Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Machine learning for alloys

Abstract

Alloy modelling has a history of machine-learning-like approaches, preceding the tide of data-science-inspired work. The dawn of computational databases has made the integration of analysis, prediction and discovery the key theme in accelerated alloy research. Advances in machine-learning methods and enhanced data generation have created a fertile ground for computational materials science. Pairing machine learning and alloys has proven to be particularly instrumental in pushing progress in a wide variety of materials, including metallic glasses, high-entropy alloys, shape-memory alloys, magnets, superalloys, catalysts and structural materials. This Review examines the present state of machine-learning-driven alloy research, discusses the approaches and applications in the field and summarizes theoretical predictions and experimental validations. We foresee that the partnership between machine learning and alloys will lead to the design of new and improved systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representation of structures and methods for feature selections and descriptors discovery.
Fig. 2: Machine learning for disordered alloys.
Fig. 3: Machine learning for shape-memory alloys, catalysts and magnets.
Fig. 4: Machine learning for alloy processing.

Similar content being viewed by others

References

  1. Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559, 547–555 (2018).

    Article  CAS  Google Scholar 

  2. Schmidt, J., Marques, M. R. G., Botti, S. & Marques, M. A. L. Recent advances and applications of machine learning in solid-state materials science. NPJ Comput. Mater. 5, 83 (2019).

    Google Scholar 

  3. Muratov, E. N. et al. QSAR without borders. Chem. Soc. Rev. 49, 3525–3564 (2020).

    CAS  Google Scholar 

  4. Curtarolo, S. et al. The high-throughput highway to computational materials design. Nat. Mater. 12, 191–201 (2013).

    CAS  Google Scholar 

  5. Tanaka, I., Rajan, K. & Wolverton, C. Data-centric science for materials innovation. MRS Bull. 43, 659–663 (2018).

    Google Scholar 

  6. Behler, J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J. Chem. Phys. 134, 074106 (2011).

    Google Scholar 

  7. Rupp, M., Tkatchenko, A., Müller, K.-R. & von Lilienfeld, O. A. Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108, 058301 (2012).

    Google Scholar 

  8. Bartók, A. P., Kondor, R. & Csányi, G. On representing chemical environments. Phys. Rev. B 87, 184115 (2013).

    Google Scholar 

  9. Bartók, A. P., Payne, M. C., Kondor, R. & Csányi, G. Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).

    Google Scholar 

  10. Huang, B. & von Lilienfeld, O. A. Communication: Understanding molecular representations in machine learning: The role of uniqueness and target similarity. J. Chem. Phys. 145, 161102 (2016).

    Google Scholar 

  11. Shapeev, A. V. Moment tensor potentials: A class of systematically improvable interatomic potentials. Multiscale Model. Simul. 14, 1153–1173 (2016).

    Google Scholar 

  12. Drautz, R. Atomic cluster expansion for accurate and transferable interatomic potentials. Phys. Rev. B 99, 014104 (2019).

    CAS  Google Scholar 

  13. Pozdnyakov, S. N. et al. Incompleteness of atomic structure representations. Phys. Rev. Lett. 125, 166001 (2020).

    CAS  Google Scholar 

  14. Faber, F., Lindmaa, A., von Lilienfeld, O. A. & Armiento, R. Crystal structure representations for machine learning models of formation energies. Int. J. Quantum Chem. 115, 1094–1101 (2015).

    CAS  Google Scholar 

  15. Zhang, L., Han, J., Wang, H., Car, R. & Weinan, E. Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 120, 143001 (2018).

    CAS  Google Scholar 

  16. Bach, S. et al. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS One 10, e0130140 (2015).

    Google Scholar 

  17. Montavon, G., Samek, W. & Müller, K.-R. Methods for interpreting and understanding deep neural networks. Digit. Signal. Process. 73, 1–15 (2018).

    Google Scholar 

  18. Lapuschkin, S. et al. Unmasking Clever Hans predictors and assessing what machines really learn. Nat. Commun. 10, 1096 (2019).

    Google Scholar 

  19. Rosenbrock, C. W., Homer, E. R., Csányi, G. & Hart, G. L. W. Discovering the building blocks of atomic systems using machine learning: application to grain boundaries. NPJ Comput. Mater. 3, 29 (2017).

    Google Scholar 

  20. Schütt, K. T., Arbabzadah, F., Chmiela, S., Müller, K. R. & Tkatchenko, A. Quantum-chemical insights from deep tensor neural networks. Nat. Commun. 8, 13890 (2017).

    Google Scholar 

  21. Schaffer, J. P. Saxena, A. Antolovich, S. D. Sanders, T. H. Jr. & Warner, S. B. The Science and Design of Engineering Materials 2nd edn. (WCB/McGraw-Hill, 1999).

  22. Callister, W. D., Jr. & Rethwisch, D. G. Materials Science and Engineering: An Introduction 10th edn. (Wiley, 2018).

  23. Wei, S.-H., Ferreira, L. G. & Zunger, A. First-principles calculation of temperature-composition phase diagrams of semiconductor alloys. Phys. Rev. B 41, 8240 (1990).

    CAS  Google Scholar 

  24. Pan, J. et al. Perfect short-range ordered alloy with line-compound-like properties in the ZnSnN2:ZnO system. NPJ Comput. Mater. 6, 63 (2020).

    CAS  Google Scholar 

  25. Stevanović, V., Zakutayev, A. & Lany, S. Composition dependence of the band gap and doping in Cu2O-based alloys as predicted by an extension of the dilute-defect model. Phys. Rev. Appl. 2, 044005 (2014).

    Google Scholar 

  26. Jiang, J. Chen, M. & Fan, J. A. Deep neural networks for the evaluation and design of photonic devices. Nat. Rev. Mater. 10.1038/s41578-020-00260-1 (2020).

  27. Vasudevan, R., Pilania, G. & Balachandran, P. V. Machine learning for materials design and discovery. J. Appl. Phys. 129, 070401 (2021).

    CAS  Google Scholar 

  28. Hastie, T. Tibshirani, R. & Friedman, J. H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer, 2001).

  29. Batra, R. Song, L. & Ramprasad, R. Emerging materials intelligence ecosystems propelled by machine learning. Nat. Rev. Mater. 10.1038/s41578-020-00255-y (2020).

  30. Mueller, T., Kusne, A. G. & Ramprasad, R. Machine learning in materials science: Recent progress and emerging applications. Rev. Comput. Chem. 29, 186–273 (2016).

    CAS  Google Scholar 

  31. Gubernatis, J. E. & Lookman, T. Machine learning in materials design and discovery: Examples from the present and suggestions for the future. Phys. Rev. Mater. 2, 120301 (2018).

    CAS  Google Scholar 

  32. Kalidindi, S. R. Feature engineering of material structure for AI-based materials knowledge systems. J. Appl. Phys. 128, 041103 (2020).

    Google Scholar 

  33. Sanchez, J. M., Ducastelle, F. & Gratias, D. Generalized cluster description of multicomponent systems. Phys. A 128, 334–350 (1984).

    Google Scholar 

  34. de Fontaine, D. in Solid State Physics Vol. 47 (eds Ehrenreich, H. & Turnbull, D.) 33–176 (Academic Press, 1994).

  35. Hart, G. L. W., Curtarolo, S., Massalski, T. B. & Levy, O. Comprehensive search for new phases and compounds in binary alloy systems based on platinum-group metals, using a computational first-principles approach. Phys. Rev. X 3, 041035 (2013).

    CAS  Google Scholar 

  36. Oses, C. et al. AFLOW-CHULL: Cloud-oriented platform for autonomous phase stability analysis. J. Chem. Inf. Model. 58, 2477–2490 (2018).

    CAS  Google Scholar 

  37. Toher, C., Oses, C., Hicks, D. & Curtarolo, S. Unavoidable disorder and entropy in multi-component systems. NPJ Comput. Mater. 5, 69 (2019).

    Google Scholar 

  38. Sarker, P. et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat. Commun. 9, 4980 (2018).

    Google Scholar 

  39. Yong, J. et al. Robust topological surface state of kondo insulator SmB6 thin films. Appl. Phys. Lett. 105, 222403 (2014).

    Google Scholar 

  40. Bergerhoff, G., Hundt, R., Sievers, R. & Brown, I. D. The inorganic crystal structure data base. J. Chem. Inf. Comput. Sci. 23, 66–69 (1983).

    CAS  Google Scholar 

  41. Curtarolo, S. et al. AFLOW: An automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 58, 218–226 (2012).

    CAS  Google Scholar 

  42. Saal, J. E., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. Materials design and discovery with high-throughput density functional theory: The Open Quantum Materials Database (OQMD). JOM 65, 1501–1509 (2013).

    CAS  Google Scholar 

  43. Jain, A. et al. A high-throughput infrastructure for density functional theory calculations. Comput. Mater. Sci. 50, 2295–3310 (2011).

    CAS  Google Scholar 

  44. Draxl, C. & Scheffler, M. NOMAD: The FAIR concept for big data-driven materials science. MRS Bull. 43, 676–682 (2018).

    Google Scholar 

  45. van de Walle, A. & Ceder, G. Automating first-principles phase diagram calculations. J. Phase Equilib. 23, 348–359 (2002).

    Google Scholar 

  46. Hart, G. L. W., Blum, V., Walorski, M. J. & Zunger, A. Evolutionary approach for determining first-principles hamiltonians. Nat. Mater. 4, 391–394 (2005).

    CAS  Google Scholar 

  47. Nelson, L. J., Hart, G. L. W., Zhou, F. & Ozoliņš, V. Compressive sensing as a paradigm for building physics models. Phys. Rev. B 87, 035125 (2013).

    Google Scholar 

  48. de Jong, M. et al. A statistical learning framework for materials science: Application to elastic moduli of k-nary inorganic polycrystalline compounds. Sci. Rep. 6, 34256 (2016).

    Google Scholar 

  49. Isayev, O. et al. Universal fragment descriptors for predicting properties of inorganic crystals. Nat. Commun. 8, 15679 (2017).

    CAS  Google Scholar 

  50. Koinuma, H. & Takeuchi, I. Combinatorial solid-state chemistry of inorganic materials. Nat. Mater. 3, 429–438 (2004).

    CAS  Google Scholar 

  51. Jóhannesson, G. H. et al. Combined electronic structure and evolutionary search approach to materials design. Phys. Rev. Lett. 88, 255506 (2002).

    Google Scholar 

  52. Ceder, G., Morgan, D., Fischer, C., Tibbetts, K. & Curtarolo, S. Data-mining driven quantum mechanics for the prediction of structure. MRS Bull. 31, 981–985 (2006).

    CAS  Google Scholar 

  53. Curtarolo, S., Morgan, D. & Ceder, G. Accuracy of ab initio methods in predicting the crystal structures of metals: A review of 80 binary alloys. Calphad 29, 163–211 (2005).

    CAS  Google Scholar 

  54. Bligaard, T. et al. Pareto-optimal alloys. Appl. Phys. Lett. 83, 4527–4529 (2003).

    CAS  Google Scholar 

  55. Fischer, C. C., Tibbetts, K. J., Morgan, D. & Ceder, G. Predicting crystal structure by merging data mining with quantum mechanics. Nat. Mater. 5, 641–646 (2006).

    CAS  Google Scholar 

  56. Villars, P. et al. Crystal Impact, Pauling File. Inorganic Materials Database and Design System, Binaries Edition (ASM International, 2003).

  57. Hautier, G., Fischer, C., Ehrlacher, V., Jain, A. & Ceder, G. Data mined ionic substitutions for the discovery of new compounds. Inorg. Chem. 50, 656–663 (2011).

    CAS  Google Scholar 

  58. Suh, C. & Rajan, K. Data mining and informatics for crystal chemistry: establishing measurement techniques for mapping structure-property relationships. Mater. Sci. Technol. 25, 466–471 (2009).

    CAS  Google Scholar 

  59. Legrain, F. et al. Vibrational properties of metastable polymorph structures by machine learning. J. Chem. Inf. Model. 58, 2460–2466 (2018).

    CAS  Google Scholar 

  60. Malinov, S., Sha, W. & Guo, Z. Application of artificial neural network for prediction of time–temperature–transformation diagrams in titanium alloys. Mater. Sci. Eng. A 283, 1–10 (2000).

    Google Scholar 

  61. Malinov, S. & Sha, W. Application of artificial neural networks for modelling correlations in titanium alloys. Mater. Sci. Eng. A 365, 202–211 (2004).

    Google Scholar 

  62. Liu, S. et al. Physics-informed machine learning for composition–process–property design: Shape memory alloy demonstration. Appl. Mater. Today 22, 100898 (2021).

    Google Scholar 

  63. Schütt, K. T. et al. How to represent crystal structures for machine learning: Towards fast prediction of electronic properties. Phys. Rev. B 89, 205118 (2014).

    Google Scholar 

  64. Sutton, C. et al. Crowd-sourcing materials-science challenges with the NOMAD 2018 Kaggle competition. NPJ Comput. Mater. 5, 111 (2019).

    Google Scholar 

  65. Xie, T. & Grossman, J. C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120, 145301 (2018).

    CAS  Google Scholar 

  66. Chen, C., Ye, W., Zuo, Y., Zheng, C. & Ong, S. P. Graph networks as a universal machine learning framework for molecules and crystals. Chem. Mater. 31, 3564–3572 (2019).

    CAS  Google Scholar 

  67. Noh, J. et al. Inverse design of solid-state materials via a continuous representation. Matter 1, 1370–1384 (2019).

    Google Scholar 

  68. Schmidt, M. & Lipson, H. Distilling free-form natural laws from experimental data. Science 324, 81–85 (2009).

    CAS  Google Scholar 

  69. Ghiringhelli, L. M., Vybiral, J., Levchenko, S. V., Draxl, C. & Scheffler, M. Big data of materials science: Critical role of the descriptor. Phys. Rev. Lett. 114, 105503 (2015).

    Google Scholar 

  70. Ouyang, R., Curtarolo, S., Ahmetcik, E., Scheffler, M. & Ghiringhelli, L. M. SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Phys. Rev. Mater. 2, 083802 (2018).

    CAS  Google Scholar 

  71. Yuan, F. & Mueller, T. Identifying models of dielectric breakdown strength from high-throughput data via genetic programming. Sci. Rep. 7, 17594 (2017).

    Google Scholar 

  72. Udrescu, S.-M. & Tegmark, M. AI Feynman: A physics-inspired method for symbolic regression. Sci. Adv. 6, eaay2631 (2020).

    Google Scholar 

  73. Owolabi, T. O., Akande, K. O. & Olatunji, S. O. Prediction of superconducting transition temperatures for Fe-based superconductors using support vector machine. Adv. Phys. Theor. Appl. 35, 12–26 (2014).

    Google Scholar 

  74. Owolabi, T. O., Akande, K. O. & Olatunji, S. O. Estimation of superconducting transition temperature TC for superconductors of the doped MgB2 system from the crystal lattice parameters using support vector regression. J. Supercond. Nov. Magn. 28, 75–81 (2015).

    CAS  Google Scholar 

  75. Isayev, O. et al. Materials cartography: representing and mining materials space using structural and electronic fingerprints. Chem. Mater. 27, 735–743 (2015).

    CAS  Google Scholar 

  76. Stanev, V. et al. Machine learning modeling of superconducting critical temperature. NPJ Comput. Mater. 4, 29 (2018).

    Google Scholar 

  77. Kusne, A. G. et al. On-the-fly closed-loop materials discovery via Bayesian active learning. Nat. Commun. 11, 5966 (2020).

    CAS  Google Scholar 

  78. Cheng, Y. Q. & Ma, E. Atomic-level structure and structure–property relationship in metallic glasses. Prog. Mater. Sci. 56, 379–473 (2011).

    CAS  Google Scholar 

  79. Zberg, B., Uggowitzer, P. J. & Löffler, J. F. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat. Mater. 8, 887–891 (2009).

    CAS  Google Scholar 

  80. Inoue, A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279–306 (2000).

    CAS  Google Scholar 

  81. Miracle, D. B. A structural model for metallic glasses. Nat. Mater. 3, 697–702 (2004).

    CAS  Google Scholar 

  82. Sheng, H. W., Luo, W. K., Alamgir, F. M., Bai, J. M. & Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419–425 (2006).

    CAS  Google Scholar 

  83. Laws, K. J., Miracle, D. B. & Ferry, M. A predictive structural model for bulk metallic glasses. Nat. Commun. 6, 8123 (2015).

    CAS  Google Scholar 

  84. Lu, Z. P. & Liu, C. T. A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 50, 3501–3512 (2002).

    CAS  Google Scholar 

  85. Mondal, K. & Murty, B. S. On the parameters to assess the glass forming ability of liquids. J. Non-Cryst. Solids 351, 1366–1371 (2005).

    CAS  Google Scholar 

  86. Cheney, J. & Vecchio, K. S. Prediction of glass-forming compositions using liquidus temperature calculations. Mater. Sci. Eng. A 471, 135–143 (2007).

    Google Scholar 

  87. Perim, E. et al. Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases. Nat. Commun. 7, 12315 (2016).

    CAS  Google Scholar 

  88. Ford, D. C., Hicks, D., Oses, C., Toher, C. & Curtarolo, S. Metallic glasses for biodegradable implants. Acta Mater. 176, 297–305 (2019).

    CAS  Google Scholar 

  89. Ward, L., Agrawal, A., Choudhary, A. & Wolverton, C. A general-purpose machine learning framework for predicting properties of inorganic materials. NPJ Comput. Mater. 2, 16028 (2016).

    Google Scholar 

  90. Ren, F. et al. Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments. Sci. Adv. 4, eaaq1566 (2018).

    Google Scholar 

  91. Ward, L. et al. A machine learning approach for engineering bulk metallic glass alloys. Acta Mater. 159, 102–111 (2018).

    CAS  Google Scholar 

  92. Sun, Y. T., Bai, H. Y., Li, M. Z. & Wang, W. H. Machine learning approach for prediction and understanding of glass-forming ability. J. Phys. Chem. Lett. 8, 3434–3439 (2017).

    CAS  Google Scholar 

  93. Dasgupta, A. et al. Probabilistic assessment of glass forming ability rules for metallic glasses aided by automated analysis of phase diagrams. Sci. Rep. 9, 357 (2019).

    Google Scholar 

  94. Tripathi, M. K., Chattopadhyay, P. P. & Ganguly, S. Multivariate analysis and classification of bulk metallic glasses using principal component analysis. Comput. Mater. Sci. 107, 79–87 (2015).

    CAS  Google Scholar 

  95. Keong, K. G., Sha, W. & Malinov, S. Artificial neural network modelling of crystallization temperatures of the Ni–P based amorphous alloys. Mater. Sci. Eng. A 365, 212–218 (2004).

    Google Scholar 

  96. Cai, A.-H., Wang, H., Li, X.-S., Chen, H. & An, W.-K. Progress of component design methods for bulk metallic glass. Mater. Des. 28, 2694–2697 (2007).

    CAS  Google Scholar 

  97. Cai, A.-H., Xiong, X., Liu, Y., An, W.-K. & Tan, J.-Y. Artificial neural network modeling of reduced glass transition temperature of glass forming alloys. Appl. Phys. Lett. 92, 111909 (2008).

    Google Scholar 

  98. Cai, A.-H. et al. Artificial neural network modeling for undercooled liquid region of glass forming alloys. Comput. Mater. Sci. 48, 109–114 (2010).

    CAS  Google Scholar 

  99. Cai, A. H. et al. Prediction of critical cooling rate for glass forming alloys by artificial neural network. Mater. Des. 52, 671–676 (2013).

    CAS  Google Scholar 

  100. Xiong, J., Zhang, T.-Y. & Shi, S.-Q. Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses. MRS Commun. 9, 576–585 (2019).

    CAS  Google Scholar 

  101. Fang, S., Xiao, X., Xia, L., Li, W. & Dong, Y. Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. J. Non-Cryst. Solids 321, 120–125 (2003).

    CAS  Google Scholar 

  102. Xiong, J., Shi, S.-Q. & Zhang, T.-Y. A machine-learning approach to predicting and understanding the properties of amorphous metallic alloys. Mater. Des. 187, 108378 (2020).

    CAS  Google Scholar 

  103. Kawazoe, Y. Yu, J.-Z. Tsai, A.-P. & Masumoto, T. (eds) Nonequilibrium Phase Diagrams of Ternary Amorphous Alloys (Springer, 1997).

  104. Gao, M. C. Yeh, J. W. Liaw, P. K. & Zhang, Y. High-Entropy Alloys: Fundamentals and Applications (Springer, 2016).

  105. Miracle, D. B. High entropy alloys as a bold step forward in alloy development. Nat. Commun. 10, 1805 (2019).

    CAS  Google Scholar 

  106. George, E. P., Raabe, D. & Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019).

    CAS  Google Scholar 

  107. Yeh, J.-W. et al. Nanostructured high-entropy alloys with multiple principle elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).

    CAS  Google Scholar 

  108. Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004).

    Google Scholar 

  109. Senkov, O. N., Miller, J. D., Miracle, D. B. & Woodward, C. Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6, 6529 (2015).

    CAS  Google Scholar 

  110. Gorsse, S., Miracle, D. B. & Senkov, O. N. Mapping the world of complex concentrated alloys. Acta Mater. 135, 177–187 (2017).

    CAS  Google Scholar 

  111. Gludovatz, B. et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153–1158 (2014).

    CAS  Google Scholar 

  112. Li, Z., Pradeep, K. G., Deng, Y., Raabe, D. & Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227–230 (2016).

    CAS  Google Scholar 

  113. Li, Z., Tasan, C. C., Springer, H., Gault, B. & Raabe, D. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys. Sci. Rep. 7, 40704 (2017).

    CAS  Google Scholar 

  114. Islam, N., Huang, W. & Zhuang, H. L. Machine learning for phase selection in multi-principal element alloys. Comput. Mater. Sci. 150, 230–235 (2018).

    CAS  Google Scholar 

  115. Huang, W., Martin, P. & Zhuang, H. L. Machine-learning phase prediction of high-entropy alloys. Acta Mater. 169, 225–236 (2019).

    CAS  Google Scholar 

  116. Zhang, Y. M., Yang, S. & Evans, J. R. G. Revisiting Hume-Rothery’s rules with artificial neural networks. Acta Mater. 56, 1094–1105 (2008).

    CAS  Google Scholar 

  117. Nong, Z.-S. et al. Stability and structure prediction of cubic phase in as cast high entropy alloys. Mater. Sci. Technol. 30, 363–369 (2014).

    CAS  Google Scholar 

  118. Jiang, X., Zhang, R., Zhang, C., Yin, H. & Qu, X. Fast prediction of the quasi phase equilibrium in phase field model for multicomponent alloys based on machine learning method. Calphad 66, 101644 (2019).

    CAS  Google Scholar 

  119. Tancret, F., Toda-Caraballo, I., Menou, E. & Rivera Díaz-Del-Castillo, P. E. J. Designing high entropy alloys employing thermodynamics and gaussian process statistical analysis. Mater. Des. 115, 486–497 (2017).

    CAS  Google Scholar 

  120. Menou, E. et al. Evolutionary design of strong and stable high entropy alloys using multi-objective optimisation based on physical models, statistics and thermodynamics. Mater. Des. 143, 185–195 (2018).

    CAS  Google Scholar 

  121. Li, Y. & Guo, W. Machine-learning model for predicting phase formations of high-entropy alloys. Phys. Rev. Mater. 3, 095005 (2019).

    CAS  Google Scholar 

  122. Abu-Odeh, A. et al. Efficient exploration of the High Entropy Alloy composition-phase space. Acta Mater. 152, 41–57 (2018).

    CAS  Google Scholar 

  123. Asensio Domínguez, L., Goodall, R. & Todd, I. Prediction and validation of quaternary high entropy alloys using statistical approaches. Mater. Sci. Technol. 31, 1201–1206 (2015).

    Google Scholar 

  124. Qi, J., Cheung, A. M. & Poon, S. J. High entropy alloys mined from binary phase diagrams. Sci. Rep. 9, 15501 (2019).

    Google Scholar 

  125. Dai, D. et al. Using machine learning and feature engineering to characterize limited material datasets of high-entropy alloys. Comput. Mater. Sci. 175, 109618 (2020).

    CAS  Google Scholar 

  126. Miracle, D. B. & Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017).

    CAS  Google Scholar 

  127. Lederer, Y., Toher, C., Vecchio, K. S. & Curtarolo, S. The search for high entropy alloys: A high-throughput ab-initio approach. Acta Mater. 159, 364–383 (2018).

    CAS  Google Scholar 

  128. Menou, E. et al. Computational design of light and strong high entropy alloys (HEA): Obtainment of an extremely high specific solid solution hardening. Scr. Mater. 156, 120–123 (2018).

    CAS  Google Scholar 

  129. Kaufmann, K. et al. Discovery of high-entropy ceramics via machine learning. NPJ Comput. Mater. 6, 42 (2020).

    Google Scholar 

  130. Zhang, Y. et al. Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models. Acta Mater. 185, 528–539 (2020).

    CAS  Google Scholar 

  131. Shapeev, A. Accurate representation of formation energies of crystalline alloys with many components. Comput. Mater. Sci. 139, 26–30 (2017).

    CAS  Google Scholar 

  132. Grabowski, B. et al. Ab initio vibrational free energies including anharmonicity for multicomponent alloys. NPJ Comput. Mater. 5, 80 (2019).

    Google Scholar 

  133. Zhang, J. et al. Robust data-driven approach for predicting the configurational energy of high entropy alloys. Mater. Des. 185, 108247 (2020).

    CAS  Google Scholar 

  134. Kostiuchenko, T., Körmann, F., Neugebauer, J. & Shapeev, A. Impact of lattice relaxations on phase transitions in a high-entropy alloy studied by machine-learning potentials. NPJ Comput. Mater. 5, 55 (2019).

    Google Scholar 

  135. Meshkov, E. A., Novoselov, I. I., Shapeev, A. V. & Yanilkin, A. V. Sublattice formation in CoCrFeNi high-entropy alloy. Intermetallics 112, 106542 (2019).

    CAS  Google Scholar 

  136. Jafary-Zadeh, M., Khoo, K. H., Laskowski, R., Branicio, P. S. & Shapeev, A. V. Applying a machine learning interatomic potential to unravel the effects of local lattice distortion on the elastic properties of multi-principal element alloys. J. Alloy. Compd. 803, 1054–1062 (2019).

    CAS  Google Scholar 

  137. Li, X.-G., Chen, C., Zheng, H., Zuo, Y. & Ong, S. P. Complex strengthening mechanisms in the NbMoTaW multi-principal element alloy. NPJ Comput. Mater. 6, 70 (2020).

    CAS  Google Scholar 

  138. Wen, C. et al. Machine learning assisted design of high entropy alloys with desired property. Acta Mater. 170, 109–117 (2019).

    CAS  Google Scholar 

  139. Kim, G. et al. First-principles and machine learning predictions of elasticity in severely lattice-distorted high-entropy alloys with experimental validation. Acta Mater. 181, 124–138 (2019).

    CAS  Google Scholar 

  140. Chang, Y.-J., Jui, C.-Y., Lee, W.-J. & Yeh, A.-C. Prediction of the composition and hardness of high-entropy alloys by machine learning. JOM 71, 3433–3442 (2019).

    CAS  Google Scholar 

  141. Rickman, J. M. et al. Materials informatics for the screening of multi-principal elements and high-entropy alloys. Nat. Commun. 10, 2618 (2019).

    CAS  Google Scholar 

  142. Wu, Q. et al. Uncovering the eutectics design by machine learning in the Al–Co–Cr–Fe–Ni high entropy system. Acta Mater. 182, 278–286 (2020).

    CAS  Google Scholar 

  143. Batchelor, T. A. A. et al. High-entropy alloys as a discovery platform for electrocatalysis. Joule 3, 834–845 (2019).

    CAS  Google Scholar 

  144. Xue, D. et al. Accelerated search for materials with targeted properties by adaptive design. Nat. Commun. 7, 11241 (2016).

    CAS  Google Scholar 

  145. Gopakumar, A. M., Balachandran, P. V., Xue, D., Gubernatis, J. E. & Lookman, T. Multi-objective optimization for materials discovery via adaptive design. Sci. Rep. 8, 3738 (2018).

    Google Scholar 

  146. Solomou, A. et al. Multi-objective Bayesian materials discovery: Application on the discovery of precipitation strengthened NiTi shape memory alloys through micromechanical modeling. Mater. Des. 160, 810–827 (2018).

    CAS  Google Scholar 

  147. Xue, D. et al. An informatics approach to transformation temperatures of NiTi-based shape memory alloys. Acta Mater. 125, 532–541 (2017).

    CAS  Google Scholar 

  148. Mahmoudi, M. et al. On the printability and transformation behavior of nickel-titanium shape memory alloys fabricated using laser powder-bed fusion additive manufacturing. J. Manuf. Process. 35, 672–680 (2018).

    Google Scholar 

  149. Dehghannasiri, R. et al. Optimal experimental design for materials discovery. Comput. Mater. Sci. 129, 311–322 (2017).

    CAS  Google Scholar 

  150. Jiang, X. et al. An materials informatics approach to Ni-based single crystal superalloys lattice misfit prediction. Comput. Mater. Sci. 143, 295–300 (2018).

    CAS  Google Scholar 

  151. Tancret, F. Computational thermodynamics, Gaussian processes and genetic algorithms: combined tools to design new alloys. Model. Simul. Mater. Sci. Eng. 21, 045013 (2013).

    Google Scholar 

  152. Menou, E., Ramstein, G., Bertrand, E. & Tancret, F. Multi-objective constrained design of nickel-base superalloys using data mining- and thermodynamics-driven genetic algorithms. Model. Simul. Mater. Sci. Eng. 24, 055001 (2016).

    Google Scholar 

  153. Conduit, B. D., Jones, N. G., Stone, H. J. & Conduit, G. J. Design of a nickel-base superalloy using a neural network. Mater. Des. 131, 358–365 (2017).

    CAS  Google Scholar 

  154. Hu, X. et al. Two-way design of alloys for advanced ultra supercritical plants based on machine learning. Comput. Mater. Sci. 155, 331–339 (2018).

    CAS  Google Scholar 

  155. Yoshitake, S., Narayan, V., Harada, H., Bhadeshia, H. K. D. H. & Mackay, D. J. C. Estimation of the γ and γ′ lattice parameters in nickel-base superalloys using neural network analysis. ISIJ Int. 38, 495–502 (1998).

    CAS  Google Scholar 

  156. Chandran, M., Lee, S. C. & Shim, J.-H. Machine learning assisted first-principles calculation of multicomponent solid solutions: estimation of interface energy in Ni-based superalloys. Model. Simul. Mater. Sci. Eng. 26, 025010 (2018).

    Google Scholar 

  157. Goldsmith, B. R., Esterhuizen, J., Liu, J.-X., Bartel, C. J. & Sutton, C. Machine learning for heterogeneous catalyst design and discovery. AIChE J. 64, 2311–2323 (2018).

    CAS  Google Scholar 

  158. Kitchin, J. R. Machine learning in catalysis. Nat. Catal. 1, 230–232 (2018).

    Google Scholar 

  159. Toyao, T. et al. Machine learning for catalysis informatics: Recent applications and prospects. ACS Catal. 10, 2260–2297 (2020).

    CAS  Google Scholar 

  160. Orupattur, N. V., Mushrif, S. H. & Prasad, V. Catalytic materials and chemistry development using a synergistic combination of machine learning and ab initio methods. Comput. Mater. Sci. 174, 109474 (2020).

    CAS  Google Scholar 

  161. Logadottir, A. et al. The Brønsted–Evans–Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts. J. Catal. 197, 229–231 (2001).

    CAS  Google Scholar 

  162. Nørskov, J. K. et al. Universality in heterogeneous catalysis. J. Catal. 209, 275–278 (2002).

    Google Scholar 

  163. Hammer, B. & Norskov, J. K. Why gold is the noblest of all the metals. Nature 376, 238–240 (1995).

    CAS  Google Scholar 

  164. Kitchin, J. R., Nørskov, J. K., Barteau, M. A. & Chen, J. G. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J. Chem. Phys. 120, 10240–10246 (2004).

    CAS  Google Scholar 

  165. Panapitiya, G. et al. Machine-learning prediction of CO adsorption in thiolated, Ag-alloyed Au nanoclusters. J. Am. Chem. Soc. 140, 17508–17514 (2018).

    CAS  Google Scholar 

  166. Li, Z., Ma, X. & Xin, H. Feature engineering of machine-learning chemisorption models for catalyst design. Catal. Today 280, 232–238 (2017).

    CAS  Google Scholar 

  167. Li, Z., Wang, S., Chin, W. S., Achenie, L. E. & Xin, H. High-throughput screening of bimetallic catalysts enabled by machine learning. J. Mater. Chem. A 5, 24131–24138 (2017).

    CAS  Google Scholar 

  168. Ma, X., Li, Z., Achenie, L. E. K. & Xin, H. Machine-learning-augmented chemisorption model for CO2 electroreduction catalyst screening. J. Phys. Chem. Lett. 6, 3528–3533 (2015).

    CAS  Google Scholar 

  169. Pankajakshan, P. et al. Machine learning and statistical analysis for materials science: Stability and transferability of fingerprint descriptors and chemical insights. Chem. Mater. 29, 4190–4201 (2017).

    CAS  Google Scholar 

  170. Toyao, T. et al. Toward effective utilization of methane: Machine learning prediction of adsorption energies on metal alloys. J. Phys. Chem. C 122, 8315–8326 (2018).

    CAS  Google Scholar 

  171. Andersen, M., Levchenko, S. V., Scheffler, M. & Reuter, K. Beyond scaling relations for the description of catalytic materials. ACS Catal. 9, 2752–2759 (2019).

    CAS  Google Scholar 

  172. Tran, K. & Ulissi, Z. W. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat. Catal. 1, 696–703 (2018).

    CAS  Google Scholar 

  173. Back, S. et al. Convolutional neural network of atomic surface structures to predict binding energies for high-throughput screening of catalysts. J. Phys. Chem. Lett. 10, 4401–4408 (2019).

    CAS  Google Scholar 

  174. Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020).

    CAS  Google Scholar 

  175. Boes, J. R. & Kitchin, J. R. Modeling segregation on AuPd(111) surfaces with density functional theory and Monte Carlo simulations. J. Phys. Chem. C 121, 3479–3487 (2017).

    CAS  Google Scholar 

  176. Cao, L., Li, C. & Mueller, T. The use of cluster expansions to predict the structures and properties of surfaces and nanostructured materials. J. Chem. Inf. Model. 58, 2401–2413 (2018).

    CAS  Google Scholar 

  177. Cao, L. & Mueller, T. Rational design of Pt3Ni surface structures for the oxygen reduction reaction. J. Phys. Chem. C 119, 17735–17747 (2015).

    CAS  Google Scholar 

  178. Cao, L., Niu, L. & Mueller, T. Computationally generated maps of surface structures and catalytic activities for alloy phase diagrams. Proc. Natl Acad. Sci. USA 116, 22044–22051 (2019).

    CAS  Google Scholar 

  179. Mueller, T. Ab initio determination of structure-property relationships in alloy nanoparticles. Phys. Rev. B 86, 144201 (2012).

    Google Scholar 

  180. Wang, L.-L., Tan, T. L. & Johnson, D. D. Configurational thermodynamics of alloyed nanoparticles with adsorbates. Nano Lett. 14, 7077–7084 (2014).

    CAS  Google Scholar 

  181. Tan, T. L., Wang, L.-L., Johnson, D. D. & Bai, K. A comprehensive search for stable Pt–Pd nanoalloy configurations and their use as tunable catalysts. Nano Lett. 12, 4875–4880 (2012).

    CAS  Google Scholar 

  182. Jia, Q. et al. Roles of Mo surface dopants in enhancing the ORR performance of octahedral PtNi nanoparticles. Nano Lett. 18, 798–804 (2018).

    CAS  Google Scholar 

  183. Cao, L. et al. Differential surface elemental distribution leads to significantly enhanced stability of PtNi-based ORR catalysts. Matter 1, 1567–1580 (2019).

    Google Scholar 

  184. Wang, L.-L., Tan, T. L. & Johnson, D. D. Nanoalloy electrocatalysis: simulating cyclic voltammetry from configurational thermodynamics with adsorbates. Phys. Chem. Chem. Phys. 17, 28103–28111 (2015).

    CAS  Google Scholar 

  185. Li, C. et al. Improved prediction of nanoalloy structures by the explicit inclusion of adsorbates in cluster expansions. J. Phys. Chem. C 122, 18040–18047 (2018).

    CAS  Google Scholar 

  186. Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

    Google Scholar 

  187. Artrith, N. & Kolpak, A. M. Grand canonical molecular dynamics simulations of Cu–Au nanoalloys in thermal equilibrium using reactive ANN potentials. Comput. Mater. Sci. 110, 20–28 (2015).

    CAS  Google Scholar 

  188. Artrith, N. & Kolpak, A. M. Understanding the composition and activity of electrocatalytic nanoalloys in aqueous solvents: A combination of DFT and accurate neural network potentials. Nano Lett. 14, 2670–2676 (2014).

    CAS  Google Scholar 

  189. Kang, J. et al. First-principles database driven computational neural network approach to the discovery of active ternary nanocatalysts for oxygen reduction reaction. Phys. Chem. Chem. Phys. 20, 24539–24544 (2018).

    CAS  Google Scholar 

  190. Hajinazar, S., Sandoval, E. D., Cullo, A. J. & Kolmogorov, A. N. Multitribe evolutionary search for stable Cu–Pd–Ag nanoparticles using neural network models. Phys. Chem. Chem. Phys. 21, 8729–8742 (2019).

    CAS  Google Scholar 

  191. Jinnouchi, R. & Asahi, R. Predicting catalytic activity of nanoparticles by a DFT-aided machine-learning algorithm. J. Phys. Chem. Lett. 8, 4279–4283 (2017).

    CAS  Google Scholar 

  192. Jäger, M. O. J., Morooka, E. V., Federici Canova, F., Himanen, L. & Foster, A. S. Machine learning hydrogen adsorption on nanoclusters through structural descriptors. NPJ Comput. Mater. 4, 37 (2018).

    Google Scholar 

  193. Carrasquilla, J. & Melko, R. G. Machine learning phases of matter. Nat. Phys. 13, 431–434 (2017).

    CAS  Google Scholar 

  194. van Nieuwenburg, E. P. L., Liu, Y.-H. & Huber, S. D. Learning phase transitions by confusion. Nat. Phys. 13, 435–439 (2017).

    Google Scholar 

  195. Kusne, A. G. et al. On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets. Sci. Rep. 4, 6367 (2014).

    Google Scholar 

  196. Jha, R., Chakraborti, N., Diercks, D. R., Stebner, A. P. & Ciobanu, C. V. Combined machine learning and CALPHAD approach for discovering processing-structure relationships in soft magnetic alloys. Comput. Mater. Sci. 150, 202–211 (2018).

    CAS  Google Scholar 

  197. Nelson, J. & Sanvito, S. Predicting the Curie temperature of ferromagnets using machine learning. Phys. Rev. Mater. 3, 104405 (2019).

    CAS  Google Scholar 

  198. Yoshizawa, Y., Oguma, S. & Yamauchi, K. New Fe-based soft magnetic alloys composed of ultrafine grain structure. J. Appl. Phys. 64, 6044–6046 (1988).

    CAS  Google Scholar 

  199. Rao, K. P. & Prasad, Y. K. D. V. Neural network approach to flow stress evaluation in hot deformation. J. Mater. Process. Technol. 53, 552–566 (1995).

    Google Scholar 

  200. Larkiola, J., Myllykoski, P., Nylander, J. & Korhonen, A. S. Prediction of rolling force in cold rolling by using physical models and neural computing. J. Mater. Process. Technol. 60, 381–386 (1996).

    Google Scholar 

  201. Chun, M. S., Biglou, J., Lenard, J. G. & Kim, J. G. Using neural networks to predict parameters in the hot working of aluminum alloys. J. Mater. Process. Technol. 86, 245–251 (1999).

    Google Scholar 

  202. Malinov, S., Sha, W. & McKeown, J. J. Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network. Comput. Mater. Sci. 21, 375–394 (2001).

    CAS  Google Scholar 

  203. Guo, Z. & Sha, W. Modelling the correlation between processing parameters and properties of maraging steels using artificial neural network. Comput. Mater. Sci. 29, 12–28 (2004).

    CAS  Google Scholar 

  204. Mandal, S., Sivaprasad, P. V., Venugopal, S. & Murthy, K. P. N. Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion. Appl. Soft Comput. 9, 237–244 (2009).

    Google Scholar 

  205. Sun, Y. et al. Development of constitutive relationship model of Ti600 alloy using artificial neural network. Comput. Mater. Sci. 48, 686–691 (2010).

    CAS  Google Scholar 

  206. Ji, G., Li, F., Li, Q., Li, H. & Li, Z. A comparative study on Arrhenius-type constitutive model and artificial neural network model to predict high-temperature deformation behaviour in Aermet100 steel. Mater. Sci. Eng. A 528, 4774–4782 (2011).

    Google Scholar 

  207. Haghdadi, N., Zarei-Hanzaki, A., Khalesian, A. R. & Abedi, H. R. Artificial neural network modeling to predict the hot deformation behavior of an A356 aluminum alloy. Mater. Des. 49, 386–391 (2013).

    CAS  Google Scholar 

  208. Reddy, N. S., Panigrahi, B. B., Ho, C. M., Kim, J. H. & Lee, C. S. Artificial neural network modeling on the relative importance of alloying elements and heat treatment temperature to the stability of α and β phase in titanium alloys. Comput. Mater. Sci. 107, 175–183 (2015).

    CAS  Google Scholar 

  209. Gavard, L., Bhadeshia, H. K. D. H., MacKay, D. J. C. & Suzuki, S. Bayesian neural network model for austenite formation in steels. Mater. Sci. Technol. 12, 453–463 (1996).

    CAS  Google Scholar 

  210. Bailer-Jones, C. A. L., Bhadeshia, H. K. D. H. & MacKay, D. J. C. Gaussian process modelling of austenite formation in steel. Mater. Sci. Technol. 15, 287–294 (1999).

    CAS  Google Scholar 

  211. Capdevila, C., Caballero, F. G. & García de Andrés, C. Determination of Ms temperature in steels: A Bayesian neural network model. ISIJ Int. 42, 894–902 (2002).

    CAS  Google Scholar 

  212. Capdevila, C., Caballero, F. G. & García De Andrés, C. Analysis of effect of alloying elements on martensite start temperature of steels. Mater. Sci. Technol. 19, 581–586 (2003).

    CAS  Google Scholar 

  213. Davies, R. H., Dinsdale, A. T., Gisby, J. A., Robinson, J. A. J. & Martin, S. M. MTDATA — thermodynamic and phase equilibrium software from the national physical laboratory. Calphad 26, 229–271 (2002).

    CAS  Google Scholar 

  214. Tapia, G., Elwany, A. H. & Sang, H. Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models. Addit. Manuf. 12, 282–290 (2016).

    CAS  Google Scholar 

  215. Tapia, G., Khairallah, S., Matthews, M., King, W. E. & Elwany, A. Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316L stainless steel. Int. J. Adv. Manuf. Technol. 94, 3591–3603 (2018).

    Google Scholar 

  216. Meng, L. & Zhang, J. Process design of laser powder bed fusion of stainless steel using a Gaussian process-based machine learning model. JOM 72, 420–428 (2020).

    CAS  Google Scholar 

  217. Boyce, B. L. & Uchic, M. D. Progress toward autonomous experimental systems for alloy development. MRS Bull. 44, 273–280 (2019).

    CAS  Google Scholar 

  218. Ling, J., Hutchinson, M., Antono, E., Paradiso, S. & Meredig, B. High-dimensional materials and process optimization using data-driven experimental design with well-calibrated uncertainty estimates. Integr. Mater. Manuf. Innov. 6, 207–217 (2017).

    Google Scholar 

  219. Godaliyadda, G. M. D. et al. A supervised learning approach for dynamic sampling. Electron. Imaging 2016, 1 (2016).

    Google Scholar 

  220. DeCost, B. L., Lei, B., Francis, T. & Holm, E. A. High throughput quantitative metallography for complex microstructures using deep learning: A case study in ultrahigh carbon steel. Microsc. Microanal. 25, 21–29 (2019).

    CAS  Google Scholar 

  221. Takahashi, K. & Tanaka, Y. Material synthesis and design from first principle calculations and machine learning. Comput. Mater. Sci. 112, 364–367 (2016).

    CAS  Google Scholar 

  222. Mahfouf, M., Jamei, M. & Linkens, D. A. Optimal design of alloy steels using multiobjective genetic algorithms. Mater. Manuf. Process. 20, 553–567 2005).

    CAS  Google Scholar 

  223. Ozerdem, M. S. & Kolukisa, S. Artificial neural network approach to predict mechanical properties of hot rolled, nonresulfurized, AISI 10xx series carbon steel bars. J. Mater. Process. Technol. 199, 437–439 (2008).

    CAS  Google Scholar 

  224. Ozerdem, M. S. & Kolukisa, S. Artificial neural network approach to predict the mechanical properties of Cu–Sn–Pb–Zn–Ni cast alloys. Mater. Des. 30, 764–769 (2009).

    CAS  Google Scholar 

  225. Wilk-Kolodziejczyk, D., Regulski, K. & Gumienny, G. Comparative analysis of the properties of the nodular cast iron with carbides and the austempered ductile iron with use of the machine learning and the support vector machine. Int. J. Adv. Manuf. Technol. 87, 1077–1093 (2016).

    Google Scholar 

  226. Murugananth, M., Babu, S. S. & David, S. A. Optimization of shielded metal arc weld metal composition for Charpy toughness. Weld. J. 83, 267-S–276-S (2004).

    Google Scholar 

  227. Conduit, B. D., Jones, N. G., Stone, H. J. & Conduit, G. J. Probabilistic design of a molybdenum-base alloy using a neural network. Scr. Mater. 146, 82–86 (2018).

    CAS  Google Scholar 

  228. An, W.-K. et al. Optimization of composition of as-cast chromium white cast iron based on wear-resistant performance. Mater. Des. 30, 2339–2344 (2009).

    CAS  Google Scholar 

  229. Slavkovic, R., Jugovic, Z., Dragicevic, S., Jovicic, A. & Slavkovic, V. An application of learning machine methods in prediction of wear rate of wear resistant casting parts. Comput. Ind. Eng. 64, 850–857 (2013).

    Google Scholar 

  230. Paulson, N. H., Priddy, M. W., McDowell, D. L. & Kalidindi, S. R. Data-driven reduced-order models for rank-ordering the high cycle fatigue performance of polycrystalline microstructures. Mater. Des. 154, 170–183 (2018).

    CAS  Google Scholar 

  231. Schooling, J. M., Brown, M. & Reed, P. A. S. An example of the use of neural computing techniques in materials science—the modelling of fatigue thresholds in Ni-base superalloys. Mater. Sci. Eng. A 260, 222–239 (1999).

    Google Scholar 

  232. Brun, F. et al. Theoretical design of ferritic creep resistant steels using neural network, kinetic, and thermodynamic models. Mater. Sci. Technol. 15, 547–554 (1999).

    CAS  Google Scholar 

  233. Shin, D., Yamamoto, Y., Brady, M. P., Lee, S. & Haynes, J. A. Modern data analytics approach to predict creep of high-temperature alloys. Acta Mater. 168, 321–330 (2019).

    CAS  Google Scholar 

  234. Thankachan, T. et al. Artificial neural network to predict the degraded mechanical properties of metallic materials due to the presence of hydrogen. Int. J. Hydrog. Energy 42, 28612–28621 (2017).

    CAS  Google Scholar 

  235. Rovinelli, A. et al. Assessing reliability of fatigue indicator parameters for small crack growth via a probabilistic framework. Model. Simul. Mater. Sci. Eng. 25, 045010 (2017).

    Google Scholar 

  236. Rovinelli, A. et al. Predicting the 3D fatigue crack growth rate of small cracks using multimodal data via Bayesian networks: In-situ experiments and crystal plasticity simulations. J. Mech. Phys. Solids 115, 208–229 (2018).

    CAS  Google Scholar 

  237. Feng, S., Zhou, H. & Dong, H. Using deep neural network with small dataset to predict material defects. Mater. Des. 162, 300–310 (2019).

    Google Scholar 

  238. Gossett, E. et al. AFLOW-ML: A RESTful API for machine-learning predictions of materials properties. Comput. Mater. Sci. 152, 134–145 (2018).

    CAS  Google Scholar 

  239. Taylor, R. H. et al. A RESTful API for exchanging materials data in the AFLOWLIB.org consortium. Comput. Mater. Sci. 93, 178–192 (2014).

    Google Scholar 

  240. Fernandez-Zelaia, P., Joseph, V., Kalidindi, S. R. & Melkote, S. N. Estimating mechanical properties from spherical indentation using Bayesian approaches. Mater. Des. 147, 92–105 (2018).

    Google Scholar 

  241. Wisner, B. & Kontsos, A. Investigation of particle fracture during fatigue of aluminum 2024. Int. J. Fatigue 111, 33–43 (2018).

    CAS  Google Scholar 

  242. Chatterjee, S., Murugananth, M. & Bhadeshia, H. K. D. H. δ TRIP steel. Mater. Sci. Technol. 23, 819–827 (2007).

    CAS  Google Scholar 

  243. Xiong, J., Zhang, T. & Shi, S. Machine learning of mechanical properties of steels. Sci. China Technol. Sci. 63, 1247–1255 (2020).

    CAS  Google Scholar 

  244. Chaudhary, N., Abu-Odeh, A., Karaman, I. & Arróyave, R. A data-driven machine learning approach to predicting stacking faulting energy in austenitic steels. J. Mater. Sci. 52, 11048–11076 (2017).

    CAS  Google Scholar 

  245. Mangal, A. & Holm, E. A. Applied machine learning to predict stress hotspots I: Face centered cubic materials. Int. J. Plast. 111, 122–134 (2018).

    CAS  Google Scholar 

  246. Mangal, A. & Holm, E. A. A comparative study of feature selection methods for stress hotspot classification in materials. Integr. Mater. Manuf. Innov. 7, 87–95 (2018).

    Google Scholar 

  247. Abbassi, F., Belhadj, T., Mistou, S. & Zghal, A. Parameter identification of a mechanical ductile damage using Artificial Neural Networks in sheet metal forming. Mater. Des. 45, 605–615 (2013).

    Google Scholar 

  248. Agrawal, A. et al. Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters. Integr. Mater. Manuf. Innov. 3, 90–108 (2014).

    Google Scholar 

  249. Agrawal, A. & Choudhary, A. An online tool for predicting fatigue strength of steel alloys based on ensemble data mining. Int. J. Fatigue 113, 389–400 (2018).

    CAS  Google Scholar 

  250. Seko, A., Maekawa, T., Tsuda, K. & Tanaka, I. Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single- and binary-component solids. Phys. Rev. B 89, 054303 (2014).

    Google Scholar 

  251. Carrete, J., Li, W., Mingo, N., Wang, S. & Curtarolo, S. Finding unprecedentedly low-thermal-conductivity half-Heusler semiconductors via high-throughput materials modeling. Phys. Rev. X 4, 011019 (2014).

    CAS  Google Scholar 

  252. Legrain, F., Carrete, J., van Roekeghem, A., Madsen, G. K. H. & Mingo, N. Materials screening for the discovery of new half-Heuslers: Machine learning versus ab initio methods. J. Phys. Chem. B 122, 625–632 (2017).

    Google Scholar 

  253. Carrete, J., Mingo, N., Wang, S. & Curtarolo, S. Nanograined half-Heusler semiconductors as advanced thermoelectrics: An ab initio high-throughput statistical study. Adv. Func. Mater. 24, 7427–7432 (2014).

    CAS  Google Scholar 

  254. Sparks, T. D., Gaultois, M. W., Oliynyk, A., Brgoch, J. & Meredig, B. Data mining our way to the next generation of thermoelectrics. Scr. Mater. 111, 10–15 (2016).

    CAS  Google Scholar 

  255. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Google Scholar 

  256. Oses, C., Toher, C. & Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 5, 295–309 (2020).

    CAS  Google Scholar 

  257. Sun, S., Ouyang, R., Zhang, B. & Zhang, T.-Y. Data-driven discovery of formulas by symbolic regression. MRS Bull. 44, 559–564 (2019).

    Google Scholar 

  258. Hernandez, A., Balasubramanian, A., Yuan, F., Mason, S. A. M. & Mueller, T. Fast, accurate, and transferable many-body interatomic potentials by symbolic regression. NPJ Comput. Mater. 5, 112 (2019).

    Google Scholar 

  259. Iten, R., Metger, T., Wilming, H., del Rio, L. & Renner, R. Discovering physical concepts with neural networks. Phys. Rev. Lett. 124, 010508 (2020).

    CAS  Google Scholar 

  260. Routh, P. K., Liu, Y., Marcella, N., Kozinsky, B. & Frenkel, A. I. Latent representation learning for structural characterization of catalysts. J. Phys. Chem. Lett. 12, 2086–2094 (2021).

    CAS  Google Scholar 

  261. Schmidt, J., Benavides-Riveros, C. L. & Marques, M. A. L. Machine learning the physical nonlocal exchange–correlation functional of density-functional theory. J. Phys. Chem. Lett. 10, 6425–6431 (2019).

    CAS  Google Scholar 

  262. Lei, X. & Medford, A. J. Design and analysis of machine learning exchange-correlation functionals via rotationally invariant convolutional descriptors. Phys. Rev. Mater. 3, 063801 (2019).

    CAS  Google Scholar 

  263. Kalita, B., Li, L., McCarty, R. J. & Burke, K. Learning to approximate density functionals. Acc. Chem. Res. 54, 818–826 (2021).

    CAS  Google Scholar 

  264. Dick, S. & Fernandez-Serra, M. Machine learning accurate exchange and correlation functionals of the electronic density. Nat. Commun. 11, 3509 (2020).

    CAS  Google Scholar 

  265. Andersen, C. W. et al. OPTIMADE: an API for exchanging materials data. Preprint at arXiv https://arxiv.org/abs/2103.02068 (2021).

  266. Schmitz, G., Godtliebsen, I. H. & Christiansen, O. Machine learning for potential energy surfaces: An extensive database and assessment of methods. J. Chem. Phys. 150, 244113 (2019).

    Google Scholar 

  267. Artrith, N., Urban, A. & Ceder, G. Constructing first-principles phase diagrams of amorphous LixSi using machine-learning-assisted sampling with an evolutionary algorithm. J. Chem. Phys. 148, 241711 (2018).

    Google Scholar 

  268. Mueller, T., Johlin, E. & Grossman, J. C. Origins of hole traps in hydrogenated nanocrystalline and amorphous silicon revealed through machine learning. Phys. Rev. B 89, 115202 (2014).

    Google Scholar 

  269. Yang, K., Oses, C. & Curtarolo, S. Modeling off-stoichiometry materials with a high-throughput ab-initio approach. Chem. Mater. 28, 6484–6492 (2016).

    CAS  Google Scholar 

  270. Okhotnikov, K., Charpentier, T. & Cadars, S. Supercell program: a combinatorial structure-generation approach for the local-level modeling of atomic substitutions and partial occupancies in crystals. J. Cheminform. 8, 17 (2016).

    Google Scholar 

  271. Kikuchi, R. A theory of cooperative phenomena. Phys. Rev. 81, 988 (1951).

    Google Scholar 

  272. Sanchez, J. M. & de Fontaine, D. The fcc Ising model in the cluster variation approximation. Phys. Rev. B 17, 2926 (1978).

    Google Scholar 

  273. Zhang, Y., Blum, V. & Reuter, K. Accuracy of first-principles lateral interactions: Oxygen at Pd(100). Phys. Rev. B 75, 235406 (2007).

    Google Scholar 

  274. Stampfl, C., Kreuzer, H. J., Payne, S. H., Pfnür, H. & Scheffler, M. First-principles theory of surface thermodynamics and kinetics. Phys. Rev. Lett. 83, 2993 (1999).

    CAS  Google Scholar 

  275. Fichthorn, K. A., Merrick, M. L. & Scheffler, M. A kinetic Monte Carlo investigation of island nucleation and growth in thin-film epitaxy in the presence of substrate-mediated interactions. Appl. Phys. A 75, 17–23 (2002).

    CAS  Google Scholar 

  276. Connolly, J. W. D. & Williams, A. R. Density-functional theory applied to phase transformations in transition-metal alloys. Phys. Rev. B 27, 5169 (1983).

    CAS  Google Scholar 

  277. Blum, V., Hart, G. L. W., Walorski, M. J. & Zunger, A. Using genetic algorithms to map first-principles results to model Hamiltonians: Application to the generalized Ising model for alloys. Phys. Rev. B 72, 165113 (2005).

    Google Scholar 

  278. Seko, A. et al. First-principles study of cation disordering in MgAl2O4 spinel with cluster expansion and Monte Carlo simulation. Phys. Rev. B 73, 094116 (2006).

    Google Scholar 

  279. Van der Ven, A., Thomas, J. C., Xu, Q., Swoboda, B. & Morgan, D. Nondilute diffusion from first principles: Li diffusion in LixTiS2. Phys. Rev. B 78, 104306 (2008).

    Google Scholar 

  280. Laks, D. B., Ferreira, L., Froyen, S. & Zunger, A. Efficient cluster expansion for substitutional systems. Phys. Rev. B 46, 12587 (1992).

    CAS  Google Scholar 

  281. Mueller, T. & Ceder, G. Bayesian approach to cluster expansions. Phys. Rev. B 80, 024103 (2009).

    Google Scholar 

  282. Cockayne, E. & van de Walle, A. Building effective models from sparse but precise data: Application to an alloy cluster expansion model. Phys. Rev. B 81, 012104 (2010).

    Google Scholar 

  283. Nelson, L. J., Ozoliņš, V., Reese, C. S., Zhou, F. & Hart, G. L. W. Cluster expansion made easy with Bayesian compressive sensing. Phys. Rev. B 88, 155105 (2013).

    Google Scholar 

  284. Zunger, A., Wang, L. G., Hart, G. L. W. & Sanati, M. Obtaining Ising-like expansions for binary alloys from first principles. Model. Simul. Mater. Sci. Eng. 10, 685 (2002).

    CAS  Google Scholar 

  285. Hart, G. L. W. & Forcade, R. W. Algorithm for generating derivative structures. Phys. Rev. B 77, 224115 (2008).

    Google Scholar 

  286. Seko, A., Togo, A., Oba, F. & Tanaka, I. Structure and stability of a homologous series of tin oxides. Phys. Rev. Lett. 100, 045702 (2008).

    Google Scholar 

  287. Seko, A., Koyama, Y. & Tanaka, I. Cluster expansion method for multicomponent systems based on optimal selection of structures for density-functional theory calculations. Phys. Rev. B 80, 165122 (2009).

    Google Scholar 

  288. Mueller, T. & Ceder, G. Exact expressions for structure selection in cluster expansions. Phys. Rev. B 82, 184107 (2010).

    Google Scholar 

  289. van de Walle, A. & Ceder, G. First-principles computation of the vibrational entropy of ordered and disordered Pd3V. Phys. Rev. B 61, 5972 (2000).

    Google Scholar 

  290. Nguyen, A. H., Rosenbrock, C. W., Reese, C. S. & Hart, G. L. W. Robustness of the cluster expansion: Assessing the roles of relaxation and numerical error. Phys. Rev. B 96, 014107 (2017).

    Google Scholar 

  291. Daw, M. S. & Baskes, M. I. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 50, 1285 (1983).

    CAS  Google Scholar 

  292. van der Oord, C., Dusson, G., Csányi, G. & Ortner, C. Regularised atomic body-ordered permutation-invariant polynomials for the construction of interatomic potentials. Mach. Learn. Sci. Technol. 1, 015004 (2020).

    Google Scholar 

  293. Drautz, R. Atomic cluster expansion of scalar, vectorial, and tensorial properties including magnetism and charge transfer. Phys. Rev. B 102, 024104 (2020).

    CAS  Google Scholar 

  294. Dusson, G. et al. Atomic cluster expansion: Completeness, efficiency and stability. Preprint at arXiv https://arxiv.org/abs/1911.03550 (2019).

  295. Willatt, M. J., Musil, F. & Ceriotti, M. Atom-density representations for machine learning. J. Chem. Phys. 150, 154110 (2019).

    Google Scholar 

  296. Seko, A. Machine learning potentials for multicomponent systems: The Ti-Al binary system. Phys. Rev. B 102, 174104 (2020).

    CAS  Google Scholar 

  297. Hajinazar, S., Thorn, A., Sandoval, E. D., Kharabadze, S. & Kolmogorov, A. N. MAISE: Construction of neural network interatomic models and evolutionary structure optimization. Comput. Phys. Commun. 259, 107679 (2021).

    CAS  Google Scholar 

  298. Dolgirev, P. E., Kruglov, I. A. & Oganov, A. R. Machine learning scheme for fast extraction of chemically interpretable interatomic potentials. AIP Adv. 6, 085318 (2016).

    Google Scholar 

  299. Brown, W. M., Thompson, A. P. & Schultz, P. A. Efficient hybrid evolutionary optimization of interatomic potential models. J. Chem. Phys. 132, 024108 (2010).

    Google Scholar 

  300. Slepoy, A., Peters, M. D. & Thompson, A. P. Searching for globally optimal functional forms for interatomic potentials using genetic programming with parallel tempering. J. Comput. Chem. 28, 2465–2471 (2007).

    CAS  Google Scholar 

  301. Kenoufi, A. & Kholmurodov, K. T. Symbolic regression of interatomic potentials via genetic programming. Biol. Chem. Res. 2, 1–10 (2015).

    Google Scholar 

  302. Makarov, D. E. & Metiu, H. Fitting potential-energy surfaces: a search in the function space by directed genetic programming. J. Chem. Phys. 108, 590–598 (1998).

    CAS  Google Scholar 

  303. Unke, O. T. & Meuwly, M. PhysNet: A neural network for predicting energies, forces, dipole moments, and partial charges. J. Chem. Theory Comput. 15, 3678–3693 (2019).

    CAS  Google Scholar 

  304. Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message passing for quantum chemistry. Proc. Mach. Learn. Res. 70, 1263–1272 (2017).

    Google Scholar 

  305. Duvenaud, D. et al. in Proceedings of Advances in Neural Information Processing Systems Vol. 28, 2224–2232 (2015).

  306. Kearnes, S., McCloskey, K., Berndl, M., Pande, V. & Riley, P. Molecular graph convolutions: moving beyond fingerprints. J. Comput. Aided Mol. Des. 30, 595–608 (2016).

    CAS  Google Scholar 

  307. Jørgensen, P. B. Jacobsen, K. W. & Schmidt, M. N. in 32nd Conference on Neural Information Processing Systems (Elsevier, 2018).

  308. Rosenbrock, C. W. et al. Machine-learned interatomic potentials for alloys and alloy phase diagrams. NPJ Comput. Mater. 7, 24 (2021).

    CAS  Google Scholar 

  309. Gubaev, K., Podryabinkin, E. V., Hart, G. L. W. & Shapeev, A. V. Accelerating high-throughput searches for new alloys with active learning of interatomic potentials. Comput. Mater. Sci. 156, 148–156 (2019).

    CAS  Google Scholar 

  310. Mueller, T., Hernandez, A. & Wang, C. Machine learning for interatomic potential models. J. Chem. Phys. 152, 050902 (2020).

    CAS  Google Scholar 

  311. Nyshadham, C. et al. Machine-learned multi-system surrogate models for materials prediction. NPJ Comput. Mater. 5, 51 (2019).

    Google Scholar 

  312. Zuo, Y. et al. Performance and cost assessment of machine learning interatomic potentials. J. Phys. Chem. A 124, 731–745 (2020).

    CAS  Google Scholar 

  313. Pettifor, D. G. A chemical scale for crystal-structure maps. Solid State Commun. 51, 31–34 (1984).

    CAS  Google Scholar 

  314. Pettifor, D. G. The structures of binary compounds. I. Phenomenological structure maps. J. Phys. C Solid State Phys. 19, 285 (1986).

    CAS  Google Scholar 

  315. Pettifor, D. G. Structure maps revisited. J. Phys. Condens. Matter 15, V13 (2003).

    CAS  Google Scholar 

  316. Levy, O., Hart, G. L. W. & Curtarolo, S. Structure maps for hcp metals from first-principles calculations. Phys. Rev. B 81, 174106 (2010).

    Google Scholar 

  317. Zunger, A. Systematization of the stable crystal structure of all AB-type binary compounds: A pseudopotential orbital-radii approach. Phys. Rev. B 22, 5839 (1980).

    CAS  Google Scholar 

  318. Zunger, A. in Structure and Bonding in Crystals Ch. 5 (eds O’Keeffe, M. & Navrotsky, A.) 73–135 (Academic Press, 1981).

  319. Martynov, A. I. & Batsanov, S. S. New approach to the determination of atom electronegativity. Zh. Neorg. Khim. 25, 3171–3175 (1980).

    CAS  Google Scholar 

  320. Villars, P. in Crystal Structures of Intermetallic Compounds (eds Westbrook, J. H. & Fleischer, R. L.) 1–49 (Wiley, 2000).

Download references

Acknowledgements

The authors thank Luca Ghiringhelli, Aleksey Kolmogorov, Axel van de Walle, Atsuto Seko, Chris Wolverton, Karsten Reuter, Anton Van der Ven, Corey Oses, Ohad Levy, Mike Mehl and Xiomara Campilongo for valuable discussions. The authors thank Liang Cao for providing Fig. 4b. T.M. acknowledges support by DOD-ONR (N00014-15-1-2681). C.T. acknowledges support by NSF (DMR-1921909). S.C. and C.T. acknowledge support by DOD-ONR (N00014-15-1-2863, N00014-16-1-2326, N00014-17-1-2876).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the article.

Corresponding authors

Correspondence to Gus L. W. Hart or Stefano Curtarolo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Materials thanks Vladan Stevanovic, Tong-Yi Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hart, G.L.W., Mueller, T., Toher, C. et al. Machine learning for alloys. Nat Rev Mater 6, 730–755 (2021). https://doi.org/10.1038/s41578-021-00340-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00340-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing