Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The passivity of lithium electrodes in liquid electrolytes for secondary batteries

Subjects

Abstract

Rechargeable Li metal batteries are currently limited by safety concerns, continuous electrolyte decomposition and rapid consumption of Li. These issues are mainly related to reactions occurring at the Li metal–liquid electrolyte interface. The formation of a passivation film (that is, a solid electrolyte interphase) determines ionic diffusion and the structural and morphological evolution of the Li metal electrode upon cycling. In this Review, we discuss spontaneous and operation-induced reactions at the Li metal–electrolyte interface from a corrosion science perspective. We highlight that the instantaneous formation of a thin protective film of corrosion products at the Li surface, which acts as a barrier to further chemical reactions with the electrolyte, precedes film reformation, which occurs during subsequent electrochemical stripping and plating of Li during battery operation. Finally, we discuss solutions to overcoming remaining challenges of Li metal batteries related to Li surface science, electrolyte chemistry, cell engineering and the intrinsic instability of the Li metal–electrolyte interface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Energy density of various battery chemistries with metal electrodes and corresponding corrosion reactions.
Fig. 2: Li corrosion in non-aqueous electrolyte.
Fig. 3: Parameters determining the Li metal–liquid electrolyte interface and interphase.
Fig. 4: Naturally formed and artificial solid interphases.
Fig. 5: Factors impacting the evolution of the interface and interphase.
Fig. 6: Relevant parameters for the commercial application of Li metal batteries.

Similar content being viewed by others

References

  1. Palacín, M. R. Recent advances in rechargeable battery materials: a chemist’s perspective. Chem. Soc. Rev. 38, 2565–2575 (2009).

    Article  CAS  Google Scholar 

  2. Meister, P. et al. Best practice: performance and cost evaluation of lithium ion battery active materials with special emphasis on energy efficiency. Chem. Mater. 28, 7203–7217 (2016).

    Article  CAS  Google Scholar 

  3. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  CAS  Google Scholar 

  4. Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).

    Article  CAS  Google Scholar 

  5. Haregewoin, A. M., Wotango, A. S. & Hwang, B. J. Electrolyte additives for lithium ion battery electrodes: Progress and perspectives. Energy Environ. Sci. 9, 1955–1988 (2016).

    Article  CAS  Google Scholar 

  6. Hun, L., Yanilmaz, M., Toprakci, O., Fu, K. & Zhang, X. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 7, 3857–3886 (2014).

    Article  CAS  Google Scholar 

  7. Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    Article  CAS  Google Scholar 

  8. Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014).

    Article  CAS  Google Scholar 

  9. Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

    Article  CAS  Google Scholar 

  10. Knapp, H. R. in Proceedings of the 19th Annual Power Sources Conference 94–97 (PSC Publications Committee, 1965).

  11. Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 192, 1126–1127 (1976).

    Article  CAS  Google Scholar 

  12. Yoshino, A. The birth of the lithium-ion battery. Angew. Chem. Int. Ed. 51, 5798–5800 (2012).

    Article  CAS  Google Scholar 

  13. Kalhoff, J., Eshetu, G. G., Bresser, D. & Passerini, S. Safer electrolytes for lithium-ion batteries: state of the art and perspectives. ChemSusChem 8, 2154–2175 (2015).

    Article  CAS  Google Scholar 

  14. Wang, J. et al. Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 3, 22–29 (2018).

    Article  CAS  Google Scholar 

  15. Zheng, J. et al. Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. Chem. Soc. Rev. 49, 2701–2750 (2020).

    Article  CAS  Google Scholar 

  16. Cheng, X. B. et al. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3, 1500213 (2016).

    Article  CAS  Google Scholar 

  17. Shi, P. et al. A review of composite lithium metal anode for practical applications. Adv. Mater. Technol. 5, 1900806 (2020).

    Article  CAS  Google Scholar 

  18. Richey, F. W., Mccloskey, B. D. & Luntz, A. C. Mg anode corrosion in aqueous electrolytes and implications for Mg-air batteries. J. Electrochem. Soc. 163, A958–A963 (2016).

    Article  CAS  Google Scholar 

  19. Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems — the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979).

    Article  CAS  Google Scholar 

  20. Alekseev, V. I., Perkas, M. M., Yusupov, V. S. & Lazarenko, G. Y. The mechanism of metal corrosion passivation. Russ. J. Phys. Chem. A 87, 1380–1385 (2013).

    Article  CAS  Google Scholar 

  21. Revie, R. W. & Uhlig, H. H. Corrosion and Corrosion Control 3rd edn (Wiley, 1985).

  22. Ospina-Acevedo, F., Guo, N. & Balbuena, P. B. Lithium oxidation and electrolyte decomposition at Li-metal/liquid electrolyte interfaces. J. Mater. Chem. A 8, 17036–17055 (2020).

    Article  CAS  Google Scholar 

  23. Winter, M. The solid electrolyte interphase–the most important and the least understood solid electrolyte in rechargeable Li batteries. Z. Phys. Chem. 223, 1395–1406 (2009).

    Article  CAS  Google Scholar 

  24. O’Brien, T. F., Bommaraju, T. V. & Hine, F. in Handbook of Chlor-Alkali Technology 1295–1348 (Springer, 2005).

  25. Pilling, N. B. & Bedworth, R. E. The oxidation of metals in high temperature. J. Inst. Met. 29, 529–591 (1923).

    Google Scholar 

  26. Soltis, J. Passivity breakdown, pit initiation and propagation of pits in metallic materials – Review. Corros. Sci. 90, 5–22 (2015).

    Article  CAS  Google Scholar 

  27. Ashby, M., Shercliff, H. & Cebon, D. in Materials: Engineering, Science, Processing and Design Ch. 17 (Elsevier, 2007).

  28. Gomera, L., Spanish, T., Islands, C., Gomera, L. & Spanish, T. Passivation of iron by chromate solutions. Nature 180, 27–28 (1957).

    Article  Google Scholar 

  29. Sato, N. Interfacial ion-selective diffusion layer and passivation of metal anodes. Electrochim. Acta 41, 1525–1532 (1996).

    Article  CAS  Google Scholar 

  30. Beleevskii, V. S., Kudelin, Y. I., Lisov, S. F. & Timonin, V. A. Electrochemical and corrosion behavior of metals in solutions of weak acids and salts of weak acids. Sov. Mater. Sci. 26, 622–628 (1991).

    Article  Google Scholar 

  31. Yuan, D., Zhao, J., Manalastas, W., Kumar, S. & Srinivasan, M. Emerging rechargeable aqueous aluminum ion battery: Status, challenges, and outlooks. Nano Mater. Sci. 2, 248–263 (2020).

    Article  Google Scholar 

  32. Yang, H. et al. The rechargeable aluminum battery: opportunities and challenges. Angew. Chem. Int. Ed. 58, 11978–11996 (2019).

    Article  CAS  Google Scholar 

  33. Liu, Y. et al. A comprehensive review on recent progress in aluminum–air batteries. Green Energy Environ. 2, 246–277 (2017).

    Article  Google Scholar 

  34. Rahman, M. A., Wang, X. & Wenz, C. High energy density metal-air batteries: a review. J. Electrochem. Soc. 160, A1759–A1771 (2013).

    Article  CAS  Google Scholar 

  35. Zhang, T., Tao, Z. & Chen, J. Magnesium–air batteries: from principle to application. Mater. Horiz. 1, 196–206 (2014).

    Article  Google Scholar 

  36. Harris, W. S. Electrochemical Studies in Cyclic Esters. PhD thesis, Univ. California (1958).

  37. Jorne, J. & Tobias, C. W. Electrodeposition of the alkali metals from propylene carbonate. J. Appl. Electrochem. 5, 279–290 (1975).

    Article  CAS  Google Scholar 

  38. Geronov, Y., Schwager, F. & Muller, R. H. Film formation on lithium in propylene carbonate solutions under open circuit conditions. J. Electrochem. Soc. (1980).

  39. Lu, Z., Schechter, A., Moshkovich, M. & Aurbach, D. On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. J. Electroanal. Chem. 466, 203–217 (1999).

    Article  CAS  Google Scholar 

  40. Wang, H. F. & Xu, Q. Materials design for rechargeable metal-air batteries. Matter 1, 565–595 (2019).

    Article  CAS  Google Scholar 

  41. Winter, M., Barnett, B. & Xu, K. Before Li ion batteries. Chem. Rev. 118, 11433–11456 (2018).

    Article  CAS  Google Scholar 

  42. Odziemkowski, M. & Irish, D. E. An electrochemical study of the reactivity at the lithium electrolyte/bare lithium metal interface. J. Electrochem. Soc. 139, 3063–3074 (1993).

    Article  Google Scholar 

  43. Heiskanen, S. K., Kim, J. & Lucht, B. L. Generation and evolution of the solid electrolyte interphase of lithium-ion batteries. Joule 3, 2322–2333 (2019).

    Article  CAS  Google Scholar 

  44. Xiong, S., Diao, Y., Hong, X., Chen, Y. & Xie, K. Characterization of solid electrolyte interphase on lithium electrodes cycled in ether-based electrolytes for lithium batteries. J. Electroanal. Chem. 719, 122–126 (2014).

    Article  CAS  Google Scholar 

  45. Lin, C. F., Kozen, A. C., Noked, M., Liu, C. & Rubloff, G. W. ALD protection of Li-metal anode surfaces–quantifying and preventing chemical and electrochemical corrosion in organic solvent. Adv. Mater. Interfaces 3, 1600426 (2016).

    Article  CAS  Google Scholar 

  46. Yin, X. et al. Insights into morphological evolution and cycling behaviour of lithium metal anode under mechanical pressure. Nano Energy 50, 659–664 (2018).

    Article  CAS  Google Scholar 

  47. Wood, K. N., Noked, M. & Dasgupta, N. P. Lithium metal anodes: toward an improved understanding of coupled morphological, electrochemical, and mechanical behavior. ACS Energy Lett. 2, 664–672 (2017).

    Article  CAS  Google Scholar 

  48. Soto, F. A., Ma, Y., Martinez De La Hoz, J. M., Seminario, J. M. & Balbuena, P. B. Formation and growth mechanisms of solid-electrolyte interphase layers in rechargeable batteries. Chem. Mater. 27, 7990–8000 (2015).

    Article  CAS  Google Scholar 

  49. Wang, A., Kadam, S., Li, H., Shi, S. & Qi, Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. NPJ Comput. Mater. 4, 1–26 (2018).

    Article  CAS  Google Scholar 

  50. Li, Y., Leung, K. & Qi, Y. Computational exploration of the Li-electrode|electrolyte interface in the presence of a nanometer thick solid-electrolyte interphase layer. Acc. Chem. Res. 49, 2363–2370 (2016).

    Article  CAS  Google Scholar 

  51. Strehblow, H.-H., Maurice, V. & Marcus, P. in Corrosion Mechanisms in Theory and Practice 3rd edn Ch. 5 (ed. Marcus, P.) (CRC Press, 2011).

  52. Keßler, S. & Sagüés, A. A. A minimalist approach to polarization resistance measurements in a reinforced concrete structure. Mater. Corros. 71, 849–856 (2020).

    Article  CAS  Google Scholar 

  53. Popov, B. N. Corrosion Engineering Ch. 3 (Elsevier, 2015).

  54. Littauer, E. L. & Tsai, K. C. Corrosion of lithium in alkaline solution. J. Electrochem. Soc. 124, 850–855 (1977).

    Article  CAS  Google Scholar 

  55. Slemnik, M. Activation energies ratio as corrosion indicator for different heat treated stainless steels. Mater. Des. 89, 795–801 (2016).

    Article  CAS  Google Scholar 

  56. Gunnarsdóttir, A. B., Vema, S., Menkin, S., Marbella, L. E. & Grey, C. P. Investigating the effect of a fluoroethylene carbonate additive on lithium deposition and the solid electrolyte interphase in lithium metal batteries using in situ NMR spectroscopy. J. Mater. Chem. A 8, 14975–14992 (2020).

    Article  Google Scholar 

  57. Camacho-Forero, L. E. & Balbuena, P. B. Effects of charged interfaces on electrolyte decomposition at the lithium metal anode. J. Power Sources 472, 228449 (2020).

    Article  CAS  Google Scholar 

  58. Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114 (2016).

    Article  CAS  Google Scholar 

  59. Aurbach, D. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89, 206–218 (2000).

    Article  CAS  Google Scholar 

  60. Lafage, M., Windel, D., Russier, V. & Badiali, J. P. Mechanisms of growth and corrosion at the lithium-solvent interface. Electrochim. Acta 42, 2841–2852 (1997).

    Article  CAS  Google Scholar 

  61. Jiao, S. et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3, 739–746 (2018).

    Article  CAS  Google Scholar 

  62. Xu, J. et al. Mechanical and electronic stabilization of solid electrolyte interphase with sulfite additive for lithium metal batteries. J. Electrochem. Soc. 166, A3201–A3206 (2019).

    Article  Google Scholar 

  63. Macdonald, D. D. Fundamental Studies of Passivity and Passivity Breakdown (US Department of Energy, 1993).

  64. Verhallen, T. W., Lv, S. & Wagemaker, M. Operando neutron depth profiling to determine the spatial distribution of Li in Li-ion batteries. Front. Energy Res. 6, 62 (2018).

    Article  Google Scholar 

  65. Yu, S. H., Huang, X., Brock, J. D. & Abruña, H. D. Regulating key variables and visualizing lithium dendrite growth: an operando X-ray study. J. Am. Chem. Soc. 141, 8441–8449 (2019).

    Article  CAS  Google Scholar 

  66. Lv, D. et al. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv. Energy Mater. 5, 1400993 (2015).

    Article  CAS  Google Scholar 

  67. Fang, C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019).

    Article  CAS  Google Scholar 

  68. Xu, S., Chen, K.-H., Dasgupta, N. P., Siegel, J. B. & Stefanopoulou, A. G. Evolution of dead lithium growth in lithium metal batteries: experimentally validated model of the apparent capacity loss. J. Electrochem. Soc. 166, A3456–A3463 (2019).

    Article  CAS  Google Scholar 

  69. Nanda, S., Gupta, A. & Manthiram, A. Anode-free full cells: a pathway to high-energy density lithium-metal batteries. Adv. Energy Mater. 11, 2000804 (2021).

    Article  CAS  Google Scholar 

  70. Lin, D. et al. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism. Nat. Chem. 11, 382–389 (2019).

    Article  CAS  Google Scholar 

  71. Kolesnikov, A. et al. Galvanic corrosion of lithium-powder-based electrodes. Adv. Energy Mater. 10, 2000017 (2020).

    Article  CAS  Google Scholar 

  72. Wu, X. et al. Safety issues in lithium ion batteries: materials and cell design. Front. Energy Res. 7, 65 (2019).

    Article  Google Scholar 

  73. Xu, K., Von Cresce, A. & Lee, U. Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. Langmuir 26, 11538–11543 (2010).

    Article  CAS  Google Scholar 

  74. Fujieda, T. et al. Surface of lithium electrodes prepared in Ar + CO2 gas. J. Power Sources 52, 197–200 (1994).

    Article  CAS  Google Scholar 

  75. Koch, S. L., Morgan, B. J., Passerini, S. & Teobaldi, G. Density functional theory screening of gas-treatment strategies for stabilization of high energy-density lithium metal anodes. J. Power Sources 296, 150–161 (2015).

    Article  CAS  Google Scholar 

  76. Zhao, J. et al. Surface fluorination of reactive battery anode materials for enhanced stability. J. Am. Chem. Soc. 139, 11550–11558 (2017).

    Article  CAS  Google Scholar 

  77. Becking, J. et al. Lithium-metal foil surface modification: an effective method to improve the cycling performance of lithium-metal batteries. Adv. Mater. Interfaces 4, 1700166 (2017).

    Article  CAS  Google Scholar 

  78. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4417 (2004).

    Article  CAS  Google Scholar 

  79. Leung, K., Soto, F., Hankins, K., Balbuena, P. B. & Harrison, K. L. Stability of solid electrolyte interphase components on lithium metal and reactive anode material surfaces. J. Phys. Chem. C 120, 6302–6313 (2016).

    Article  CAS  Google Scholar 

  80. Peled, E. & Menkin, S. Review — SEI: past, present and future. J. Electrochem. Soc. 164, A1703–A1719 (2017).

    Article  CAS  Google Scholar 

  81. Aurbach, D., Youngman, O. & Dan, P. The electrochemical behaviour of 1,3-dioxolane — LiClO4 solutions — I. Uncontaminated solutions. Electrochim. Acta 35, 639–655 (1990).

    Article  CAS  Google Scholar 

  82. Zhang, H. et al. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives angewandte. Angew. Chem. Int. Ed. 57, 15002–15027 (2018).

    Article  CAS  Google Scholar 

  83. Peljo, P. & Girault, H. H. Electrochemical potential window of battery electrolytes: the HOMO–LUMO misconception. Energy Environ. Sci. 11, 2306–2309 (2018).

    Article  CAS  Google Scholar 

  84. Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

    Article  CAS  Google Scholar 

  85. Gauthier, M. et al. Electrode–electrolyte interface in Li-Ion batteries: current understanding and new insights. J. Phys. Chem. Lett. 6, 4653–4672 (2015).

    Article  CAS  Google Scholar 

  86. Zheng, J. et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy 2, 17012 (2017).

    Article  CAS  Google Scholar 

  87. Beyene, T. T. et al. Concentrated dual-salt electrolyte to stabilize Li metal and increase cycle life of anode free li-metal batteries. J. Electrochem. Soc. 166, A1501–A1509 (2019).

    Article  CAS  Google Scholar 

  88. Borodin, O., Olguin, M., Spear, C. E., Leiter, K. W. & Knap, J. Towards high throughput screening of electrochemical stability of battery electrolytes. Nanotechnology 26, 354003 (2015).

    Article  CAS  Google Scholar 

  89. Borodin, O. et al. Modeling insight into battery electrolyte electrochemical stability and interfacial structure. Acc. Chem. Res. 50, 2886–2894 (2017).

    Article  CAS  Google Scholar 

  90. Chen, X., Li, H., Shen, X. & Zhang, Q. The origin of the reduced reductive stability of ion–solvent complexes on alkali and alkaline earth metal anodes. Angew. Chem. 130, 16885–16889 (2018).

    Article  Google Scholar 

  91. Xiong, S., Xie, K., Diao, Y. & Hong, X. Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium–sulfur batteries. Electrochim. Acta 83, 78–86 (2012).

    Article  CAS  Google Scholar 

  92. Aurbach, D. et al. On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J. Electrochem. Soc. 156, 694–702 (2009).

    Article  CAS  Google Scholar 

  93. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    Article  CAS  Google Scholar 

  94. Zhang, X., Cheng, X., Chen, X., Yan, C. & Zhang, Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27, 1605989 (2017).

    Article  CAS  Google Scholar 

  95. Suo, L. et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl Acad. Sci. USA 115, 1156–1161 (2018).

    Article  CAS  Google Scholar 

  96. Shi, Q., Zhong, Y., Wu, M., Wang, H. & Wang, H. High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes. Proc. Natl Acad. Sci. USA 115, 5676–5680 (2018).

    Article  CAS  Google Scholar 

  97. Budi, A. et al. Study of the initial stage of solid electrolyte interphase formation upon chemical reaction of lithium metal and N-methyl-N-propyl-pyrrolidinium-bis(fluorosulfonyl)imide. J. Phys. Chem. C 116, 19789–19797 (2012).

    Article  CAS  Google Scholar 

  98. Zhou, H., Yu, S., Liu, H. & Liu, P. Protective coatings for lithium metal anodes: Recent progress and future perspectives. J. Power Sources 450, 227632 (2020).

    Article  CAS  Google Scholar 

  99. Lin, D. et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 11, 626–632 (2016).

    Article  CAS  Google Scholar 

  100. Foroozan, T. et al. Synergistic effect of graphene oxide for impeding the dendritic plating of Li. Adv. Funct. Mater. 28, 1705917 (2018).

    Article  CAS  Google Scholar 

  101. Cristian, M. et al. Sputter coating of lithium metal electrodes with lithiophilic metals for homogeneous and reversible lithium electrodeposition and electrodissolution. Mater. Today 39, 137–145 (2020).

    Article  CAS  Google Scholar 

  102. Liang, X. et al. A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy 2, 17119 (2017).

    Article  CAS  Google Scholar 

  103. Gao, Y. et al. Interfacial chemistry regulation via a skin-grafting strategy enables high-performance lithium-metal batteries. J. Am. Chem. Soc. 139, 15288–15291 (2017).

    Article  CAS  Google Scholar 

  104. Li, N. W. et al. A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew. Chem. Int. Ed. 57, 1505–1509 (2018).

    Article  CAS  Google Scholar 

  105. Liu, Y. et al. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv. Mater. 29, 1605531 (2017).

    Article  CAS  Google Scholar 

  106. Bresser, D., Buchholz, D., Moretti, A., Varzi, A. & Passerini, S. Alternative binders for sustainable electrochemical energy storage–the transition to aqueous electrode processing and bio-derived polymers. Energy Environ. Sci. 11, 3096–3127 (2018).

    Article  CAS  Google Scholar 

  107. Gao, Y. et al. Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nat. Mater. 18, 384–389 (2019).

    Article  CAS  Google Scholar 

  108. Betz, J. et al. Cross talk between transition metal cathode and Li metal anode: unraveling its influence on the deposition/dissolution behavior and morphology of lithium. Adv. Energy Mater. 9, 1900574 (2019).

    Article  CAS  Google Scholar 

  109. Zhang, X. Q. et al. Crosstalk shielding of transition metal ions for long cycling lithium-metal batteries. J. Mater. Chem. A 8, 4283–4289 (2020).

    Article  CAS  Google Scholar 

  110. Moore, K. L., Sykes, J. M., Hogg, S. C. & Grant, P. S. Pitting corrosion of spray formed Al–Li–Mg alloys. Corros. Sci. 50, 3221–3226 (2008).

    Article  CAS  Google Scholar 

  111. Koo, D., Kwon, B., Lee, J. & Lee, K. T. Asymmetric behaviour of Li/Li symmetric cells for Li metal batteries. Chem. Commun. 55, 9637–9640 (2019).

    Article  CAS  Google Scholar 

  112. Hou, C. et al. Operando observations of SEI film evolution by mass-sensitive scanning transmission electron microscopy. Adv. Energy Mater. 9, 1902675 (2019).

    Article  CAS  Google Scholar 

  113. Bieker, G., Winter, M. & Bieker, P. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys. Chem. Chem. Phys. 17, 8670–8679 (2015).

    Article  CAS  Google Scholar 

  114. Selis, L. A. & Seminario, J. M. Dendrite formation in Li-metal anodes: an atomistic molecular dynamics study. RSC Adv. 9, 27835–27848 (2019).

    Article  CAS  Google Scholar 

  115. Gireaud, L., Grugeon, S., Laruelle, S., Yrieix, B. & Tarascon, J.-M. Lithium metal stripping/plating mechanisms studies: A metallurgical approach. Electrochem. Commun. 8, 1639–1649 (2006).

    Article  CAS  Google Scholar 

  116. Jurng, S., Brown, Z. L., Kim, J. & Lucht, B. L. Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes. Energy Environ. Sci. 11, 2600–2608 (2018).

    Article  CAS  Google Scholar 

  117. Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 358, 506–510 (2017).

    Article  CAS  Google Scholar 

  118. Zachman, M. J., Tu, Z., Choudhury, S., Archer, L. A. & Kourkoutis, L. F. Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature 560, 345–349 (2018).

    Article  CAS  Google Scholar 

  119. Zhuang, G. V., Xu, K., Yang, H., Jow, T. R. & Ross, P. N. Lithium ethylene dicarbonate identified as the primary product of chemical and electrochemical reduction of EC in 1.2 M LiPF6/EC:EMC electrolyte. J. Phys. Chem. B 560, 17567–17573 (2005).

    Article  CAS  Google Scholar 

  120. Muralidharan, A., Chaudhari, M., Rempe, S. & Pratt, L. R. Molecular dynamics simulations of lithium ion transport through a model solid electrolyte interphase (SEI) layer. ECS Trans. 77, 1155–1162 (2017).

    Article  CAS  Google Scholar 

  121. Benitez, L. & Seminario, J. M. Ion diffusivity through the solid electrolyte interphase in lithium-ion batteries. J. Electrochem. Soc. 164, E3159–E3170 (2017).

    Article  CAS  Google Scholar 

  122. Shi, S. et al. Direct calculation of Li-ion transport in the solid electrolyte interphase. J. Am. Chem. Soc. 134, 15476–15487 (2012).

    Article  CAS  Google Scholar 

  123. Ramasubramanian, A. et al. Lithium diffusion mechanism through solid–electrolyte interphase in rechargeable lithium batteries. J. Phys. Chem. C 123, 10237–10245 (2019).

    Article  CAS  Google Scholar 

  124. Li, Y. et al. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy. Joule 2, 2167–2177 (2018).

    Article  CAS  Google Scholar 

  125. Cao, X. et al. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 4, 796–805 (2019).

    Article  CAS  Google Scholar 

  126. Fan, X. et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 13, 715–722 (2018).

    Article  CAS  Google Scholar 

  127. Heine, J. et al. Fluoroethylene carbonate as electrolyte additive in tetraethylene glycol dimethyl ether based electrolytes for application in lithium ion and lithium metal batteries. J. Electrochem. Soc. 162, A1094–A1101 (2015).

    Article  CAS  Google Scholar 

  128. Lin, Y. et al. Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components. J. Power Sources 309, 221–230 (2016).

    Article  CAS  Google Scholar 

  129. Liu, Z. et al. Interfacial study on solid electrolyte interphase at Li metal anode: implication for Li dendrite growth. J. Electrochem. Soc. 163, A592–A598 (2016).

    Article  CAS  Google Scholar 

  130. Fan, X. et al. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv. 4, eaau9245 (2018).

    Article  CAS  Google Scholar 

  131. Xu, R. et al. Interface engineering of sulfide electrolytes for all-solid-state lithium batteries. Nano Energy 53, 958–966 (2018).

    Article  CAS  Google Scholar 

  132. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications 2nd edn (Wiley, 2000).

  133. Bae, J. et al. Polar polymer–solvent interaction derived favorable interphase for stable lithium metal batteries. Energy Environ. Sci. 12, 3319–3327 (2019).

    Article  CAS  Google Scholar 

  134. Yu, Z. et al. A dynamic, electrolyte-blocking, and single-ion-conductive network for stable lithium-metal anodes. Joule 3, 2761–2776 (2019).

    Article  CAS  Google Scholar 

  135. Lopez, J. et al. Effects of polymer coatings on electrodeposited lithium metal. J. Am. Chem. Soc. 140, 11735–11744 (2018).

    Article  CAS  Google Scholar 

  136. Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618–623 (2014).

    Article  CAS  Google Scholar 

  137. Zhang, Y. et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proc. Natl Acad. Sci. USA 114, 3584–3589 (2017).

    Article  CAS  Google Scholar 

  138. Li, Y. & Qi, Y. Energy landscape of the charge transfer reaction at the complex Li/SEI/electrolyte interface. Energy Environ. Sci. 12, 1286–1295 (2019).

    Article  CAS  Google Scholar 

  139. Xiao, J. et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 6, 561–568 (2020).

    Article  CAS  Google Scholar 

  140. Genovese, M. et al. Combinatorial methods for improving lithium metal cycling efficiency. J. Electrochem. Soc. 165, A3000–A3013 (2018).

    Article  CAS  Google Scholar 

  141. Wang, M. et al. Effect of LiFSI concentrations to form thickness- and modulus-controlled SEI layers on lithium metal anodes. J. Phys. Chem. C 122, 9825–9834 (2018).

    Article  CAS  Google Scholar 

  142. Liu, Y. et al. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat. Commun. 9, 3656 (2018).

    Article  CAS  Google Scholar 

  143. Lin, H., Chen, K. H., Shuai, Y., He, X. & Ge, K. Influence of CsNO3 as electrolyte additive on electrochemical property of lithium anode in rechargeable battery. J. Cent. South Univ. 25, 719–728 (2018).

    Article  CAS  Google Scholar 

  144. Xie, J. et al. Engineering stable interfaces for three-dimensional lithium metal anodes. Sci. Adv. 4, eaat5168 (2018).

    Article  CAS  Google Scholar 

  145. Hao, F., Verma, A. & Mukherjee, P. P. Mechanistic insight into dendrite-SEI interactions for lithium metal electrodes. J. Mater. Chem. A 6, 19664–19671 (2018).

    Article  CAS  Google Scholar 

  146. Thenuwara, A. C. et al. Efficient low-temperature cycling of lithium metal anodes by tailoring the solid-electrolyte interphase. ACS Energy Lett. 5, 2411–2420 (2020).

    Article  CAS  Google Scholar 

  147. Gao, Y. et al. Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface. Nat. Energy 5, 534–542 (2020).

    Article  CAS  Google Scholar 

  148. Yan, K. et al. Temperature-dependent nucleation and growth of dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 131, 11486–11490 (2019).

    Article  Google Scholar 

  149. Wang, J. et al. Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nat. Energy 4, 664–670 (2019).

    Article  CAS  Google Scholar 

  150. Li, P. et al. Synergistic effects of salt concentration and working temperature towards dendrite-free lithium deposition. Research https://doi.org/10.34133/2019/7481319 (2019).

    Article  Google Scholar 

  151. Fan, X. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018).

    Article  CAS  Google Scholar 

  152. Markevich, E., Salitra, G., Chesneau, F., Schmidt, M. & Aurbach, D. Very stable lithium metal stripping-plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution. ACS Energy Lett. 2, 1321–1326 (2017).

    Article  CAS  Google Scholar 

  153. Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article  CAS  Google Scholar 

  154. Shi, F. et al. Lithium metal stripping beneath the solid electrolyte interphase. Proc. Natl Acad. Sci. USA 115, 8529–8534 (2018).

    Article  CAS  Google Scholar 

  155. Adams, B. D., Zheng, J., Ren, X., Xu, W. & Zhang, J. G. Accurate determination of Coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2018).

    Article  CAS  Google Scholar 

  156. Bai, P., Li, J., Brushett, F. R. & Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016).

    Article  CAS  Google Scholar 

  157. Fu, C. et al. Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries. Nat. Mater. 19, 758–766 (2020).

    Article  CAS  Google Scholar 

  158. United States Council for Automotive Research LLC. USABC goals for advanced high-performance batteries for electric vehicle (EV) applications. USCAR http://www.uscar.org/guest/article_view.php?articles_id=85 (2020).

  159. Wang, Z. et al. Efficient potential-tuning strategy through p-type doping for designing cathodes with ultrahigh energy density. Natl Sci. Rev. 7, 1768–1775 (2020).

    Article  CAS  Google Scholar 

  160. Jung, H. G., Hassoun, J., Park, J. B., Sun, Y. K. & Scrosati, B. An improved high-performance lithium–air battery. Nat. Chem. 4, 579–585 (2012).

    Article  CAS  Google Scholar 

  161. Mohtadi, R. & Mizuno, F. Magnesium batteries: Current state of the art, issues and future perspectives. Beilstein J. Nanotechnol. 5, 1291–1311 (2014).

    Article  CAS  Google Scholar 

  162. Mori, M. Modification of the lithium metal surface by nonionic polyether surfactants: quartz crystal microbalance studies. J. Electrochem. Soc. 145, 2340 (1998).

    Article  CAS  Google Scholar 

  163. Morita, M., Aoki, S. & Matsuda, Y. AC imepedance behaviour of lithium electrode in organic electrolyte solutions containing additives. Electrochim. Acta 37, 119–123 (1992).

    Article  CAS  Google Scholar 

  164. Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018).

    Article  CAS  Google Scholar 

  165. Cheng, X. B. et al. Implantable solid electrolyte interphase in lithium-metal batteries. Chem 2, 258–270 (2017).

    Article  CAS  Google Scholar 

  166. Haruna, H., Takahashi, S. & Tanaka, Y. Accurate consumption analysis of vinylene carbonate as an electrolyte additive in an 18650 lithium-ion battery at the first charge-discharge cycle. J. Electrochem. Soc. 164, A6278–A6280 (2017).

    Article  CAS  Google Scholar 

  167. Hausbrand, R. et al. Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 192, 3–25 (2015).

    Article  CAS  Google Scholar 

  168. Hoh, Y. C., Chiu, T. M. & Chung, Z. J. in Production and Electrolysis of Light Metals (ed. Closset, B.) 223–234 (Elsevier, 1989).

  169. Wang, L., Chen, B., Ma, J., Cui, G. & Chen, L. Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chem. Soc. Rev. 47, 6505–6602 (2018).

    Article  CAS  Google Scholar 

  170. Jiao, S. et al. Behavior of lithium metal anodes under various capacity utilization and high current density in lithium metal batteries. Joule 2, 110–124 (2018).

    Article  CAS  Google Scholar 

  171. Alvarado, J. et al. Bisalt ether electrolytes: A pathway towards lithium metal batteries with Ni-rich cathodes. Energy Environ. Sci. 12, 780–794 (2019).

    Article  CAS  Google Scholar 

  172. Oh, P. et al. Superior long-term energy retention and volumetric energy density for Li-rich cathode materials. Nano Lett. 14, 5965–5972 (2014).

    Article  CAS  Google Scholar 

  173. Wang, J. et al. Lithium- and manganese-rich oxide cathode materials for high-energy lithium ion batteries. Adv. Energy Mater. 6, 1600906 (2016).

    Article  CAS  Google Scholar 

  174. Aurbach, D. et al. Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems. J. Power Sources 68, 91–98 (1997).

    Article  CAS  Google Scholar 

  175. Wang, Y., Nakamura, S., Ue, M. & Balbuena, P. B. Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: reduction mechanisms of ethylene carbonate. J. Am. Chem. Soc. 123, 11708–11718 (2001).

    Article  CAS  Google Scholar 

  176. Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 148, 405–416 (2002).

    Article  CAS  Google Scholar 

  177. Michan, A. L. et al. Fluoroethylene carbonate and vinylene carbonate reduction: Understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation. Chem. Mater. 28, 8149–8159 (2016).

    Article  CAS  Google Scholar 

  178. Shkrob, I. A., Wishart, J. F. & Abraham, D. P. What makes fluoroethylene carbonate different? J. Phys. Chem. C 119, 14954–14964 (2015).

    Article  CAS  Google Scholar 

  179. Nowak, S. & Winter, M. Review — chemical analysis for a better understanding of aging and degradation mechanisms of non-aqueous electrolytes for lithium ion batteries: method development, application and lessons learned. J. Electrochem. Soc. 162, A2500–A2508 (2015).

    Article  CAS  Google Scholar 

  180. Aurbach, D. The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries I. Li metal anodes. J. Electrochem. Soc. 142, 2882 (1995).

    Article  CAS  Google Scholar 

  181. Osaka, T. Enhancement of lithium anode cyclability in propylene carbonate electrolyte by CO2 addition and its protective effect against H2O impurity. J. Electrochem. Soc. 142, 1057 (1995).

    Article  CAS  Google Scholar 

  182. Aurbach, D. A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures. J. Electrochem. Soc. 143, 3809 (1996).

    Article  CAS  Google Scholar 

  183. Chang, W., Park, J. H. & Steingart, D. A. Poor man’s atomic layer deposition of LiF for additive-free growth of lithium columns. Nano Lett. 18, 7066–7074 (2018).

    Article  CAS  Google Scholar 

  184. Shen, C. et al. Li2O-reinforced solid electrolyte interphase on three-dimensional sponges for dendrite-free lithium deposition. Front. Chem. 6, 517 (2018).

    Article  CAS  Google Scholar 

  185. Shiraishi, S., Kanamura, K. & Takehara, Z. I. Influence of initial surface condition of lithium metal anodes on surface modification with HF. J. Appl. Electrochem. 29, 869–881 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This Review article is the result of a concerted approach within the LILLINT research project, jointly funded by the US Department of Energy (DOE) and the German Federal Ministry of Education and Research (BMBF). X.H. and R.K. kindly acknowledge the financial support of Assistant Secretary for Energy Efficiency and Renewable Energy, Vehicle Technologies Office (VTO), under the Advanced Battery Materials Research (BMR) Program, of the US DOE under contract no. DE-AC02-05CH11231. R.A., C.-C.S., J.S. and K.A. acknowledge US DOE, VTO. Argonne National Laboratory is operated by DOE Office of Science by UChicago Argonne, LLC, under contract no. DE-AC02-06CH11357. P.B.B., F.A.S., V.P. and J.M.S. acknowledge the financial support from the US DOE DE-AC02-06CH11357 through a subcontract to Argonne National Lab. W.X., H.J., C.W. and Y.X. at Pacific Northwest National Laboratory (PNNL) acknowledge the support of the Assistant Secretary for Energy Efficiency and Renewable Energy, VTO of the US DOE under contract no. DE-AC05-76RL01830 under the BMR Program and the US–Germany Cooperation on Energy Storage. PNNL is operated by Battelle for the DOE under contract DE-AC05-76RL01830. J.L. acknowledges support by an appointment to the Intelligence Community Postdoctoral Research Fellowship Program at the Massachusetts Institute of Technology, administered by Oak Ridge Institute for Science and Education through an inter-agency agreement between the US DOE and the Office of the Director of National Intelligence. Y.S.-H. and C.T.M. acknowledge the financial support of the Assistant Secretary for Energy Efficiency and Renewable Energy, VTO, under the BMR Program, of the US DOE under contract no. DE-AC02-06CH11357, subcontract no. 9F-60231. F.B. and U.K. acknowledge the BMBF in the framework of LILLINT (project number 03XP0225F). D.B. and S.P. thank the BMBF for financial support within the LILLINT project (03XP0225D). I.C.-L., S.W.-M. and M.W. acknowledge the financial support within the LILLINT project (13XP0225B).

Author information

Authors and Affiliations

Authors

Contributions

X.H., D.B., S.P., A.L. and R.K. drafted the outline for this Review article. X.H. performed the literature research. X.H. and D.B. prepared the first draft of the manuscript. F.B., U.K. and W.X. wrote the first draft of Box 1. J.L. revised and optimized Fig. 2. All authors contributed to the discussion of the manuscript, commented on its development at all stages, added significant thoughts and paragraphs to all chapters and carefully revised the continuously evolving versions of the manuscript in a highly collaborative manner.

Corresponding authors

Correspondence to Stefano Passerini, Arnulf Latz or Robert Kostecki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Bresser, D., Passerini, S. et al. The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nat Rev Mater 6, 1036–1052 (2021). https://doi.org/10.1038/s41578-021-00345-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00345-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing