Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Atomically precise control in the design of low-nuclearity supported metal catalysts

Abstract

Nanostructured catalysts incorporating supported metal atoms or small clusters of defined size and chemical composition attract considerable attention because of their potential to maximize resource efficiency. When optimally assembled, all the metal nuclei can participate in the catalytic cycle with properties tailored to deliver high specific activity and stable performance. Over the past decade, both the number and diversity of reported systems have exploded as researchers attempted to control the nanostructure with increasing atomic precision. Nonetheless, spatially resolving the architecture and properties of supported low-nuclearity catalysts using existing analytical methods remains challenging. After identifying general structural features of this advanced family of catalytic materials, including their composition, nuclearity, coordination environment and location, as well as dynamic effects in reactive environments, this Review critically examines progress in their control and understanding. State-of-the-art experimental and theoretical approaches for their characterization are explored, addressing strengths and limitations through recent case studies. Finally, we outline directions for future work that will cross frontiers in the design of catalytic materials, which will be indispensable for developing high-performing new architectures for sustainable technologies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Structural characteristics of supported low-nuclearity catalysts.
Fig. 2: Approaches to stabilize metal species with precise numbers of atoms on suitable carriers.
Fig. 3: Determination of nuclearity and composition.
Fig. 4: Discrimination of the local atomic structure.
Fig. 5: Electronic properties of low-nuclearity metal species.
Fig. 6: Types of structural dynamics of low-nuclearity species.

References

  1. 1.

    Mitchell, S., Qin, R., Zheng, N. & Pérez-Ramírez, J. Nanoscale engineering of catalytic materials for sustainable technologies. Nat. Nanotechnol. 16, 129–139 (2020).

    Article  CAS  Google Scholar 

  2. 2.

    Chng, L. L., Erathodiyil, N. & Ying, J. Y. Nanostructured catalysts for organic transformations. Acc. Chem. Res. 46, 1825–1837 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    Mistry, H., Varela, A. S., Kühl, S., Strasser, P. & Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 1, 16009 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Xu, C., Anusuyadevi, P. R., Aymonier, C., Luque, R. & Marre, S. Nanostructured materials for photocatalysis. Chem. Soc. Rev. 48, 3868–3902 (2019).

    CAS  Article  Google Scholar 

  5. 5.

    Liu, L. & Corma, A. Confining isolated atoms and clusters in crystalline porous materials for catalysis. Nat. Rev. Mater. 6, 244–263 (2020).

    Article  CAS  Google Scholar 

  6. 6.

    Tyo, E. C. & Vajda, S. Catalysis by clusters with precise numbers of atoms. Nat. Nanotechnol. 10, 577–588 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Gates, B. C. Supported metal clusters: synthesis, structure, and catalysis. Chem. Rev. 95, 511–522 (1995).

    CAS  Article  Google Scholar 

  8. 8.

    Kaiser, S. K., Chen, Z., Faust Akl, D., Mitchell, S. & Pérez-Ramírez, J. Single-atom heterogeneous catalysts across the periodic table. Chem. Rev. 120, 11703–11809 (2020).

    CAS  Article  Google Scholar 

  9. 9.

    Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    CAS  Article  Google Scholar 

  10. 10.

    Mitchell, S., Vorobyeva, E. & Pérez-Ramírez, J. The multifaceted reactivity of single-atom heterogeneous catalysts. Angew. Chem. Int. Ed. 57, 15316–15329 (2018).

    CAS  Article  Google Scholar 

  11. 11.

    Dong, C. et al. Supported metal clusters: fabrication and application in heterogeneous catalysis. ACS Catal. 10, 11011–11045 (2020).

    CAS  Article  Google Scholar 

  12. 12.

    Böhme, D. K. & Schwarz, H. Gas-phase catalysis by atomic and cluster metal ions: the ultimate single-site catalysts. Angew. Chem. Int. Ed. 44, 2336–2354 (2005).

    Article  CAS  Google Scholar 

  13. 13.

    Zhai, H. & Alexandrova, A. N. Fluxionality of catalytic clusters: when it matters and how to address it. ACS Catal. 7, 1905–1911 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Rong, H., Ji, S., Zhang, J., Wang, D. & Li, Y. Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nat. Commun. 11, 5884 (2020).

    CAS  Article  Google Scholar 

  15. 15.

    Pan, Y. H., Sohlberg, K. & Ridge, D. P. Reactions of cobalt ions Co1–4+ and Co4(CO)n+ with cyclohexane: CH activation as a function of cluster size and ligand substitution. J. Am. Chem. Soc. 113, 2406–2411 (1991).

    CAS  Article  Google Scholar 

  16. 16.

    Vajda, S. & White, M. G. Catalysis applications of size-selected cluster deposition. ACS Catal. 5, 7152–7176 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Xu, Z. et al. Size-dependent catalytic activity of supported metal clusters. Nature 372, 346–348 (1994).

    CAS  Article  Google Scholar 

  18. 18.

    Goellner, J. F., Guzman, J. & Gates, B. C. Synthesis and structure of tetrairidium clusters on TiO2 powder: characterization by infrared and extended X-ray absorption fine structure spectroscopies. J. Phys. Chem. B 106, 1229–1238 (2002).

    CAS  Article  Google Scholar 

  19. 19.

    Imaoka, T. et al. Platinum clusters with precise numbers of atoms for preparative-scale catalysis. Nat. Commun. 8, 688 (2017).

    Article  CAS  Google Scholar 

  20. 20.

    Tian, S. et al. Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nat. Commun. 9, 2353 (2018).

    Article  CAS  Google Scholar 

  21. 21.

    Zhao, Y. et al. Stable iridium dinuclear heterogeneous catalysts supported on metal-oxide substrate for solar water oxidation. Proc. Natl Acad. Sci. USA 115, 2902–2907 (2018).

    CAS  Article  Google Scholar 

  22. 22.

    Vorobyeva, E. et al. Atom-by-atom resolution of structure–function relations over low-nuclearity metal catalysts. Angew. Chem. Int. Ed. 58, 8724–8729 (2019).

    CAS  Article  Google Scholar 

  23. 23.

    Liu, S. et al. Stabilizing single-atom and small-domain platinum via combining organometallic chemisorption and atomic layer deposition. Organometallics 36, 818–828 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    Detavernier, C., Dendooven, J., Sree, S. P., Ludwig, K. F. & Martens, J. A. Tailoring nanoporous materials by atomic layer deposition. Chem. Soc. Rev. 40, 5242–5253 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    Sun, S. et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci. Rep. 3, 1775 (2013).

    Article  CAS  Google Scholar 

  26. 26.

    Yan, H. et al. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene. J. Am. Chem. Soc. 137, 10484–10487 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    Cheng, N. et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Yan, H. et al. Atomic engineering of high-density isolated Co atoms on graphene with proximal-atom controlled reaction selectivity. Nat. Commun. 9, 3197 (2018).

    Article  CAS  Google Scholar 

  29. 29.

    Yan, H. et al. Bottom-up precise synthesis of stable platinum dimers on graphene. Nat. Commun. 8, 1070 (2017).

    Article  CAS  Google Scholar 

  30. 30.

    Zhang, L. et al. Atomic layer deposited Pt–Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun. 10, 4936 (2019).

    Article  CAS  Google Scholar 

  31. 31.

    Platero-Prats, A. E. et al. Bridging zirconia nodes within a metal–organic framework via catalytic Ni-hydroxo clusters to form heterobimetallic nanowires. J. Am. Chem. Soc. 139, 10410–10418 (2017).

    CAS  Article  Google Scholar 

  32. 32.

    Wei, Y. S. et al. Fabricating dual-atom iron catalysts for efficient oxygen evolution reaction: a heteroatom modulator approach. Angew. Chem. Int. Ed. 59, 16013–16022 (2020).

    CAS  Article  Google Scholar 

  33. 33.

    Ji, S. et al. Confined pyrolysis within metal–organic frameworks to form uniform Ru3 clusters for efficient oxidation of alcohols. J. Am. Chem. Soc. 139, 9795–9798 (2017).

    CAS  Article  Google Scholar 

  34. 34.

    Zhou, Y. et al. Revealing of active sites and catalytic mechanism in N-coordinated Fe, Ni dual-doped carbon with superior acidic oxygen reduction than single-atom catalyst. J. Phys. Chem. Lett. 11, 1404–1410 (2020).

    CAS  Article  Google Scholar 

  35. 35.

    Wu, H. B., Xia, B. Y., Yu, L., Yu, X. Y. & Lou, X. W. D. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal–organic frameworks for efficient hydrogen production. Nat. Commun. 6, 6512 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Xu, Y. T. et al. Cage-confinement pyrolysis route to ultrasmall tungsten carbide nanoparticles for efficient electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 139, 5285–5288 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    Tada, M., Taniike, T., Kantam, L. M. & Iwasawa, Y. Chiral self-dimerization of vanadium complexes on a SiO2 surface: the first heterogeneous catalyst for asymmetric 2-naphthol coupling. Chem. Commun. https://doi.org/10.1039/b410307f (2004).

    Article  Google Scholar 

  38. 38.

    Chen, Z. et al. Stabilization of single metal atoms on graphitic carbon nitride. Adv. Funct. Mater. 27, 1605785 (2017).

    Article  CAS  Google Scholar 

  39. 39.

    Zhou, P. et al. Synergetic interaction between neighboring platinum and ruthenium monomers boosts CO oxidation. Chem. Sci. 10, 5898–5905 (2019).

    CAS  Article  Google Scholar 

  40. 40.

