Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Electrochemical ion insertion from the atomic to the device scale

Abstract

Electrochemical ion insertion involves coupled ion–electron transfer reactions, transport of guest species and redox of the host. The hosts are typically anisotropic solids with 2D conduction planes but can also be materials with 1D or isotropic transport pathways. These insertion compounds have traditionally been studied in the context of energy storage but also find extensive applications in electrocatalysis, optoelectronics and computing. Recent developments in operando, ultrafast and high-resolution characterization methods, as well as accurate theoretical simulation methods, have led to a renaissance in the understanding of ion-insertion compounds. In this Review, we present a unified framework for understanding insertion compounds across timescales and length scales ranging from atomic to device levels. Using graphite, transition metal dichalcogenides, layered oxides, oxyhydroxides and olivines as examples, we explore commonalities in these materials in terms of point defects, interfacial reactions and phase transformations. We illustrate similarities in the operating principles of various ion-insertion devices, ranging from batteries and electrocatalysts to electrochromics and thermal transistors, with the goal of unifying research across disciplinary boundaries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrochemical ion insertion plays a key role in a wide variety of applications.
Fig. 2: Ion insertion effects on electrocatalytic electrodes and reactions.
Fig. 3: The role of point defects in the host.
Fig. 4: The microscopic picture of insertion.
Fig. 5: Phase separation in insertion materials across length scales, ranging from the atomic scale to the device scale.
Fig. 6: Ultrafast time-domain probes of ion transport.

Similar content being viewed by others

References

  1. Goodenough, J. B. & Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    Article  CAS  Google Scholar 

  2. Castelvecchi, D. & Stoye, E. World-changing batteries win Nobel. Nature 574, 308 (2019).

    Article  CAS  Google Scholar 

  3. Figlarz, M. et al. Topotaxy, nucleation and growth. Solid State Ion. 43, 143–170 (1990).

    Article  CAS  Google Scholar 

  4. Gopalakrishnan, J. Chimie douce approaches to the synthesis of metastable oxide materials. Chem. Mater. 7, 1265–1275 (1995).

    Article  CAS  Google Scholar 

  5. Murphy, D. W. & Christian, P. A. Solid state electrodes for high energy batteries. Science 205, 651–656 (1979).

    Article  CAS  Google Scholar 

  6. Livage, J. Chimie douce: from shake-and-bake processing to wet chemistry. New J. Chem. 25, 1–1 (2001).

    Article  CAS  Google Scholar 

  7. Huggins, R. A. Advanced Batteries (Springer, 2009).

  8. Aydinol, M. K., Kohan, A. F., Ceder, G., Cho, K. & Joannopoulos, J. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys. Rev. B 56, 1354–1365 (1997).

    Article  CAS  Google Scholar 

  9. Pierret, R. F. Semiconductor Device Fundamentals (Addison-Wesley, 1996).

  10. Fleischmann, S. et al. Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem. Rev. 120, 6738–6782 (2020).

    Article  CAS  Google Scholar 

  11. Rivnay, J. et al. Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018).

    Article  CAS  Google Scholar 

  12. Kim, G. Y. et al. Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition. Nat. Mater. 17, 445–449 (2018).

    Article  CAS  Google Scholar 

  13. Waser, R. & Ielmini, D. Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications (Wiley, 2016).

  14. Ziman, J. M. Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford Univ. Press, 2001).

  15. Maier, J. Physical Chemistry of Ionic Materials: Ions and Electrons in Solids (Wiley, 2004).

  16. Frenkel, D. & Smit, B. Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, 2002).

  17. Li, Y. & Chueh, W. C. Electrochemical and chemical insertion for energy transformation and switching. Annu. Rev. Mater. Res. 48, 137–165 (2018).

    Article  CAS  Google Scholar 

  18. Zhang, H. T. et al. Beyond electrostatic modification: design and discovery of functional oxide phases via ionic-electronic doping. Adv. Phys. X 4, 1523686 (2019).

    CAS  Google Scholar 

  19. Lee, E. S., Yazdanian, M. & Selkowitz, S. E. The Energy-Savings Potential of Electrochromic Windows in the US Commercial Buildings Sector. LBNL-54966 (Lawrence Berkeley National Laboratory, 2004).

  20. Pérez-Lombard, L., Ortiz, J. & Pout, C. A review on buildings energy consumption information. Energy Build. 40, 394–398 (2008).

    Article  Google Scholar 

  21. Mortimer, R. J. Electrochromic materials. Annu. Rev. Mater. Res. 41, 241–268 (2011).

    Article  CAS  Google Scholar 

  22. Rosseinsky, D. R. & Mortimer, R. J. Electrochromic systems and the prospects for devices. Adv. Mater. 13, 783–793 (2001).

    Article  CAS  Google Scholar 

  23. Deb, S. K. Opportunities and challenges in science and technology of WO3 for electrochromic and related applications. Sol. Energy Mater. Sol. Cells 92, 245–258 (2008).

    Article  CAS  Google Scholar 

  24. Granqvist, C. G. Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films 564, 1–38 (2014).

    Article  CAS  Google Scholar 

  25. Runnerstrom, E. L., Llordés, A., Lounis, S. D. & Milliron, D. J. Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals. Chem. Commun. 50, 10555–10572 (2014).

    Article  CAS  Google Scholar 

  26. Deb, S. K. Optical and photoelectric properties and colour centres in thin films of tungsten oxide. Philos. Mag. 27, 801–822 (1973).

    Article  CAS  Google Scholar 

  27. Hsu, C. S., Chan, C. C., Huang, H. T., Peng, C. H. & Hsu, W. C. Electrochromic properties of nanocrystalline MoO3 thin films. Thin Solid Films 516, 4839–4844 (2008).

    Article  CAS  Google Scholar 

  28. Franke, E. B., Trimble, C. L., Hale, J. S., Schubert, M. & Woollam, J. A. Infrared switching electrochromic devices based on tungsten oxide. J. Appl. Phys. 88, 5777–5784 (2000).

    Article  CAS  Google Scholar 

  29. Niklasson, G. A. & Granqvist, C. G. Electrochromics for smart windows: Thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 17, 127–156 (2007).

    Article  CAS  Google Scholar 

  30. Gottesfeld, S., McIntyre, J. D. E., Beni, G. & Shay, J. L. Electrochromism in anodic iridium oxide films. Appl. Phys. Lett. 33, 208–210 (1978).

    Article  CAS  Google Scholar 

  31. Deb, S. K. Reminescences on the discovery of electrochromic phenomena in transition metal oxides. Sol. Energy Mater. Sol. Cells 39, 191–201 (1995).

    Article  CAS  Google Scholar 

  32. Barile, C. J. et al. Dynamic windows with neutral color, high contrast, and excellent durability using reversible metal electrodeposition. Joule 1, 133–145 (2017).

    Article  CAS  Google Scholar 

  33. Islam, S. M., Hernandez, T. S., McGehee, M. D. & Barile, C. J. Hybrid dynamic windows using reversible metal electrodeposition and ion insertion. Nat. Energy 4, 223–229 (2019).

    Article  CAS  Google Scholar 

  34. Li, Y., Van De Groep, J., Talin, A. A. & Brongersma, M. L. Dynamic tuning of gap plasmon resonances using a solid-state electrochromic device. Nano Lett. 19, 7988–7995 (2019).

    Article  CAS  Google Scholar 

  35. Zanotto, S. et al. Metasurface reconfiguration through lithium-ion intercalation in a transition metal oxide. Adv. Opt. Mater. 5, 1600732 (2017).

    Article  Google Scholar 

  36. Xu, T. et al. High-contrast and fast electrochromic switching enabled by plasmonics. Nat. Commun. 7, 10479 (2016).

    Article  CAS  Google Scholar 

  37. Jeong, J. et al. Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation. Science 339, 1402–1406 (2013).

    Article  CAS  Google Scholar 

  38. Chen, S. et al. Gate-controlled VO2 phase transition FOR high-performance smart windows. Sci. Adv. 5, eaav6815 (2019).

    Article  CAS  Google Scholar 

  39. Nakano, M. et al. Infrared-sensitive electrochromic device based on VO2. Appl. Phys. Lett. 103, 153503 (2013).

    Article  CAS  Google Scholar 

  40. Lu, N. et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature 546, 124–128 (2017).

    Article  CAS  Google Scholar 

  41. Ramanathan, S. Functional materials at the flick of a switch. Nature 546, 40–41 (2017).

    Article  CAS  Google Scholar 

  42. Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article  CAS  Google Scholar 

  43. Kendall, J. D. & Kumar, S. The building blocks of a brain-inspired computer. Appl. Phys. Rev. 7, 011305 (2020).

    Article  CAS  Google Scholar 

  44. Merkle, R. C. Energy limits to the computational power of the human brain. Foresight Update 6. Foresight https://www.foresight.org/Updates/Update06/Update06.1.html. (1989).

  45. Kelly, J. E. & Hamm, S. Smart Machines: IBM’s Watson and the era of Cognitive Computing (Columbia Business School Publishing, 2013).

  46. Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015).

    Article  CAS  Google Scholar 

  47. Burr, G. W. et al. Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element. IEEE Trans. Electron Devices 62, 3498–3507 (2015).

    Article  Google Scholar 

  48. Kuzum, D., Jeyasingh, R. G. D., Lee, B. & Wong, H. S. P. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12, 2179–2186 (2012).

    Article  CAS  Google Scholar 

  49. Widrow, B. An Adaptive “Adaline” Neuron Using Chemical “Memistors” (Stanford University Stanford Electronics Laboratories, 1960).

  50. Widrow, B. & Hoff, M. E. in IRE WESCON Conference Record 96–104 (Academic, 1960).

  51. Fuller, E. J. et al. Redox transistors for neuromorphic computing. IBM J. Res. Dev. 63, 1–9 (2019).

    Article  Google Scholar 

  52. Tang, J. et al. in 2018 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2018).

  53. Leighton, C. Electrolyte-based ionic control of functional oxides. Nat. Mater. 18, 13–18 (2019).

    Article  CAS  Google Scholar 

  54. Nakano, M. et al. Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature 487, 459–462 (2012).

    Article  CAS  Google Scholar 

  55. Fuller, E. J. et al. Li-ion synaptic transistor for low power analog computing. Adv. Mater. 29, 1604310 (2017).

    Article  CAS  Google Scholar 

  56. Yang, C. S. et al. All-solid-state synaptic transistor with ultralow conductance for neuromorphic computing. Adv. Funct. Mater. 28, 1804170 (2018).

    Article  CAS  Google Scholar 

  57. Li, Y. et al. Low-voltage, CMOS-free synaptic memory based on LixTiO2 redox transistors. ACS Appl. Mater. Interfaces 11, 38982–38992 (2019).

    Article  CAS  Google Scholar 

  58. Yang, J. T. et al. Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor. Adv. Mater. 30, 1801548 (2018).

    Article  CAS  Google Scholar 

  59. Yao, X. et al. Protonic solid-state electrochemical synapse for physical neural networks. Nat. Commun. 11, 3134 (2020).

    Article  CAS  Google Scholar 

  60. Shi, J., Ha, S. D., Zhou, Y., Schoofs, F. & Ramanathan, S. A correlated nickelate synaptic transistor. Nat. Commun. 4, 2676 (2013).

    Article  CAS  Google Scholar 

  61. Huang, H. Y. et al. Electrolyte-gated synaptic transistor with oxygen ions. Adv. Funct. Mater. 29, 1902702 (2019).

    Article  CAS  Google Scholar 

  62. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Adv. Mater. 32, 2003984 (2020).

    Article  CAS  Google Scholar 

  63. Meng, Y. S. & Arroyo-De Dompablo, M. E. First principles computational materials design for energy storage materials in lithium ion batteries. Energy Environ. Sci. 2, 589–609 (2009).

    Article  CAS  Google Scholar 

  64. Marianetti, C. A., Kotliar, G. & Ceder, G. A first-order Mott transition in LixCoO2. Nat. Mater. 3, 627–631 (2004).

    Article  CAS  Google Scholar 

  65. Sharbati, M. T. et al. Low-power, electrochemically tunable graphene synapses for neuromorphic computing. Adv. Mater. 30, 1802353 (2018).

    Article  CAS  Google Scholar 

  66. Zhu, J. et al. Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics. Adv. Mater. 30, 1800195 (2018).

    Article  CAS  Google Scholar 

  67. Wan, Q., Sharbati, M. T., Erickson, J. R., Du, Y. & Xiong, F. Emerging artificial synaptic devices for neuromorphic computing. Adv. Mater. Technol. 4, 1900037 (2019).

    Article  Google Scholar 

  68. Keene, S. T. et al. A biohybrid synapse with neurotransmitter-mediated plasticity. Nat. Mater. 19, 969–973 (2020).

    Article  CAS  Google Scholar 

  69. Gkoupidenis, P., Schaefer, N., Garlan, B. & Malliaras, G. G. Neuromorphic functions in PEDOT:PSS organic electrochemical transistors. Adv. Mater. 27, 7176–7180 (2015).

    Article  CAS  Google Scholar 

  70. Van De Burgt, Y. et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414–418 (2017).

    Article  CAS  Google Scholar 

  71. Fuller, E. J. et al. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 364, 570–574 (2019).

    Article  CAS  Google Scholar 

  72. Melianas, A. et al. Temperature-resilient solid-state organic artificial synapses for neuromorphic computing. Sci. Adv. 6, eabb2958 (2020).

    Article  CAS  Google Scholar 

  73. Wehmeyer, G., Yabuki, T., Monachon, C., Wu, J. & Dames, C. Thermal diodes, regulators, and switches: Physical mechanisms and potential applications. Appl. Phys. Rev. 4, 041304 (2017).

    Article  CAS  Google Scholar 

  74. Sood, A. et al. An electrochemical thermal transistor. Nat. Commun. 9, 4510 (2018).

    Article  CAS  Google Scholar 

  75. Sood, A., Pop, E., Asheghi, M. & Goodson, K. E. in 2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) 1396–1402 (IEEE, 2018).

  76. Menyhart, K. & Krarti, M. Potential energy savings from deployment of Dynamic Insulation Materials for US residential buildings. Build. Environ. 114, 203–218 (2017).

    Article  Google Scholar 

  77. Henry, A., Prasher, R. & Majumdar, A. Five thermal energy grand challenges for decarbonization. Nat. Energy 5, 635–637 (2020).

    Article  CAS  Google Scholar 

  78. Issi, J.-P., Heremans, J. & Dresselhaus, M. S. Electronic and lattice contributions to the thermal conductivity of graphite intercalation compounds. Phys. Rev. B 27, 1333–1347 (1983).

    Article  CAS  Google Scholar 

  79. Cho, J. et al. Electrochemically tunable thermal conductivity of lithium cobalt oxide. Nat. Commun. 5, 4035 (2014).

    Article  CAS  Google Scholar 

  80. Zhu, G. et al. Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation. Nat. Commun. 7, 13211 (2016).

    Article  CAS  Google Scholar 

  81. Gu, X., Wei, Y., Yin, X., Li, B. & Yang, R. Colloquium: Phononic thermal properties of two-dimensional materials. Rev. Mod. Phys. 90, 041002 (2018).

    Article  CAS  Google Scholar 

  82. Kang, J. S., Ke, M. & Hu, Y. Ionic intercalation in two-dimensional van der Waals materials: In-situ characterization and electrochemical control of the anisotropic thermal conductivity of black phosphorus. Nano Lett. 17, 1431–1438 (2017).

    Article  CAS  Google Scholar 

  83. Qian, X., Gu, X., Dresselhaus, M. S. & Yang, R. Anisotropic tuning of graphite thermal conductivity by lithium intercalation. J. Phys. Chem. Lett. 7, 4744–4750 (2016).

    Article  CAS  Google Scholar 

  84. Fugallo, G. et al. Thermal conductivity of graphene and graphite: Collective excitations and mean free paths. Nano Lett. 14, 6109–6114 (2014).

    Article  CAS  Google Scholar 

  85. Sood, A. et al. Quasi-ballistic thermal transport across MoS2 thin films. Nano Lett. 19, 2434–2442 (2019).

    Article  CAS  Google Scholar 

  86. Chen, S., Sood, A., Pop, E., Goodson, K. E. & Donadio, D. Strongly tunable anisotropic thermal transport in MoS2 by strain and lithium intercalation: first-principles calculations. 2D Mater. 6, 025033 (2019).

    Article  CAS  Google Scholar 

  87. Goodson, K. E. Ordering up the minimum thermal conductivity of solids. Science 315, 342–343 (2007).

    Article  CAS  Google Scholar 

  88. Lu, Q. et al. Bi-directional tuning of thermal transport in SrCoOx with electrochemically induced phase transitions. Nat. Mater. 19, 655–662 (2020).

    Article  CAS  Google Scholar 

  89. Nyby, C. et al. Visualizing energy transfer at buried interfaces in layered materials using picosecond X-rays. Adv. Funct. Mater. 30, 2002282 (2020).

    Article  CAS  Google Scholar 

  90. Yang, C. et al. Cation insertion to break the activity/stability relationship for highly active oxygen evolution reaction catalyst. Nat. Commun. 11, 1378 (2020).

    Article  CAS  Google Scholar 

  91. Kang, Q. et al. Effect of interlayer spacing on the activity of layered manganese oxide bilayer catalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 139, 1863–1870 (2017).

    Article  CAS  Google Scholar 

  92. Lee, S. W. et al. The nature of lithium battery materials under oxygen evolution reaction conditions. J. Am. Chem. Soc. 134, 16959–16962 (2012).

    Article  CAS  Google Scholar 

  93. Wang, H. et al. Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano 8, 4940–4947 (2014).

    Article  CAS  Google Scholar 

  94. Wang, H. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl Acad. Sci. USA 110, 19701–19706 (2013).

    Article  CAS  Google Scholar 

  95. Lukowski, M. A. et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013).

    Article  CAS  Google Scholar 

  96. Shokhen, V. & Zitoun, D. Electrochemical intercalation of sodium in vertically aligned molybdenum disulfide for hydrogen evolution reaction. FlatChem 14, 100086 (2019).

    Article  CAS  Google Scholar 

  97. Han, B. et al. Activity and stability trends of perovskite oxides for oxygen evolution catalysis at neutral pH. Phys. Chem. Chem. Phys. 17, 22576–22580 (2015).

    Article  CAS  Google Scholar 

  98. Mefford, J. T., Akbashev, A. R., Zhang, L. & Chueh, W. C. Electrochemical reactivity of faceted β-Co(OH)2 single crystal platelet particles in alkaline electrolytes. J. Phys. Chem. C 123, 18783–18794 (2019).

    Article  CAS  Google Scholar 

  99. Cao, Y. L., Yang, H. X., Ai, X. P. & Xiao, L. F. The mechanism of oxygen reduction on MnO2-catalyzed air cathode in alkaline solution. J. Electroanal. Chem. 557, 127–134 (2003).

    Article  CAS  Google Scholar 

  100. Vondrák, J. et al. Carbon/manganese oxide based fuel cell electrocatalyst using “flywheel” principle. J. New Mater. Electrochem. Syst. 8, 1–4 (2005).

    Google Scholar 

  101. Trahey, L. et al. Synthesis, characterization, and structural modeling of high-capacity, dual functioning MnO2 electrode/electrocatalysts for Li-O2 cells. Adv. Energy Mater. 3, 75–84 (2013).

    Article  CAS  Google Scholar 

  102. Bediako, D. K., Surendranath, Y. & Nocera, D. G. Mechanistic studies of the oxygen evolution reaction mediated by a nickel–borate thin film electrocatalyst. J. Am. Chem. Soc. 135, 3662–3674 (2013).

    Article  CAS  Google Scholar 

  103. Surendranath, Y., Kanan, M. W. & Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 132, 16501–16509 (2010).

    Article  CAS  Google Scholar 

  104. Cai, G. et al. The direct growth of a WO3 nanosheet array on a transparent conducting substrate for highly efficient electrochromic and electrocatalytic applications. CrystEngComm 16, 6866–6872 (2014).

    Article  CAS  Google Scholar 

  105. Razmi, H. & Mohammad-Rezaei, R. Preparation of tungsten oxide nanoporous thin film at carbon ceramic electrode for electrocatalytic applications. Electrochim. Acta 56, 7220–7223 (2011).

    Article  CAS  Google Scholar 

  106. Xie, X. et al. Incorporation of tantalum ions enhances the electrocatalytic activity of hexagonal WO3 nanowires for hydrogen evolution reaction. Electrochim. Acta 134, 201–208 (2014).

    Article  CAS  Google Scholar 

  107. Rajeswari, J., Kishore, P., Viswanathan, B. & Varadarajan, T. Facile hydrogen evolution reaction on WO3 nanorods. Nanoscale Res. Lett. 2, 496–503 (2007).

    Article  CAS  Google Scholar 

  108. Ganesan, R. & Gedanken, A. Synthesis of WO3 nanoparticles using a biopolymer as a template for electrocatalytic hydrogen evolution. Nanotechnology 19, 025702 (2008).

    Article  CAS  Google Scholar 

  109. Mefford, J. T. et al. Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts. Nat. Commun. 7, 11053 (2016).

    Article  CAS  Google Scholar 

  110. Grimaud, A. et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9, 457–465 (2017).

    Article  CAS  Google Scholar 

  111. Mefford, J. T., Hardin, W. G., Dai, S., Johnston, K. P. & Stevenson, K. J. Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. Nat. Mater. 13, 726–732 (2014).

    Article  CAS  Google Scholar 

  112. Alexander, C. T. et al. Anion-based pseudocapacitance of the perovskite library La1−xSrxBO3−δ (B = Fe, Mn, Co). ACS Appl. Mater. Interfaces 11, 5084–5094 (2019).

    Article  CAS  Google Scholar 

  113. Chen, D. et al. Constructing a pathway for mixed ion and electron transfer reactions for O2 incorporation in Pr0.1Ce0.9O2−x. Nat. Catal. 3, 116–124 (2020).

    Article  CAS  Google Scholar 

  114. Voiry, D. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013).

    Article  CAS  Google Scholar 

  115. Acerce, M., Voiry, D. & Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10, 313–318 (2015).

    Article  CAS  Google Scholar 

  116. Mueller, D. N., MacHala, M. L., Bluhm, H. & Chueh, W. C. Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions. Nat. Commun. 6, 6097 (2015).

    Article  CAS  Google Scholar 

  117. Zou, Y. et al. Generating lithium vacancies through delithiation of Li(NixCoyMnz)O2 towards bifunctional electrocatalysts for rechargeable zinc-air batteries. Energy Storage Mater. 15, 202–208 (2018).

    Article  Google Scholar 

  118. Lu, Z. et al. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nat. Commun. 5, 4345 (2014).

    Article  CAS  Google Scholar 

  119. Augustyn, V. & Manthiram, A. Effects of chemical versus electrochemical delithiation on the oxygen evolution reaction activity of nickel-rich layered LiMO2. J. Phys. Chem. Lett. 6, 3787–3791 (2015).

    Article  CAS  Google Scholar 

  120. Wang, H. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 354, 1031–1036 (2016).

    Article  CAS  Google Scholar 

  121. Liu, Q. et al. In-situ imaging electrocatalysis in a Na-O2 battery with Au-coated MnO2 nanowires air cathode. Energy Storage Mater. 19, 48–55 (2019).

    Article  Google Scholar 

  122. Park, K.-W., Ahn, K.-S., Nah, Y.-C., Choi, J.-H. & Sung, Y.-E. Electrocatalytic enhancement of methanol oxidation at Pt–WOx nanophase electrodes and in-situ observation of hydrogen spillover using electrochromism. J. Phys. Chem. B 107, 4352–4355 (2003).

    Article  CAS  Google Scholar 

  123. Rebello, J. S., Samant, P. V., Figueiredo, J. L. & Fernandes, J. B. Enhanced electrocatalytic activity of carbon-supported MnOx/Ru catalysts for methanol oxidation in fuel cells. J. Power Sources 153, 36–40 (2006).

    Article  CAS  Google Scholar 

  124. Rolison, D. R., Hagans, P. L., Swider, K. E. & Long, J. W. Role of hydrous ruthenium oxide in Pt–Ru direct methanol fuel cell anode electrocatalysts: the importance of mixed electron/proton conductivity. Langmuir 15, 774–779 (1999).

    Article  CAS  Google Scholar 

  125. Long, J. W., Stroud, R. M., Swider-Lyons, K. E. & Rolison, D. R. How to make electrocatalysts more active for direct methanol oxidationavoid PtRu bimetallic alloys! J. Phys. Chem. B 104, 9772–9776 (2000).

