Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gas diffusion electrodes and membranes for CO2 reduction electrolysers

Abstract

The CO2 reduction reaction (CO2RR) is a potential means of using renewable electricity to synthesize commodity chemicals and fuels. The CO2RR can be performed at industrially relevant product formation rates in an electrolyser, which must simultaneously manage the transport of electrons, water, CO2 and protons at a cathode. Gas diffusion electrodes (GDEs) and polymer electrolyte membranes are used to mediate these critical processes. Consequently, the design and development of GDEs and membranes tailored for the CO2RR is critical. In this Review, we discuss how the properties of GDEs and polymer electrolyte membranes affect CO2RR electrolysis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: GDEs and membranes manage mass transport and reactions to mediate the CO2RR in electrolysers.
Fig. 2: The properties of the gas diffusion electrode modulate the chemical environment around the electrocatalyst.
Fig. 3: The properties of the PEM influence cathode chemistry and the efficiency of CO2 reduction reaction electrolysers.
Fig. 4: CO2 crossover in a zero-gap membrane CO2RR electrolyser.

References

  1. 1.

    De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    Article  CAS  Google Scholar 

  2. 2.

    Cook, T. R. et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    van Bavel, S., Verma, S., Negro, E. & Bracht, M. Integrating CO2 electrolysis into the gas-to-liquids–power-to-liquids process. ACS Energy Lett. 5, 2597–2601 (2020).

    Article  CAS  Google Scholar 

  5. 5.

    Qi, Z. et al. Electrochemical CO2 to CO reduction at high current densities using a nanoporous gold catalyst. Mater. Res. Lett. 9, 99–104 (2021).

    CAS  Article  Google Scholar 

  6. 6.

    Welch, A. J., Dunn, E., DuChene, J. S. & Atwater, H. A. Bicarbonate or carbonate processes for coupling carbon dioxide capture and electrochemical conversion. ACS Energy Lett. 5, 940–945 (2020).

    CAS  Article  Google Scholar 

  7. 7.

    Jouny, M., Luc, W. & Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    CAS  Article  Google Scholar 

  8. 8.

    Ripatti, D. S., Veltman, T. R. & Kanan, M. W. Carbon monoxide gas diffusion electrolysis that produces concentrated C2 products with high single-pass conversion. Joule 3, 240–256 (2019).

    CAS  Article  Google Scholar 

  9. 9.

    Rabinowitz, J. A. & Kanan, M. W. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat. Commun. 11, 5231 (2020).

    CAS  Article  Google Scholar 

  10. 10.

    Weekes, D. M., Salvatore, D. A., Reyes, A., Huang, A. & Berlinguette, C. P. Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 51, 910–918 (2018).

    CAS  Article  Google Scholar 

  11. 11.

    Bhargava, S. S. et al. System design rules for intensifying the electrochemical reduction of CO2 to CO on Ag nanoparticles. ChemElectroChem 7, 2001–2011 (2020).

    CAS  Article  Google Scholar 

  12. 12.

    Jeanty, P. et al. Upscaling and continuous operation of electrochemical CO2 to CO conversion in aqueous solutions on silver gas diffusion electrodes. J. CO2 Util. 24, 454–462 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    Jeng, E. & Jiao, F. Investigation of CO2 single-pass conversion in a flow electrolyzer. React. Chem. Eng. 5, 1768–1775 (2020).

    CAS  Article  Google Scholar 

  14. 14.

    Reyes, A. et al. Managing hydration at the cathode enables efficient CO2 electrolysis at commercially relevant current densities. ACS Energy Lett. 5, 1612–1618 (2020).

    CAS  Article  Google Scholar 

  15. 15.

    Larrazábal, G. O. et al. Analysis of mass flows and membrane cross-over in CO2 reduction at high current densities in an MEA-type electrolyzer. ACS Appl. Mater. Interfaces 11, 41281–41288 (2019).

    Article  CAS  Google Scholar 

  16. 16.

    Ma, M. et al. Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs. Energy Environ. Sci. 13, 977–985 (2020).

    CAS  Article  Google Scholar 

  17. 17.

    Higgins, D., Hahn, C., Xiang, C., Jaramillo, T. F. & Weber, A. Z. Gas-diffusion electrodes for carbon dioxide reduction: a new paradigm. ACS Energy Lett. 4, 317–324 (2019).

    CAS  Article  Google Scholar 

  18. 18.

    Dinh, C.-T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    CAS  Article  Google Scholar 

  19. 19.

    Dinh, C.-T., de Arquer, F. P. G., Sinton, D. & Sargent, E. H. High rate, selective, and stable electroreduction of CO2 to CO in basic and neutral media. ACS Energy Lett. 3, 2835–2840 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    Verma, S., Nwabara, U. O. & Kenis, P. J. A. in Nanocarbons for Energy Conversion: Supramolecular Approaches (ed. Nakashima, N.) 219–251 (Springer, 2019).

  21. 21.

    Liu, K., Smith, W. A. & Burdyny, T. Introductory guide to assembling and operating gas diffusion electrodes for electrochemical CO2 reduction. ACS Energy Lett. 4, 639–643 (2019).

    CAS  Article  Google Scholar 

  22. 22.

    García de Arquer, F. P. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).

    Article  CAS  Google Scholar 

  23. 23.

    Ozden, A. et al. High-rate and efficient ethylene electrosynthesis using a catalyst/promoter/transport layer. ACS Energy Lett. 5, 2811–2818 (2020).

    CAS  Article  Google Scholar 

  24. 24.

    Gabardo, C. M. et al. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 3, 2777–2791 (2019).

    CAS  Article  Google Scholar 

  25. 25.

    Tan, Y. C., Lee, K. B., Song, H. & Oh, J. Modulating local CO2 concentration as a general strategy for enhancing C–C coupling in CO2 electroreduction. Joule 4, 1104–1120 (2020).

    CAS  Article  Google Scholar 

  26. 26.

    Wang, X. et al. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2–CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat. Nanotechnol. 14, 1063–1070 (2019).

    CAS  Article  Google Scholar 

  27. 27.

    Li, J. et al. Efficient electrocatalytic CO2 reduction on a three-phase interface. Nat. Catal. 1, 592–600 (2018).

    CAS  Article  Google Scholar 

  28. 28.

    Kusoglu, A. & Weber, A. Z. New insights into perfluorinated sulfonic-acid ionomers. Chem. Rev. 117, 987–1104 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Zhang, B. A., Ozel, T., Elias, J. S., Costentin, C. & Nocera, D. G. Interplay of homogeneous reactions, mass transport, and kinetics in determining selectivity of the reduction of CO2 on gold electrodes. ACS Cent. Sci. 5, 1097–1105 (2019).

    CAS  Article  Google Scholar 

  30. 30.

    Hall, A. S., Yoon, Y., Wuttig, A. & Surendranath, Y. Mesostructure-induced selectivity in CO2 reduction catalysis. J. Am. Chem. Soc. 137, 14834–14837 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    Welch, A. J. et al. Nanoporous gold as a highly selective and active carbon dioxide reduction catalyst. ACS Appl. Energy Mater. 2, 164–170 (2019).

    CAS  Article  Google Scholar 

  32. 32.

    Yoon, Y., Hall, A. S. & Surendranath, Y. Tuning of silver catalyst mesostructure promotes selective carbon dioxide conversion into fuels. Angew. Chem. Int. Ed. 55, 15282–15286 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Gupta, N., Gattrell, M. & MacDougall, B. Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J. Appl. Electrochem. 36, 161–172 (2006).

    CAS  Article  Google Scholar 

  34. 34.

    Sen, S., Liu, D. & Palmore, G. T. R. Electrochemical reduction of CO2 at copper nanofoams. ACS Catal. 4, 3091–3095 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    Song, H. et al. Effect of mass transfer and kinetics in ordered Cu-mesostructures for electrochemical CO2 reduction. Appl. Catal. B 232, 391–396 (2018).

    CAS  Article  Google Scholar 

  36. 36.

    Suter, S. & Haussener, S. Optimizing mesostructured silver catalysts for selective carbon dioxide conversion into fuels. Energy Environ. Sci. 12, 1668–1678 (2019).

    CAS  Article  Google Scholar 

  37. 37.

    Yang, K., Kas, R. & Smith, W. A. In situ infrared spectroscopy reveals persistent alkalinity near electrode surfaces during CO2 electroreduction. J. Am. Chem. Soc. 141, 15891–15900 (2019).

    CAS  Article  Google Scholar 

  38. 38.

    Endrődi, B. et al. Multilayer electrolyzer stack converts carbon dioxide to gas products at high pressure with high efficiency. ACS Energy Lett. 4, 1770–1777 (2019).

    Article  CAS  Google Scholar 

  39. 39.

    Verma, S. et al. Insights into the low overpotential electroreduction of CO2 to CO on a supported gold catalyst in an alkaline flow electrolyzer. ACS Energy Lett. 3, 193–198 (2018).

    CAS  Article  Google Scholar 

  40. 40.

    Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    CAS  Article  Google Scholar 

  41. 41.

    Kadyk, T., Bruce, D. & Eikerling, M. How to enhance gas removal from porous electrodes? Sci. Rep. 6, 38780 (2016).

    CAS  Article  Google Scholar 

  42. 42.

    Angulo, A., van der Linde, P., Gardeniers, H., Modestino, M. & Fernández Rivas, D. Influence of bubbles on the energy conversion efficiency of electrochemical reactors. Joule 4, 555–579 (2020).

    CAS  Article  Google Scholar 

  43. 43.

    Burdyny, T. et al. Nanomorphology-enhanced gas-evolution intensifies CO2 reduction electrochemistry. ACS Sustain. Chem. Eng. 5, 4031–4040 (2017).

    CAS  Article  Google Scholar 

  44. 44.

    Faber, M. S. et al. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 136, 10053–10061 (2014).

    CAS  Article  Google Scholar 

  45. 45.

    Lv, J.-J. et al. A highly porous copper electrocatalyst for carbon dioxide reduction. Adv. Mater. 30, e1803111 (2018).

    Article  CAS  Google Scholar 

  46. 46.

    Zeradjanin, A. R. et al. Rational design of the electrode morphology for oxygen evolution – enhancing the performance for catalytic water oxidation. RSC Adv. 4, 9579–9587 (2014).

    CAS  Article  Google Scholar 

  47. 47.

    Zhao, C. et al. Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction. Joule 3, 584–594 (2019).

    CAS  Article  Google Scholar 

  48. 48.

    Kas, R. et al. Electrochemical CO2 reduction on nanostructured metal electrodes: fact or defect? Chem. Sci. 11, 1738–1749 (2020).

    CAS  Article  Google Scholar 

  49. 49.

    Weng, L.-C., Bell, A. T. & Weber, A. Z. Modeling gas-diffusion electrodes for CO2 reduction. Phys. Chem. Chem. Phys. 20, 16973–16984 (2018).

    CAS  Article  Google Scholar 

  50. 50.

    Santamaria, A. D., Das, P. K., MacDonald, J. C. & Weber, A. Z. Liquid-water interactions with gas-diffusion-layer surfaces. J. Electrochem. Soc. 161, F1184–F1193 (2014).

    Article  CAS  Google Scholar 

  51. 51.

    Benziger, J., Nehlsen, J., Blackwell, D., Brennan, T. & Itescu, J. Water flow in the gas diffusion layer of PEM fuel cells. J. Membr. Sci. 261, 98–106 (2005).

    CAS  Article  Google Scholar 

  52. 52.

    Jähne, B., Heinz, G. & Dietrich, W. Measurement of the diffusion coefficients of sparingly soluble gases in water. J. Geophys. Res. 92, 10767–10766 (1987).

    Article  Google Scholar 

  53. 53.

    Kutana, A. & Giapis, K. P. Atomistic simulations of electrowetting in carbon nanotubes. Nano Lett. 6, 656–661 (2006).

    CAS  Article  Google Scholar 

  54. 54.

    Lomax, D. J. et al. Ultra-low voltage electrowetting using graphite surfaces. Soft Matter 12, 8798–8804 (2016).

    CAS  Article  Google Scholar 

  55. 55.

    Weber, A. Z. & Newman, J. Transport in polymer-electrolyte membranes: II. Mathematical model. J. Electrochem. Soc. 151, A311–A325 (2004).

    CAS  Article  Google Scholar 

  56. 56.

    Weber, A. Z., Darling, R. M. & Newman, J. Modeling two-phase behavior in PEFCs. J. Electrochem. Soc. 151, A1715–A1727 (2004).

    CAS  Article  Google Scholar 

  57. 57.

    Uchida, M., Aoyama, Y., Eda, N. & Ohta, A. Investigation of the microstructure in the catalyst layer and effects of both perfluorosulfonate ionomer and PTFE-loaded carbon on the catalyst layer of polymer electrolyte fuel cells. J. Electrochem. Soc. 142, 4143–4149 (1995).

    CAS  Article  Google Scholar 

  58. 58.

    Haas, T., Krause, R., Weber, R., Demler, M. & Schmid, G. Technical photosynthesis involving CO2 electrolysis and fermentation. Nat. Catal. 1, 32–39 (2018).

    CAS  Article  Google Scholar 

  59. 59.

    Wang, Q., Dong, H., Yu, H. & Yu, H. Enhanced performance of gas diffusion electrode for electrochemical reduction of carbon dioxide to formate by adding polytetrafluoroethylene into catalyst layer. J. Power Sources 279, 1–5 (2015).

    CAS  Article  Google Scholar 

  60. 60.

    Kim, B., Hillman, F., Ariyoshi, M., Fujikawa, S. & Kenis, P. J. A. Effects of composition of the micro porous layer and the substrate on performance in the electrochemical reduction of CO2 to CO. J. Power Sources 312, 192–198 (2016).

    CAS  Article  Google Scholar 

  61. 61.

    Xing, Z., Hu, X. & Feng, X. Tuning the microenvironment in gas-diffusion electrodes enables high-rate CO2 electrolysis to formate. ACS Energy Lett. 6, 1694–1702 (2021).

    CAS  Article  Google Scholar 

  62. 62.

    Leonard, M. E. et al. Editors’ choice — Flooded by success: on the role of electrode wettability in CO2 electrolyzers that generate liquid products. J. Electrochem. Soc. 167, 124521 (2020).

    CAS  Article  Google Scholar 

  63. 63.

    Junge Puring, K. et al. Electrochemical CO2 reduction: tailoring catalyst layers in gas diffusion electrodes. Adv. Sustain. Syst. 52, 2000088 (2020).

    Google Scholar 

  64. 64.

    Shi, R. et al. Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nat. Commun. 11, 3028 (2020).

    CAS  Article  Google Scholar 

  65. 65.

    Wakerley, D. et al. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat. Mater. 18, 1222–1227 (2019).

    CAS  Article  Google Scholar 

  66. 66.

    Liu, H. et al. Fabricating surfaces with tunable wettability and adhesion by ionic liquids in a wide range. Small 11, 1782–1786 (2015).

    CAS  Article  Google Scholar 

  67. 67.

    Diaz, L. A. et al. Electrochemical production of syngas from CO2 captured in switchable polarity solvents. Green Chem. 20, 620–626 (2018).

    CAS  Article  Google Scholar 

  68. 68.

    Li, T. et al. Electrolytic conversion of bicarbonate into CO in a flow cell. Joule 3, 1487–1497 (2019).

    CAS  Article  Google Scholar 

  69. 69.

    Li, Y. C. et al. CO2 electroreduction from carbonate electrolyte. ACS Energy Lett. 4, 1427–1431 (2019).

    CAS  Article  Google Scholar 

  70. 70.

    Li, T., Lees, E. W., Zhang, Z. & Berlinguette, C. P. Conversion of bicarbonate to formate in an electrochemical flow reactor. ACS Energy Lett. 5, 2624–2630 (2020).

    CAS  Article  Google Scholar 

  71. 71.

    Lees, E. W. et al. Electrodes designed for converting bicarbonate into CO. ACS Energy Lett. 5, 2165–2173 (2020).

    CAS  Article  Google Scholar 

  72. 72.

    Leonard, M. E., Clarke, L. E., Forner-Cuenca, A., Brown, S. M. & Brushett, F. R. Investigating electrode flooding in a flowing electrolyte, gas-fed carbon dioxide electrolyzer. ChemSusChem 13, 400–411 (2020).

    CAS  Article  Google Scholar 

  73. 73.

    Wheeler, D. G. et al. Quantification of water transport in a CO2 electrolyzer. Energy Environ. Sci. 13, 5126–5134 (2020).

    CAS  Article  Google Scholar 

  74. 74.

    Salvatore, D. A. et al. Designing anion exchange membranes for CO2 electrolysers. Nat. Energy 6, 339–348 (2021).

    CAS  Article  Google Scholar 

  75. 75.

    Geise, G. M., Hickner, M. A. & Logan, B. E. Ionic resistance and permselectivity tradeoffs in anion exchange membranes. ACS Appl. Mater. Interfaces 5, 10294–10301 (2013).

    CAS  Article  Google Scholar 

  76. 76.

    Hickner, M. A. & Pivovar, B. S. The chemical and structural nature of proton exchange membrane fuel cell properties. Fuel Cell 5, 213–229 (2005).

    CAS  Article  Google Scholar 

  77. 77.

    Ma, M., Kim, S., Chorkendorff, I. & Seger, B. Role of ion-selective membranes in the carbon balance for CO2 electroreduction via gas diffusion electrode reactor designs. Chem. Sci. 11, 8854–8861 (2020).

    CAS  Article  Google Scholar 

  78. 78.

    Slade, S., Campbell, S. A., Ralph, T. R. & Walsh, F. C. Ionic conductivity of an extruded nafion 1100 EW series of membranes. J. Electrochem. Soc. 149, A1556 (2002).

    CAS  Article  Google Scholar 

  79. 79.

    Paddison, S. J. The modeling of molecular structure and ion transport in sulfonic acid based ionomer membranes. J. New Mater. Electrochem. Syst. 4, 197–208 (2001).

    CAS  Google Scholar 

  80. 80.

    Mauritz, K. A. & Moore, R. B. State of understanding of nafion. Chem. Rev. 104, 4535–4586 (2004).

    CAS  Article  Google Scholar 

  81. 81.

    Delacourt, C., Ridgway, P. L., Kerr, J. B. & Newman, J. Design of an electrochemical cell making syngas (CO + H2) and H2O reduction at room temperature. J. Electrochem. Soc. 155, B42–B49 (2008).

    CAS  Article  Google Scholar 

  82. 82.

    Park, S., Shao, Y., Liu, J. & Wang, Y. Oxygen electrocatalysts for water electrolyzers and reversible fuel cells: status and perspective. Energy Environ. Sci. 5, 9331–9344 (2012).

    CAS  Article  Google Scholar 

  83. 83.

    Lee, Y., Suntivich, J., May, K. J., Perry, E. E. & Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3, 399–404 (2012).

    CAS  Article  Google Scholar 

  84. 84.

    Kas, R. et al. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Phys. Chem. Chem. Phys. 16, 12194–12201 (2014).

    CAS  Article  Google Scholar 

  85. 85.

    Varela, A. S., Kroschel, M., Reier, T. & Strasser, P. Controlling the selectivity of CO2 electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH. Catal. Today 260, 8–13 (2016).

    CAS  Article  Google Scholar 

  86. 86.

    Hori, Y., Murata, A. & Takahashi, R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc. Lond. Faraday Trans. 1 85, 2309–2326 (1989).

    CAS  Article  Google Scholar 

  87. 87.

    Ziv, N., Mustain, W. E. & Dekel, D. R. The effect of ambient carbon dioxide on anion-exchange membrane fuel cells. ChemSusChem 11, 1136–1150 (2018).

    CAS  Article  Google Scholar 

  88. 88.

    Weng, L.-C., Bell, A. T. & Weber, A. Z. Towards membrane-electrode assembly systems for CO2 reduction: a modeling study. Energy Environ. Sci. 12, 1950–1968 (2019).

    CAS  Article  Google Scholar 

  89. 89.

    Jouny, M., Hutchings, G. S. & Jiao, F. Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nat. Catal. 2, 1062–1070 (2019).

    CAS  Article  Google Scholar 

  90. 90.

    Chen, Y. et al. A robust, scalable platform for the electrochemical conversion of CO2 to formate; identifying pathways to higher energy efficiencies. ACS Energy Lett. 5, 1825–1833 (2020).

    CAS  Article  Google Scholar 

  91. 91.

    Salvatore, D. A. et al. Electrolysis of gaseous CO2 to CO in a flow cell with a bipolar membrane. ACS Energy Lett. 3, 149–154 (2017).

    Article  CAS  Google Scholar 

  92. 92.

    Oener, S. Z., Foster, M. J. & Boettcher, S. W. Accelerating water dissociation in bipolar membranes and for electrocatalysis. Science 369, 1099–1103 (2020).

    CAS  Article  Google Scholar 

  93. 93.

    Blommaert, M. A., Verdonk, J. A. H., Blommaert, H. C. B., Smith, W. A. & Vermaas, D. A. Reduced ion crossover in bipolar membrane electrolysis via increased current density, molecular size, and valence. ACS Appl. Energy Mater. 3, 5804–5812 (2020).

    CAS  Article  Google Scholar 

  94. 94.

    Salvatore, D. & Berlinguette, C. P. Voltage matters when reducing CO2 in an electrochemical flow cell. ACS Energy Lett. 5, 215–220 (2020).

    CAS  Article  Google Scholar 

  95. 95.

    Yan, Z. et al. The balance of electric field and interfacial catalysis in promoting water dissociation in bipolar membranes. Energy Environ. Sci. 11, 2235–2245 (2018).

    CAS  Article  Google Scholar 

  96. 96.

    Hohenadel, A. et al. Electrochemical characterization of hydrocarbon bipolar membranes with varying junction morphology. ACS Appl. Energy Mater. 2, 6817–6824 (2019).

    CAS  Article  Google Scholar 

  97. 97.

    Shen, C., Wycisk, R. & Pintauro, P. N. High performance electrospun bipolar membrane with a 3D junction. Energy Environ. Sci. 10, 1435–1442 (2017).

    CAS  Article  Google Scholar 

  98. 98.

    Varcoe, J. R. et al. Anion-exchange membranes in electrochemical energy systems. Energy Environ. Sci. 7, 3135–3191 (2014).

    CAS  Article  Google Scholar 

  99. 99.

    Hibbs, M. R. et al. Transport properties of hydroxide and proton conducting membranes. Chem. Mater. 20, 2566–2573 (2008).

    CAS  Article  Google Scholar 

  100. 100.

    Oener, S. Z., Twight, L. P., Lindquist, G. A. & Boettcher, S. W. Thin cation-exchange layers enable high-current-density bipolar membrane electrolyzers via improved water transport. ACS Energy Lett. 6, 1–8 (2021).

    CAS  Article  Google Scholar 

  101. 101.

    Liu, Z., Yang, H., Kutz, R. & Masel, R. I. CO2 electrolysis to CO and O2 at high selectivity, stability and efficiency using sustainion membranes. J. Electrochem. Soc. 165, J3371–J3377 (2018).

    CAS  Article  Google Scholar 

  102. 102.

    Li, Y. C. et al. Bipolar membranes inhibit product crossover in CO2 electrolysis cells. Adv. Sustain. Syst. 2, 1700187 (2018).

    Article  CAS  Google Scholar 

  103. 103.

    Fierro, S., Nagel, T., Baltruschat, H. & Comninellis, C. Investigation of formic acid oxidation on Ti/IrO2 electrodes using isotope labeling and online mass spectrometry. Electrochem. Solid State Lett. 11, E20 (2008).

    CAS  Article  Google Scholar 

  104. 104.

    Fierro, S. et al. Investigation of formic acid oxidation on Ti/IrO2 electrodes. Electrochim. Acta 54, 2053–2061 (2009).

    CAS  Article  Google Scholar 

  105. 105.

    Luo, T., Abdu, S. & Wessling, M. Selectivity of ion exchange membranes: a review. J. Membr. Sci. 555, 429–454 (2018).

    CAS  Article  Google Scholar 

  106. 106.

    Krödel, M. et al. Rational design of ion exchange membrane material properties limits the crossover of CO2 reduction products in artificial photosynthesis devices. ACS Appl. Mater. Interfaces 12, 12030–12042 (2020).

    Article  CAS  Google Scholar 

  107. 107.

    Yin, Z. et al. An alkaline polymer electrolyte CO2 electrolyzer operated with pure water. Energy Environ. Sci. 12, 2455–2462 (2019).

    CAS  Article  Google Scholar 

  108. 108.

    Greenblatt, J. B., Miller, D. J., Ager, J. W., Houle, F. A. & Sharp, I. D. The technical and energetic challenges of separating (photo)electrochemical carbon dioxide reduction products. Joule 2, 381–420 (2018).

    CAS  Article  Google Scholar 

  109. 109.

    Holdcroft, S. Fuel cell catalyst layers: a polymer science perspective. Chem. Mater. 26, 381–393 (2014).

    CAS  Article  Google Scholar 

  110. 110.

    Mukaddam, M., Litwiller, E. & Pinnau, I. Gas sorption, diffusion, and permeation in nafion. Macromolecules 49, 280–286 (2016).

    CAS  Article  Google Scholar 

  111. 111.

    Jervis, R. et al. The importance of using alkaline ionomer binders for screening electrocatalysts in alkaline electrolyte. J. Electrochem. Soc. 164, F1551 (2017).

    CAS  Article  Google Scholar 

  112. 112.

    Lees, E. W. et al. Linking gas diffusion electrode composition to CO2 reduction in a flow cell. J. Mater. Chem. A 8, 19493–19501 (2020).

    CAS  Article  Google Scholar 

  113. 113.

    Chen, C. et al. Varying the microphase separation patterns of alkaline polymer electrolytes. J. Mater. Chem. A Mater. Energy Sustain. 4, 4071–4081 (2016).

    CAS  Article  Google Scholar 

  114. 114.

    Pan, J., Chen, C., Zhuang, L. & Lu, J. Designing advanced alkaline polymer electrolytes for fuel cell applications. Acc. Chem. Res. 45, 473–481 (2012).

    CAS  Article  Google Scholar 

  115. 115.

    Xu, Y. et al. Oxygen-tolerant electroproduction of C2 products from simulated flue gas. Energy Environ. Sci. 13, 554–561 (2020).

    CAS  Article  Google Scholar 

  116. 116.

    Endrődi, B. et al. High carbonate ion conductance of a robust PiperION membrane allows industrial current density and conversion in a zero-gap carbon dioxide electrolyzer cell. Energy Environ. Sci. 13, 4098–4105 (2020).

    Article  Google Scholar 

  117. 117.

    Zhang, H.-W., Chen, D.-Z., Xianze, Y. & Yin, S.-B. Anion-exchange membranes for fuel cells: synthesis strategies, properties and perspectives. Fuel Cell 15, 761–780 (2015).

    CAS  Article  Google Scholar 

  118. 118.

    O’Brien, T. F., Bommaraju, T. V. & Hine, F. Handbook of Chlor-Alkali Technology (Springer, 2005).

  119. 119.

    Zhang, Z. et al. pH matters when reducing CO2 in an electrochemical flow cell. ACS Energy Lett. 5, 3101–3107 (2020).

    CAS  Article  Google Scholar 

  120. 120.

    Lide, D. R. CRC Handbook of Chemistry and Physics 85th edn (CRC, 2004).

  121. 121.

    Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010).

    CAS  Article  Google Scholar 

  122. 122.

    Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019).

    CAS  Article  Google Scholar 

  123. 123.

    Ross, M. B. et al. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2, 648–658 (2019).

    CAS  Article  Google Scholar 

  124. 124.

    Resasco, J. & Bell, A. T. Electrocatalytic CO2 reduction to fuels: progress and opportunities. Trends Chem. 2, 825–836 (2020).

    CAS  Article  Google Scholar 

  125. 125.

    Hori, Y., Takahashi, I., Koga, O. & Hoshi, N. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J. Phys. Chem. B 106, 15–17 (2002).

    CAS  Article  Google Scholar 

  126. 126.

    Takahashi, I., Koga, O., Hoshi, N. & Hori, Y. Electrochemical reduction of CO2 at copper single crystal Cu(S)-[n(111)×(111)] and Cu(S)-[n(110)×(100)] electrodes. J. Electroanal. Chem. 533, 135–143 (2002).

    CAS  Article  Google Scholar 

  127. 127.

    Hori, Y., Takahashi, I., Koga, O. & Hoshi, N. Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. J. Mol. Catal. A Chem. 199, 39–47 (2003).

    CAS  Article  Google Scholar 

  128. 128.

    Lim, C. F. C., Harrington, D. A. & Marshall, A. T. Effects of mass transfer on the electrocatalytic CO2 reduction on Cu. Electrochim. Acta 238, 56–63 (2017).

    CAS  Article  Google Scholar 

  129. 129.

    Burdyny, T. & Smith, W. A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 12, 1442–1453 (2019).

    CAS  Article  Google Scholar 

  130. 130.

    Clark, E. L. et al. Data acquisition protocols and reporting standards for studies of the electrochemical reduction of carbon dioxide. ACS Catal. 8, 6560–6570 (2018).

    CAS  Article  Google Scholar 

  131. 131.

    Edwards, J. P. et al. Efficient electrocatalytic conversion of carbon dioxide in a low-resistance pressurized alkaline electrolyzer. Appl. Energy 261, 114305 (2020).

    CAS  Article  Google Scholar 

  132. 132.

    Whipple, D. T., Finke, E. C. & Kenis, P. J. A. Microfluidic reactor for the electrochemical reduction of carbon dioxide: the effect of pH. Electrochem. Solid. State Lett. 13, B109–B111 (2010).

    CAS  Article  Google Scholar 

  133. 133.

    Jayashree, R. S. et al. On the performance of membraneless laminar flow-based fuel cells. J. Power Sources 195, 3569–3578 (2010).

    CAS  Article  Google Scholar 

  134. 134.

    Li, Y. C. et al. Electrolysis of CO2 to syngas in bipolar membrane-based electrochemical cells. ACS Energy Lett. 1, 1149–1153 (2016).

    CAS  Article  Google Scholar 

  135. 135.

    Ma, S. et al. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J. Power Sources 301, 219–228 (2016).

    CAS  Article  Google Scholar 

  136. 136.

    Kaczur, J. J., Yang, H., Liu, Z., Sajjad, S. D. & Masel, R. I. Carbon dioxide and water electrolysis using new alkaline stable anion membranes. Front. Chem. 6, 263 (2018).

    Article  CAS  Google Scholar 

  137. 137.

    Li, D. et al. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers. Nat. Energy 5, 378–385 (2020).

    CAS  Article  Google Scholar 

  138. 138.

    Li, Q. et al. The comparability of Pt to Pt-Ru in catalyzing the hydrogen oxidation reaction for alkaline polymer electrolyte fuel cells operated at 80 °C. Angew. Chem. Int. Ed. 131, 1456–1460 (2019).

    Google Scholar 

  139. 139.

    Lu, W. et al. Polybenzimidazole-crosslinked poly(vinylbenzyl chloride) with quaternary 1,4-diazabicyclo (2.2.2) octane groups as high-performance anion exchange membrane for fuel cells. J. Power Sources 296, 204–214 (2015).

    CAS  Article  Google Scholar 

  140. 140.

    Chen, T.-Y. & Leddy, J. Ion exchange capacity of nafion and nafion composites. Langmuir 16, 2866–2871 (2000).

    CAS  Article  Google Scholar 

  141. 141.

    Lvov, S. et al. Nafion®/TiO2 composite membranes for PEM fuel cells operating at elevated temperature and reduced relative humidity. ECS Trans. 3, 73 (2006).

    Article  Google Scholar 

  142. 142.

    Knehr, K. W., Agar, E., Dennison, C. R., Kalidindi, A. R. & Kumbur, E. C. A transient vanadium flow battery model incorporating vanadium crossover and water transport through the membrane. J. Electrochem. Soc. 159, A1446 (2012).

    CAS  Article  Google Scholar 

  143. 143.

    Sigwadi, R. et al. The proton conductivity and mechanical properties of Nafion®/ZrP nanocomposite membrane. Heliyon 5, e02240 (2019).

    CAS  Article  Google Scholar 

  144. 144.

    Shi, S., Weber, A. Z. & Kusoglu, A. Structure/property relationship of Nafion XL composite membranes. J. Membr. Sci. 516, 123–134 (2016).

    CAS  Article  Google Scholar 

  145. 145.

    Baker, A. M., Wang, L., Johnson, W. B., Prasad, A. K. & Advani, S. G. Nafion membranes reinforced with ceria-coated multiwall carbon nanotubes for improved mechanical and chemical durability in polymer electrolyte membrane fuel cells. J. Phys. Chem. C 118, 26796–26802 (2014).

    CAS  Article  Google Scholar 

  146. 146.

    Torres Duarte, L. M., Domínguez Almaraz, G. M. & Torres Pacheco, C. J. Fatigue tests on the proton exchange membrane nafion 115 (perfluorosulfonic acid) of fuel cells, under the biaxial modality: tension and torsion. Mater. Sci. Energy Technol. 2, 22–28 (2019).

    Google Scholar 

  147. 147.

    Lu, Z. et al. An experimental investigation of strain rate, temperature and humidity effects on the mechanical behavior of a perfluorosulfonic acid membrane. J. Power Sources 214, 130–136 (2012).

    CAS  Article  Google Scholar 

  148. 148.

    Caire, B. R., Vandiver, M. A. & Liberatore, M. W. Mechanical testing of small, thin samples in a humidity-controlled oven. Rheol. Acta 54, 253–261 (2015).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Curtis P. Berlinguette.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Materials thanks Feng Jiao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lees, E.W., Mowbray, B.A.W., Parlane, F.G.L. et al. Gas diffusion electrodes and membranes for CO2 reduction electrolysers. Nat Rev Mater (2021). https://doi.org/10.1038/s41578-021-00356-2

Download citation

Search

Quick links