Abstract
Many properties of nanoparticles are governed by their shape, size, polydispersity and surface chemistry. To apply nanoparticles in chemical sensing, medical diagnostics, catalysis, thermoelectrics, photovoltaics or pharmaceutics, they have to be synthesized with precisely controlled characteristics. This is a time-consuming, laborious and resource-intensive task, because nanoparticle syntheses often include multiple reagents and are conducted under interdependent experimental conditions. Machine learning (ML) offers a promising tool for the accelerated development of efficient protocols for nanoparticle synthesis and, potentially, for the synthesis of new types of nanoparticles. In this Review, we discuss ML algorithms that can be used for nanoparticle synthesis and highlight key approaches for the collection of large datasets. We examine ML-guided synthesis of semiconductor, metal, carbon-based and polymeric nanoparticles, and conclude with a discussion of current limitations, advantages and perspectives in the development of ML-assisted nanoparticle synthesis.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
A narrative review of the synthesis, characterization, and applications of iron oxide nanoparticles
Discover Nano Open Access 10 October 2023
-
Nanomedicine in cancer therapy
Signal Transduction and Targeted Therapy Open Access 07 August 2023
-
AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning
Nature Communications Open Access 14 March 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Vert, M. et al. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl. Chem. 84, 377–410 (2012).
West, J. L. & Halas, N. J. Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics. Annu. Rev. Biomed. Eng. 5, 285–292 (2003).
Mayer, K. M. & Hafner, J. H. Localized surface plasmon resonance sensors. Chem. Rev. 111, 3828–3857 (2011).
Neumann, O. et al. Solar vapor generation enabled by nanoparticles. ACS Nano 7, 42–49 (2013).
Ding, C., Zhu, A. & Tian, Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc. Chem. Res. 47, 20–30 (2014).
Nie, Z., Petukhova, A. & Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 5, 15–25 (2010).
Klinkova, A., Choueiri, R. M. & Kumacheva, E. Self-assembled plasmonic nanostructures. Chem. Soc. Rev. 43, 3976–3991 (2014).
Astruc, D. Introduction: nanoparticles in catalysis. Chem. Rev. 120, 461–463 (2020).
Zheng, Y. et al. Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 8, 5290–5296 (2014).
Yang, J. & Caillat, T. Thermoelectric materials for space and automotive power generation. MRS Bull. 31, 224–229 (2006).
Kim, G. H. et al. High-efficiency colloidal quantum dot photovoltaics via robust self-assembled monolayers. Nano Lett. 15, 7691–7696 (2015).
Konstantatos, G. & Sargent, E. H. Solution-processed quantum dot photodetectors. Proc. IEEE 97, 1666–1683 (2009).
Kulkarni, S. A., Mhaisalkar, S. G., Mathews, N. & Boix, P. P. Perovskite nanoparticles: synthesis, properties, and novel applications in photovoltaics and LEDs. Small Methods 3, 1800231.
Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).
Mirtchev, P., Henderson, E. J., Soheilnia, N., Yip, C. M. & Ozin, G. A. Solution phase synthesis of carbon quantum dots as sensitizers for nanocrystalline TiO2 solar cells. J. Mater. Chem. 22, 1265–1269 (2012).
Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M. & van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005).
Kumar, V., Toffoli, G. & Rizzolio, F. Fluorescent carbon nanoparticles in medicine for cancer therapy. ACS Med. Chem. Lett. 4, 1012–1013 (2013).
Zhang, H., Oh, M., Allen, C. & Kumacheva, E. Monodisperse chitosan nanoparticles for mucosal drug delivery. Biomacromolecules 5, 2461–2468 (2004).
Roduner, E. Size matters: Why nanomaterials are different. Chem. Soc. Rev. 35, 583–592 (2006).
Galati, E. et al. Shape-specific patterning of polymer-functionalized nanoparticles. ACS Nano 11, 4995–5002 (2017).
Abolhasani, M., Oskooei, A., Klinkova, A., Kumacheva, E. & Günther, A. Shaken, and stirred: Oscillatory segmented flow for controlled size-evolution of colloidal nanomaterials. Lab Chip 14, 2309–2318 (2014).
Russell, S. J. & Norvig, P. Artificial Intelligence: A Modern Approach (Prentice Hall, 2020).
Liu, Y. et al. A deep learning system for differential diagnosis of skin diseases. Nat. Med. 26, 900–908 (2020).
Silver, D. et al. Mastering the game of Go without human knowledge. Nature 550, 354–359 (2017).
Senior, A. W. et al. Improved protein structure prediction using potentials from deep learning. Nature 577, 706–710 (2020).
Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555, 604–610 (2018).
Cheng, B., Mazzola, G., Pickard, C. J. & Ceriotti, M. Evidence for supercritical behaviour of high-pressure liquid hydrogen. Nature 585, 217–220 (2020).
Smith, J. S., Isayev, O. & Roitberg, A. E. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem. Sci. 8, 3192–3203 (2017).
Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular design using machine learning: Generative models for matter engineering. Science 361, 360–365 (2018).
Noh, J. et al. Inverse design of solid-state materials via a continuous representation. Matter 1, 1370–1384 (2019).
Yao, Z. et al. Inverse design of nanoporous crystalline reticular materials with deep generative models. Nat. Mach. Intell. 3, 76–86 (2021).
Ren, Z. et al. Inverse design of crystals using generalized invertible crystallographic representation. Preprint at arXiv https://arxiv.org/abs/2005.07609 (2020).
Häse, F. et al. Olympus: a benchmarking framework for noisy optimization and experiment planning. Mach. Learn. Sci. Technol. https://doi.org/10.1088/2632-215310.1088/2632-2153/abedc8 (2021).
MacLeod, B. P. et al. Self-driving laboratory for accelerated discovery of thin-film materials. Sci. Adv. 6, eaaz8867 (2020).
Langner, S. et al. Beyond ternary OPV: high-throughput experimentation and self-driving laboratories optimize multicomponent systems. Adv. Mater. 32, 1907801 (2020).
Lookman, T., Balachandran, P. V., Xue, D. & Yuan, R. Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design. NPJ Comput. Mater. 5, 21 (2019).
Li, J. et al. Review AI applications through the whole life cycle of material discovery. Matter 3, 393–432 (2020).
Rasmussen, C. E. & Williams, C. K. I. Gaussian Processes for Machine Learning (MIT Press, 2006).
Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
Friedman, J. H. Stochastic gradient boosting. Comput. Stat. Data Anal. 38, 367–378 (2002).
Friedman, J. Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).
Criminisi, A., Shotton, J. & Konukoglu, E. Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found. Trends Comput. Graph. Vis. 7, 81–227 (2012).
Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
Friederich, P., Krenn, M., Tamblyn, I. & Aspuru-Guzik, A. Scientific intuition inspired by machine learning-generated hypotheses. Mach. Learn. Sci. Technol. 2, 025027 (2021).
Raccuglia, P. et al. Machine-learning-assisted materials discovery using failed experiments. Nature 533, 73–76 (2016).
Liu, H., Ong, Y. S., Shen, X. & Cai, J. When gaussian process meets big data: a review of scalable GPs. IEEE Trans. Neural Netw. Learn. Syst. 31, 4405–4423 (2020).
Bordes, A., Ertekin, S., Weston, J. & Bottou, L. Fast kernel classifiers with online and active learning. J. Mach. Learn. Res. 6, 1579–1619 (2005).
Sani, H. M., Lei, C. & Neagu, D. in Artificial Intelligence XXXV. SGAI 2018. Lecture Notes in Computer Science (eds Bramer, M. & Petridis, M.) 191–197 (Springer, 2018).
Sejnowski, T. J. The unreasonable effectiveness of deep learning in artificial intelligence. Proc. Natl Acad. Sci. USA 117, 30033–30038 (2020).
Box, G. E. P., Hunter, J. S. & Hunter, W. G. Statistics for Experimenters: Design, Innovation, and Discovery 2nd edn 672 pp (Wiley, 2005).
Vikhar, P. A. in 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC) 261–265 (IEEE, 2017).
Hansen, N. in Towards a New Evolutionary Computation. Studies in Fuzziness and Soft Computing Vol. 192 (eds Lozano, J. A., Larrañaga, P., Inza, I. & Bengoetxea, E.) 75–102 (Springer, 2006).
Huyer, W. & Neumaier, A. SNOBFIT - Stable noisy optimization by branch and fit. ACM Trans. Math. Softw. 35, 1–25 (2008).
Krishnadasan, S., Brown, R. J. C., DeMello, A. J. & DeMello, J. C. Intelligent routes to the controlled synthesis of nanoparticles. Lab Chip 7, 1434–1441 (2007).