    Article  CAS  Google Scholar 

  126. Singh, K., Porada, S., de Gier, H. D., Biesheuvel, P. M. & de Smet, L. C. P. M. Timeline on the application of intercalation materials in Capacitive Deionization. Desalination 455, 115–134 (2019).

    Article  CAS  Google Scholar 

  127. Metzger, M. et al. Techno-economic analysis of capacitive and intercalative water deionization. Energy Environ. Sci. 13, 1544–1560 (2020).

    Article  CAS  Google Scholar 

  128. Rassat, S. D., Sukamto, J. H., Orth, R. J., Lilga, M. A. & Hallen, R. T. Development of an electrically switched ion exchange process for selective ion separations. Sep. Purif. Technol. 15, 207–222 (1999).

    Article  CAS  Google Scholar 

  129. Porada, S., Shrivastava, A., Bukowska, P., Biesheuvel, P. M. & Smith, K. C. Nickel hexacyanoferrate electrodes for continuous cation intercalation desalination of brackish water. Electrochim. Acta 255, 369–378 (2017).

    Article  CAS  Google Scholar 

  130. Erinmwingbovo, C., Palagonia, M. S., Brogioli, D. & La Mantia, D. Intercalation into a Prussian blue derivative from solutions containing two species of cations. ChemPhysChem 18, 917–925 (2017).

    Article  CAS  Google Scholar 

  131. Kim, T., Gorski, C. A. & Logan, B. E. Low energy desalination using battery electrode deionization. Environ. Sci. Technol. Lett. 4, 444–449 (2017).

    Article  CAS  Google Scholar 

  132. Kim, T., Gorski, C. A. & Logan, B. E. Ammonium removal from domestic wastewater using selective battery electrodes. Environ. Sci. Technol. Lett. 5, 578–583 (2018).

    Article  CAS  Google Scholar 

  133. Vafakhah, S. et al. Efficient sodium-ion intercalation into the freestanding Prussian blue/graphene aerogel anode in a hybrid capacitive deionization system. ACS Appl. Mater. Interfaces 11, 5989–5998 (2019).

    Article  CAS  Google Scholar 

  134. Lee, J., Kim, S. & Yoon, J. Rocking chair desalination battery based on Prussian Blue electrodes. ACS Omega 2, 1653–1659 (2017).

    Article  CAS  Google Scholar 

  135. Sebti, E. et al. Removal of Na+ and Ca2+ with Prussian blue analogue electrodes for brackish water desalination. Desalination 487, 114479 (2020).

    Article  CAS  Google Scholar 

  136. La Mantia, F., Pasta, M., Deshazer, H. D., Logan, B. E. & Cui, Y. Batteries for efficient energy extraction from a water salinity difference. Nano Lett. 11, 1810–1813 (2011).

    Article  CAS  Google Scholar 

  137. Pasta, M., Wessells, C. D., Cui, Y. & La Mantia, F. A desalination battery. Nano Lett. 12, 839–843 (2012).

    Article  CAS  Google Scholar 

  138. Lee, J., Kim, S., Kim, C. & Yoon, J. Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy Environ. Sci. 7, 3683–3689 (2014).

    Article  CAS  Google Scholar 

  139. Srimuk, P. et al. Titanium disulfide: a promising low-dimensional electrode material for sodium ion intercalation for seawater desalination. Chem. Mater. 29, 9964–9973 (2017).

    Article  CAS  Google Scholar 

  140. Singh, K., Bouwmeester, H. J. M., De Smet, L. C. P. M., Bazant, M. Z. & Biesheuvel, P. M. Theory of water desalination with intercalation materials. Phys. Rev. Appl. 9, 64036 (2018).

    Article  CAS  Google Scholar 

  141. Hemmatifar, A. et al. Thermodynamics of ion separation by electrosorption. Environ. Sci. Technol. 52, 10196–10204 (2018).

    Article  CAS  Google Scholar 

  142. Liu, S. & Smith, K. C. Quantifying the trade-offs between energy consumption and salt removal rate in membrane-free cation intercalation desalination. Electrochim. Acta 271, 652–665 (2018).

    Article  CAS  Google Scholar 

  143. Pothanamkandathil, V., Fortunato, J. & Gorski, C. A. Electrochemical desalination using intercalating electrode materials: a comparison of energy demands. Environ. Sci. Technol. 54, 3653–3662 (2020).

    Article  CAS  Google Scholar 

  144. Suss, M. E. & Presser, V. Water desalination with energy storage electrode materials. Joule 2, 10–15 (2018).

    Article  Google Scholar 

  145. Qin, M. et al. Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis. Desalination 455, 100–114 (2019).

    Article  CAS  Google Scholar 

  146. Zhao, Z., Si, X., Liu, X., He, L. & Liang, X. Li extraction from high Mg/Li ratio brine with LiFePO4/FePO4 as electrode materials. Hydrometallurgy 133, 75–83 (2013).

    Article  CAS  Google Scholar 

  147. Trócoli, R., Battistel, A. & Mantia, F. L. Selectivity of a lithium-recovery process based on LiFePO4. Chem. Eur. J. 20, 9888–9891 (2014).

    Article  CAS  Google Scholar 

  148. Lee, D. H. et al. Selective lithium recovery from aqueous solution using a modified membrane capacitive deionization system. Hydrometallurgy 173, 283–288 (2017).

    Article  CAS  Google Scholar 

  149. Zhao, X., Yang, H., Wang, Y. & Sha, Z. Review on the electrochemical extraction of lithium from seawater/brine. J. Electroanal. Chem. 850, 113389 (2019).

    Article  CAS  Google Scholar 

  150. Liu, C. et al. Lithium extraction from seawater through pulsed electrochemical intercalation. Joule 4, 1459–1469 (2020).

    Article  CAS  Google Scholar 

  151. Smith, K. C. & Dmello, R. Na-ion desalination (NID) enabled by Na-blocking membranes and symmetric na-intercalation: porous-electrode modeling. J. Electrochem. Soc. 163, A530–A539 (2016).

    Article  CAS  Google Scholar 

  152. Smith, K. C. Theoretical evaluation of electrochemical cell architectures using cation intercalation electrodes for desalination. Electrochim. Acta 230, 333–341 (2017).

    Article  CAS  Google Scholar 

  153. Smith, R. B. & Bazant, M. Z. Multiphase porous electrode theory. J. Electrochem. Soc. 164, E3291–E3310 (2017).

    Article  CAS  Google Scholar 

  154. Maier, J. Review—battery materials: why defect chemistry? J. Electrochem. Soc. 162, A2380–A2386 (2015).

    Article  CAS  Google Scholar 

  155. Menetrier, M., Saadoune, I., Levasseur, S. & Delmas, C. The insulator-metal transition upon lithium deintercalation from LiCoO2: electronic properties and 7Li NMR study. J. Mater. Chem. 9, 1135–1140 (1999).

    Article  CAS  Google Scholar 

  156. Graetz, J. et al. Electronic structure of chemically-delithiated LiCoO2 studied by electron energy-loss spectrometry. J. Phys. Chem. B 106, 1286–1289 (2002).

    Article  CAS  Google Scholar 

  157. Laubach, S. et al. Changes in the crystal and electronic structure of LiCoO2 and LiNiO2 upon Li intercalation and de-intercalation. Phys. Chem. Chem. Phys. 11, 3278–3289 (2009).

    Article  CAS  Google Scholar 

  158. Lee, J. et al. Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials. Nat. Commun. 8, 981 (2017).

    Article  CAS  Google Scholar 

  159. Lun, Z. et al. Improved cycling performance of Li-excess cation-disordered cathode materials upon fluorine substitution. Adv. Energy Mater. 9, 1802959 (2019).

    Article  CAS  Google Scholar 

  160. House, R. A. et al. Lithium manganese oxyfluoride as a new cathode material exhibiting oxygen redox. Energy Environ. Sci. 11, 926–932 (2018).

    Article  CAS  Google Scholar 

  161. Lee, J. et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. Nature 556, 185–190 (2018).

    Article  CAS  Google Scholar 

  162. Seo, D. et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692–697 (2016).

    Article  CAS  Google Scholar 

  163. Mortemard de Boisse, B. et al. Highly reversible oxygen-redox chemistry at 4.1 V in Na4/7−x[□1/7Mn6/7]O2 (□: Mn vacancy). Adv. Energy Mater. 8, 1800409 (2018).

    Article  CAS  Google Scholar 

  164. Shunmugasundaram, R., Senthil Arumugam, R. & Dahn, J. R. High capacity Li-rich positive electrode materials with reduced first-cycle irreversible capacity loss. Chem. Mater. 27, 757–767 (2015).

    Article  CAS  Google Scholar 

  165. McCalla, E., Rowe, A. W., Camardese, J. & Dahn, J. R. The role of metal site vacancies in promoting Li–Mn–Ni–O layered solid solutions. Chem. Mater. 25, 2716–2721 (2013).

    Article  CAS  Google Scholar 

  166. Gent, W. E. et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 8, 2091 (2017).

    Article  CAS  Google Scholar 

  167. Hong, J. et al. Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat. Mater. 18, 256–265 (2019).

    Article  CAS  Google Scholar 

  168. Li, H. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 48–54 (2016).

    Article  CAS  Google Scholar 

  169. House, R. A. et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 577, 502–508 (2020).

    Article  CAS  Google Scholar 

  170. Gent, W. E., Abate, I. I., Yang, W., Nazar, L. F. & Chueh, W. C. Design rules for high-valent redox in intercalation electrodes. Joule 4, 1369–1397 (2020).

    Article  CAS  Google Scholar 

  171. Lee, J. et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014).

    Article  CAS  Google Scholar 

  172. Kim, H.-S. et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat. Mater. 16, 454–462 (2017).

    Article  CAS  Google Scholar 

  173. Shin, J., Seo, J. K., Yaylian, R., Huang, A. & Meng, Y. S. A review on mechanistic understanding of MnO2 in aqueous electrolyte for electrical energy storage systems. Int. Mater. Rev. 65, 356–387 (2020).

    Article  CAS  Google Scholar 

  174. Brousse, T. et al. Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J. Electrochem. Soc. 153, A2171 (2006).

    Article  CAS  Google Scholar 

  175. Devaraj, S. & Munichandraiah, N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C 112, 4406–4417 (2008).

    Article  CAS  Google Scholar 

  176. Ruetschi, P. Cation vacancies in MnO2 and their influence on electrochemical reactivity. J. Electrochem. Soc. 135, 2663 (1988).

    Article  CAS  Google Scholar 

  177. Li, Y. et al. Fluid-enhanced surface diffusion controls intraparticle phase transformations. Nat. Mater. 17, 915–922 (2018).

    Article  CAS  Google Scholar 

  178. Hahn, B. P., Long, J. W. & Rolison, D. R. Something from nothing: Enhancing electrochemical charge storage with cation vacancies. Acc. Chem. Res. 46, 1181–1191 (2013).

    Article  CAS  Google Scholar 

  179. Lin, F. et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014).

    Article  CAS  Google Scholar 

  180. Xu, B., Fell, C. R., Chi, M. & Meng, Y. S. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study. Energy Environ. Sci. 4, 2223 (2011).

    Article  CAS  Google Scholar 

  181. Boulineau, A., Simonin, L., Colin, J.-F., Bourbon, C. & Patoux, S. First evidence of manganese–nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries. Nano Lett. 13, 3857–3863 (2013).

    Article  CAS  Google Scholar 

  182. Jung, S.-K. et al. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv. Energy Mater. 4, 1300787 (2014).

    Article  CAS  Google Scholar 

  183. Kim, N. Y., Yim, T., Song, J. H., Yu, J.-S. & Lee, Z. Microstructural study on degradation mechanism of layered LiNi0.6Co0.2Mn0.2O2 cathode materials by analytical transmission electron microscopy. J. Power Sources 307, 641–648 (2016).

    Article  CAS  Google Scholar 

  184. Gu, M. et al. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 7, 760–767 (2013).

    Article  CAS  Google Scholar 

  185. Sathiya, M. et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater. 14, 230–238 (2015).

    Article  CAS  Google Scholar 

  186. Yin, W. et al. Structural evolution at the oxidative and reductive limits in the first electrochemical cycle of Li1.2Ni0.13Mn0.54Co0.13O2. Nat. Commun. 11, 1252 (2020).

    Article  CAS  Google Scholar 

  187. Teufl, T., Strehle, B., Müller, P., Gasteiger, H. A. & Mendez, M. A. Oxygen release and surface degradation of Li- and Mn-rich layered oxides in variation of the Li2MnO3 content. J. Electrochem. Soc. 165, A2718–A2731 (2018).

    Article  CAS  Google Scholar 

  188. Zhu, Z. et al. Gradient Li-rich oxide cathode particles immunized against oxygen release by a molten salt treatment. Nat. Energy 4, 1049–1058 (2019).

    Article  CAS  Google Scholar 

  189. Sun, Y. K. et al. Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 11, 942–947 (2012).

    Article  CAS  Google Scholar 

  190. Sun, Y. K. et al. High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 8, 320–324 (2009).

    Article  CAS  Google Scholar 

  191. Sun, Y. K. et al. A novel cathode material with a concentration-gradient for high-energy and safe lithium-ion batteries. Adv. Funct. Mater. 20, 485–491 (2010).

    Article  CAS  Google Scholar 

  192. Liao, J. Y., Oh, S. M. & Manthiram, A. Core/double-shell type gradient Ni-rich LiNi0.76Co0.10Mn0.14O2 with high capacity and long cycle life for lithium-ion batteries. ACS Appl. Mater. Interfaces 8, 24543–24549 (2016).

    Article  CAS  Google Scholar 

  193. Fraggedakis, D. et al. A scaling law to determine phase morphologies during ion intercalation. Energy Environ. Sci. 13, 2142–2152 (2020).

    Article  CAS  Google Scholar 

  194. Bazant, M. Z. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. Acc. Chem. Res. 46, 1144–1160 (2013).

    Article  CAS  Google Scholar 

  195. Bazant, M. Z. Thermodynamic stability of driven open systems and control of phase separation by electro-autocatalysis. Faraday Discuss. 199, 423–463 (2017).

    Article  CAS  Google Scholar 

  196. Maxisch, T., Zhou, F. & Ceder, G. Ab initio study of the migration of small polarons in olivine LixFePO4 and their association with lithium ions and vacancies. Phys. Rev. B 73, 104301 (2006).

    Article  CAS  Google Scholar 

  197. Fraggedakis, D. et al. Theory of coupled ion-electron transfer kinetics. Electrochim. Acta 367, 137432 (2021).

    Article  CAS  Google Scholar 

  198. Newman, J. & Thomas-Alyea, K. E. Electrochemical systems. (Wiley, 2004).

  199. Bai, P. & Bazant, M. Z. Charge transfer kinetics at the solid–solid interface in porous electrodes. Nat. Commun. 5, 3585 (2014).

    Article  CAS  Google Scholar 

  200. Austin, I. G. & Mott, N. F. Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41–102 (1969).

    Article  CAS  Google Scholar 

  201. Shluger, A. L. & Stoneham, A. M. Small polarons in real crystals: Concepts and problems. J. Phys. Condens. Matter 5, 3049–3086 (1993).

    Article  CAS  Google Scholar 

  202. Marcus, R. A. On the theory of oxidation—reduction reactions involving electron transfer. V. Comparison and properties of electrochemical and chemical rate constants. J. Phys. Chem. 67, 853–857 (1963).

    Article  CAS  Google Scholar 

  203. Marcus, R. A. On the theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions. J. Chem. Phys. 43, 679–701 (1965).

    Article  CAS  Google Scholar 

  204. Marcus, R. A. Electron transfer reactions in chemistry. Theory and experiment. Rev. Mod. Phys. 65, 599–610 (1993).

    Article  CAS  Google Scholar 

  205. Kuznetsov, A. M. & Ulstrup, J. Theory of electron transfer at electrified interfaces. Electrochim. Acta 45, 2339–2361 (2000).

    Article  CAS  Google Scholar 

  206. Zeng, Y., Smith, R. B., Bai, P. & Bazant, M. Z. Simple formula for Marcus–Hush–Chidsey kinetics. J. Electroanal. Chem. 735, 77–83 (2014).

    Article  CAS  Google Scholar 

  207. Bai, P., Cogswell, D. A. & Bazant, M. Z. Suppression of phase separation in LiFePO4 nanoparticles during battery discharge. Nano Lett. 11, 4890–4896 (2011).

    Article  CAS  Google Scholar 

  208. Park, J. et al. Fictitious phase separation in Li layered oxides driven by electro-autocatalysis. Nat. Mater. https://doi.org/10.1038/s41563-021-00936-1 (2021).

  209. Das, S., Attia, P. M., Chueh, W. C. & Bazant, M. Z. Electrochemical kinetics of SEI growth on carbon black: part II. Modeling. J. Electrochem. Soc. 166, E107–E118 (2019).

    Article  CAS  Google Scholar 

  210. Attia, P. M., Das, S., Harris, S. J., Bazant, M. Z. & Chueh, W. C. Electrochemical kinetics of SEI growth on carbon black: part I. Experiments. J. Electrochem. Soc. 166, E97–E106 (2019).

    Article  CAS  Google Scholar 

  211. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    Article  CAS  Google Scholar 

  212. Gauthier, M. et al. Electrode–electrolyte interface in Li-ion batteries: current understanding and new insights. J. Phys. Chem. Lett. 6, 4653–4672 (2015).

    Article  CAS  Google Scholar 

  213. Peled, E. & Menkin, S. Review—SEI: past, present and future. J. Electrochem. Soc. 164, A1703–A1719 (2017).

    Article  CAS  Google Scholar 

  214. Edström, K., Gustafsson, T. & Thomas, J. O. The cathode–electrolyte interface in the Li-ion battery. Electrochim. Acta 50, 397–403 (2004).

    Article  CAS  Google Scholar 

  215. Li, W. et al. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries. Nat. Commun. 8, 14589 (2017).

    Article  Google Scholar 

  216. Li, J., Li, W., You, Y. & Manthiram, A. Extending the service life of high-Ni layered oxides by tuning the electrode–electrolyte interphase. Adv. Energy Mater. 8, 1801957 (2018).

    Article  CAS  Google Scholar 

  217. An, S. J. et al. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105, 52–76 (2016).

    Article  CAS  Google Scholar 

  218. Dahn, J. R. Phase diagram of LixC6. Phys. Rev. B 44, 9170–9177 (1991).

    Article  CAS  Google Scholar 

  219. Reimers, J. N. Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc. 139, 2091 (1992).

    Article  CAS  Google Scholar 

  220. Padhi, A. K. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188 (1997).

    Article  CAS  Google Scholar 

  221. Maire, P., Evans, A., Kaiser, H., Scheifele, W. & Novák, P. Colorimetric determination of lithium content in electrodes of lithium-ion batteries. J. Electrochem. Soc. 155, A862 (2008).

    Article  CAS  Google Scholar 

  222. Guo, Y. et al. Li intercalation into graphite: direct optical imaging and Cahn–Hilliard reaction dynamics. J. Phys. Chem. Lett. 7, 2151–2156 (2016).

    Article  CAS  Google Scholar 

  223. Thomas-Alyea, K. E., Jung, C., Smith, R. B. & Bazant, M. Z. In situ observation and mathematical modeling of lithium distribution within graphite. J. Electrochem. Soc. 164, E3063–E3072 (2017).

    Article  CAS  Google Scholar 

  224. Shao-Horn, Y., Levasseur, S., Weill, F. & Delmas, C. Probing lithium and vacancy ordering in O3 Layered LixCoO2 (x ≈ 0.5). J. Electrochem. Soc. 150, A366 (2003).

    Article  CAS  Google Scholar 

  225. Peres, J. Lithium/vacancy ordering in the monoclinic LixNiO2 (0.50≤x≤0.75) solid solution. Solid State Ion. 116, 19–27 (1999).

    Article  CAS  Google Scholar 

  226. Gu, L. et al. Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution. J. Am. Chem. Soc. 133, 4661–4663 (2011).

    Article  CAS  Google Scholar 

  227. Iwaya, K. et al. Impact of lithium-ion ordering on surface electronic states of LixCoO2. Phys. Rev. Lett. 111, 126104 (2013).

    Article  CAS  Google Scholar 

  228. Zheng, J. et al. Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process. Nano Lett. 13, 3824–3830 (2013).

    Article  CAS  Google Scholar 

  229. Mauger, A. & Julien, C. Surface modifications of electrode materials for lithium-ion batteries: status and trends. Ionics 20, 751–787 (2014).

    Article  CAS  Google Scholar 

  230. Xiao, B. & Sun, X. Surface and subsurface reactions of lithium transition metal oxide cathode materials: an overview of the fundamental origins and remedying approaches. Adv. Energy Mater. 8, 1802057 (2018).

    Article  CAS  Google Scholar 

  231. Yu, H. et al. Direct atomic-resolution observation of two phases in the Li1.2Mn0.567Ni0.166Co0.067O2 cathode material for lithium-ion batteries. Angew. Chem. Int. Ed. 52, 5969–5973 (2013).

    Article  CAS  Google Scholar 

  232. Qi, Y. & Harris, S. J. In situ observation of strains during lithiation of a graphite electrode. J. Electrochem. Soc. 157, A741–A747 (2010).

    Article  CAS  Google Scholar 

  233. Lim, J. et al. Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles. Science 353, 566–571 (2016).

    Article  CAS  Google Scholar 

  234. Shapiro, D. A. et al. Chemical composition mapping with nanometre resolution by soft X-ray microscopy. Nat. Photonics 8, 765–769 (2014).

    Article  CAS  Google Scholar 

  235. Lucas, I. T. et al. IR near-field spectroscopy and imaging of single LixFePO4 microcrystals. Nano Lett. 15, 1–7 (2015).

    Article  CAS  Google Scholar 

  236. Yu, Y.-S. et al. Dependence on crystal size of the nanoscale chemical phase distribution and fracture in LixFePO4. Nano Lett. 15, 4282–4288 (2015).

    Article  CAS  Google Scholar 

  237. Wang, J., Karen Chen-Wiegart, Y., Eng, C., Shen, Q. & Wang, J. Visualization of anisotropic-isotropic phase transformation dynamics in battery electrode particles. Nat. Commun. 7, 12372 (2016).

    Article  CAS  Google Scholar 

  238. Zhu, X. et al. Direct observation of lithium-ion transport under an electrical field in LixCoO2 nanograins. Sci. Rep. 3, 1084 (2013).

    Article  CAS  Google Scholar 

  239. Cogswell, D. A. & Bazant, M. Z. Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles. ACS Nano 6, 2215–2225 (2012).

    Article  CAS  Google Scholar 

  240. Bishop, S. R. et al. Chemical expansion: Implications for electrochemical energy storage and conversion devices. Annu. Rev. Mater. Res. 44, 205–239 (2014).

    Article  CAS  Google Scholar 

  241. Cogswell, D. A. & Bazant, M. Z. Size-dependent phase morphologies in LiFePO4 battery particles. Electrochem. Commun. 95, 33–37 (2018).

    Article  CAS  Google Scholar 

  242. Cogswell, D. A. & Bazant, M. Z. Theory of coherent nucleation in phase-separating nanoparticles. Nano Lett. 13, 3036–3041 (2013).

    Article  CAS  Google Scholar 

  243. Nadkarni, N., Zhou, T., Fraggedakis, D., Gao, T. & Bazant, M. Z. Modeling the metal–insulator phase transition in LixCoO2 for energy and information storage. Adv. Funct. Mater. 29, 1902821 (2019).

    Article  CAS  Google Scholar 

  244. Singh, G. K., Ceder, G. & Bazant, M. Z. Intercalation dynamics in rechargeable battery materials: General theory and phase-transformation waves in LiFePO4. Electrochim. Acta 53, 7599–7613 (2008).

    Article  CAS  Google Scholar 

  245. Smith, R. B., Khoo, E. & Bazant, M. Z. Intercalation kinetics in multiphase-layered materials. J. Phys. Chem. C 121, 12505–12523 (2017).

    Article  CAS  Google Scholar 

  246. Gao, T. et al. Interplay of lithium intercalation and plating on a single graphite particle. Joule 5, 393–414 (2021).

    Article  CAS  Google Scholar 

  247. Gonzalez-Rosillo, J. C. et al. Lithium-batery anode gains additional functionality for neuromorphic computing through metal–insulator phase separation. Adv. Mater. 32, 1907465 (2020).

    Article  CAS  Google Scholar 

  248. Fraggedakis, D., Mirzadeh, M., Zhou, T. & Bazant, M. Z. Dielectric breakdown by electric-field induced phase separation. J. Electrochem. Soc. 167, 113504 (2020).

    Article  CAS  Google Scholar 

  249. Wagemaker, M. et al. Dynamic solubility limits in nanosized olivine LiFePO4. J. Am. Chem. Soc. 133, 10222–10228 (2011).

    Article  CAS  Google Scholar 

  250. Niu, J. et al. In situ observation of random solid solution zone in LiFePO4 electrode. Nano Lett. 14, 4005–4010 (2014).

    Article  CAS  Google Scholar 

  251. Zhang, X. et al. Rate-induced solubility and suppression of the first-order phase transition in olivine LiFePO4. Nano Lett. 14, 2279–2285 (2014).

    Article  CAS  Google Scholar 

  252. Liu, H. et al. Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes. Science 344, 1252817 (2014).

    Article  CAS  Google Scholar 

  253. Zhang, X. et al. Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling. Nat. Commun. 6, 8333 (2015).

    Article  CAS  Google Scholar 

  254. Fraggedakis, D. & Bazant, M. Z. Tuning the stability of electrochemical interfaces by electron transfer reactions. J. Chem. Phys. 152, 184703 (2020).

    Article  CAS  Google Scholar 

  255. Ferguson, T. R. & Bazant, M. Z. Nonequilibrium thermodynamics of porous electrodes. J. Electrochem. Soc. 159, A1967–A1985 (2012).

    Article  CAS  Google Scholar 

  256. Ferguson, T. R. & Bazant, M. Z. Phase transformation dynamics in porous battery electrodes. Electrochim. Acta 146, 89–97 (2014).

    Article  CAS  Google Scholar 

  257. Dreyer, W. et al. The thermodynamic origin of hysteresis in insertion batteries. Nat. Mater. 9, 448–453 (2010).

    Article  CAS  Google Scholar 

  258. Chueh, W. C. et al. Intercalation pathway in many-particle LiFePO4 electrode revealed by nanoscale state-of-charge mapping. Nano Lett. 13, 866–872 (2013).

    Article  CAS  Google Scholar 

  259. Li, Y. et al. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes. Nat. Mater. 13, 1149–1156 (2014).

    Article  CAS  Google Scholar 

  260. Urban, A., Seo, D. H. & Ceder, G. Computational understanding of Li-ion batteries. npj Comput. Mater. 2, 16002 (2016).

    Article  CAS  Google Scholar 

  261. Jaramillo-Botero, A. First-principles-based multiscale, multiparadigm molecular mechanics and dynamics methods for describing complex chemical processes. Top. Curr. Chem. 307, 1–42 (2012).

    CAS  Google Scholar 

  262. Trease, N. M., Zhou, L., Chang, H. J., Zhu, B. Y. & Grey, C. P. In situ NMR of lithium ion batteries: Bulk susceptibility effects and practical considerations. Solid State Nucl. Magn. Reson. 42, 62–70 (2012).

    Article  CAS  Google Scholar 

  263. Pecher, O., Carretero-Gonzalez, J., Griffith, K. J. & Grey, C. P. Materials’ methods: NMR in battery research. Chem. Mater. 29, 213–242 (2017).

    Article  CAS  Google Scholar 

  264. Pell, A. J., Pintacuda, G. & Grey, C. P. Paramagnetic NMR in solution and the solid state. Prog. Nucl. Magn. Reson. Spectrosc. 111, 1–271 (2019).

    Article  CAS  Google Scholar 

  265. Funke, K. & Banhatti, R. D. Conductivity spectroscopy covering 17 decades on the frequency scale. Solid State Ion. 176, 1971–1978 (2005).

    Article  CAS  Google Scholar 

  266. Yuan, Y., Amine, K., Lu, J. & Shahbazian-Yassar, R. Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy. Nat. Commun. 8, 15806 (2017).

    Article  CAS  Google Scholar 

  267. Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 358, 506–510 (2017).

    Article  CAS  Google Scholar 

  268. Wang, X., Li, Y. & Meng, Y. S. Cryogenic electron microscopy for characterizing and diagnosing batteries. Joule 2, 2225–2234 (2018).

    Article  CAS  Google Scholar 

  269. Wolf, M., May, B. M. & Cabana, J. Visualization of electrochemical reactions in battery materials with X-ray microscopy and mapping. Chem. Mater. 29, 3347–3362 (2017).

    Article  CAS  Google Scholar 

  270. Holt, M., Harder, R., Winarski, R. & Rose, V. Nanoscale hard X-ray microscopy methods for materials studies. Annu. Rev. Mater. Res. 43, 183–211 (2013).

    Article  CAS  Google Scholar 

  271. Lin, F. et al. Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries. Chem. Rev. 117, 13123–13186 (2017).

    Article  CAS  Google Scholar 

  272. Bachman, J. C. et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016).

    Article  CAS  Google Scholar 

  273. Ohno, S. et al. Materials design of ionic conductors for solid state batteries. Prog. Energy 2, 022001 (2020).

    Article  Google Scholar 

  274. Vineyard, G. H. Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids 3, 121–127 (1957).

    Article  CAS  Google Scholar 

  275. Wakamura, K. Roles of phonon amplitude and low-energy optical phonons on superionic conduction. Phys. Rev. B 56, 11593–11599 (1997).

    Article  CAS  Google Scholar 

  276. Gray-Weale, A. & Madden, P. A. The energy landscape of a fluorite-structured superionic conductor. J. Phys. Chem. B 108, 6634–6642 (2004).

    Article  CAS  Google Scholar 

  277. Annamareddy, A. & Eapen, J. Low dimensional string-like relaxation underpins superionic conduction in fluorites and related structures. Sci. Rep. 7, 44149 (2017).

    Article  CAS  Google Scholar 

  278. Donati, C. et al. Stringlike cooperative motion in a supercooled liquid. Phys. Rev. Lett. 80, 2338–2341 (1998).

    Article  CAS  Google Scholar 

  279. He, X., Zhu, Y. & Mo, Y. Origin of fast ion diffusion in super-ionic conductors. Nat. Commun. 8, 15893 (2017).

    Article  CAS  Google Scholar 

  280. Morgan, B. J. & Madden, P. A. Relationships between atomic diffusion mechanisms and ensemble transport coefficients in crystalline polymorphs. Phys. Rev. Lett. 112, 145901 (2014).

    Article  CAS  Google Scholar 

  281. Wall, S. et al. Ultrafast disordering of vanadium dimers in photoexcited VO2. Science 362, 572–576 (2018).

    Article  CAS  Google Scholar 

  282. Funke, K. Ion transport and relaxation studied by high-frequency conductivity and quasi-elastic neutron scattering. Philos. Mag. A 64, 1025–1034 (1991).

    Article  CAS  Google Scholar 

  283. Funke, K. Ion dynamics and correlations. Philos. Mag. A 68, 711–724 (1993).

    Article  CAS  Google Scholar 

  284. Lindenberg, A. M., Johnson, S. L. & Reis, D. A. Visualization of atomic-scale motions in materials via femtosecond X-ray scattering techniques. Annu. Rev. Mater. Res. 47, 425–449 (2017).

    Article  CAS  Google Scholar 

  285. Trigo, M. et al. Fourier-transform inelastic X-ray scattering from time- and momentum-dependent phonon–phonon correlations. Nat. Phys. 9, 790–794 (2013).

    Article  CAS  Google Scholar 

  286. Sie, E. J. et al. An ultrafast symmetry switch in a Weyl semimetal. Nature 565, 61–66 (2019).

    Article  CAS  Google Scholar 

  287. Weathersby, S. P. et al. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory. Rev. Sci. Instrum. 86, 073702 (2015).

    Article  CAS  Google Scholar 

  288. Sciaini, G. & Miller, R. J. D. Femtosecond electron diffraction: heralding the era of atomically resolved dynamics. Rep. Prog. Phys. 74, 96101 (2011).

    Article  CAS  Google Scholar 

  289. Plemmons, D., Suri, P. & Flannigan, D. Probing structural and electronic dynamics with ultrafast electron microscopy. Chem. Mater. 27, 3178–3192 (2015).

    Article  CAS  Google Scholar 

  290. Bostedt, C. et al. Linac coherent light source: The first five years. Rev. Mod. Phys. 88, 15007 (2016).

    Article  Google Scholar 

  291. Sood, A., et al. Universal phase dynamics in VO2 switches revealed by ultrafast operando diffraction. Preprint at arXiv https://arxiv.org/abs/2102.06013v1 (2021).

  292. Peisl, H. Defect properties from X-ray scattering experiments. J. Phys. Colloq. 37, C7-47–C7-53 (1976).

    Article  Google Scholar 

  293. Dederichs, P. H. The theory of diffuse X-ray scattering and its application to the study of point defects and their clusters. J. Phys. F Met. Phys. 3, 471 (1973).

    Article  CAS  Google Scholar 

  294. Billinge, S. J. L. Nanoscale structural order from the atomic pair distribution function (PDF): There’s plenty of room in the middle. J. Solid State Chem. 181, 1695–1700 (2008).

    Article  CAS  Google Scholar 

  295. Roseker, W. et al. Towards ultrafast dynamics with split-pulse X-ray photon correlation spectroscopy at free electron laser sources. Nat. Commun. 9, 1704 (2018).

    Article  CAS  Google Scholar 

  296. Sun, Y. et al. Realizing split-pulse x-ray photon correlation spectroscopy to measure ultrafast dynamics in complex matter. Phys. Rev. Res. 2, 023099 (2020).

    Article  CAS  Google Scholar 

  297. Bakulin, A. A. et al. Mode-selective vibrational modulation of charge transport in organic electronic devices. Nat. Commun. 6, 7880 (2015).

    Article  CAS  Google Scholar 

  298. Hoffmann, M. C., Hebling, J., Hwang, H. Y., Yeh, K.-L. & Nelson, K. A. THz-pump/THz-probe spectroscopy of semiconductors at high field strengths. JOSA B 26, A29–A34 (2009).

    Article  CAS  Google Scholar 

  299. Marsik, P. et al. Terahertz ellipsometry study of the soft mode behavior in ultrathin SrTiO3 films. Appl. Phys. Lett. 108, 052901 (2016).

    Article  CAS  Google Scholar 

  300. Neu, J. & Schmuttenmaer, C. A. Tutorial: An introduction to terahertz time domain spectroscopy (THz-TDS). J. Appl. Phys. 124, 231101 (2018).

    Article  CAS  Google Scholar 

  301. Jaramillo, R. et al. Transient terahertz photoconductivity measurements of minority-carrier lifetime in tin sulfide thin films: Advanced metrology for an early stage photovoltaic material. J. Appl. Phys. 119, 035101 (2016).

    Article  CAS  Google Scholar 

  302. Sher, M.-J. et al. Time- and temperature-independent local carrier mobility and effects of regioregularity in polymer-fullerene organic semiconductors. Adv. Electron. Mater. 2, 1500351 (2016).

    Article  CAS  Google Scholar 

  303. Lloyd-Hughes, J. & Jeon, T. I. A review of the terahertz conductivity of bulk and nano-materials. J. Infrared Millim. Terahertz Waves 33, 871–925 (2012).

    Article  CAS  Google Scholar 

  304. Morimoto, T. et al. Microscopic ion migration in solid electrolytes revealed by terahertz time-domain spectroscopy. Nat. Commun. 10, 2662 (2019).

    Article  CAS  Google Scholar 

  305. Hoffmann, M. C. & Fülöp, J. A. Intense ultrashort terahertz pulses: Generation and applications. J. Phys. D Appl. Phys. 44, 083001 (2011).

    Article  CAS  Google Scholar 

  306. Daranciang, D. et al. Single-cycle terahertz pulses with >0.2 V/Å field amplitudes via coherent transition radiation. Appl. Phys. Lett. 99, 141117 (2011).

    Article  CAS  Google Scholar 

  307. Hwang, H. Y. et al. A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses. J. Mod. Opt. 62, 1447–1479 (2015).

    Article  CAS  Google Scholar 

  308. Först, M. et al. Nonlinear phononics as an ultrafast route to lattice control. Nat. Phys. 7, 854–856 (2011).

    Article  CAS  Google Scholar 

  309. Mankowsky, R., Von Hoegen, A., Först, M. & Cavalleri, A. Ultrafast reversal of the ferroelectric polarization. Phys. Rev. Lett. 118, 197601 (2017).

    Article  CAS  Google Scholar 

  310. Von Hoegen, A., Mankowsky, R., Fechner, M., Först, M. & Cavalleri, A. Probing the interatomic potential of solids with strong-field nonlinear phononics. Nature 555, 79–82 (2018).

    Article  CAS  Google Scholar 

  311. Kozina, M. et al. Terahertz-driven phonon upconversion in SrTiO3. Nat. Phys. 15, 387–392 (2019).

    Article  CAS  Google Scholar 

  312. LaRue, J. L. et al. THz-pulse-induced selective catalytic CO oxidation on Ru. Phys. Rev. Lett. 115, 036103 (2015).

    Article  CAS  Google Scholar 

  313. Kampfrath, T., Tanaka, K. & Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photonics 7, 680–690 (2013).

    Article  CAS  Google Scholar 

  314. Bakulin, A. A., Silva, C. & Vella, E. Ultrafast spectroscopy with photocurrent detection: watching excitonic optoelectronic systems at work. J. Phys. Chem. Lett. 7, 250–258 (2016).

    Article  CAS  Google Scholar 

  315. Rogers, J. A., Maznev, A. A., Banet, M. J. & Nelson, K. A. Optical generation and characterization of acoustic waves in thin films. Annu. Rev. Mater. Sci. 30, 117–157 (2000).

    Article  CAS  Google Scholar 

  316. Chen, X. et al. Modern scattering-type scanning near-field optical microscopy for advanced material research. Adv. Mater. 31, 1804774 (2019).

    Article  CAS  Google Scholar 

  317. Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017).

    Article  CAS  Google Scholar 

  318. Bonetti, S. et al. Microwave soft x-ray microscopy for nanoscale magnetization dynamics in the 5–10 GHz frequency range. Rev. Sci. Instrum. 86, 093703 (2015).

    Article  CAS  Google Scholar 

  319. Schaffers, T. et al. Extracting the dynamic magnetic contrast in time-resolved X-ray transmission microscopy. Nanomaterials 9, 940 (2019).

    Article  CAS  Google Scholar 

  320. Molinari, A., Hahn, H. & Kruk, R. Voltage-control of magnetism in all-solid-state and solid/liquid magnetoelectric composites. Adv. Mater. 31, 1806662 (2019).

    Article  CAS  Google Scholar 

  321. Chin, T. E., Rhyner, U., Koyama, Y., Hall, S. R. & Chiang, Y. M. Lithium rechargeable batteries as electromechanical actuators. Electrochem. Solid State Lett. 9, A134 (2006).

    Article  CAS  Google Scholar 

  322. Koyama, Y. et al. Harnessing the actuation potential of solid-state intercalation compounds. Adv. Funct. Mater. 16, 492–498 (2006).

    Article  CAS  Google Scholar 

  323. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44, 1272–1276 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (contract DE-AC02-76SF00515), as well as by the Toyota Research Institute through D3BATT: Center for Data-Driven Design of Li-Ion Batteries. P.M.C. acknowledges support through the Stanford Graduate Fellowship as a Winston and Fu-Mei Chen Fellow and through the National Science Foundation Graduate Research Fellowship under grant no. DGE-1656518. We thank Y. Li (University of Michigan), A. Salleo, Y. Cui, H. Thaman, A. Baclig and A. Liang (Stanford University), and M. Aykol (Toyota Research Institute) for discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion of content and editing of the manuscript prior to submission. A.S., A.D.P., D.A.C., P.M.C., J.T.M. and D.F. researched literature for the article. Specifically, A.S. led the drafting of the manuscript and contributed to the dynamic switching sections, A.D.P. contributed to the ultrafast section with input from A.M.L., D.A.C. contributed to the interfaces and phase transformations sections with input from D.F., P.M.C. contributed to the point defects section, J.T.M. contributed to the electrocatalysis section, D.F. contributed to the coupled ion–electron transfer section and M.Z.B. contributed to the desalination section. A.S., A.D.P., D.A.C., P.M.C. and J.T.M. contributed equally and are listed alphabetically.

Corresponding authors

Correspondence to Michael F. Toney, Aaron M. Lindenberg, Martin Z. Bazant or William C. Chueh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Materials thanks Alec Talin and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sood, A., Poletayev, A.D., Cogswell, D.A. et al. Electrochemical ion insertion from the atomic to the device scale. Nat Rev Mater 6, 847–867 (2021). https://doi.org/10.1038/s41578-021-00314-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00314-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing