with plastics. Appl. Microbiol. Biotechnol. 99, 8857–8874 (2015).

    CAS  Article  Google Scholar 

  56. 56.

    Restrepo-Flórez, J. M., Bassi, A. & Thompson, M. R. Microbial degradation and deterioration of polyethylene — A review. Int. Biodeterior. Biodegrad. 88, 83–90 (2014).

    Article  CAS  Google Scholar 

  57. 57.

    Ho, B. T., Roberts, T. K. & Lucas, S. An overview on biodegradation of polystyrene and modified polystyrene: the microbial approach. Crit. Rev. Biotechnol. 38, 308–320 (2018).

    CAS  Article  Google Scholar 

  58. 58.

    Callaway, E. ‘It will change everything’: DeepMind’s AI makes giant leap in solving protein structures. Nature 588, 203–204 (2020).

    CAS  Article  Google Scholar 

  59. 59.

    Reck, B. K. & Graedel, T. E. Challenges in metal recycling. Science 337, 690–695 (2012).

    CAS  Article  Google Scholar 

  60. 60.

    Pauliuk, S., Milford, R. L., Müller, D. B. & Allwood, J. M. The steel scrap age. Environ. Sci. Technol. 47, 3448–3454 (2013). Models the future of global steel production and projects that steel demand will peak this century (between 2020 and 2030) in China, the Middle East, Latin America and India, with secondary steel production dominant in the latter half of the century.

    CAS  Article  Google Scholar 

  61. 61.

    Liu, G., Bangs, C. E. & Müller, D. B. Stock dynamics and emission pathways of the global aluminium cycle. Nat. Clim. Chang. 3, 338–342 (2013).

    CAS  Article  Google Scholar 

  62. 62.

    Reuter, M. A., van Schaik, A., Gutzmer, J., Bartie, N. & Abadías-Llamas, A. Challenges of the circular economy: a material, metallurgical, and product design perspective. Annu. Rev. Mater. Res. 49, 253–274 (2019).

    CAS  Article  Google Scholar 

  63. 63.

    Jody, B. J. et al. End-of-life vehicle recycling: state of the art of resource recovery from shredder residue (Argonne National Laboratory, 2006).

  64. 64.

    Brooks, L., Gaustad, G., Gesing, A., Mortvedt, T. & Freire, F. Ferrous and non-ferrous recycling: challenges and potential technology solutions. Waste Manag. 85, 519–528 (2019).

    CAS  Article  Google Scholar 

  65. 65.

    Savov, L., Volkova, E. & Janke, D. Copper and tin in steel scrap recycling. Mater. Geoenviron. 50, 627–640 (2003).

    CAS  Google Scholar 

  66. 66.

    Gaustad, G., Olivetti, E. & Kirchain, R. Improving aluminum recycling: a survey of sorting and impurity removal technologies. Resour. Conserv. Recycl. 58, 79–87 (2012).

    Article  Google Scholar 

  67. 67.

    Nakajima, K., Takeda, O., Miki, T., Matsubae, K. & Nagasaka, T. Thermodynamic analysis for the controllability of elements in the recycling process of metals. Environ. Sci. Technol. 45, 4929–4936 (2011).

    CAS  Article  Google Scholar 

  68. 68.

    Melford, D. A. The influence of residual and trace elements on hot shortness and high temperature embrittlement. Phil. Trans. R. Soc. Lond. A 295, 89–103 (1980).

    CAS  Article  Google Scholar 

  69. 69.

    Hess, J. B. Physical metallurgy of recycling wrought aluminum alloys. Metall. Trans. A Phys. Metall. Mater. Sci. 14, 323–327 (1983).

    CAS  Article  Google Scholar 

  70. 70.

    Gutowski, T. G. Thermodynamics and recycling, a review (IEEE, 2008).

  71. 71.

    Brahmst, E. Copper in end-of-life vehicle recycling (Centre for Automotive Research, 2006).

  72. 72.

    Werheit, P., Fricke-Begemann, C., Gesing, M. & Noll, R. Fast single piece identification with a 3D scanning LIBS for aluminium cast and wrought alloys recycling. J. Anal. At. Spectrom. 26, 2166–2174 (2011).

    CAS  Article  Google Scholar 

  73. 73.

    Boom, R. & Steffen, R. Recycling of scrap for high quality steel products. Steel Res. 72, 91–96 (2001).

    CAS  Article  Google Scholar 

  74. 74.

    Gao, Z., Sridhar, S., Spiller, D. E. & Taylor, P. R. Applying improved optical recognition with machine learning on sorting Cu impurities in steel scrap. J. Sustain. Metall. 6, 785–795 (2020).

    Article  Google Scholar 

  75. 75.

    Daehn, K. E., Serrenho, A. C. & Allwood, J. Finding the most efficient way to remove residual copper from steel scrap. Metall. Mater. Trans. B 50, 1225–1240 (2019).

    CAS  Article  Google Scholar 

  76. 76.

    Daehn, K. E., Serrenho, A. C. & Allwood, J. Preventing wetting between liquid copper and solid steel: a simple extraction technique. Metall. Mater. Trans. B 50, 1637–1651 (2019).

    CAS  Article  Google Scholar 

  77. 77.

    Webler, B. A. & Sridhar, S. Evolution and distribution of the copper-rich phase during oxidation of an iron-0.3wt% copper alloy at 1150oC. ISIJ Int. 48, 1345–1353 (2008).

    CAS  Article  Google Scholar 

  78. 78.

    Shibata, K. et al. Suppression of surface hot shortness due to Cu in recycled steels. Mater. Trans. 43, 292–300 (2002). Useful resource to understand the metallurgical phenomena behind surface hot shortness in steel owing to residual copper and the effects of interacting elements (tin, boron, silicon, manganese, sulfur, nickel, silicon), and presents physical metallurgy strategies for amelioration.

    CAS  Article  Google Scholar 

  79. 79.

    Yin, L., Sampson, E., Nakano, J. & Sridhar, S. The effects of nickel/tin ratio on Cu induced surface hot shortness in Fe. Oxid. Met. 76, 367–383 (2011).

    CAS  Article  Google Scholar 

  80. 80.

    Peng, H. The role of silicon in hot shortness amelioration of steel containing copper and tin. Oxid. Met. 85, 599–610 (2016).

    CAS  Article  Google Scholar 

  81. 81.

    Daehn, K. E., Cabrera Serrenho, A. & Allwood, J. M. How will copper contamination constrain future global steel recycling? Environ. Sci. Technol. 51, 6599–6606 (2017).

    CAS  Article  Google Scholar 

  82. 82.

    Zhu, Y., Syndergaard, K. & Cooper, D. R. Mapping the annual flow of steel in the United States. Environ. Sci. Technol. 53, 11260–11268 (2019).

    CAS  Article  Google Scholar 

  83. 83.

    Modaresi, R. & Müller, D. B. The role of automobiles for the future of aluminum recycling. Environ. Sci. Technol. 46, 8587–8594 (2012).

    CAS  Article  Google Scholar 

  84. 84.

    Hatayama, H., Daigo, I., Matsuno, Y. & Adachi, Y. Assessment of recycling potential of aluminum in Japan, the United States, Europe and China. J. Jpn. Inst. Met. 72, 813–818 (2008). A quantitative assessment of the viability of global aluminium recycling; projects that a large quantity of scrap (larger than the quantity of aluminium required by primary production) will be unrecyclable by 2050.

    Article  Google Scholar 

  85. 85.

    Hatayama, H., Daigo, I., Matsuno, Y. & Adachi, Y. Evolution of aluminum recycling initiated by the introduction of next-generation vehicles and scrap sorting technology. Resour. Conserv. Recycl. 66, 8–14 (2012).

    Article  Google Scholar 

  86. 86.

    Hatayama, H., Daigo, I. & Tahara, K. Tracking effective measures for closed-loop recycling of automobile steel in China. Resour. Conserv. Recycl. 87, 65–71 (2014).

    Article  Google Scholar 

  87. 87.

    Miller, S. A. & Myers, R. J. Environmental impacts of alternative cement binders. Environ. Sci. Technol. 54, 677–686 (2020). A systematic study of the environmental impacts of a wide range of alternative clinkers for cement, showing that most alternative clinkers offer reduced greenhouse gas emissions and environmental benefits relative to OPC.

    CAS  Article  Google Scholar 

  88. 88.

    Gartner, E. & Sui, T. Alternative cement clinkers. Cem. Concr. Res. 114, 27–39 (2018).

    CAS  Article  Google Scholar 

  89. 89.

    Scrivener, K. L., John, V. M. & Gartner, E. M. Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 114, 2–26 (2018). Report from a multi-stakeholder working group on low-CO2, eco-efficient cement-based materials.

    CAS  Article  Google Scholar 

  90. 90.

    Scrivener, K., Martirena, F., Bishnoi, S. & Maity, S. Calcined clay limestone cements (LC3). Cem. Concr. Res. 114, 49–56 (2018). The first systematic evaluation of technologies and strategies for reducing carbon emissions along the full life cycle for cement production.

    CAS  Article  Google Scholar 

  91. 91.

    Juenger, M. C. G., Snellings, R. & Bernal, S. A. Supplementary cementitious materials: new sources, characterization, and performance insights. Cem. Concr. Res. 122, 257–273 (2019). Review on technical aspects of supplementary cementious materials, including the feasibility of scaled implementation.

    CAS  Article  Google Scholar 

  92. 92.

    Bullard, J. W. et al. Mechanisms of cement hydration. Cem. Concr. Res. 41, 1208–1223 (2011).

    CAS  Article  Google Scholar 

  93. 93.

    Provis, J. L. Alkali-activated materials. Cem. Concr. Res. 114, 40–48 (2018).

    CAS  Article  Google Scholar 

  94. 94.

    Atakan, V., Sahu, S., Quinn, S., Hu, X. & DeCristofaro, N. Why CO2 matters — advances in a new class of cement. ZKG Int. 67, 60–63 (2014).

    CAS  Google Scholar 

  95. 95.

    Richardson, I. G. The calcium silicate hydrates. Cem. Concr. Res. 38, 137–158 (2008).

    CAS  Article  Google Scholar 

  96. 96.

    Lothenbach, B., Scrivener, K. & Hooton, R. D. Supplementary cementitious materials. Cem. Concr. Res. 41, 1244–1256 (2011).

    CAS  Article  Google Scholar 

  97. 97.

    Skibsted, J. & Snellings, R. Reactivity of supplementary cementitious materials (SCMs) in cement blends. Cem. Concr. Res. 124, 105799 (2019).

    CAS  Article  Google Scholar 

  98. 98.

    Uvegi, H. et al. Literature mining for alternative cementitious precursors and dissolution rate modeling of glassy phases. J. Am. Ceram. Soc. 104, 3042–3057 (2020).

    Article  CAS  Google Scholar 

  99. 99.

    Taylor, H. F. W. in Cement Chemistry 10–69 (Academic, 1990).

  100. 100.

    Nonat, A. The structure and stoichiometry of CSH. Cem. Concr. Res. 34, 1521–1528 (2004).

    CAS  Article  Google Scholar 

  101. 101.

    L’Hôpital, E., Lothenbach, B., Le Saout, G., Kulik, D. & Scrivener, K. Incorporation of aluminium in calcium-silicate-hydrates. Cem. Concr. Res. 75, 91–103 (2015).

    Article  CAS  Google Scholar 

  102. 102.

    Myers, R. J., Provis, J. L. & Lothenbach, B. Composition–solubility–structure relationships in calcium (alkali) aluminosilicate hydrate (C-(N, K-) ASH). Dalton Trans. 44, 13530–13544 (2015).

    CAS  Article  Google Scholar 

  103. 103.

    Lothenbach, B. et al. Cemdata18: a chemical thermodynamic database for hydrated Portland cements and alkali-activated materials. Cem. Concr. Res. 115, 472–506 (2019).

    CAS  Article  Google Scholar 

  104. 104.

    Kunhi Mohamed, A. et al. The atomic-level structure of cementitious calcium aluminate silicate hydrate. J. Am. Chem. Soc. 142, 11060–11071 (2020).

    CAS  Article  Google Scholar 

  105. 105.

    Myers, R. J., Bernal, S. A., San Nicolas, R. & Provis, J. L. Generalized structural description of calcium–sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model. Langmuir 29, 5294–5306 (2013).

    CAS  Article  Google Scholar 

  106. 106.

    Myers, R. J., Bernal, S. A. & Provis, J. L. A thermodynamic model for C-(N-) ASH gel: CNASH_ss. Derivation and validation. Cem. Concr. Res. 66, 27–47 (2014).

    CAS  Article  Google Scholar 

  107. 107.

    Assaad, J. J. & Issa, C. A. Effect of clinker grinding aids on flow of cement-based materials. Cem. Concr. Res. 63, 1–11 (2014).

    CAS  Article  Google Scholar 

  108. 108.

    Berodier, E. & Scrivener, K. Understanding the filler effect on the nucleation and growth of C-S-H. J. Am. Ceram. Soc. 97, 3764–3773 (2014).

    CAS  Article  Google Scholar 

  109. 109.

    Berodier, E. & Scrivener, K. Evolution of pore structure in blended systems. Cem. Concr. Res. 73, 25–35 (2015).

    CAS  Article  Google Scholar 

  110. 110.

    Dhandapani, Y. & Santhanam, M. Investigation on the microstructure-related characteristics to elucidate performance of composite cement with limestone-calcined clay combination. Cem. Concr. Res. 129, 105959 (2020).

    CAS  Article  Google Scholar 

  111. 111.

    Yang, P., Dhandapani, Y., Santhanam, M. & Neithalath, N. Simulation of chloride diffusion in fly ash and limestone-calcined clay cement (LC3) concretes and the influence of damage on service-life. Cem. Concr. Res. 130, 106010 (2020).

    CAS  Article  Google Scholar 

  112. 112.

    Miller, S. A. Supplementary cementitious materials to mitigate greenhouse gas emissions from concrete: can there be too much of a good thing? J. Clean. Prod. 178, 587–598 (2018).

    Article  Google Scholar 

  113. 113.

    Miller, S. A., John, V. M., Pacca, S. A. & Horvath, A. Carbon dioxide reduction potential in the global cement industry by 2050. Cem. Concr. Res. 114, 115–124 (2018).

    CAS  Article  Google Scholar 

  114. 114.

    Zhang, X., Fevre, M., Jones, G. O. & Waymouth, R. M. Catalysis as an enabling science for sustainable polymers. Chem. Rev. 118, 839–885 (2018). Highlights the complexity of making renewable monomer and polymer systems, as well as issues with biodegradation.

    CAS  Article  Google Scholar 

  115. 115.

    Jang, Y. S. et al. Bio-based production of C2–C6 platform chemicals. Biotechnol. Bioeng. 109, 2437–2459 (2012).

    CAS  Article  Google Scholar 

  116. 116.

    Nikolau, B. J., Perera, M. A. D. N., Brachova, L. & Shanks, B. Platform biochemicals for a biorenewable chemical industry. Plant J. 54, 536–545 (2008).

    CAS  Article  Google Scholar 

  117. 117.

    Fan, D., Dai, D. J. & Wu, H. S. Ethylene formation by catalytic dehydration of ethanol with industrial considerations. Materials 6, 101–115 (2013).

    CAS  Article  Google Scholar 

  118. 118.

    Tachibana, Y., Kimura, S. & Kasuya, K. I. Synthesis and verification of biobased terephthalic acid from furfural. Sci. Rep. 5, 8249 (2015).

    Article  CAS  Google Scholar 

  119. 119.

    Spekreijse, J., Le Nôtre, J., Van Haveren, J., Scott, E. L. & Sanders, J. P. M. Simultaneous production of biobased styrene and acrylates using ethenolysis. Green Chem. 14, 2747–2751 (2012).

    CAS  Article  Google Scholar 

  120. 120.

    Chen, L., Pelton, R. E. O. & Smith, T. M. Comparative life cycle assessment of fossil and bio-based polyethylene terephthalate (PET) bottles. J. Clean. Prod. 137, 667–676 (2016).

    CAS  Article  Google Scholar 

  121. 121.

    Semba, T. et al. Greenhouse gas emissions of 100% bio-derived polyethylene terephthalate on its life cycle compared with petroleum-derived polyethylene terephthalate. J. Clean. Prod. 195, 932–938 (2018).

    CAS  Article  Google Scholar 

  122. 122.

    Belboom, S. & Léonard, A. Does biobased polymer achieve better environmental impacts than fossil polymer? Comparison of fossil HDPE and biobased HDPE produced from sugar beet and wheat. Biomass Bioenergy 85, 159–167 (2016).

    CAS  Article  Google Scholar 

  123. 123.

    Liptow, C. & Tillman, A. M. A comparative life cycle assessment study of polyethylene based on sugarcane and crude oil. J. Ind. Ecol. 16, 420–435 (2012).

    CAS  Article  Google Scholar 

  124. 124.

    Sarkar, N., Ghosh, S. K., Bannerjee, S. & Aikat, K. Bioethanol production from agricultural wastes: an overview. Renew. Energy 37, 19–27 (2012).

    CAS  Article  Google Scholar 

  125. 125.

    Shen, L., Worrell, E. & Patel, M. K. Comparing life cycle energy and GHG emissions of bio-based PET, recycled PET, PLA, and man-made cellulosics. Biofuel. Bioprod. Biorefin. 6, 625–639 (2012).

    CAS  Article  Google Scholar 

  126. 126.

    Auras, R., Harte, B. & Selke, S. An overview of polylactides as packaging materials. Macromol. Biosci. 4, 835–864 (2004).

    CAS  Article  Google Scholar 

  127. 127.

    Wolf, O., Crank, M. & Patel, M. Techno-economic feasibility of large-scale production of bio-based polymers in Europe (European Commission, 2005).

  128. 128.

    Tsuji, H. Poly(lactic acid) stereocomplexes: a decade of progress. Adv. Drug Deliv. Rev. 107, 97–135 (2016).

    CAS  Article  Google Scholar 

  129. 129.

    Galbis, J. A., García-Martín, M. D. G., De Paz, M. V. & Galbis, E. Synthetic polymers from sugar-based monomers. Chem. Rev. 116, 1600–1636 (2016).

    CAS  Article  Google Scholar 

  130. 130.

    Gandini, A. Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 41, 9491–9504 (2008).

    CAS  Article  Google Scholar 

  131. 131.

    Sun, Z., Fridrich, B., De Santi, A., Elangovan, S. & Barta, K. Bright side of lignin depolymerization: toward new platform chemicals. Chem. Rev. 118, 614–678 (2018).

    CAS  Article  Google Scholar 

  132. 132.

    Pandey, M. P. & Kim, C. S. Lignin depolymerization and conversion: a review of thermochemical methods. Chem. Eng. Technol. 34, 29–41 (2011).

    CAS  Article  Google Scholar 

  133. 133.

    Hong, M. & Chen, E. Y. X. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ-butyrolactone. Nat. Chem. 8, 42–49 (2016).

    CAS  Article  Google Scholar 

  134. 134.

    De Geus, M. et al. Performance polymers from renewable monomers: high molecular weight poly(pentadecalactone) for fiber applications. Polym. Chem. 1, 525–533 (2010).

    Article  Google Scholar 

  135. 135.

    Van Der Meulen, I. et al. Catalytic ring-opening polymerization of renewable macrolactones to high molecular weight polyethylene-like polymers. Macromolecules 44, 4301–4305 (2011).

    Article  CAS  Google Scholar 

  136. 136.

    Satoh, K. Controlled/living polymerization of renewable vinyl monomers into bio-based polymers. Polym. J. 47, 527–536 (2015).

    CAS  Article  Google Scholar 

  137. 137.

    Wilbon, P. A., Chu, F. & Tang, C. Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromol. Rapid Commun. 34, 8–37 (2013).

    CAS  Article  Google Scholar 

  138. 138.

    Rahman, M. A. et al. Designing block copolymer architectures toward tough bioplastics from natural rosin. Macromolecules 50, 2069–2077 (2017).

    CAS  Article  Google Scholar 

  139. 139.

    Yao, K. & Tang, C. Controlled polymerization of next-generation renewable monomers and beyond. Macromolecules 46, 1689–1712 (2013).

    CAS  Article  Google Scholar 

  140. 140.

    Holmberg, A. L., Reno, K. H., Wool, R. P. & Epps, T. H. Biobased building blocks for the rational design of renewable block polymers. Soft Matter 10, 7405–7424 (2014).

    CAS  Article  Google Scholar 

  141. 141.

    Zhang, Y. et al. Recent progress in theoretical and computational studies on the utilization of lignocellulosic materials. Green Chem. 21, 9–35 (2019).

    CAS  Article  Google Scholar 

  142. 142.

    Bennett, S. J. & Pearson, P. J. G. From petrochemical complexes to biorefineries? The past and prospective co-evolution of liquid fuels and chemicals production in the UK. Chem. Eng. Res. Des. 87, 1120–1139 (2009).

    CAS  Article  Google Scholar 

  143. 143.

    Zhu, Y., Romain, C. & Williams, C. K. Sustainable polymers from renewable resources. Nature 540, 354–362 (2016).

    CAS  Article  Google Scholar 

  144. 144.

    Anantharaj, S. et al. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: a review. ACS Catal. 6, 8069–8097 (2016).

    CAS  Article  Google Scholar 

  145. 145.

    Li, Y.-N., Ma, R., He, L. & Diao, Z.-F. Homogeneous hydrogenation of carbon dioxide to methanol. Catal. Sci. Technol. 4, 1498–1512 (2014).

    CAS  Article  Google Scholar 

  146. 146.

    Wang, W. & Gong, J. Methanation of carbon dioxide: an overview. Front. Chem. Sci. Eng. 5, 2–10 (2011).

    CAS  Article  Google Scholar 

  147. 147.

    Fouih, Y. E. & Bouallou, C. Recycling of carbon dioxide to produce ethanol. Energy Procedia 37, 6679–6686 (2013).

    CAS  Article  Google Scholar 

  148. 148.

    Roberts, F. S., Kuhl, K. P. & Nilsson, A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew. Chem. Int. Ed. 54, 5179–5182 (2015).

    CAS  Article  Google Scholar 

  149. 149.

    Ghaib, K. & Ben-Fares, F. Z. Power-to-Methane: a state-of-the-art review. Renew. Sustain. Energy Rev. 81, 433–446 (2018).

    CAS  Article  Google Scholar 

  150. 150.

    Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020).

    CAS  Article  Google Scholar 

  151. 151.

    Palm, E., Nilsson, L. J. & Åhman, M. Electricity-based plastics and their potential demand for electricity and carbon dioxide. J. Clean. Prod. 129, 548–555 (2016).

    Article  Google Scholar 

  152. 152.

    Bushuyev, O. S. et al. What should we make with CO2 and how can we make it? Joule 2, 825–832 (2018).

    CAS  Article  Google Scholar 

  153. 153.

    Eglinton, T., Hinkley, J., Beath, A. & Dell’Amico, M. Potential applications of concentrated solar thermal technologies in the Australian minerals processing and extractive metallurgical industry. JOM 65, 1710–1720 (2013).

    Article  Google Scholar 

  154. 154.

    Bendixen, F. B. et al. Industrial hydrogen production. Science 364, 756–759 (2019).

    Article  CAS  Google Scholar 

  155. 155.

    Philibert, C. Renewable Energy for Industry (IEA, 2017).

  156. 156.

    Staffell, I. et al. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 12, 463–491 (2019).

    CAS  Article  Google Scholar 

  157. 157.

    Birol, F. The future of hydrogen: seizing today’s opportunities (IEA, 2019).

  158. 158.

    Dahmus, J. B. Can efficiency improvements reduce resource consumption? A historical analysis of ten activities. J. Ind. Ecol. 18, 883–897 (2014).

    Article  Google Scholar 

  159. 159.

    Wang, Y. et al. Application of total process energy-integration in retrofitting an ammonia plant. Appl. Energy 76, 467–480 (2003).

    CAS  Article  Google Scholar 

  160. 160.

    Bernardo, P. & Drioli, E. Membrane gas separation progresses for process intensification strategy in the petrochemical industry. Pet. Chem. 50, 271–282 (2010).

    Article  Google Scholar 

  161. 161.

    Zeng, L., Cheng, Z., Fan, J. A., Fan, L. S. & Gong, J. Metal oxide redox chemistry for chemical looping processes. Nat. Rev. Chem. 2, 349–364 (2018).

    CAS  Article  Google Scholar 

  162. 162.

    Luis, P., Van Gerven, T. & Van Der Bruggen, B. Recent developments in membrane-based technologies for CO2 capture. Prog. Energy Combust. Sci. 38, 419–448 (2012).

    CAS  Article  Google Scholar 

  163. 163.

    Ellis, L. D., Badel, A. F., Chiang, M. L., Park, R. J.-Y. & Chiang, Y.-M. Toward electrochemical synthesis of cement — an electrolyzer-based process for decarbonating CaCO3 while producing useful gas streams. Proc. Natl Acad. Sci. USA 117, 12584–12591 (2019).

    Article  CAS  Google Scholar 

  164. 164.

    Allanore, A. Features and challenges of molten oxide electrolytes for metal extraction. J. Electrochem. Soc. 162, E13–E22 (2015). Comprehensive overview of the electrochemical engineering and design considerations behind the direct electrolytic decomposition of a metal oxide for sustainable metal production.

    CAS  Article  Google Scholar 

  165. 165.

    Stinn, C. & Allanore, A. Estimating the capital costs of electrowinning processes. Electrochem. Soc. Interface 29, 44–49 (2020).

    Article  CAS  Google Scholar 

  166. 166.

    Wiencke, J., Lavelaine, H., Panteix, P. J., Petitjean, C. & Rapin, C. Electrolysis of iron in a molten oxide electrolyte. J. Appl. Electrochem. 48, 115–126 (2018).

    CAS  Article  Google Scholar 

  167. 167.

    Allanore, A., Lavelaine, H., Birat, J. P., Valentin, G. & Lapicque, F. Experimental investigation of cell design for the electrolysis of iron oxide suspensions in alkaline electrolyte. J. Appl. Electrochem. 40, 1957–1966 (2010).

    CAS  Article  Google Scholar 

  168. 168.

    Wiencke, J., Lavelaine, H., Panteix, P.-J., Petitjean, C. & Rapin, C. The influence of iron concentration on the anodic charge transfer in molten oxide electrolysis. J. Electrochem. Soc. 166, E489–E495 (2019).

    CAS  Article  Google Scholar 

  169. 169.

    Allanore, A., Yin, L. & Sadoway, D. R. A new anode material for oxygen evolution in molten oxide electrolysis. Nature 497, 353–356 (2013).

    CAS  Article  Google Scholar 

  170. 170.

    Esmaily, M., Mortazavi, A. N., Birbilis, N. & Allanore, A. Oxidation and electrical properties of chromium–iron alloys in a corrosive molten electrolyte environment. Sci. Rep. 10, 14833 (2020).

    CAS  Article  Google Scholar 

  171. 171.

    Sokhanvaran, S., Lee, S.-K., Lambotte, G. & Allanore, A. Electrochemistry of molten sulfides: copper extraction from BaS-Cu2S. J. Electrochem. Soc. 163, D115 (2015). Shows that faradaic reactions of molten sulfides can be supported with an appropriate electrolyte, demonstrating a pathway to decompose copper sulfide to liquid copper and sulfur gas.

    Article  CAS  Google Scholar 

  172. 172.

    Sahu, S. K., Chmielowiec, B. & Allanore, A. Electrolytic extraction of copper, molybdenum and rhenium from molten sulfide electrolyte. Electrochim. Acta 243, 382–389 (2017).

    CAS  Article  Google Scholar 

  173. 173.

    Giddey, S., Badwal, S. P. S. & Kulkarni, A. Review of electrochemical ammonia production technologies and materials. Int. J. Hydrog. Energy 38, 14576–14594 (2013).

    CAS  Article  Google Scholar 

  174. 174.

    Schiffer, Z. J. & Manthiram, K. Electrification and decarbonization of the chemical industry. Joule 1, 10–14 (2017).

    Article  Google Scholar 

  175. 175.

    Smith, C., Hill, A. K. & Torrente-Murciano, L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 13, 331–344 (2020).

    Article  Google Scholar 

  176. 176.

    Xu, H. et al. Electrochemical ammonia synthesis through N2 and H2O under ambient conditions: theory, practices, and challenges for catalysts and electrolytes. Nano Energy 69, 104469 (2020).

    CAS  Article  Google Scholar 

  177. 177.

    Lazouski, N. & Manthiram, K. Ambient lithium-mediated ammonia synthesis. Trends Chem. 1, 141–142 (2019).

    CAS  Article  Google Scholar 

  178. 178.

    Raabe, D., Tasan, C. C. & Olivetti, E. A. Strategies for improving the sustainability of structural metals. Nature 575, 64–74 (2019).

    CAS  Article  Google Scholar 

  179. 179.

    John, V. M., Quattrone, M., Abrão, P. C. R. A. & Cardoso, F. A. Rethinking cement standards: opportunities for a better future. Cem. Concr. Res. 124, 105832 (2019).

    CAS  Article  Google Scholar 

  180. 180.

    Beushausen, H., Torrent, R. & Alexander, M. G. Performance-based approaches for concrete durability: state of the art and future research needs. Cem. Concr. Res. 119, 11–20 (2019).

    CAS  Article  Google Scholar 

  181. 181.

    Allwood, J. M. & Cullen, J. M. Sustainable Materials: With Both Eyes Open (UIT Cambridge, 2012).

  182. 182.

    Allwood, J. M., Ashby, M. F., Gutowski, T. G. & Worrell, E. Material efficiency: a white paper. Resour. Conserv. Recycl. 55, 362–381 (2011).

    Article  Google Scholar 

  183. 183.

    Cooper, D. R., Skelton, A. C. H., Moynihan, M. C. & Allwood, J. M. Component level strategies for exploiting the lifespan of steel in products. Resour. Conserv. Recycl. 84, 24–34 (2014).

    Article  Google Scholar 

  184. 184.

    Dunant, C. F. et al. Options to make steel reuse profitable: an analysis of cost and risk distribution across the UK construction value chain. J. Clean. Prod. 183, 102–111 (2018).

    Article  Google Scholar 

  185. 185.

    Moynihan, M. C. & Allwood, J. M. Utilization of structural steel in buildings. Proc. R. Soc. A 470, 20140170 (2014). Provides a quantitative basis for estimating the amount that demand for construction steel could be reduced by more efficient building designs.

    Article  Google Scholar 

  186. 186.

    Ashby, M. F. Materials and the Environment: Eco-Informed Material Choice (Elsevier, 2012).

  187. 187.

    Wegst, U. G. K. & Ashby, M. F. Materials selection and design of products with low environmental impact. Adv. Eng. Mater. 4, 378–383 (2002).

    CAS  Article  Google Scholar 

  188. 188.

    Castro, M. B. G., Remmerswaal, J. A. M., Reuter, M. A. & Boin, U. J. M. A thermodynamic approach to the compatibility of materials combinations for recycling. Resour. Conserv. Recycl. 43, 1–19 (2004).

    Article  Google Scholar 

  189. 189.

    Das, S. K., Green, J. A. S. & Kaufman, J. G. The development of recycle-friendly automotive aluminum alloys. JOM 59, 47–51 (2007).

    CAS  Article  Google Scholar 

  190. 190.

    Gaustad, G., Olivetti, E. & Kirchain, R. Design for recycling. J. Ind. Ecol. 14, 286–308 (2010).

    CAS  Article  Google Scholar 

  191. 191.

    Froelich, D., Haoues, N., Leroy, Y. & Renard, H. Development of a new methodology to integrate ELV treatment limits into requirements for metal automotive part design. Miner. Eng. 20, 891–901 (2007).

    CAS  Article  Google Scholar 

  192. 192.

    Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, 19–24 (2017).

    Article  CAS  Google Scholar 

  193. 193.

    Ellen MacArthur Foundation. The new plastics economy: catalysing action (Ellen MacArthur Foundation, 2017).

  194. 194.

    Bartolacci, F., Del Gobbo, R., Paolini, A. & Soverchia, M. Efficiency in waste management companies: a proposal to assess scale economies. Resour. Conserv. Recycl. 148, 124–131 (2019).

    Article  Google Scholar 

  195. 195.

    Pivnenko, K., Laner, D. & Astrup, T. F. Material cycles and chemicals: dynamic material flow analysis of contaminants in paper recycling. Environ. Sci. Technol. 50, 12302–12311 (2016).

    CAS  Article  Google Scholar 

  196. 196.

    Cimpan, C., Maul, A., Jansen, M., Pretz, T. & Wenzel, H. Central sorting and recovery of MSW recyclable materials: a review of technological state-of-the-art, cases, practice and implications for materials recycling. J. Environ. Manag. 156, 181–199 (2015).

    CAS  Article  Google Scholar 

  197. 197.

    Milios, L. et al. Plastic recycling in the Nordics: a value chain market analysis. Waste Manag. 76, 180–189 (2018).

    Article  Google Scholar 

  198. 198.

    Horodytska, O., Valdés, F. J. & Fullana, A. Plastic flexible films waste management – A state of art review. Waste Manag. 77, 413–425 (2018).

    CAS  Article  Google Scholar 

  199. 199.

    Eriksen, M. K., Christiansen, J. D., Daugaard, A. E. & Astrup, T. F. Closing the loop for PET, PE and PP waste from households: influence of material properties and product design for plastic recycling. Waste Manag. 96, 75–85 (2019).

    CAS  Article  Google Scholar 

  200. 200.

    Vilaplana, F. & Karlsson, S. Quality concepts for the improved use of recycled polymeric materials: a review. Macromol. Mater. Eng. 293, 274–297 (2008).

    CAS  Article  Google Scholar 

  201. 201.

    Maris, J. et al. Mechanical recycling: compatibilization of mixed thermoplastic wastes. Polym. Degrad. Stab. 147, 245–266 (2018).

    CAS  Article  Google Scholar 

  202. 202.

    Bergman, S. D. & Wudl, F. Mendable polymers. J. Mater. Chem. 18, 41–62 (2008).

    CAS  Article  Google Scholar 

  203. 203.

    Patrick, J. F., Robb, M. J., Sottos, N. R., Moore, J. S. & White, S. R. Polymers with autonomous life-cycle control. Nature 540, 363–370 (2016).

    CAS  Article  Google Scholar 

  204. 204.

    Schneiderman, D. K. & Hillmyer, M. A. 50th Anniversary Perspective: There is a great future in sustainable polymers. Macromolecules 50, 3733–3749 (2017).

    CAS  Article  Google Scholar 

  205. 205.

    Rajendran, S. et al. Programmed photodegradation of polymeric/oligomeric materials derived from renewable bioresources. Angew. Chem. Int. Ed. 54, 1159–1163 (2015).

    CAS  Article  Google Scholar 

  206. 206.

    Xi, F. et al. Substantial global carbon uptake by cement carbonation. Nat. Geosci. 9, 880–883 (2016).

    CAS  Article  Google Scholar 

  207. 207.

    Cao, Z. et al. The sponge effect and carbon emission mitigation potentials of the global cement cycle. Nat. Commun. 11, 3777 (2020).

    CAS  Article  Google Scholar 

  208. 208.

    Pade, C. & Guimaraes, M. The CO2 uptake of concrete in a 100 year perspective. Cem. Concr. Res. 37, 1348–1356 (2007).

    CAS  Article  Google Scholar 

  209. 209.

    Andersson, R., Stripple, H., Gustafsson, T. & Ljungkrantz, C. Carbonation as a method to improve climate performance for cement based material. Cem. Concr. Res. 124, 105819 (2019).

    CAS  Article  Google Scholar 

  210. 210.

    Baumert, K. A., Herzog, T. & Pershing, J. Navigating the numbers: greenhouse gas data and international climate policy (World Resources Institute, 2005).

  211. 211.

    International Energy Agency. Cement (IEA, 2020).

  212. 212.

    World Steel Association. Crude steel production (World Steel Association, 2017).

  213. 213.

    Saevarsdottir, G., Kvande, H. & Welch, B. Aluminum production in times of climate change: the global challenge to reduce the carbon footprint and prevent carbon leakage. JOM 72, 296–308 (2020).

    CAS  Article  Google Scholar 

  214. 214.

    Allwood, J. M., Cullen, J. M. & Milford, R. L. Options for achieving a 50% cut in industrial carbon emissions by 2050. Environ. Sci. Technol. 44, 1888–1894 (2010).

    CAS  Article  Google Scholar 

  215. 215.

    Kuckshinrichs, W., Zapp, P. & Poganietz, W. R. CO2 emissions of global metal-industries: the case of copper. Appl. Energy 84, 842–852 (2007).

    CAS  Article  Google Scholar 

  216. 216.

    Azadi, M., Northey, S. A., Ali, S. H. & Edraki, M. Transparency on greenhouse gas emissions from mining to enable climate change mitigation. Nat. Geosci. 13, 100–104 (2020).

    CAS  Article  Google Scholar 

  217. 217.

    US Geological Survey. Mineral commodity summaries 2018 (USGS, 2018).

  218. 218.

    Elshkaki, A., Graedel, T. E., Ciacci, L. & Reck, B. K. Copper demand, supply, and associated energy use to 2050. Glob. Environ. Change 39, 305–315 (2016).

    Article  Google Scholar 

  219. 219.

    Monteiro, P. J. M., Miller, S. A. & Horvath, A. Towards sustainable concrete. Nat. Mater. 16, 698–699 (2017).

    CAS  Article  Google Scholar 

  220. 220.

    Miller, S. A., Horvath, A. & Monteiro, P. J. M. Readily implementable techniques can cut annual CO2 emissions from the production of concrete by over 20%. Environ. Res. Lett. 11, 074029 (2016).

    Article  CAS  Google Scholar 

  221. 221.

    Andrew, R. M. Global CO2 emissions from cement production. Earth Syst. Sci. Data Discuss. 10, 195–217 (2018).

    Article  Google Scholar 

  222. 222.

    Olivier, J. G. J., Janssens-Maenhout, G., Muntean, M. & Peters, J. A. H. W. Trends in global CO2 emissions: 2016 report (PBL Netherlands Environmental Assessment Agency, 2016).

  223. 223.

    Fray, D. Iron production electrified. Nature 497, 324–325 (2013).

    CAS  Article  Google Scholar 

  224. 224.

    Cullen, J. M. & Allwood, J. M. Mapping the global flow of aluminum: from liquid aluminum to end-use goods. Environ. Sci. Technol. 47, 3057–3064 (2013).

    CAS  Article  Google Scholar 

  225. 225.

    Liu, G., Bangs, C. E. & Müller, D. B. Unearthing potentials for decarbonizing the U.S. aluminum cycle. Environ. Sci. Technol. 45, 9515–9522 (2011).

    CAS  Article  Google Scholar 

  226. 226.

    Ren, T., Patel, M. K. & Blok, K. Steam cracking and methane to olefins: energy use, CO2 emissions and production costs. Energy 33, 817–833 (2008).

    CAS  Google Scholar 

  227. 227.

    Levi, P. G. & Cullen, J. M. Mapping global flows of chemicals: from fossil fuel feedstocks to chemical products. Environ. Sci. Technol. 52, 1725–1734 (2018). Comprehensive mass flows of chemical products.

    CAS  Article  Google Scholar 

Download references


The authors acknowledge the support of students within MIT subject 3.081/3.560, Industrial Ecology of Materials, for their contributions.

Author information




E.A.O. and K.D. discussed the content of the article. K.D., R.B. and J.G. researched data for the article. All authors contributed to the writing of the article, and K.D., J.G., V.S. and E.A.O. edited the manuscript prior to submission.

Corresponding author

Correspondence to Elsa A. Olivetti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

International Aluminium Institute. Primary Aluminium Production:

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Daehn, K., Basuhi, R., Gregory, J. et al. Innovations to decarbonize materials industries. Nat Rev Mater (2021).

Download citation


Quick links