Li, J. et al. Autonomous discovery of optically active chiral inorganic perovskite nanocrystals through an intelligent cloud lab. Nat. Commun. 11, 2046 (2020).
Shahriari, B., Swersky, K., Wang, Z., Adams, R. P. & De Freitas, N. Taking the human out of the loop: A review of Bayesian optimization. Proc. IEEE 104, 148–175 (2016).
Hutter, F., Hoos, H. H. & Leyton-Brown, K. in Learning and Intelligent Optimization. LION 2011. Lecture Notes in Computer Science Vol. 6683 (ed. Coello, C. A. C.) 507–523 (Springer, 2011).
Häse, F., Roch, L. M. & Aspuru-Guzik, A. Gryffin: An algorithm for Bayesian optimization of categorical variables informed by expert knowledge. Preprint at arXiv https://arxiv.org/abs/2003.12127 (2020).
Häse, F., Roch, L. M., Kreisbeck, C. & Aspuru-Guzik, A. Phoenics: a Bayesian optimizer for chemistry. ACS Cent. Sci. 4, 1134–1145 (2018).
Christensen, M. et al. Data-Science driven autonomous process optimization. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv.13146404.v2 (2020).
Gómez-Bombarelli, R. et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4, 268–276 (2018).
Zhavoronkov, A. et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 37, 1038–1040 (2019).
Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Chollet, F. Keras. GitHub https://github.com/fchollet/keras (2015).
Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous distributed systems. Preprint at arXiv https://arxiv.org/abs/1603.04467 (2016).
Paszke, A. et al. in 31st Conference on Neural Information Processing Systems (Curran Associates, 2017).
Head, T. et al. scikit-optimize/scikit-optimize: v0.5.2. Zenodo https://doi.org/10.5281/zenodo.1207017 (2018).
The GpyOpt authors. GPyOpt: A Bayesian optimization framework in Python (University of Sheffield, 2016).
Bergstra, J., Komer, B., Eliasmith, C., Yamins, D. & Cox, D. D. Hyperopt: A Python library for model selection and hyperparameter optimization. Comput. Sci. Discov. 8, 014008 (2015).
Steiner, S. et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science 363, eaav2211 (2019).
Bawendi, M. G., Steigerwald, M. L. & Brus, L. E. The quantum mechanics of larger semiconductor clusters (“quantum dots”). Annu. Rev. Phys. Chem. 41, 477–496 (1990).
Toyota, A. et al. Combinatorial synthesis of CdSe nanoparticles using microreactors. J. Phys. Chem. C 114, 7527–7534 (2010).
Chan, E. M. Combinatorial approaches for developing upconverting nanomaterials: High-throughput screening, modeling, and applications. Chem. Soc. Rev. 44, 1653–1679 (2015).
Maceiczyk, R. M., Lignos, I. G. & Demello, A. J. Online detection and automation methods in microfluidic nanomaterial synthesis. Curr. Opin. Chem. Eng. 8, 29–35 (2015).
Volk, A. A., Epps, R. W. & Abolhasani, M. Accelerated development of colloidal nanomaterials enabled by modular microfluidic reactors: toward autonomous robotic experimentation. Adv. Mater. 44, 2004495 (2020).
Chan, E. M. et al. Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space. Nano Lett. 10, 1874–1885 (2010).
Salaheldin, A. M. et al. Automated synthesis of quantum dot nanocrystals by hot injection: Mixing induced self-focusing. Chem. Eng. J. 320, 232–243 (2017).
Krska, S. W., DiRocco, D. A., Dreher, S. D. & Shevlin, M. The evolution of chemical high-throughput experimentation to address challenging problems in pharmaceutical synthesis. Acc. Chem. Res. 50, 2976–2985 (2017).
Loffler, M. S., Chitrakaran, V. & Dawson, D. M. Design and implementation of the robotic platform. J. Intell. Robot. Syst. 39, 105–129 (2004).
Aspuru-Guzik, S. & Persson, K. Materials Acceleration Platform: Accelerating Advanced Energy Materials Discovery by Integrating High-Throughput Methods with Artificial Intelligence. Mission Innovation: Innovation Challenge 6 (University of California 2018).
Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).
Zhong, J. et al. When robotics met fluidics. Lab Chip 20, 709–716 (2020).
Dagtepe, P. & Chikan, V. Quantized Ostwald ripening of colloidal nanoparticles. J. Phys. Chem. C 114, 16263–16269 (2010).
Whitehead, C. B., Özkar, S. & Finke, R. G. LaMer’s 1950 model for particle formation of instantaneous nucleation and diffusion-controlled growth: A historical look at the model’s origins, assumptions, equations, and underlying sulfur sol formation kinetics data. Chem. Mater. 31, 7116–7132 (2019).
Polte, J. Fundamental growth principles of colloidal metal nanoparticles - a new perspective. CrystEngComm 17, 6809–6830 (2015).
Sahi, S. et al. Wavelength-shifting properties of luminescence nanoparticles for high energy particle detection and specific physics process observation. Sci. Rep. 8, 10515 (2018).
O’Brien, M. N., Jones, M. R. & Mirkin, C. A. The nature and implications of uniformity in the hierarchical organization of nanomaterials. Proc. Natl Acad. Sci. USA 113, 11717–11725 (2016).
Brus, L. E. Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984).
Aldakov, D. & Reiss, P. Safer-by-design fluorescent nanocrystals: metal halide perovskites vs semiconductor quantum dots. J. Phys. Chem. C 123, 12527–12541 (2019).
Takagahara, T. & Takeda, K. Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys. Rev. B 46, 15578–15581 (1992).
McHugh, K. J. et al. Biocompatible semiconductor quantum dots as cancer imaging agents. Adv. Mater. 30, 1706356 (2018).
Aswathy, R. G., Yoshida, Y., Maekawa, T. & Kumar, D. S. Near-infrared quantum dots for deep tissue imaging. Anal. Bioanal. Chem. 397, 1417–1435 (2010).
Reiss, P., Protière, M. & Li, L. Core/shell semiconductor nanocrystals. Small 5, 154–168 (2009).
Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).
Oulton, R. in 2015 17th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2017).
Levy, J. Quantum-information processing with ferroelectrically coupled quantum dots. Phys. Rev. A . 64, 052306 (2001).
Van Embden, J., Chesman, A. S. R. & Jasieniak, J. J. The heat-up synthesis of colloidal nanocrystals. Chem. Mater. 27, 2246–2285 (2015).
Kwon, S. G. & Hyeon, T. Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 7, 2685–2702 (2011).
Tan, T. T., Selvan, S. T., Zhao, L., Gao, S. & Ying, J. Y. Size control, shape evolution, and silica coating of near-infrared-emitting PbSe quantum dots. Chem. Mater. 19, 3112–3117 (2007).
Reiss, P., Carrière, M., Lincheneau, C., Vaure, L. & Tamang, S. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials. Chem. Rev. 116, 10731–10819 (2016).
Joo, J. et al. Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. J. Am. Chem. Soc. 125, 11100–11105 (2003).
Zhang, H., Hyun, B. R., Wise, F. W. & Robinson, R. D. A generic method for rational scalable synthesis of monodisperse metal sulfide nanocrystals. Nano Lett. 12, 5856–5860 (2012).
Zhang, J. et al. Synthetic conditions for high-accuracy size control of PbS quantum dots. J. Phys. Chem. Lett. 6, 1830–1833 (2015).
Voznyy, O. et al. Machine learning accelerates discovery of optimal colloidal quantum dot synthesis. ACS Nano 13, 11122–11128 (2019).
Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).
Shamsi, J., Urban, A. S., Imran, M., De Trizio, L. & Manna, L. Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 119, 3296–3348 (2019).
Du, J. S. et al. Halide perovskite nanocrystal arrays: Multiplexed synthesis and size-dependent emission. Sci. Adv. 6, eabc4959 (2020).
Ha, S. T., Su, R., Xing, J., Zhang, Q. & Xiong, Q. Metal halide perovskite nanomaterials: synthesis and applications. Chem. Sci. 8, 2522–2536 (2017).
Orimoto, Y. et al. Application of artificial neural networks to rapid data analysis in combinatorial nanoparticle syntheses. J. Phys. Chem. C 116, 17885–17896 (2012).
Maceiczyk, R. M. & Demello, A. J. Fast and reliable metamodeling of complex reaction spaces using universal kriging. J. Phys. Chem. C 118, 20026–20033 (2014).
Balachandran, P. V., Kowalski, B., Sehirlioglu, A. & Lookman, T. Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning. Nat. Commun. 9, 1668 (2018).
Li, Z. et al. Robot-accelerated perovskite investigation and discovery. Chem. Mater. 32, 5650–5663 (2020).
Kirman, J. et al. Machine-learning-accelerated perovskite crystallization. Matter 2, 938–947 (2020).
Sun, S. et al. Accelerated development of perovskite-inspired materials via high-throughput synthesis and machine-learning diagnosis. Joule 3, 1437–1451 (2019).
Braham, E. J. et al. Machine learning-directed navigation of synthetic design space: a statistical learning approach to controlling the synthesis of perovskite halide nanoplatelets in the quantum-confined regime. Chem. Mater. 31, 3281–3292 (2019).
Li, J. et al. AIR-Chem: authentic intelligent robotics for chemistry. J. Phys. Chem. A 122, 9142–9148 (2018).
Bezinge, L., Maceiczyk, R. M., Lignos, I., Kovalenko, M. V. & Demello, A. J. Pick a color MARIA: adaptive sampling enables the rapid identification of complex perovskite nanocrystal compositions with defined emission characteristics. ACS Appl. Mater. Interfaces 10, 18869–18878 (2018).
Epps, R. W. et al. Artificial chemist: an autonomous quantum dot synthesis bot. Adv. Mater. 32, 2001626 (2020).
Abdel-latif, K. et al. Self-driven multistep quantum dot synthesis enabled by autonomous robotic experimentation in flow. Adv. Intell. Syst. 3, 2000245 (2020).
Petryayeva, E. & Krull, U. J. Localized surface plasmon resonance: Nanostructures, bioassays and biosensing — A review. Anal. Chim. Acta 706, 8–24 (2011).
Fong, K. E. & Yung, L. Y. L. Localized surface plasmon resonance: A unique property of plasmonic nanoparticles for nucleic acid detection. Nanoscale 5, 12043–12071 (2013).
Ren, X. et al. High efficiency organic solar cells achieved by the simultaneous plasmon-optical and plasmon-electrical effects from plasmonic asymmetric modes of gold nanostars. Small 12, 5200–5207 (2016).
He, J. et al. Self-assembly of amphiphilic plasmonic micelle-like nanoparticles in selective solvents. J. Am. Chem. Soc. 135, 7974–7984 (2013).
de Aberasturi, D. J., Serrano-Montes, A. B. & Liz-Marzán, L. M. Modern applications of plasmonic nanoparticles: from energy to health. Adv. Opt. Mater. 3, 602–617 (2015).
Rycenga, M. et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 6, 3669–3712 (2011).
Zhao, P., Li, N. & Astruc, D. State of the art in gold nanoparticle synthesis. Coord. Chem. Rev. 257, 638–665 (2013).
Grzelczak, M., Pérez-Juste, J., Mulvaney, P. & Liz-Marzán, L. M. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37, 1783 (2008).
Abedini, A. et al. A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Res. Lett. 8, 474 (2013).
Baghbanzadeh, M., Carbone, L., Cozzoli, P. D. & Kappe, C. O. Microwave chemistry microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew. Chem. Int. Ed. 50, 11312–11359 (2011).
Haiss, W., Thanh, N. T. K., Aveyard, J. & Fernig, D. G. Determination of size and concentration of gold nanoparticles from UV–vis spectra. Anal. Chem. 79, 4215–4221 (2007).
Grand, J., Auguie, B. & Ru, E. C. Le Combined extinction and absorption UV–visible spectroscopy as a method for revealing shape imperfections of metallic nanoparticles. Anal. Chem. 91, 14639–14648 (2019).
Gherman, A. M. M. et al. Artificial neural networks modeling of the parameterized gold nanoparticles generation through photo-induced process. Mater. Res. Express 5, 085011 (2018).
shafaei, A. & Khayati, G. R. A predictive model on size of silver nanoparticles prepared by green synthesis method using hybrid artificial neural network-particle swarm optimization algorithm. Measurement 151, 107199 (2020).
Li, J. et al. Deep learning accelerated gold nanocluster synthesis. Adv. Intell. Syst. 1, 1900029 (2019).
Salley, D. et al. A nanomaterials discovery robot for the Darwinian evolution of shape programmable gold nanoparticles. Nat. Commun. 11, 2771 (2020).
Mekki-Berrada, F. et al. Two-step machine learning enables optimized nanoparticle synthesis. NPJ Comput. Mater. 7, 55 (2021).
Zhu, S. et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res. 8, 355–381 (2015).
Lijima, S. & Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993).
Bhunia, S. K., Saha, A., Maity, A. R., Ray, S. C. & Jana, N. R. Carbon nanoparticle-based fluorescent bioimaging probes. Sci. Rep. 3, 1473 (2013).
Roy, P., Chen, P. C., Periasamy, A. P., Chen, Y. N. & Chang, H. T. Photoluminescent carbon nanodots: Synthesis, physicochemical properties and analytical applications. Mater. Today 18, 447–458 (2015).
Singh, V. et al. Graphene based materials: Past, present and future. Prog. Mater. Sci. 56, 1178–1271 (2011).
Xie, S., Li, W., Pan, Z., Chang, B. & Lianfeng, S. Mechanical and physical properties on carbon nanotube. J. Phys. Chem. Solids 61, 1153–1158 (2000).
Hu, B. et al. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 22, 813–828 (2010).
Zhu, H. et al. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem. Commun. https://doi.org/10.1039/B907612C (2009).
Li, H. et al. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 49, 605–609 (2011).
Cao, A. & Qu, J. Size dependent thermal conductivity of single-walled carbon nanotubes. J. Appl. Phys. 112, 013503 (2012).
Zhou, Y. et al. Size-dependent photocatalytic activity of carbon dots with surface-state determined photoluminescence. Appl. Catal. B Environ. 248, 157–166 (2019).
Zheng, S. et al. Solvent-mediated shape engineering of fullerene (C60) polyhedral microcrystals. Chem. Mater. 30, 7146–7153 (2018).
Kim, J., Park, C. & Choi, H. C. Selective growth of a C70 crystal in a mixed solvent system: From cube to tube. Chem. Mater. 27, 2408–2413 (2015).
Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016).
Compton, O. C. & Nguyen, S. T. Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials. Small 6, 711–723 (2010).
Wang, Y., Zhang, L., Liang, R. P., Bai, J. M. & Qiu, J. D. Using graphene quantum dots as photoluminescent probes for protein kinase sensing. Anal. Chem. 85, 9148–9155 (2013).
Weatherup, R. S. et al. In situ characterization of alloy catalysts for low-temperature graphene growth. Nano Lett. 11, 4154–4160 (2011).
Millipore, M. et al. Artificial neural network for predictive synthesis of single-walled carbon nanotubes by aerosol CVD method. Carbon 153, 100–103 (2019).
Khabushev, E. M. et al. Machine learning for tailoring optoelectronic properties of single-walled carbon nanotube films. J. Phys. Chem. Lett. 10, 6962–6966 (2019).
Pudza, M. Y. et al. Sustainable synthesis processes for carbon dots through response surface methodology and artificial neural network. Processes 7, 704 (2019).
Nikolaev, P. et al. Autonomy in materials research: A case study in carbon nanotube growth. NPJ Comput. Mater. 2, 16031 (2016).
Vauthier, C. & Bouchemal, K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm. Res. 26, 1025–1058 (2009).
Wei, Q., Becherer, T., Noeske, P. L. M., Grunwald, I. & Haag, R. A universal approach to crosslinked hierarchical polymer multilayers as stable and highly effective antifouling coatings. Adv. Mater. 26, 2688–2693 (2014).
Gan, Q., Wang, T., Cochrane, C. & McCarron, P. Modulation of surface charge, particle size and morphological properties of chitosan–TPP nanoparticles intended for gene delivery. Colloids Surf. B Biointerfaces 44, 65–73 (2005).
Shalaby, K. S. et al. Determination of factors controlling the particle size and entrapment efficiency of noscapine in PEG/PLA nanoparticles using artificial neural networks. Int. J. Nanomed. 9, 4953–4964 (2014).
Zaki, M. R., Varshosaz, J. & Fathi, M. Preparation of agar nanospheres: Comparison of response surface and artificial neural network modeling by a genetic algorithm approach. Carbohydr. Polym. 122, 314–320 (2015).
Hashad, R. A., Ishak, R. A. H., Fahmy, S., Mansour, S. & Geneidi, A. S. Chitosan-tripolyphosphate nanoparticles: Optimization of formulation parameters for improving process yield at a novel pH using artificial neural networks. Int. J. Biol. Macromol. 86, 50–58 (2016).
Esmaeilzadeh-Gharedaghi, E. et al. Effects of processing parameters on particle size of ultrasound prepared chitosan nanoparticles: An Artificial Neural Networks Study. Pharm. Dev. Technol. 17, 638–647 (2012).
Baharifar, H. & Amani, A. Size, loading efficiency, and cytotoxicity of albumin-loaded chitosan nanoparticles: an artificial neural networks study. J. Pharm. Sci. 106, 411–417 (2017).
Youshia, J., Ali, M. E. & Lamprecht, A. Artificial neural network based particle size prediction of polymeric nanoparticles. Eur. J. Pharm. Biopharm. 119, 333–342 (2017).
Lehman, J. & Stanley, K. O. Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19, 189–223 (2011).
Grizou, J., Points, L. J., Sharma, A. & Cronin, L. A curious formulation robot enables the discovery of a novel protocell behavior. Sci. Adv. 6, eaay4237 (2020).
Häse, F., Roch, L. M. & Aspuru-Guzik, A. Chimera: Enabling hierarchy based multi-objective optimization for self-driving laboratories. Chem. Sci. 9, 7642–7655 (2018).
Li, J., Tu, Y., Liu, R., Lu, Y. & Zhu, X. Toward “on-demand” materials synthesis and scientific discovery through intelligent robots. Adv. Sci. 7, 1901957 (2020).
Wolpert, D. H. & Macready, W. G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997).
Lipton, Z. C. The Mythos of Model Interpretability: In machine learning, the concept of interpretability is both important and slippery. Queue 16, 31–57 (2018).
Stiglic, G. et al. Interpretability of machine learning-based prediction models in healthcare. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 10, e1379 (2020).
Amann, J. et al. Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med. Inform. Decis. Mak. 20, 310 (2020).
Hiszpanski, A. M. et al. Nanomaterial synthesis insights from machine learning of scientific articles by extracting, structuring, and visualizing knowledge. J. Chem. Inf. Model. 60, 2876–2887 (2020).
Mehr, S. H. M., Craven, M., Leonov, A. I., Keenan, G. & Cronin, L. A universal system for digitization and automatic execution of the chemical synthesis literature. Science 370, 101–108 (2020).
Kim, E., Huang, K., Jegelka, S. & Olivetti, E. Virtual screening of inorganic materials synthesis parameters with deep learning. NPJ Comput. Mater. 3, 53 (2017).
Open Reaction Database. https://docs.open-reaction-database.org/en/latest/index.html (2021).
Liu, Z. et al. PDB-wide collection of binding data: current status of the PDBbind database. Bioinformatics 31, 405–412 (2015).
Gilson, M. K. et al. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res. 44, D1045–D1053 (2016).
Jana, N. R., Gearheart, L. & Murphy, C. J. Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 17, 6782–6786 (2001).
Li, J., Wang, H., Lin, L., Fang, Q. & Peng, X. Quantitative identification of basic growth channels for formation of monodisperse nanocrystals. J. Am. Chem. Soc. 140, 5474–5484 (2018).
Acknowledgements
The authors are grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC) via the Discovery Grants program for financial support. A.A.-G., M.A. and T.C.W. acknowledge support from the Office of Naval Research, as well as Tata Sons, Limited. E.K. thanks the Canada Research Chairs Program. A.A.-G. is thankful for the Canada 150 Research Chairs Program. H.T. acknowledges the Connaught International Scholarship for Doctoral Students.
Author information
Authors and Affiliations
Contributions
All authors wrote and edited the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Tao, H., Wu, T., Aldeghi, M. et al. Nanoparticle synthesis assisted by machine learning. Nat Rev Mater 6, 701–716 (2021). https://doi.org/10.1038/s41578-021-00337-5
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41578-021-00337-5
This article is cited by
-
A review on microfluidic-assisted nanoparticle synthesis, and their applications using multiscale simulation methods
Discover Nano (2023)
-
A narrative review of the synthesis, characterization, and applications of iron oxide nanoparticles
Discover Nano (2023)
-
Combinatorial synthesis for AI-driven materials discovery
Nature Synthesis (2023)
-
AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning
Nature Communications (2023)
-
Nanomedicine in cancer therapy
Signal Transduction and Targeted Therapy (2023)