    Dai, S. et al. Platinum-trimer decorated cobalt-palladium core-shell nanocatalyst with promising performance for oxygen reduction reaction. Nat. Commun. 10, 440 (2019).

    CAS  Article  Google Scholar 

  41. 41.

    Wang, J. et al. Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 139, 17281–17284 (2017).

    CAS  Article  Google Scholar 

  42. 42.

    Yang, Y. et al. O-coordinated W–Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Sci. Adv. 6, eaba6586 (2020).

    CAS  Article  Google Scholar 

  43. 43.

    Baldansuren, A., Dilger, H., Eichel, R. A., van Bokhoven, J. A. & Roduner, E. Interaction and reaction of ethylene and oxygen on six-atom silver clusters supported on LTA zeolite. J. Phys. Chem. C 113, 19623–19632 (2009).

    CAS  Article  Google Scholar 

  44. 44.

    Fortea-Pérez, F. R. et al. The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry. Nat. Mater. 16, 760 (2017).

    Article  CAS  Google Scholar 

  45. 45.

    Liu, L. et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 16, 132–138 (2017).

    CAS  Article  Google Scholar 

  46. 46.

    Uzun, A., Ortalan, V., Browning, N. D. & Gates, B. C. Site-isolated iridium complexes on MgO powder: individual Ir atoms imaged by scanning transmission electron microscopy. Chem. Commun. https://doi.org/10.1039/B823171K (2009).

    Article  Google Scholar 

  47. 47.

    Allard, L. F. et al. Evolution of gold structure during thermal treatment of Au/FeOx catalysts revealed by aberration-corrected electron microscopy. J. Electron. Microsc. 58, 199–212 (2009).

    CAS  Article  Google Scholar 

  48. 48.

    Lu, Z. et al. An isolated zinc–cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem. Int. Ed. 131, 2648–2652 (2019).

    Article  Google Scholar 

  49. 49.

    Yang, Y. et al. Deciphering chemical order/disorder and material properties at the single-atom level. Nature 542, 75–79 (2017).

    CAS  Article  Google Scholar 

  50. 50.

    Zhou, J. et al. Observing crystal nucleation in four dimensions using atomic electron tomography. Nature 570, 500–503 (2019).

    CAS  Article  Google Scholar 

  51. 51.

    Suenaga, K. et al. Element-selective single atom imaging. Science 290, 2280–2282 (2000).

    CAS  Article  Google Scholar 

  52. 52.

    Senga, R. & Suenaga, K. Single-atom electron energy loss spectroscopy of light elements. Nat. Commun. 6, 7943 (2015).

    CAS  Article  Google Scholar 

  53. 53.

    Resasco, J. et al. Uniformity is key in defining structure-function relationships for atomically dispersed metal catalysts: the case of Pt/CeO2. J. Am. Chem. Soc. 142, 169–184 (2019).

    Article  CAS  Google Scholar 

  54. 54.

    Lin, L. et al. Atomically dispersed Ni/α-MoC catalyst for hydrogen production from methanol/water. J. Am. Chem. Soc. 143, 309–317 (2020).

    Article  CAS  Google Scholar 

  55. 55.

    Perea, D. E. et al. Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography. Nat. Commun. 6, 7589 (2015).

    Article  Google Scholar 

  56. 56.

    Schmidt, J. E., Oord, R., Guo, W., Poplawsky, J. D. & Weckhuysen, B. M. Nanoscale tomography reveals the deactivation of automotive copper-exchanged zeolite catalysts. Nat. Commun. 8, 1666 (2017).

    Article  CAS  Google Scholar 

  57. 57.

    Kovarik, L. et al. Transformation of active sites in Fe/SSZ-13 SCR catalysts during hydrothermal aging: a spectroscopic, microscopic, and kinetics study. ACS Catal. 7, 2458–2470 (2017).

    CAS  Article  Google Scholar 

  58. 58.

    Jiang, K. et al. Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem 3, 950–960 (2017).

    CAS  Article  Google Scholar 

  59. 59.

    Wang, X. et al. Interpreting nanovoids in atom probe tomography data for accurate local compositional measurements. Nat. Commun. 11, 1022 (2020).

    CAS  Article  Google Scholar 

  60. 60.

    Ding, K. et al. Identification of active sites in CO oxidation and water–gas shift over supported Pt catalysts. Science 350, 189–192 (2015).

    CAS  Article  Google Scholar 

  61. 61.

    DeRita, L. et al. Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO2. J. Am. Chem. Soc. 139, 14150–14165 (2017).

    CAS  Article  Google Scholar 

  62. 62.

    Aleksandrov, H. A., Neyman, K. M., Hadjiivanov, K. I. & Vayssilov, G. N. Can the state of platinum species be unambiguously determined by the stretching frequency of an adsorbed CO probe molecule? Phys. Chem. Chem. Phys. 18, 22108–22121 (2016).

    CAS  Article  Google Scholar 

  63. 63.

    Deng, D. et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci. Adv. 1, e1500462 (2015).

    Article  Google Scholar 

  64. 64.

    Chung, H. T. et al. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 357, 479–484 (2017).

    CAS  Article  Google Scholar 

  65. 65.

    Fei, H. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63 (2018).

    CAS  Article  Google Scholar 

  66. 66.

    Jakub, Z. et al. Local structure and coordination define adsorption in a model Ir1/Fe3O4 single-atom catalyst. Angew. Chem. Int. Ed. 58, 13961–13968 (2019).

    CAS  Article  Google Scholar 

  67. 67.

    Yang, S. Z. et al. Rhenium-doped and stabilized MoS2 atomic layers with basal-plane catalytic activity. Adv. Mater. 30, 1803477 (2018).

    Article  CAS  Google Scholar 

  68. 68.

    Lucci, F. R. et al. Selective hydrogenation of 1,3-butadiene on platinum–copper alloys at the single-atom limit. Nat. Commun. 6, 8550 (2015).

    Article  CAS  Google Scholar 

  69. 69.

    Piednoir, A. et al. Atomic resolution on small three-dimensional metal clusters by STM. Surf. Sci. 391, 19–26 (1997).

    CAS  Article  Google Scholar 

  70. 70.

    Isomura, N., Wu, X. & Watanabe, Y. Atomic-resolution imaging of size-selected platinum clusters on TiO2(110) surfaces. J. Chem. Phys. 131, 164707 (2009).

    Article  CAS  Google Scholar 

  71. 71.

    Schouteden, K. et al. Probing the atomic structure of metallic nanoclusters with the tip of a scanning tunneling microscope. Nanoscale 6, 2170–2176 (2014).

    CAS  Article  Google Scholar 

  72. 72.

    Adachi, Y., Sugawara, Y. & Li, Y. J. Atomic scale three-dimensional Au nanocluster on a rutile TiO2(110) surface resolved by atomic force microscopy. J. Phys. Chem. Lett. 11, 7153–7158 (2020).

    CAS  Article  Google Scholar 

  73. 73.

    He, Z. et al. Atomic structure and dynamics of metal dopant pairs in graphene. Nano Lett. 14, 3766–3772 (2014).

    CAS  Article  Google Scholar 

  74. 74.

    Miramontes, O. et al. Ultra-small rhenium clusters supported on graphene. Phys. Chem. Chem. Phys. 17, 7898–7906 (2015).

    CAS  Article  Google Scholar 

  75. 75.

    Sohlberg, K., Rashkeev, S., Borisevich, A. Y., Pennycook, S. J. & Pantelides, S. T. Origin of anomalous Pt–Pt distances in the Pt/alumina catalytic system. ChemPhysChem 5, 1893–1897 (2004).

    CAS  Article  Google Scholar 

  76. 76.

    Xu, M., Li, A., Gao, M. & Zhou, W. Single-atom electron microscopy for energy-related nanomaterials. J. Mater. Chem. A 8, 16142–16165 (2020).

    CAS  Article  Google Scholar 

  77. 77.

    Zitolo, A. et al. Identification of catalytic sites for oxygen reduction in iron-and nitrogen-doped graphene materials. Nat. Mater. 14, 937–942 (2015).

    CAS  Article  Google Scholar 

  78. 78.

    Feng, K. et al. Single atoms or not? The limitation of EXAFS. Appl. Phys. Lett. 116, 191903 (2020).

    CAS  Article  Google Scholar 

  79. 79.

    Sun, T. et al. Design of local atomic environments in single-atom electrocatalysts for renewable energy conversions. Adv. Mater. 33, 2003075 (2020).

    Article  CAS  Google Scholar 

  80. 80.

    Shen, H. et al. Synergistic effects between atomically dispersed Fe−N−C and C−S−C for the oxygen reduction reaction in acidic media. Angew. Chem. Int. Ed. 56, 13800–13804 (2017).

    CAS  Article  Google Scholar 

  81. 81.

    Li, Q. et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 30, 1800588 (2018).

    Article  CAS  Google Scholar 

  82. 82.

    Chen, Y. et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc–air battery and hydrogen–air fuel cell. Nat. Commun. 9, 5422 (2018).

    CAS  Article  Google Scholar 

  83. 83.

    Yan, C. et al. Coordinatively unsaturated nickel–nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ. Sci. 11, 1204–1210 (2018).

    CAS  Article  Google Scholar 

  84. 84.

    Fu, X. et al. Tailoring FeN4 sites with edge enrichment for boosted oxygen reduction performance in proton exchange membrane fuel cell. Adv. Energy Mater. 9, 1803737 (2019).

    Article  CAS  Google Scholar 

  85. 85.

    Jiang, R. et al. Edge-site engineering of atomically dispersed Fe–N4 by selective C–N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 140, 11594–11598 (2018).

    CAS  Article  Google Scholar 

  86. 86.

    Rong, X., Wang, H. J., Lu, X. L., Si, R. & Lu, T. B. Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angew. Chem. Int. Ed. 59, 1961–1965 (2020).

    CAS  Article  Google Scholar 

  87. 87.

    Qu, Y. et al. Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal. J. Am. Chem. Soc. 141, 4505–4509 (2019).

    CAS  Article  Google Scholar 

  88. 88.

    Zhang, L. et al. Coordination of atomic Co–Pt coupling species at carbon defects as active sites for oxygen reduction reaction. J. Am. Chem. Soc. 140, 10757–10763 (2019).

    Article  CAS  Google Scholar 

  89. 89.

    Zeng, X. et al. Single-atom to single-atom grafting of Pt1 onto Fe-N4 center: Pt1@Fe-N-C multifunctional electrocatalyst with significantly enhanced properties. Adv. Energy Mater. 8, 1701345 (2017).

    Article  CAS  Google Scholar 

  90. 90.

    Jiao, J. et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 11, 222–228 (2019).

    CAS  Article  Google Scholar 

  91. 91.

    Bai, L., Hsu, C. S., Alexander, D. T., Chen, H. M. & Hu, X. A cobalt–iron double-atom catalyst for the oxygen evolution reaction. J. Am. Chem. Soc. 141, 14190–14199 (2019).

    CAS  Article  Google Scholar 

  92. 92.

    Liu, L. et al. Determination of the evolution of heterogeneous single metal atoms and nanoclusters under reaction conditions: which are the working catalytic sites? ACS Catal. 9, 10626–10639 (2019).

    CAS  Article  Google Scholar 

  93. 93.

    Wang, H. et al. Surpassing the single-atom catalytic activity limit through paired Pt–O–Pt ensemble built from isolated Pt1 atoms. Nat. Commun. 10, 3808 (2019).

    Article  CAS  Google Scholar 

  94. 94.

    Kaiser, S. K. et al. Nanostructuring unlocks high performance of platinum single-atom catalysts for stable vinyl chloride production. Nat. Catal. 3, 376–385 (2020).

    CAS  Article  Google Scholar 

  95. 95.

    Kleis, J. et al. Finite size effects in chemical bonding: from small clusters to solids. Catal. Lett. 141, 1067–1071 (2011).

    CAS  Article  Google Scholar 

  96. 96.

    Li, L. et al. Investigation of catalytic finite-size-effects of platinum metal clusters. J. Phys. Chem. Lett. 4, 222–226 (2013).

    CAS  Article  Google Scholar 

  97. 97.

    Eberhardt, W. et al. Photoemission from mass-selected monodispersed Pt clusters. Phys. Rev. Lett. 64, 780 (1990).

    CAS  Article  Google Scholar 

  98. 98.

    Kaden, W. E., Wu, T., Kunkel, W. A. & Anderson, S. L. Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces. Science 326, 826–829 (2009).

    CAS  Article  Google Scholar 

  99. 99.

    Roberts, F. S., Kane, M. D., Baxter, E. T. & Anderson, S. L. Oxygen activation and CO oxidation over size-selected Ptn/alumina/Re(0001) model catalysts: correlations with valence electronic structure, physical structure, and binding sites. Phys. Chem. Chem. Phys. 16, 26443–26457 (2014).

    CAS  Article  Google Scholar 

  100. 100.

    Roberts, F. S., Anderson, S. L., Reber, A. C. & Khanna, S. N. Initial and final state effects in the ultraviolet and X-ray photoelectron spectroscopy (UPS and XPS) of size-selected Pdn clusters supported on TiO2(110). J. Phys. Chem. C 119, 6033–6046 (2015).

    CAS  Article  Google Scholar 

  101. 101.

    Greiner, M. T. et al. Free-atom-like d states in single-atom alloy catalysts. Nat. Chem. 10, 1008–1015 (2018).

    CAS  Article  Google Scholar 

  102. 102.

    Thirumalai, H. & Kitchin, J. R. Investigating the reactivity of single atom alloys using density functional theory. Top. Catal. 61, 462–474 (2018).

    CAS  Article  Google Scholar 

  103. 103.

    Dai, Y. et al. Inherent size effects on XANES of nanometer metal clusters: size-selected platinum clusters on silica. J. Phys. Chem. C. 121, 361–374 (2017).

    CAS  Article  Google Scholar 

  104. 104.

    Zandkarimi, B. et al. Interpreting the operando XANES of surface-supported subnanometer clusters: when fluxionality, oxidation state, and size effect fight. J. Phys. Chem. C. 124, 10057–10066 (2020).

    CAS  Article  Google Scholar 

  105. 105.

    Ramasse, Q. M. et al. Probing the bonding and electronic structure of single atom dopants in graphene with electron energy loss spectroscopy. Nano Lett. 13, 4989–4995 (2013).

    CAS  Article  Google Scholar 

  106. 106.

    Nicholls, R. J. et al. Probing the bonding in nitrogen-doped graphene using electron energy loss spectroscopy. ACS Nano 7, 7145–7150 (2013).

    CAS  Article  Google Scholar 

  107. 107.

    Kepaptsoglou, D. et al. Electronic structure modification of ion implanted graphene: the spectroscopic signatures of p- and n-type doping. ACS Nano 9, 11398–11407 (2015).

    CAS  Article  Google Scholar 

  108. 108.

    Susi, T. et al. Single-atom spectroscopy of phosphorus dopants implanted into graphene. 2D Mater. 4, 021013 (2017).

    Article  CAS  Google Scholar 

  109. 109.

    Gao, W. et al. Real-space charge-density imaging with sub-ångström resolution by four-dimensional electron microscopy. Nature 575, 480–484 (2019).

    CAS  Article  Google Scholar 

  110. 110.

    Ishikawa, R. et al. Direct electric field imaging of graphene defects. Nat. Commun. 9, 3878 (2018).

    Article  CAS  Google Scholar 

  111. 111.

    Shibata, N. et al. Direct visualization of local electromagnetic field structures by scanning transmission electron microscopy. Acc. Chem. Res. 50, 1502–1512 (2017).

    CAS  Article  Google Scholar 

  112. 112.

    Shibata, N. et al. Electric field imaging of single atoms. Nat. Commun. 8, 15631 (2017).

    CAS  Article  Google Scholar 

  113. 113.

    Tierney, H. L., Baber, A. E. & Sykes, E. C. H. Atomic-scale imaging and electronic structure determination of catalytic sites on Pd/Cu near surface alloys. J. Phys. Chem. C. 113, 7246–7250 (2009).

    CAS  Article  Google Scholar 

  114. 114.

    Sobotík, P. et al. Emergence of state at Fermi level due to the formation of In-Sn heterodimers on Si(100)-2×1. Phy. Rev. B 88, 205406 (2013).

    Article  CAS  Google Scholar 

  115. 115.

    Zhu, Y. et al. Modulating the electronic structure of single-atom catalysts on 2D nanomaterials for enhanced electrocatalytic performance. Small Methods 3, 1800438 (2019).

    Article  CAS  Google Scholar 

  116. 116.

    Hossain, M. D. et al. Rational design of graphene-supported single atom catalysts for hydrogen evolution reaction. Adv. Energy Mater. 9, 1803689 (2019).

    Article  CAS  Google Scholar 

  117. 117.

    Back, S., Lim, J., Kim, N. Y., Kim, Y. H. & Jung, Y. Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements. Chem. Sci. 8, 1090–1096 (2017).

    CAS  Article  Google Scholar 

  118. 118.

    Cao, R. et al. Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat. Commun. 4, 2076 (2013).

    Article  CAS  Google Scholar 

  119. 119.

    Lai, Q. Metal–organic-framework-derived Fe-N/C electrocatalyst with five-coordinated Fe-Nx sites for advanced oxygen reduction in acid media. ACS Catal. 7, 1655–1663 (2017).

    CAS  Article  Google Scholar 

  120. 120.

    Yin, P. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55, 10800–10805 (2016).

    CAS  Article  Google Scholar 

  121. 121.

    Han, J. et al. Reordering d orbital energies of single-site catalysts for CO2 electroreduction. Angew. Chem. Int. Ed. 58, 12711–12716 (2019).

    CAS  Article  Google Scholar 

  122. 122.

    Deng, J. et al. Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production. Nat. Commun. 8, 14430 (2017).

    CAS  Article  Google Scholar 

  123. 123.

    Deng, J. et al. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 8, 1594–1601 (2015).

    CAS  Article  Google Scholar 

  124. 124.

    Luo, Z. et al. Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nat. Commun. 9, 2120 (2018).

    Article  CAS  Google Scholar 

  125. 125.

    Zhang, J., Xu, X., Yang, L., Cheng, D. & Cao, D. Single-atom Ru doping induced phase transition of MoS2 and S vacancy for hydrogen evolution reaction. Small Methods 3, 1900653 (2019).

    CAS  Article  Google Scholar 

  126. 126.

    Guan, E. et al. Supported metal pair-site catalysts. ACS Catal. 10, 9065–9085 (2020).

    CAS  Article  Google Scholar 

  127. 127.

    Jiang, J., Ding, W., Li, W. & Wei, Z. Freestanding single-atom-layer Pd-based catalysts: oriented splitting of energy bands for unique stability and activity. Chem 6, 431–447 (2020).

    CAS  Article  Google Scholar 

  128. 128.

    Kip, B. J., Duivenvoorden, F. B. M., Koningsberger, D. C. & Prins, R. Determination of metal particle size of highly dispersed Rh, Ir, and Pt catalysts by hydrogen chemisorption and EXAFS. J. Catal. 105, 26–38 (1987).

    CAS  Article  Google Scholar 

  129. 129.

    Kruppe, C. M., Krooswyk, J. D. & Trenary, M. Polarization-dependent infrared spectroscopy of adsorbed carbon monoxide to probe the surface of a Pd/Cu(111) single-atom alloy. J. Phys. Chem. C. 121, 9361–9369 (2017).

    CAS  Article  Google Scholar 

  130. 130.

    Matsubu, J. C., Yang, V. N. & Christopher, P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J. Am. Chem. Soc. 137, 3076–3084 (2015).

    CAS  Article  Google Scholar 

  131. 131.

    Yubing, L. et al. A versatile approach for quantification of surface site fractions using reaction kinetics: the case of CO oxidation on supported Ir single atoms and nanoparticles. J. Catal. 378, 121–130 (2019).

    Article  CAS  Google Scholar 

  132. 132.

    Resasco, J. et al. Relationship between atomic scale structure and reactivity of Pt catalysts: hydrodeoxygenation of m-cresol over isolated Pt cations and clusters. ACS Catal. 10, 595–603 (2019).

    Article  CAS  Google Scholar 

  133. 133.

    Millet, M. M. Ni single atom catalysts for CO2 activation. J. Am. Chem. Soc. 141, 2451–2461 (2019).

    CAS  Article  Google Scholar 

  134. 134.

    Lang, R. et al. Non defect-stabilized thermally stable single-atom catalyst. Nat. Commun. 10, 234 (2019).

    Article  CAS  Google Scholar 

  135. 135.

    Nesselberger, M. et al. The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. Nat. Mater. 12, 919–924 (2013).

    CAS  Article  Google Scholar 

  136. 136.

    Chen, Z. W., Chen, L. X., Yang, C. C. & Jiang, Q. Atomic (single, double, and triple atoms) catalysis: frontiers, opportunities, and challenges. J. Mater. Chem. A 7, 3492–3515 (2019).

    CAS  Article  Google Scholar 

  137. 137.

    Zhang, J. et al. Supported dual-atom catalysts: preparation, characterization, and potential applications. Chin. J. Catal. 41, 783–798 (2020).

    CAS  Article  Google Scholar 

  138. 138.

    Goodman, E. D. et al. Catalyst deactivation via decomposition into single atoms and the role of metal loading. Nat. Catal. 2, 748–755 (2019).

    CAS  Article  Google Scholar 

  139. 139.

    Prieto, G., Zečević, J., Friedrich, H., De Jong, K. P. & De Jongh, P. E. Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat. Mater. 12, 34–39 (2013).

    CAS  Article  Google Scholar 

  140. 140.

    Li, H. et al. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotechnol. 13, 411–417 (2018).

    CAS  Article  Google Scholar 

  141. 141.

    Mitchell, S. et al. Structural analysis of hierarchically organized zeolites. Nat. Commun. 6, 8633 (2015).

    CAS  Article  Google Scholar 

  142. 142.

    Liu, J. C., Tang, Y., Wang, Y. G., Zhang, T. & Li, J. Theoretical understanding of the stability of single-atom catalysts. Natl Sci. Rev. 5, 638–641 (2018).

    CAS  Article  Google Scholar 

  143. 143.

    Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).

    CAS  Article  Google Scholar 

  144. 144.

    Zhang, Z. et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat. Commun. 8, 16100 (2017).

    CAS  Article  Google Scholar 

  145. 145.

    Nie, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 358, 1419–1423 (2017).

    CAS  Article  Google Scholar 

  146. 146.

    Li, X., Yang, X., Zhang, J., Huang, Y. & Liu, B. In situ/operando techniques for characterization of single-atom catalysts. ACS Catal. 9, 2521–2531 (2019).

    CAS  Article  Google Scholar 

  147. 147.

    DeRita, L. et al. Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 18, 746–751 (2019).

    CAS  Article  Google Scholar 

  148. 148.

    Vorobyeva, E. et al. Activation of copper species on carbon nitride for enhanced activity in the arylation of amines. ACS Catal. 10, 11069–11080 (2020).

    CAS  Article  Google Scholar 

  149. 149.

    Chen, Z. et al. A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nat. Nanotechnol. 13, 702–707 (2018).

    CAS  Article  Google Scholar 

  150. 150.

    Tang, Y. et al. Rh single atoms on TiO2 dynamically respond to reaction conditions by adapting their site. Nat. Commun. 10, 4488 (2019).

    Article  CAS  Google Scholar 

  151. 151.

    Cao, L. et al. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2, 134–141 (2019).

    CAS  Article  Google Scholar 

  152. 152.

    Cao, L. et al. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat. Commun. 10, 4849 (2019).

    Article  CAS  Google Scholar 

  153. 153.

    Hansen, T. W., DeLaRiva, A. T., Challa, S. R. & Datye, A. K. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? Acc. Chem. Res. 46, 1720–1730 (2013).

    CAS  Article  Google Scholar 

  154. 154.

    Liu, L. & Corma, A. Evolution of isolated atoms and clusters in catalysis. Trends Chem. 2, 383–400 (2020).

    CAS  Article  Google Scholar 

  155. 155.

    Dessal, C. et al. Dynamics of single Pt atoms on alumina during CO oxidation monitored by operando X-ray and infrared spectroscopies. ACS Catal. 9, 5752–5759 (2019).

    CAS  Article  Google Scholar 

  156. 156.

    Kaiser, S. K., Lin, R., Krumeich, F., Safonova, O. V. & Pérez-Ramírez, J. Preserved in a shell: high-performance graphene-confined ruthenium nanoparticles in acetylene hydrochlorination. Angew. Chem. Int. Ed. 58, 12297–12304 (2019).

    CAS  Article  Google Scholar 

  157. 157.

    Liu, L. et al. Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nat. Commun. 9, 574 (2018).

    Article  CAS  Google Scholar 

  158. 158.

    Paolucci, C. et al. Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. Science 357, 898–903 (2017).

    CAS  Article  Google Scholar 

  159. 159.

    Wang, Y.-G., Mei, D., Glezakou, V. A., Li, J. & Rousseau, R. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nat. Commun. 6, 6511 (2015).

    CAS  Article  Google Scholar 

  160. 160.

    Bliem, R. et al. Dual role of CO in the stability of subnano Pt clusters at the Fe3O4 (001) surface. Proc. Natl Acad. Sci. USA 113, 8921–8926 (2016).

    CAS  Article  Google Scholar 

  161. 161.

    Sun, J. J. & Cheng, J. Solid-to-liquid phase transitions of sub-nanometer clusters enhance chemical transformation. Nat. Commun. 10, 5400 (2019).

    Article  CAS  Google Scholar 

  162. 162.

    Zafeiratos, S., Piccinin, S. & Teschner, D. Alloys in catalysis: phase separation and surface segregation phenomena in response to the reactive environment. Catal. Sci. Technol. 2, 1787–1801 (2012).

    CAS  Article  Google Scholar 

  163. 163.

    Darby, M. T., Sykes, E. C. H., Michaelides, A. & Stamatakis, M. Carbon monoxide poisoning resistance and structural stability of single atom alloys. Top. Catal. 61, 428–438 (2018).

    CAS  Article  Google Scholar 

  164. 164.

    Kaiser, S. K., Clark, A. H., Cartocci, L., Krumeich, F. & Pérez-Ramírez, J. Sustainable synthesis of bimetallic single atom gold-based catalysts with enhanced durability in acetylene hydrochlorination. Small 17, 2004599 (2021).

    CAS  Article  Google Scholar 

  165. 165.

    Zhou, X. et al. Unraveling charge state of supported Au single-atoms during CO oxidation. J. Am. Chem. Soc. 140, 554–557 (2018).

    CAS  Article  Google Scholar 

  166. 166.

    Daelman, N., Capdevila-Cortada, M. & López, N. Dynamic charge and oxidation state of Pt/CeO2 single-atom catalysts. Nat. Mater. 18, 1215–1221 (2019).

    CAS  Article  Google Scholar 

  167. 167.

    Li, Y. et al. Complex structural dynamics of nanocatalysts revealed in Operando conditions by correlated imaging and spectroscopy probes. Nat. Commun. 6, 7583 (2015).

    CAS  Article  Google Scholar 

  168. 168.

    Zhao, J. Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges. Proc. Natl Acad. Sci. USA 111, 15641–15646 (2014).

    CAS  Article  Google Scholar 

  169. 169.

    Resasco, J. & Christopher, P. Atomically dispersed Pt-group catalysts: reactivity, uniformity, structural evolution, and paths to increased functionality. J. Phys. Chem. Lett. 11, 10114–10123 (2020).

    CAS  Article  Google Scholar 

  170. 170.

    Chen, Y., Sun, H. & Gates, B. C. Prototype atomically dispersed supported metal catalysts: iridium and platinum. Small 17, 2004665 (2021).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This publication was created as part of NCCR Catalysis, a National Centre of Competence in Research funded by the Swiss National Science Foundation.

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Sharon Mitchell or Javier Pérez-Ramírez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mitchell, S., Pérez-Ramírez, J. Atomically precise control in the design of low-nuclearity supported metal catalysts. Nat Rev Mater (2021). https://doi.org/10.1038/s41578-021-00360-6

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing