Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

From molecular to supramolecular electronics

Abstract

Using individual molecules as conducting bridges for electrons offers opportunities when investigating quantum phenomena that are not readily accessible from experiments involving ensembles of molecules. The probing of single molecules has led, over the past few decades, to the rise of molecular electronics. Although single-supermolecule electronics is an emerging field, it is not yet a well-defined area of molecular electronics. There is little doubt, however, that single-supermolecule electronics is poised to have an impact on molecular electronics for the simple reason that non-covalent interactions between molecular components in complexes have a profound effect on electron conductivities. In this Review, we survey this emerging field from the standpoint of non-covalent interactions in mechanically interlocked molecules, as well as in supermolecules, and discuss the (super)structure–property relationship of four different interactions associated with (supra)molecular junctions. They are host–guest interactions, hydrogen bonding, ππ interactions, and non-covalent interactions present in mechanically interlocked molecules. We focus our attention on providing a supramolecular-level understanding of charge transport behaviour associated with each interaction, as well as demonstrating the theoretical background and experimental readiness of single-supermolecule electronics for potential applications, such as nucleic acid and peptide sequencing, and the design and production of quantum interference devices, random-access memories and integrated devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Sub-fields within molecular electronics.
Fig. 2: Testbeds for single-supermolecule electronics.
Fig. 3: Molecular circuits based on macrocycles and host-guest complexes.
Fig. 4: Hydrogen-bonding investigation focusing on applications in tunnelling sequencing.
Fig. 5: Charge transport in π-stacked systems.
Fig. 6: Mechanically interlocked molecule (MIM)-based monolayer junctions and integrated circuits.
Fig. 7: Mechanically interlocked molecule (MIM)-based single-molecule junctions.

References

  1. 1.

    Aviram, A. & Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).

    CAS  Article  Google Scholar 

  2. 2.

    Joachim, C., Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000).

    CAS  Article  Google Scholar 

  3. 3.

    Flood, A. H., Stoddart, J. F., Steuerman, D. W. & Heath, J. R. Whence molecular electronics? Science 306, 2055–2056 (2004).

    CAS  Article  Google Scholar 

  4. 4.

    Joachim, C. & Ratner, M. A. Molecular electronics: some views on transport junctions and beyond. Proc. Natl Acad. Sci. USA 102, 8801–8808 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    Ratner, M. A. A brief history of molecular electronics. Nat. Nanotechnol. 8, 378–381 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    van der Molen, S. J. et al. Visions for a molecular future. Nat. Nanotechnol. 8, 385–389 (2013).

    Article  CAS  Google Scholar 

  7. 7.

    Lambert, C. J. Basic concepts of quantum interference and electron transport in single-molecule electronics. Chem. Soc. Rev. 44, 875–888 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Xiang, D., Wang, X., Jia, C., Lee, T. & Guo, X. Molecular-scale electronics: from concept to function. Chem. Rev. 116, 4318–4440 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Su, T. A., Neupane, M., Steigerwald, M. L., Venkataraman, L. & Nuckolls, C. Chemical principles of single-molecule electronics. Nat. Rev. Mater. 1, 16002 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Xin, N. et al. Concepts in the design and engineering of single-molecule electronic devices. Nat. Rev. Phys. 1, 211–230 (2019).

    Article  Google Scholar 

  11. 11.

    Gehring, P., Thijssen, J. M. & van der Zant, H. S. J. Single-molecule quantum-transport phenomena in break junctions. Nat. Rev. Phys. 1, 381–396 (2019).

    Article  Google Scholar 

  12. 12.

    Feldman, A. K., Steigerwald, M. L., Guo, X. & Nuckolls, C. Molecular electronic devices based on single-walled carbon nanotube electrodes. Acc. Chem. Res. 41, 1731–1741 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    Yoshizawa, K. An orbital rule for electron transport in molecules. Acc. Chem. Res. 45, 1612–1621 (2012).

    CAS  Article  Google Scholar 

  14. 14.

    Jia, C., Ma, B., Xin, N. & Guo, X. Carbon electrode–molecule junctions: a reliable platform for molecular electronics. Acc. Chem. Res. 48, 2565–2575 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Hybertsen, M. S. & Venkataraman, L. Structure–property relationships in atomic-scale junctions: histograms and beyond. Acc. Chem. Res. 49, 452–460 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Lo, W.-Y., Zhang, N., Cai, Z., Li, L. & Yu, L. Beyond molecular wires: design molecular electronic functions based on dipolar effect. Acc. Chem. Res. 49, 1852–1863 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Su, T. A. et al. Silane and germane molecular electronics. Acc. Chem. Res. 50, 1088–1095 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Liu, J., Huang, X., Wang, F. & Hong, W. Quantum interference effects in charge transport through single-molecule junctions: detection, manipulation, and application. Acc. Chem. Res. 52, 151–160 (2019).

    CAS  Article  Google Scholar 

  19. 19.

    Li, Y., Yang, C. & Guo, X. Single-molecule electrical detection: a promising route toward the fundamental limits of chemistry and life science. Acc. Chem. Res. 53, 159–169 (2020).

    CAS  Article  Google Scholar 

  20. 20.

    Lehn, J.-M. Supramolecular chemistry — scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem. Int. Ed. 27, 89–112 (1988).

    Article  Google Scholar 

  21. 21.

    Han, Y. et al. Electric-field-driven dual-functional molecular switches in tunnel junctions. Nat. Mater. 19, 843–848 (2020).

    CAS  Article  Google Scholar 

  22. 22.

    Zhou, C. et al. Direct observation of single-molecule hydrogen-bond dynamics with single-bond resolution. Nat. Commun. 9, 807 (2018).

    Article  CAS  Google Scholar 

  23. 23.

    Dubecký, M., Mitas, L. & Jurecˇka, P. Noncovalent interactions by quantum Monte Carlo. Chem. Rev. 116, 5188–5215 (2016).

    Article  CAS  Google Scholar 

  24. 24.

    Biedermann, F. & Schneider, H.-J. Experimental binding energies in supramolecular complexes. Chem. Rev. 116, 5216–5300 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Christensen, A. S., Kubarˇ, T., Cui, Q. & Elstner, M. Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biochemical applications. Chem. Rev. 116, 5301–5337 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Rodgers, M. T. & Armentrout, P. B. Cationic noncovalent interactions: energetics and periodic trends. Chem. Rev. 116, 5642–5687 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Stoddart, J. F. Mechanically interlocked molecules (MIMs) — molecular shuttles, switches, and machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11094–11125 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Bruns, C. J. & Stoddart, J. F. The Nature of the Mechanical Bond: From Molecules to Machines (Wiley, 2016).

  29. 29.

    Coskun, A. et al. High hopes: can molecular electronics realise its potential? Chem. Soc. Rev. 41, 4827–4859 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    Aradhya, S. V. & Venkataraman, L. Single-molecule junctions beyond electronic transport. Nat. Nanotechnol. 8, 399–410 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    Guo, C. et al. Molecular rectifier composed of DNA with high rectification ratio enabled by intercalation. Nat. Chem. 8, 484–490 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Xiang, L. et al. Intermediate tunnelling–hopping regime in DNA charge transport. Nat. Chem. 7, 221–226 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Chang, S. et al. Tunnelling readout of hydrogen-bonding-based recognition. Nat. Nanotechnol. 4, 297–301 (2009).

    CAS  Article  Google Scholar 

  34. 34.

    Zhao, Y. A. et al. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling. Nat. Nanotechnol. 9, 466–473 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    Im, J., Sen, S., Lindsay, S. & Zhang, P. Recognition tunneling of canonical and modified RNA nucleotides for their identification with the aid of machine learning. ACS Nano 12, 7067–7075 (2018).

    CAS  Article  Google Scholar 

  36. 36.

    Magoga, M. & Joachim, C. Conductance of molecular wires connected or bonded in parallel. Phys. Rev. B 59, 16011–16021 (1999).

    CAS  Article  Google Scholar 

  37. 37.

    Vazquez, H. et al. Probing the conductance superposition law in single-molecule circuits with parallel paths. Nat. Nanotechnol. 7, 663–667 (2012).

    CAS  Article  Google Scholar 

  38. 38.

    Chen, H. et al. Giant conductance enhancement of intramolecular circuits through interchannel gating. Matter 2, 378–389 (2020).

    Article  Google Scholar 

  39. 39.

    Zhou, C. et al. Revealing charge- and temperature-dependent movement dynamics and mechanism of individual molecular machines. Small Methods 3, 1900464 (2019).

    CAS  Article  Google Scholar 

  40. 40.

    Huang, C., Rudnev, A. V., Hong, W. & Wandlowski, T. Break junction under electrochemical gating: testbed for single-molecule electronics. Chem. Soc. Rev. 44, 889–901 (2015).

    CAS  Article  Google Scholar 

  41. 41.

    Tang, J. H. et al. Single-molecule level control of host-guest interactions in metallocycle–C60 complexes. Nat. Commun. 10, 4599 (2019).

    Article  CAS  Google Scholar 

  42. 42.

    Wang, K. et al. Charge transfer complexation boosts molecular conductance through Fermi level pinning. Chem. Sci. 10, 2396–2403 (2019).

    CAS  Article  Google Scholar 

  43. 43.

    Vezzoli, A. et al. Gating of single molecule junction conductance by charge transfer complex formation. Nanoscale 7, 18949–18955 (2015).

    CAS  Article  Google Scholar 

  44. 44.

    Tang, Z. et al. Solvent-molecule interaction induced gating of charge transport through single-molecule junctions. Sci. Bull. 65, 944–950 (2020).

    CAS  Article  Google Scholar 

  45. 45.

    Makk, P. et al. Correlation analysis of atomic and single-molecule junction conductance. ACS Nano 6, 3411–3423 (2012).

    CAS  Article  Google Scholar 

  46. 46.

    Huang, C. C. et al. Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique. Nat. Commun. 8, 15436 (2017).

    CAS  Article  Google Scholar 

  47. 47.

    Zhang, W. et al. Single-molecule conductance of viologen–cucurbit[8]uril host–guest complexes. ACS Nano 10, 5212–5220 (2016).

    CAS  Article  Google Scholar 

  48. 48.

    Wang, Y., Frasconi, M. & Stoddart, J. F. Introducing stable radicals into molecular machines. ACS Cent. Sci. 3, 927–935 (2017).

    CAS  Article  Google Scholar 

  49. 49.

    Vezzoli, A. et al. Soft versus hard junction formation for α-terthiophene molecular wires and their charge transfer complexes. J. Chem. Phys. 146, 092307 (2017).

    Article  CAS  Google Scholar 

  50. 50.

    Nichols, R. J. et al. The experimental determination of the conductance of single molecules. Phys. Chem. Chem. Phys. 12, 2801–2815 (2010).

    CAS  Article  Google Scholar 

  51. 51.

    Branton, D. et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008).

    CAS  Article  Google Scholar 

  52. 52.

    Restrepo-Perez, L., Joo, C. & Dekker, C. Paving the way to single-molecule protein sequencing. Nat. Nanotechnol. 13, 786–796 (2018).

    CAS  Article  Google Scholar 

  53. 53.

    Im, J. et al. Electronic single-molecule identification of carbohydrate isomers by recognition tunnelling. Nat. Commun. 7, 13868 (2016).

    CAS  Article  Google Scholar 

  54. 54.

    Schönherr, H. et al. Individual supramolecular host−guest interactions studied by dynamic single molecule force spectroscopy. J. Am. Chem. Soc. 122, 4963–4967 (2000).

    Article  CAS  Google Scholar 

  55. 55.

    Sluysmans, D. & Stoddart, J. F. The burgeoning of mechanically interlocked molecules in chemistry. Trends Chem. 1, 185–197 (2019).

    CAS  Article  Google Scholar 

  56. 56.

    Sluysmans, D., Devaux, F., Bruns, C. J., Stoddart, J. F. & Duwez, A.-S. Dynamic force spectroscopy of synthetic oligorotaxane foldamers. Proc. Natl Acad. Sci. USA 115, 9362–9366 (2018).

    CAS  Article  Google Scholar 

  57. 57.

    Sluysmans, D. et al. Synthetic oligorotaxanes exert high forces when folding under mechanical load. Nat. Nanotechnol. 13, 209–213 (2018).

    CAS  Article  Google Scholar 

  58. 58.

    Xing, H. et al. Mechanochemistry of an interlocked poly[2]catenane: from single molecule to bulk gel. CCS Chem. 1, 513–523 (2019).

    Google Scholar 

  59. 59.

    Fisher, T. E., Marszalek, P. E. & Fernandez, J. M. Stretching single molecules into novel conformations using the atomic force microscope. Nat. Struct. Biol. 7, 719–724 (2000).

    CAS  Article  Google Scholar 

  60. 60.

    Krieg, M. et al. Atomic force microscopy-based mechanobiology. Nat. Rev. Phys. 1, 41–57 (2019).

    Article  Google Scholar 

  61. 61.

    Rubio, G., Agraït, N. & Vieira, S. Atomic-sized metallic contacts: mechanical properties and electronic transport. Phys. Rev. Lett. 76, 2302–2305 (1996).

    CAS  Article  Google Scholar 

  62. 62.

    Xu, B., Xiao, X. & Tao, N. J. Measurements of single-molecule electromechanical properties. J. Am. Chem. Soc. 125, 16164–16165 (2003).

    CAS  Article  Google Scholar 

  63. 63.

    Aradhya, S. V. et al. Dissecting contact mechanics from quantum interference in single-molecule junctions of stilbene derivatives. Nano Lett. 12, 1643–1647 (2012).

    CAS  Article  Google Scholar 

  64. 64.

    Frei, M., Aradhya, S. V., Koentopp, M., Hybertsen, M. S. & Venkataraman, L. Mechanics and chemistry: single molecule bond rupture forces correlate with molecular backbone structure. Nano Lett. 11, 1518–1523 (2011).

    CAS  Article  Google Scholar 

  65. 65.

    Aradhya, S. V., Frei, M., Hybertsen, M. S. & Venkataraman, L. Van der Waals interactions at metal/organic interfaces at the single-molecule level. Nat. Mater. 11, 872–876 (2012).

    CAS  Article  Google Scholar 

  66. 66.

    Wang, Y. P. et al. Oligorotaxane radicals under orders. ACS Cent. Sci. 2, 89–98 (2016).

    CAS  Article  Google Scholar 

  67. 67.

    Quek, S. Y. et al. Mechanically controlled binary conductance switching of a single-molecule junction. Nat. Nanotechnol. 4, 230–234 (2009).

    CAS  Article  Google Scholar 

  68. 68.

    Wang, K., Hamill, J., Zhou, J., Guo, C. & Xu, B. Measurement and control of detailed electronic properties in a single molecule break junction. Faraday Discuss. 174, 91–104 (2014).

    CAS  Article  Google Scholar 

  69. 69.

    McGraw, J. D., Niguès, A., Chennevière, A. & Siria, A. Contact dependence and velocity crossover in friction between microscopic solid/solid contacts. Nano Lett. 17, 6335–6339 (2017).

    CAS  Article  Google Scholar 

  70. 70.

    Comtet, J., Lainé, A., Niguès, A., Bocquet, L. & Siria, A. Atomic rheology of gold nanojunctions. Nature 569, 393–397 (2019).

    CAS  Article  Google Scholar 

  71. 71.

    Jia, C. et al. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 352, 1443–1445 (2016).

    CAS  Article  Google Scholar 

  72. 72.

    Liu, Z. et al. Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy. Nat. Commun. 2, 305 (2011).

    Article  CAS  Google Scholar 

  73. 73.

    Guo, C. et al. Molecular orbital gating surface-enhanced Raman scattering. ACS Nano 12, 11229–11235 (2018).

    CAS  Article  Google Scholar 

  74. 74.

    Bi, H. et al. Voltage-driven conformational switching with distinct Raman signature in a single-molecule junction. J. Am. Chem. Soc. 140, 4835–4840 (2018).

    CAS  Article  Google Scholar 

  75. 75.

    Bi, H. et al. Electron–phonon coupling in current-driven single-molecule junctions. J. Am. Chem. Soc. 142, 3384–3391 (2020).

    CAS  Article  Google Scholar 

  76. 76.

    Jeong, H., Li, H. B., Domulevicz, L. & Hihath, J. An on-chip break junction system for combined single-molecule conductance and Raman spectroscopies. Adv. Funct. Mater. 30, 2000615 (2020).

    CAS  Article  Google Scholar 

  77. 77.

    Doppagne, B. et al. Single-molecule tautomerization tracking through space- and time-resolved fluorescence spectroscopy. Nat. Nanotechnol. 15, 207–211 (2020).

    CAS  Article  Google Scholar 

  78. 78.

    Qiu, X. H., Nazin, G. V. & Ho, W. Vibrationally resolved fluorescence excited with submolecular precision. Science 299, 542–546 (2003).

    CAS  Article  Google Scholar 

  79. 79.

    Marquardt, C. W. et al. Electroluminescence from a single nanotube–molecule–nanotube junction. Nat. Nanotechnol. 5, 863–867 (2010).

    CAS  Article  Google Scholar 

  80. 80.

    Reecht, G. et al. Electroluminescence of a polythiophene molecular wire suspended between a metallic surface and the tip of a scanning tunneling microscope. Phys. Rev. Lett. 112, 047403 (2014).

    Article  CAS  Google Scholar 

  81. 81.

    Pozzi, E. A. et al. Ultrahigh-vacuum tip-enhanced Raman spectroscopy. Chem. Rev. 117, 4961–4982 (2017).

    CAS  Article  Google Scholar 

  82. 82.

    Cram, D. J. & Cram, J. M. Host–guest chemistry. Science 183, 803–809 (1974).

    CAS  Article  Google Scholar 

  83. 83.

    Cram, D. J. & Cram, J. M. Container Molecules and Their Guests (Royal Society of Chemistry, 1994).

  84. 84.

    Cram, D. J. The design of molecular hosts, guests, and their complexes (Nobel Lecture). Angew. Chem. Int. Ed. 27, 1009–1020 (1988).

    Article  Google Scholar 

  85. 85.

    Kim, J. et al. New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc. 122, 540–541 (2000).

    CAS  Article  Google Scholar 

  86. 86.

    Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).

    CAS  Article  Google Scholar 

  87. 87.

    Baumberg, J. J., Aizpurua, J., Mikkelsen, M. H. & Smith, D. R. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 18, 668–678 (2019).

    CAS  Article  Google Scholar 

  88. 88.

    Kim, N. H. et al. Smart SERS hot spots: single molecules can be positioned in a plasmonic nanojunction using host–guest chemistry. J. Am. Chem. Soc. 140, 4705–4711 (2018).

    CAS  Article  Google Scholar 

  89. 89.

    Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013).

    CAS  Article  Google Scholar 

  90. 90.

    Jiang, S. et al. Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering. Nat. Nanotechnol. 10, 865–869 (2015).

    CAS  Article  Google Scholar 

  91. 91.

    Tian, J.-H. et al. Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method. J. Am. Chem. Soc. 128, 14748–14749 (2006).

    CAS  Article  Google Scholar 

  92. 92.

    Chu, S. The manipulation of neutral particles (Nobel Lecture). Rev. Mod. Phys. 70, 685–706 (1998).

    CAS  Article  Google Scholar 

  93. 93.

    Cohen-Tannoudji, C. N. Manipulating atoms with photons (Nobel Lecture). Rev. Mod. Phys. 70, 707–719 (1998).

    CAS  Article  Google Scholar 

  94. 94.

    Ketterle, W. When atoms behave as waves: Bose–Einstein condensation and the atom laser (Nobel Lecture). Rev. Mod. Phys. 74, 1131–1151 (2002).

    CAS  Article  Google Scholar 

  95. 95.

    Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    CAS  Article  Google Scholar 

  96. 96.

    Chu, S., Bjorkholm, J. E., Ashkin, A. & Cable, A. Experimental observation of optically trapped atoms. Phys. Rev. Lett. 57, 314–317 (1986).

    CAS  Article  Google Scholar 

  97. 97.

    Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    CAS  Article  Google Scholar 

  98. 98.

    Dholakia, K. & Čižmár, T. Shaping the future of manipulation. Nat. Photon. 5, 335–342 (2011).

    CAS  Article  Google Scholar 

  99. 99.

    Juan, M. L., Righini, M. & Quidant, R. Plasmon nano-optical tweezers. Nat. Photon. 5, 349–356 (2011).

    CAS  Article  Google Scholar 

  100. 100.

    Ruggeri, F. & Krishnan, M. Entropic trapping of a singly charged molecule in solution. Nano Lett. 18, 3773–3779 (2018).

    CAS  Article  Google Scholar 

  101. 101.

    Maragò, O. M. et al. Femtonewton force sensing with optically trapped nanotubes. Nano Lett. 8, 3211–3216 (2008).

    Article  CAS  Google Scholar 

  102. 102.

    Yang, A. H. J. et al. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 457, 71–75 (2009).

    CAS  Article  Google Scholar 

  103. 103.

    Pang, Y. & Gordon, R. Optical trapping of a single protein. Nano Lett. 12, 402–406 (2012).

    CAS  Article  Google Scholar 

  104. 104.

    Cohen, A. E. & Moerner, W. E. Suppressing Brownian motion of individual biomolecules in solution. Proc. Natl Acad. Sci. USA 103, 4362–4365 (2006).

    CAS  Article  Google Scholar 

  105. 105.

    Zhan, C. et al. Single-molecule plasmonic optical trapping. Matter 3, 1350–1360 (2020).

    Article  Google Scholar 

  106. 106.

    Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).

    CAS  Article  Google Scholar 

  107. 107.

    Liang, W. J., Shores, M. P., Bockrath, M., Long, J. R. & Park, H. Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002).

    CAS  Article  Google Scholar 

  108. 108.

    Koole, M., Thijssen, J. M., Valkenier, H., Hummelen, J. C. & van der Zant, H. S. J. Electric-field control of interfering transport pathways in a single-molecule anthraquinone transistor. Nano Lett. 15, 5569–5573 (2015).

    CAS  Article  Google Scholar 

  109. 109.

    Xin, N. et al. Tuning charge transport in aromatic-ring single-molecule junctions via ionic-liquid gating. Angew. Chem. Int. Ed. 57, 14026–14031 (2018).

    CAS  Article  Google Scholar 

  110. 110.

    Xu, Q. et al. Single electron transistor with single aromatic ring molecule covalently connected to graphene nanogaps. Nano Lett. 17, 5335–5341 (2017).

    CAS  Article  Google Scholar 

  111. 111.

    Wen, H. et al. Complex formation dynamics in a single-molecule electronic device. Sci. Adv. 2, e1601113 (2016).

    Article  CAS  Google Scholar 

  112. 112.

    Prins, F. et al. Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes. Nano Lett. 11, 4607–4611 (2011).

    CAS  Article  Google Scholar 

  113. 113.

    Lau, C. S. et al. Redox-dependent Franck–Condon blockade and avalanche transport in a graphene–fullerene single-molecule transistor. Nano Lett. 16, 170–176 (2016).

    CAS  Article  Google Scholar 

  114. 114.

    Ullmann, K. et al. Single-molecule junctions with epitaxial graphene nanoelectrodes. Nano Lett. 15, 3512–3518 (2015).

    CAS  Article  Google Scholar 

  115. 115.

    Thomas, J. O. et al. Understanding resonant charge transport through weakly coupled single-molecule junctions. Nat. Commun. 10, 4628 (2019).

    Article  CAS  Google Scholar 

  116. 116.

    Cao, Y. et al. Building high-throughput molecular junctions using indented graphene point contacts. Angew. Chem. Int. Ed. 51, 12228–12232 (2012).

    CAS  Article  Google Scholar 

  117. 117.

    El Abbassi, M. et al. Robust graphene-based molecular devices. Nat. Nanotechnol. 14, 957–961 (2019).

    CAS  Article  Google Scholar 

  118. 118.

    Jia, C. et al. Quantum interference mediated vertical molecular tunneling transistors. Sci. Adv. 4, eaat8237 (2018).

    CAS  Article  Google Scholar 

  119. 119.

    Famili, M. et al. Self-assembled molecular-electronic films controlled by room temperature quantum interference. Chem 5, 474–484 (2019).

    CAS  Article  Google Scholar 

  120. 120.

    Jia, C. et al. Redox control of charge transport in vertical ferrocene molecular tunnel junctions. Chem 6, 1172–1182 (2020).

    CAS  Article  Google Scholar 

  121. 121.

    Ma, B., Ren, S., Wang, P., Jia, C. & Guo, X. Precise control of graphene etching by remote hydrogen plasma. Nano Res. 12, 137–142 (2019).

    Article  CAS  Google Scholar 

  122. 122.

    Lorke, A. et al. Spectroscopy of nanoscopic semiconductor rings. Phys. Rev. Lett. 84, 2223–2226 (2000).

    CAS  Article  Google Scholar 

  123. 123.

    Kleemans, N. A. J. M. et al. Oscillatory persistent currents in self-assembled quantum rings. Phys. Rev. Lett. 99, 146808 (2007).

    CAS  Article  Google Scholar 

  124. 124.

    Keyser, U. F. et al. Kondo effect in a few-electron quantum ring. Phys. Rev. Lett. 90, 196601 (2003).

    CAS  Article  Google Scholar 

  125. 125.

    Wendler, L., Fomin, V. M., Chaplik, A. V. & Govorov, A. O. Optical properties of two interacting electrons in quantum rings: optical absorption and inelastic light scattering. Phys. Rev. B 54, 4794–4810 (1996).

    CAS  Article  Google Scholar 

  126. 126.

    Földi, P., Molnár, B., Benedict, M. G. & Peeters, F. M. Spintronic single-qubit gate based on a quantum ring with spin–orbit interaction. Phys. Rev. B 71, 033309 (2005).

    Article  CAS  Google Scholar 

  127. 127.

    Souma, S. & Nikolic´, B. K. Spin Hall current driven by quantum interferences in mesoscopic Rashba rings. Phys. Rev. Lett. 94, 106602 (2005).

    Article  CAS  Google Scholar 

  128. 128.

    Iyoda, M., Yamakawa, J. & Rahman, M. J. Conjugated macrocycles: concepts and applications. Angew. Chem. Int. Ed. 50, 10522–10553 (2011).

    CAS  Article  Google Scholar 

  129. 129.

    Spitler, E. L., Johnson, C. A. & Haley, M. M. Renaissance of annulene chemistry. Chem. Rev. 106, 5344–5386 (2006).

    CAS  Article  Google Scholar 

  130. 130.

    Mayor, M. & Didschies, C. A giant conjugated molecular ring. Angew. Chem. Int. Ed. 42, 3176–3179 (2003).

    CAS  Article  Google Scholar 

  131. 131.

    Peeks, M. D., Claridge, T. D. W. & Anderson, H. L. Aromatic and antiaromatic ring currents in a molecular nanoring. Nature 541, 200–203 (2017).

    CAS  Article  Google Scholar 

  132. 132.

    Rickhaus, M. et al. Global aromaticity at the nanoscale. Nat. Chem. 12, 236–241 (2020).

    CAS  Article  Google Scholar 

  133. 133.

    Liu, C. et al. Macrocyclic polyradicaloids with unusual super-ring structure and global aromaticity. Chem 4, 1586–1595 (2018).

    CAS  Article  Google Scholar 

  134. 134.

    Ni, Y. et al. [n]Cyclo-para-biphenylmethine polyradicaloids: [n]annulene analogs and unusual valence tautomerization. Chem 5, 108–121 (2019).

    CAS  Article  Google Scholar 

  135. 135.

    Ni, Y. et al. 3D global aromaticity in a fully conjugated diradicaloid cage at different oxidation states. Nat. Chem. 12, 242–248 (2020).

    CAS  Article  Google Scholar 

  136. 136.

    Gryn’ova, G. & Corminboeuf, C. Topology-driven single-molecule conductance of carbon nanothreads. J. Phys. Chem. Lett. 10, 825–830 (2019).

    Article  CAS  Google Scholar 

  137. 137.

    Stuyver, T., Perrin, M., Geerlings, P., De Proft, F. & Alonso, M. Conductance switching in expanded porphyrins through aromaticity and topology changes. J. Am. Chem. Soc. 140, 1313–1326 (2018).

    CAS  Article  Google Scholar 

  138. 138.

    Okazawa, K., Tsuji, Y. & Yoshizawa, K. Understanding single-molecule parallel circuits on the basis of frontier orbital theory. J. Phys. Chem. C. 124, 3322–3331 (2020).

    CAS  Article  Google Scholar 

  139. 139.

    Ellenbogen, J. C. & Love, J. C. Architectures for molecular electronic computers. I. Logic structures and an adder designed from molecular electronic diodes. Proc. IEEE 88, 386–426 (2000).

    CAS  Article  Google Scholar 

  140. 140.

    Joachim, C., Gimzewski, J. K. & Tang, H. Physical principles of the single-C60 transistor effect. Phys. Rev. B 58, 16407–16417 (1998).

    CAS  Article  Google Scholar 

  141. 141.

    Park, H. et al. Nanomechanical oscillations in a single-C60 transistor. Nature 407, 57–60 (2000).

    CAS  Article  Google Scholar 

  142. 142.

    Joachim, C., Renaud, N. & Hliwa, M. The different designs of molecule logic gates. Adv. Mater. 24, 312–317 (2012).

    CAS  Article  Google Scholar 

  143. 143.

    Aviram, A. Molecules for memory, logic, and amplification. J. Am. Chem. Soc. 110, 5687–5692 (1988).

    CAS  Article  Google Scholar 

  144. 144.

    Yoshizawa, K., Tada, T. & Staykov, A. Orbital views of the electron transport in molecular devices. J. Am. Chem. Soc. 130, 9406–9413 (2008).

    CAS  Article  Google Scholar 

  145. 145.

    Taniguchi, M. et al. Dependence of single-molecule conductance on molecule junction symmetry. J. Am. Chem. Soc. 133, 11426–11429 (2011).

    CAS  Article  Google Scholar 

  146. 146.

    Soni, S. et al. Understanding role of parallel pathways via in situ switching of quantum interference in molecular tunneling junctions. Angew. Chem. Int. Ed. 59, 14308–14312 (2020).

    CAS  Article  Google Scholar 

  147. 147.

    Pal, A. N. et al. Nonmagnetic single-molecule spin-filter based on quantum interference. Nat. Commun. 10, 5565 (2019).

    CAS  Article  Google Scholar 

  148. 148.

    Li, Z. H. et al. Towards graphyne molecular electronics. Nat. Commun. 6, 6321 (2015).

    CAS  Article  Google Scholar 

  149. 149.

    Huang, B. et al. Controlling and observing sharp-valleyed quantum interference effect in single molecular junctions. J. Am. Chem. Soc. 140, 17685–17690 (2018).

    CAS  Article  Google Scholar 

  150. 150.

    Li, Y. et al. Gate controlling of quantum interference and direct observation of anti-resonances in single molecule charge transport. Nat. Mater. 18, 357–363 (2019).

    CAS  Article  Google Scholar 

  151. 151.

    Bai, J. et al. Anti-resonance features of destructive quantum interference in single-molecule thiophene junctions achieved by electrochemical gating. Nat. Mater. 18, 364–369 (2019).

    CAS  Article  Google Scholar 

  152. 152.

    Brooke, R. J. et al. Dual control of molecular conductance through pH and potential in single-molecule devices. Nano Lett. 18, 1317–1322 (2018).

    CAS  Article  Google Scholar 

  153. 153.

    Li, S. et al. Characterizing intermolecular interactions in redox-active pyridinium-based molecular junctions. J. Electroanal. Chem. 875, 114070 (2020).

    CAS  Article  Google Scholar 

  154. 154.

    Hirose, K. A practical guide for the determination of binding constants. J. Incl. Phenom. Macrocycl. Chem. 39, 193–209 (2001).

    CAS  Article  Google Scholar 

  155. 155.

    Wei, P., Yan, X. & Huang, F. Supramolecular polymers constructed by orthogonal self-assembly based on host–guest and metal–ligand interactions. Chem. Soc. Rev. 44, 815–832 (2015).

    CAS  Article  Google Scholar 

  156. 156.

    Grommet, A. B., Feller, M. & Klajn, R. Chemical reactivity under nanoconfinement. Nat. Nanotechnol. 15, 256–271 (2020).

    CAS  Article  Google Scholar 

  157. 157.

    Tromans, R. A. et al. A biomimetic receptor for glucose. Nat. Chem. 11, 52–56 (2019).

    CAS  Article  Google Scholar 

  158. 158.

    Therien, M. J., Selman, M., Gray, H. B., Chang, I. J. & Winkler, J. R. Long-range electron transfer in ruthenium-modified cytochrome c: evaluation of porphyrin-ruthenium electronic couplings in the Candida krusei and horse heart proteins. J. Am. Chem. Soc. 112, 2420–2422 (1990).

    CAS  Article  Google Scholar 

  159. 159.

    Kurlancheek, W. & Cave, R. J. Tunneling through weak interactions: comparison of through-space-, H-bond-, and through-bond-mediated tunneling. J. Phys. Chem. A 110, 14018–14028 (2006).

    CAS  Article  Google Scholar 

  160. 160.

    Turro, C., Chang, C. K., Leroi, G. E., Cukier, R. I. & Nocera, D. G. Photoinduced electron transfer mediated by a hydrogen-bonded interface. J. Am. Chem. Soc. 114, 4013–4015 (1992).

    CAS  Article  Google Scholar 

  161. 161.

    Sessler, J. L., Sathiosatham, M., Brown, C. T., Rhodes, T. A. & Wiederrecht, G. Hydrogen-bond-mediated photoinduced electron-transfer: novel dimethylaniline−anthracene ensembles formed via Watson−Crick base-pairing. J. Am. Chem. Soc. 123, 3655–3660 (2001).

    CAS  Article  Google Scholar 

  162. 162.

    Canzi, G. et al. On the observation of intervalence charge transfer bands in hydrogen-bonded mixed-valence complexes. J. Am. Chem. Soc. 136, 1710–1713 (2014).

    CAS  Article  Google Scholar 

  163. 163.

    Porter, T. M., Heim, G. P. & Kubiak, C. P. Stable mixed-valent complexes formed by electron delocalization across hydrogen bonds of pyrimidinone-linked metal clusters. J. Am. Chem. Soc. 140, 12756–12759 (2018).

    CAS  Article  Google Scholar 

  164. 164.

    Cheng, T. et al. Efficient electron transfer across hydrogen bond interfaces by proton-coupled and -uncoupled pathways. Nat. Commun. 10, 1531 (2019).

    Article  CAS  Google Scholar 

  165. 165.

    Derege, P. J. F., Williams, S. A. & Therien, M. J. Direct evaluation of electronic coupling mediated by hydrogen bonds: implications for biological electron-transfer. Science 269, 1409–1413 (1995).

    CAS  Article  Google Scholar 

  166. 166.

    Kladnik, G. et al. Ultrafast charge transfer pathways through a prototype amino-carboxylic molecular junction. Nano Lett. 16, 1955–1959 (2016).

    CAS  Article  Google Scholar 

  167. 167.

    Nishino, T., Hayashi, N. & Bui, P. T. Direct measurement of electron transfer through a hydrogen bond between single molecules. J. Am. Chem. Soc. 135, 4592–4595 (2013).

    CAS  Article  Google Scholar 

  168. 168.

    Zhao, G.-J. & Han, K.-L. Hydrogen bonding in the electronic excited state. Acc. Chem. Res. 45, 404–413 (2012).

    CAS  Article  Google Scholar 

  169. 169.

    Migliore, A., Polizzi, N. F., Therien, M. J. & Beratan, D. N. Biochemistry and theory of proton-coupled electron transfer. Chem. Rev. 114, 3381–3465 (2014).

    CAS  Article  Google Scholar 

  170. 170.

    Weinberg, D. R. et al. Proton-coupled electron transfer. Chem. Rev. 112, 4016–4093 (2012).

    CAS  Article  Google Scholar 

  171. 171.

    Li, Y. et al. Microscopic mechanism of electron transfer through the hydrogen bonds between carboxylated alkanethiol molecules connected to gold electrodes. J. Chem. Phys. 141, 174702 (2014).

    Article  CAS  Google Scholar 

  172. 172.

    Wimmer, M., Palma, J. L., Tarakeshwar, P. & Mujica, V. Single-molecule conductance through hydrogen bonds: the role of resonances. J. Phys. Chem. Lett. 7, 2977–2980 (2016).

    CAS  Article  Google Scholar 

  173. 173.

    Wang, L. et al. Molecular conductance through a quadruple-hydrogen-bond-bridged supramolecular junction. Angew. Chem. Int. Ed. 55, 12393–12397 (2016).

    CAS  Article  Google Scholar 

  174. 174.

    Wu, C. et al. In situ formation of H-bonding imidazole chains in break-junction experiments. Nanoscale 12, 7914–7920 (2020).

    CAS  Article  Google Scholar 

  175. 175.

    Jones, L. O., Mosquera, M. A., Schatz, G. C. & Ratner, M. A. Molecular junctions inspired by nature: electrical conduction through noncovalent nanobelts. J. Phys. Chem. B 123, 8096–8102 (2019).

    CAS  Article  Google Scholar 

  176. 176.

    Huang, S. et al. Recognition tunneling measurement of the conductance of DNA bases embedded in self-assembled monolayers. J. Phys. Chem. C. 114, 20443–20448 (2010).

    CAS  Article  Google Scholar 

  177. 177.

    Grabowski, S. J. What is the covalency of hydrogen bonding? Chem. Rev. 111, 2597–2625 (2011).

    CAS  Article  Google Scholar 

  178. 178.

    Pirrotta, A., Vico, L. D., Solomon, G. C. & Franco, I. Single-molecule force-conductance spectroscopy of hydrogen-bonded complexes. J. Chem. Phys. 146, 092329 (2017).

    Article  CAS  Google Scholar 

  179. 179.

    Nibbering, E. T. J. & Elsaesser, T. Ultrafast vibrational dynamics of hydrogen bonds in the condensed phase. Chem. Rev. 104, 1887–1914 (2004).

    CAS  Article  Google Scholar 

  180. 180.

    Kumagai, T. et al. Thermally and vibrationally induced tautomerization of single porphycene molecules on a Cu(110) surface. Phys. Rev. Lett. 111, 246101 (2013).

    Article  CAS  Google Scholar 

  181. 181.

    Kumagai, T. et al. Controlling intramolecular hydrogen transfer in a porphycene molecule with single atoms or molecules located nearby. Nat. Chem. 6, 41–46 (2014).

    CAS  Article  Google Scholar 

  182. 182.

    Ladenthin, J. N. et al. Hot carrier-induced tautomerization within a single porphycene molecule on Cu(111). ACS Nano 9, 7287–7295 (2015).

    CAS  Article  Google Scholar 

  183. 183.

    Ladenthin, J. N. et al. Force-induced tautomerization in a single molecule. Nat. Chem. 8, 935–940 (2016).

    CAS  Article  Google Scholar 

  184. 184.

    Di Ventra, M. & Taniguchi, M. Decoding DNA, RNA and peptides with quantum tunnelling. Nat. Nanotechnol. 11, 117–126 (2016).

    Article  CAS  Google Scholar 

  185. 185.

    Huang, S. et al. Identifying single bases in a DNA oligomer with electron tunnelling. Nat. Nanotechnol. 5, 868–873 (2010).

    CAS  Article  Google Scholar 

  186. 186.

    Bergstrom, D. E., Zhang, P. & Zhou, J. Synthesis of 2′-deoxy-β-D-ribofuranosyl imidazole and thiazole C-nucleosides. J. Chem. Soc. Perkin Trans. 1, 3029–3034 (1994).

    Article  Google Scholar 

  187. 187.

    Liang, F., Li, S., Lindsay, S. & Zhang, P. Synthesis, physicochemical properties, and hydrogen bonding of 4(5)-substituted 1-H-imidazole-2-carboxamide, a potential universal reader for DNA sequencing by recognition tunneling. Chem. Eur. J. 18, 5998–6007 (2012).

    CAS  Article  Google Scholar 

  188. 188.

    Biswas, S. et al. Universal readers based on hydrogen bonding or ππ stacking for identification of DNA nucleotides in electron tunnel junctions. ACS Nano 10, 11304–11316 (2016).

    CAS  Article  Google Scholar 

  189. 189.

    Tsutsui, M., Taniguchi, M., Yokota, K. & Kawai, T. Identifying single nucleotides by tunnelling current. Nat. Nanotechnol. 5, 286–290 (2010).

    CAS  Article  Google Scholar 

  190. 190.

    Taniguchi, M. Combination of single-molecule electrical measurements and machine learning for the identification of single biomolecules. ACS Omega 5, 959–964 (2020).

    CAS  Article  Google Scholar 

  191. 191.

    Ivanov, A. P. et al. DNA tunneling detector embedded in a nanopore. Nano Lett. 11, 279–285 (2011).

    CAS  Article  Google Scholar 

  192. 192.

    Fanget, A. et al. Nanopore integrated nanogaps for DNA detection. Nano Lett. 14, 244–249 (2014).

    CAS  Article  Google Scholar 

  193. 193.

    Garoli, D., Yamazaki, H., Maccaferri, N. & Wanunu, M. Plasmonic nanopores for single-molecule detection and manipulation: toward sequencing applications. Nano Lett. 19, 7553–7562 (2019).

    CAS  Article  Google Scholar 

  194. 194.

    Chen, C. et al. High spatial resolution nanoslit SERS for single-molecule nucleobase sensing. Nat. Commun. 9, 1733 (2018).

    Article  CAS  Google Scholar 

  195. 195.

    Li, J., Shen, P., Zhao, Z. & Tang, B. Z. Through-space conjugation: a thriving alternative for optoelectronic materials. CCS Chem. 1, 181–196 (2019).

    CAS  Article  Google Scholar 

  196. 196.

    Eley, D. D. & Spivey, D. I. Semiconductivity of organic substances. Part 9. Nucleic acid in the dry state. Trans. Faraday Soc. 58, 411–415 (1962).

    CAS  Article  Google Scholar 

  197. 197.

    Giri, G. et al. Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 480, 504–508 (2011).

    CAS  Article  Google Scholar 

  198. 198.

    Zhang, H. et al. Photocontrol of charge injection/extraction at electrode/semiconductor interfaces for high-photoresponsivity organic transistors. J. Mater. Chem. C. 4, 5289–5296 (2016).

    CAS  Article  Google Scholar 

  199. 199.

    Chen, H. et al. Multistep nucleation and growth mechanisms of organic crystals from amorphous solid states. Nat. Commun. 10, 3872 (2019).

    Article  CAS  Google Scholar 

  200. 200.

    Ohta, T. et al. Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 98, 206802 (2007).

    Article  CAS  Google Scholar 

  201. 201.

    Schneebeli, S. T. et al. Single-molecule conductance through multiple ππ-stacked benzene rings determined with direct electrode-to-benzene ring connections. J. Am. Chem. Soc. 133, 2136–2139 (2011).

    CAS  Article  Google Scholar 

  202. 202.

    Batra, A. et al. Quantifying through-space charge transfer dynamics in π-coupled molecular systems. Nat. Commun. 3, 1086 (2012).

    Article  CAS  Google Scholar 

  203. 203.

    Stefani, D. et al. Large conductance variations in a mechanosensitive single-molecule junction. Nano Lett. 18, 5981–5988 (2018).

    CAS  Article  Google Scholar 

  204. 204.

    Kiguchi, M. et al. Electron transport through single molecules comprising aromatic stacks enclosed in self-assembled cages. Angew. Chem. Int. Ed. 50, 5708–5711 (2011).

    CAS  Article  Google Scholar 

  205. 205.

    Fujii, S. et al. Rectifying electron-transport properties through stacks of aromatic molecules inserted into a self-assembled cage. J. Am. Chem. Soc. 137, 5939–5947 (2015).

    CAS  Article  Google Scholar 

  206. 206.

    Kiguchi, M. et al. Highly conductive [3×n] gold-ion clusters enclosed within self-assembled cages. Angew. Chem. Int. Ed. 52, 6202–6205 (2013).

    CAS  Article  Google Scholar 

  207. 207.

    Wu, S. et al. Molecular junctions based on aromatic coupling. Nat. Nanotechnol. 3, 569–574 (2008).

    CAS  Article  Google Scholar 

  208. 208.

    Frisenda, R., Janssen, V. A. E. C., Grozema, F. C., van der Zant, H. S. J. & Renaud, N. Mechanically controlled quantum interference in individual π-stacked dimers. Nat. Chem. 8, 1099–1104 (2016).

    CAS  Article  Google Scholar 

  209. 209.

    Li, X. et al. Structure-independent conductance of thiophene-based single-stacking junctions. Angew. Chem. Int. Ed. 59, 3280–3286 (2020).

    CAS  Article  Google Scholar 

  210. 210.

    Martín, S. et al. Identifying diversity in nanoscale electrical break junctions. J. Am. Chem. Soc. 132, 9157–9164 (2010).

    Article  CAS  Google Scholar 

  211. 211.

    Carini, M. et al. High conductance values in π-folded molecular junctions. Nat. Commun. 8, 15195 (2017).

    CAS  Article  Google Scholar 

  212. 212.

    Méndez-Ardoy, A. et al. Multi-dimensional charge transport in supramolecular helical foldamer assemblies. Chem. Sci. 8, 7251–7257 (2017).

    Article  Google Scholar 

  213. 213.

    Caneva, S. et al. Mechanically controlled quantum interference in graphene break junctions. Nat. Nanotechnol. 13, 1126–1131 (2018).

    CAS  Article  Google Scholar 

  214. 214.

    Valli, A., Amaricci, A., Brosco, V. & Capone, M. Interplay between destructive quantum interference and symmetry-breaking phenomena in graphene quantum junctions. Phys. Rev. B 100, 075118 (2019).

    CAS  Article  Google Scholar 

  215. 215.

    Caneva, S. et al. A mechanically tunable quantum dot in a graphene break junction. Nano Lett. 20, 4924–4931 (2020).

    CAS  Article  Google Scholar 

  216. 216.

    Chen, H., Zhang, W., Li, M., He, G. & Guo, X. Interface engineering in organic field-effect transistors: principles, applications, and perspectives. Chem. Rev. 120, 2879–2949 (2020).

    CAS  Article  Google Scholar 

  217. 217.

    Genereux, J. C. & Barton, J. K. Mechanisms for DNA charge transport. Chem. Rev. 110, 1642–1662 (2010).

    CAS  Article  Google Scholar 

  218. 218.

    Tsutsui, M. et al. Electrical detection of single methylcytosines in a DNA oligomer. J. Am. Chem. Soc. 133, 9124–9128 (2011).

    CAS  Article  Google Scholar 

  219. 219.

    Harashima, T., Kojima, C., Fujii, S., Kiguchi, M. & Nishino, T. Single-molecule conductance of DNA gated and ungated by DNA-binding molecules. Chem. Commun. 53, 10378–10381 (2017).

    CAS  Article  Google Scholar 

  220. 220.

    Wang, X., Gao, L., Liang, B., Li, X. & Guo, X. Revealing the direct effect of individual intercalations on DNA conductance toward single-molecule electrical biodetection. J. Mater. Chem. B 3, 5150–5154 (2015).

    CAS  Article  Google Scholar 

  221. 221.

    Slinker, J. D., Muren, N. B., Renfrew, S. E. & Barton, J. K. DNA charge transport over 34 nm. Nat. Chem. 3, 228–233 (2011).

    CAS  Article  Google Scholar 

  222. 222.

    Emberly, E. G. & Kirczenow, G. Models of electron transport through organic molecular monolayers self-assembled on nanoscale metallic contacts. Phys. Rev. B 64, 235412 (2001).

    Article  CAS  Google Scholar 

  223. 223.

    Scullion, L. et al. Large conductance changes in peptide single molecule junctions controlled by pH. J. Phys. Chem. C. 115, 8361–8368 (2011).

    CAS  Article  Google Scholar 

  224. 224.

    Chen, L. et al. Multichannel conductance of folded single-molecule wires aided by through-space conjugation. Angew. Chem. Int. Ed. 54, 4231–4235 (2015).

    CAS  Article  Google Scholar 

  225. 225.

    Shen, P. et al. Achieving efficient multichannel conductance in through-space conjugated single-molecule parallel circuits. Angew. Chem. Int. Ed. 59, 4581–4588 (2020).

    CAS  Article  Google Scholar 

  226. 226.

    Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P. & Tour, J. M. Conductance of a molecular junction. Science 278, 252–254 (1997).

    CAS  Article  Google Scholar 

  227. 227.

    Solomon, G. C., Vura-Weis, J., Herrmann, C., Wasielewski, M. R. & Ratner, M. A. Understanding coherent transport through π-stacked systems upon spatial dislocation. J. Phys. Chem. B 114, 14735–14744 (2010).

    CAS  Article  Google Scholar 

  228. 228.

    González, M. T. et al. Structural versus electrical functionalization of oligo(phenylene ethynylene) diamine molecular junctions. J. Phys. Chem. C. 118, 21655–21662 (2014).

    Article  CAS  Google Scholar 

  229. 229.

    González, M. T. et al. Break-junction experiments on acetyl-protected conjugated dithiols under different environmental conditions. J. Phys. Chem. C. 115, 17973–17978 (2011).

    Article  CAS  Google Scholar 

  230. 230.

    Zheng, J.-T. et al. Electrochemically assisted mechanically controllable break junction studies on the stacking configurations of oligo(phenylene ethynylene)s molecular junctions. Electrochim. Acta 200, 268–275 (2016).

    CAS  Article  Google Scholar 

  231. 231.

    Tan, Z. et al. Atomically defined angstrom-scale all-carbon junctions. Nat. Commun. 10, 1748 (2019).

    Article  CAS  Google Scholar 

  232. 232.

    Zhao, S. et al. Cross-plane transport in a single-molecule two-dimensional van der Waals heterojunction. Sci. Adv. 6, eaba6714 (2020).

    CAS  Article  Google Scholar 

  233. 233.

    Fink, H.-W. & Schönenberger, C. Electrical conduction through DNA molecules. Nature 398, 407–410 (1999).

    CAS  Article  Google Scholar 

  234. 234.

    Porath, D., Bezryadin, A., de Vries, S. & Dekker, C. Direct measurement of electrical transport through DNA molecules. Nature 403, 635–638 (2000).

    CAS  Article  Google Scholar 

  235. 235.

    Giese, B., Amaudrut, J., Köhler, A.-K., Spormann, M. & Wessely, S. Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling. Nature 412, 318–320 (2001).

    CAS  Article  Google Scholar 

  236. 236.

    Sha, R. et al. Charge splitters and charge transport junctions based on guanine quadruplexes. Nat. Nanotechnol. 13, 316–321 (2018).

    CAS  Article  Google Scholar 

  237. 237.

    Diederichsen, U. Charge transfer in DNA: a controversy. Angew. Chem. Int. Ed. 36, 2317–2319 (1997).

    CAS  Article  Google Scholar 

  238. 238.

    Risser, S. M., Beratan, D. N. & Meade, T. J. Electron transfer in DNA: predictions of exponential growth and decay of coupling with donor-acceptor distance. J. Am. Chem. Soc. 115, 2508–2510 (1993).

    CAS  Article  Google Scholar 

  239. 239.

    Berlin, Y. A., Burin, A. L. & Ratner, M. A. Charge hopping in DNA. J. Am. Chem. Soc. 123, 260–268 (2001).

    CAS  Article  Google Scholar 

  240. 240.

    Kim, H., Kilgour, M. & Segal, D. Intermediate coherent–incoherent charge transport: DNA as a case study. J. Phys. Chem. C. 120, 23951–23962 (2016).

    CAS  Article  Google Scholar 

  241. 241.

    Li, Y., Xiang, L., Palma, J. L., Asai, Y. & Tao, N. Thermoelectric effect and its dependence on molecular length and sequence in single DNA molecules. Nat. Commun. 7, 11294 (2016).

    CAS  Article  Google Scholar 

  242. 242.

    Renaud, N., Berlin, Y. A., Lewis, F. D. & Ratner, M. A. Between superexchange and hopping: an intermediate charge-transfer mechanism in poly(A)-poly(T) DNA hairpins. J. Am. Chem. Soc. 135, 3953–3963 (2013).

    CAS  Article  Google Scholar 

  243. 243.

    Göhler, B. et al. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 331, 894–897 (2011).

    Article  CAS  Google Scholar 

  244. 244.

    Xie, Z. et al. Spin specific electron conduction through DNA oligomers. Nano Lett. 11, 4652–4655 (2011).

    CAS  Article  Google Scholar 

  245. 245.

    Zwang, T. J., Hürlimann, S., Hill, M. G. & Barton, J. K. Helix-dependent spin filtering through the DNA duplex. J. Am. Chem. Soc. 138, 15551–15554 (2016).

    CAS  Article  Google Scholar 

  246. 246.

    Mishra, S. et al. Effect of oxidative damage on charge and spin transport in DNA. J. Am. Chem. Soc. 141, 123–126 (2019).

    CAS  Article  Google Scholar 

  247. 247.

    Arnold, A. R., Grodick, M. A. & Barton, J. K. DNA charge transport: from chemical principles to the cell. Cell Chem. Biol. 23, 183–197 (2016).

    CAS  Article  Google Scholar 

  248. 248.

    Guo, X., Gorodetsky, A. A., Hone, J., Barton, J. K. & Nuckolls, C. Conductivity of a single DNA duplex bridging a carbon nanotube gap. Nat. Nanotechnol. 3, 163–167 (2008).

    CAS  Article  Google Scholar 

  249. 249.

    Gao, L. et al. Graphene–DNAzyme junctions: a platform for direct metal ion detection with ultrahigh sensitivity. Chem. Sci. 6, 2469–2473 (2015).

    CAS  Article  Google Scholar 

  250. 250.

    Hihath, J., Xu, B. Q., Zhang, P. M. & Tao, N. J. Study of single-nucleotide polymorphisms by means of electrical conductance measurements. Proc. Natl Acad. Sci. USA 102, 16979–16983 (2005).

    CAS  Article  Google Scholar 

  251. 251.

    Li, Y. et al. Detection and identification of genetic material via single-molecule conductance. Nat. Nanotechnol. 13, 1167–1173 (2018).

    CAS  Article  Google Scholar 

  252. 252.

    Li, Y. et al. Comparing charge transport in oligonucleotides: RNA:DNA hybrids and DNA duplexes. J. Phys. Chem. Lett. 7, 1888–1894 (2016).

    CAS  Article  Google Scholar 

  253. 253.

    Veselinovic, J. et al. Two-tiered electrical detection, purification, and identification of nucleic acids in complex media. Electrochim. Acta 313, 116–121 (2019).

    CAS  Article  Google Scholar 

  254. 254.

    Seeman, N. C. Nanomaterials based on DNA. Annu. Rev. Biochem. 79, 65–87 (2010).

    CAS  Article  Google Scholar 

  255. 255.

    Scalise, D. & Schulman, R. Controlling matter at the molecular scale with DNA circuits. Annu. Rev. Biomed. Eng. 21, 469–493 (2019).

    CAS  Article  Google Scholar 

  256. 256.

    Livshits, G. I. et al. Long-range charge transport in single G-quadruplex DNA molecules. Nat. Nanotechnol. 9, 1040–1046 (2014).

    CAS  Article  Google Scholar 

  257. 257.

    Tseng, H.-R., Wu, D., Fang, N. X., Zhang, X. & Stoddart, J. F. The metastability of an electrochemically controlled nanoscale machine on gold surfaces. ChemPhysChem 5, 111–116 (2004).

    CAS  Article  Google Scholar 

  258. 258.

    Beckman, R. et al. Spiers Memorial Lecture — molecular mechanics and molecular electronics. Faraday Discuss. 131, 9–22 (2006).

    CAS  Article  Google Scholar 

  259. 259.

    Dichtel, W. R., Heath, J. R. & Stoddart, J. F. Designing bistable [2]rotaxanes for molecular electronic devices. Phil. Trans. R. Soc. A 365, 1607–1625 (2007).

    CAS  Article  Google Scholar 

  260. 260.

    Heath, J. R. Molecular electronics. Annu. Rev. Mater. Res. 39, 1–23 (2009).

    CAS  Article  Google Scholar 

  261. 261.

    Bissell, R. A., Córdova, E., Kaifer, A. E. & Stoddart, J. F. A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 (1994).

    CAS  Article  Google Scholar 

  262. 262.

    Pease, A. R. et al. Switching devices based on interlocked molecules. Acc. Chem. Res. 34, 433–444 (2001).

    CAS  Article  Google Scholar 

  263. 263.

    Tseng, H.-R., Vignon, S. A. & Stoddart, J. F. Toward chemically controlled nanoscale molecular machinery. Angew. Chem. Int. Ed. 42, 1491–1495 (2003).

    CAS  Article  Google Scholar 

  264. 264.

    Flood, A. H. et al. The role of physical environment on molecular electromechanical switching. Chem. Eur. J. 10, 6558–6564 (2004).

    CAS  Article  Google Scholar 

  265. 265.

    Choi, J. W. et al. Ground-state equilibrium thermodynamics and switching kinetics of bistable [2]rotaxanes switched in solution, polymer gels, and molecular electronic devices. Chem. Eur. J. 12, 261–279 (2006).

    CAS  Article  Google Scholar 

  266. 266.

    Leigh, D. A. Genesis of the nanomachines: the 2016 Nobel prize in chemistry. Angew. Chem. Int. Ed. 55, 14506–14508 (2016).

    CAS  Article  Google Scholar 

  267. 267.

    Cuevas, J. C. & Scheer, E. Molecular Electronics: An Introduction to Theory and Experiment (World Scientific, 2010).

  268. 268.

    Balzani, V., Credi, A., Raymo, F. M. & Stoddart, J. F. Artificial molecular machines. Angew. Chem. Int. Ed. 39, 3348–3391 (2000).

    CAS  Article  Google Scholar 

  269. 269.

    Flood, A. H. et al. Meccano on the nanoscale — a blueprint for making some of the world’s tiniest machines. Aust. J. Chem. 57, 301–322 (2004).

    CAS  Article  Google Scholar 

  270. 270.

    Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    CAS  Article  Google Scholar 

  271. 271.

    Balzani, V., Credi, A. & Venturi, M. Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld, 2nd edn. (Wiley-VCH, 2008).

  272. 272.

    Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012).

    CAS  Article  Google Scholar 

  273. 273.

    Kay, E. R. & Leigh, D. A. Rise of the molecular machines. Angew. Chem. Int. Ed. 54, 10080–10088 (2015).

    CAS  Article  Google Scholar 

  274. 274.

    Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    CAS  Article  Google Scholar 

  275. 275.

    Abendroth, J. M., Bushuyev, O. S., Weiss, P. S. & Barrett, C. J. Controlling motion at the nanoscale: rise of the molecular machines. ACS Nano 9, 7746–7768 (2015).

    CAS  Article  Google Scholar 

  276. 276.

    Cheng, C. & Stoddart, J. F. Wholly synthetic molecular machines. ChemPhysChem 17, 1780–1793 (2016).

    CAS  Article  Google Scholar 

  277. 277.

    Pezzato, C., Cheng, C., Stoddart, J. F. & Astumian, R. D. Mastering the non-equilibrium assembly and operation of molecular machines. Chem. Soc. Rev. 46, 5491–5507 (2017).

    CAS  Article  Google Scholar 

  278. 278.

    Qiu, Y., Feng, Y., Guo, Q.-H., Astumian, R. D. & Stoddart, J. F. Pumps through the ages. Chem 6, 1952–1977 (2020).

    CAS  Article  Google Scholar 

  279. 279.

    Coronado, E., Gaviña, P. & Tatay, S. Catenanes and threaded systems: from solution to surfaces. Chem. Soc. Rev. 38, 1674–1689 (2009).

    CAS  Article  Google Scholar 

  280. 280.

    Saha, S. & Stoddart, J. F. Photo-driven molecular devices. Chem. Soc. Rev. 36, 77–92 (2007).

    CAS  Article  Google Scholar 

  281. 281.

    Sun, J. et al. An electrochromic tristable molecular switch. J. Am. Chem. Soc. 137, 13484–13487 (2015).

    CAS  Article  Google Scholar 

  282. 282.

    Jia, C. et al. Interface-engineered bistable [2]rotaxane–graphene hybrids with logic capabilities. Adv. Mater. 25, 6752–6759 (2013).

    CAS  Article  Google Scholar 

  283. 283.

    Liu, Y. et al. Linear artificial molecular muscles. J. Am. Chem. Soc. 127, 9745–9759 (2005).

    CAS  Article  Google Scholar 

  284. 284.

    Katz, E., Sheeney-Haj-Ichia, L. & Willner, I. Electrical contacting of glucose oxidase in a redox-active rotaxane configuration. Angew. Chem. Int. Ed. 43, 3292–3300 (2004).

    CAS  Article  Google Scholar 

  285. 285.

    Steuerman, D. W. et al. Molecular-mechanical switch-based solid-state electrochromic devices. Angew. Chem. Int. Ed. 43, 6486–6491 (2004).

    CAS  Article  Google Scholar 

  286. 286.

    Ikeda, T., Higuchi, M. & Kurth, D. G. From thiophene [2]rotaxane to polythiophene polyrotaxane. J. Am. Chem. Soc. 131, 9158–9159 (2009).

    CAS  Article  Google Scholar 

  287. 287.

    Yu, H. et al. The molecule–electrode interface in single-molecule transistors. Angew. Chem. Int. Ed. 42, 5706–5711 (2003).

    CAS  Article  Google Scholar 

  288. 288.

    Scott, G. D. et al. Mechanism of enhanced rectification in unimolecular Borromean ring devices. Phys. Rev. B 74, 113404 (2006).

    Article  CAS  Google Scholar 

  289. 289.

    Luo, Y. et al. Two-dimensional molecular electronics circuits. ChemPhysChem 3, 519–525 (2002).

    CAS  Article  Google Scholar 

  290. 290.

    Green, J. E. et al. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445, 414–417 (2007).

    CAS  Article  Google Scholar 

  291. 291.

    Asakawa, M. et al. A chemically and electrochemically switchable [2]catenane incorporating a tetrathiafulvalene unit. Angew. Chem. Int. Ed. 37, 333–337 (1998).

    CAS  Article  Google Scholar 

  292. 292.

    Jeppesen, J. O. et al. Amphiphilic bistable rotaxanes. Chem. Eur. J. 9, 2982–3007 (2003).

    CAS  Article  Google Scholar 

  293. 293.

    Jeppesen, J. O., Nygaard, S., Vignon, Scott, A. & Stoddart, J. F. Honing up a genre of amphiphilic bistable [2]rotaxanes for device settings. Eur. J. Org. Chem. 2005, 196–220 (2005).

    Article  Google Scholar 

  294. 294.

    Zhu, Z. et al. Synthesis and solution-state dynamics of donor–acceptor oligorotaxane foldamers. Chem. Sci. 4, 1470–1483 (2013).

    CAS  Article  Google Scholar 

  295. 295.

    Wong, E. W. et al. Fabrication and transport properties of single-molecule-thick electrochemical junctions. J. Am. Chem. Soc. 122, 5831–5840 (2000).

    CAS  Article  Google Scholar 

  296. 296.

    Collier, C. P. et al. Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999).

    CAS  Article  Google Scholar 

  297. 297.

    Odell, B. et al. Cyclobis(paraquat-p-phenylene). A tetracationic multipurpose receptor. Angew. Chem. Int. Ed. 27, 1547–1550 (1988).

    Article  Google Scholar 

  298. 298.

    Ashton, P. R. et al. Isostructural, alternately-charged receptor stacks. The inclusion complexes of hydroquinone and catechol dimethyl ethers with cyclobis(paraquat-p-phenylene). Angew. Chem. Int. Ed. 27, 1550–1553 (1988).

    Article  Google Scholar 

  299. 299.

    Brown, C. L. et al. Introduction of [2]catenanes into Langmuir films and Langmuir−Blodgett multilayers. A possible strategy for molecular information storage materials. Langmuir 16, 1924–1930 (2000).

    CAS  Article  Google Scholar 

  300. 300.

    Asakawa, M. et al. Current/voltage characteristics of monolayers of redox-switchable [2]catenanes on gold. Adv. Mater. 12, 1099–1102 (2000).

    CAS  Article  Google Scholar 

  301. 301.

    Talham, D. R. Conducting and magnetic Langmuir−Blodgett films. Chem. Rev. 104, 5479–5502 (2004).

    CAS  Article  Google Scholar 

  302. 302.

    Collier, C. P. et al. A [2]catenane-based solid state electronically reconfigurable switch. Science 289, 1172–1175 (2000).

    CAS  Article  Google Scholar 

  303. 303.

    Collier, C. P. et al. Molecular-based electronically switchable tunnel junction devices. J. Am. Chem. Soc. 123, 12632–12641 (2001).

    CAS  Article  Google Scholar 

  304. 304.

    Klajn, R. et al. Metal nanoparticles functionalized with molecular and supramolecular switches. J. Am. Chem. Soc. 131, 4233–4235 (2009).

    CAS  Article  Google Scholar 

  305. 305.

    Coskun, A. et al. Molecular-mechanical switching at the nanoparticle−solvent interface: practice and theory. J. Am. Chem. Soc. 132, 4310–4320 (2010).

    CAS  Article  Google Scholar 

  306. 306.

    Huang, T. J. et al. Mechanical shuttling of linear motor-molecules in condensed phases on solid substrates. Nano Lett. 4, 2065–2071 (2004).

    CAS  Article  Google Scholar 

  307. 307.

    DeIonno, E., Tseng, H.-R., Harvey, D. D., Stoddart, J. F. & Heath, J. R. Infrared spectroscopic characterization of [2]rotaxane molecular switch tunnel junction devices. J. Phys. Chem. B 110, 7609–7612 (2006).

    CAS  Article  Google Scholar 

  308. 308.

    Jang, S. S. et al. Molecular dynamics simulation of amphiphilic bistable [2]rotaxane Langmuir monolayers at the air/water interface. J. Am. Chem. Soc. 127, 14804–14816 (2005).

    CAS  Article  Google Scholar 

  309. 309.

    Jang, S. S. et al. Structures and properties of self-assembled monolayers of bistable [2]rotaxanes on Au (111) surfaces from molecular dynamics simulations validated with experiment. J. Am. Chem. Soc. 127, 1563–1575 (2005).

    CAS  Article  Google Scholar 

  310. 310.

    Jang, Y. H., Jang, S. S. & Goddard III, W. A. Molecular dynamics simulation study on a monolayer of half [2]rotaxane self-assembled on Au(111). J. Am. Chem. Soc. 127, 4959–4964 (2005).

    CAS  Article  Google Scholar 

  311. 311.

    Flood, A. H., Wong, E. W. & Stoddart, J. F. Models of charge transport and transfer in molecular switch tunnel junctions of bistable catenanes and rotaxanes. Chem. Phys. 324, 280–290 (2006).

    CAS  Article  Google Scholar 

  312. 312.

    Stewart, D. R. et al. Molecule-independent electrical switching in Pt/organic monolayer/Ti devices. Nano Lett. 4, 133–136 (2004).

    CAS  Article  Google Scholar 

  313. 313.

    Chen, Y. et al. Nanoscale molecular-switch crossbar circuits. Nanotechnology 14, 462–468 (2003).

    CAS  Article  Google Scholar 

  314. 314.

    Chen, Y. et al. Nanoscale molecular-switch devices fabricated by imprint lithography. Appl. Phys. Lett. 82, 1610–1612 (2003).

    CAS  Article  Google Scholar 

  315. 315.

    Puebla-Hellmann, G., Venkatesan, K., Mayor, M. & Lortscher, E. Metallic nanoparticle contacts for high-yield, ambient-stable molecular-monolayer devices. Nature 559, 232–235 (2018).

    CAS  Article  Google Scholar 

  316. 316.

    Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013).

    CAS  Article  Google Scholar 

  317. 317.

    Wang, Z. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017).

    CAS  Article  Google Scholar 

  318. 318.

    Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015).

    CAS  Article  Google Scholar 

  319. 319.

    Nili, H. et al. Hardware-intrinsic security primitives enabled by analogue state and nonlinear conductance variations in integrated memristors. Nat. Electron. 1, 197–202 (2018).

    Article  Google Scholar 

  320. 320.

    Lussis, P. et al. A single synthetic small molecule that generates force against a load. Nat. Nanotechnol. 6, 553–557 (2011).

    CAS  Article  Google Scholar 

  321. 321.

    Sluysmans, D. et al. Viologen tweezers probing the force of individual donor–acceptor π-interactions. J. Am. Chem. Soc. 142, 21153–21159 (2020).

    CAS  Article  Google Scholar 

  322. 322.

    Kiguchi, M. et al. Single-molecule conductance of π-conjugated rotaxane: new method for measuring stipulated electric conductance of π-conjugated molecular wire using STM break junction. Small 8, 726–730 (2012).

    CAS  Article  Google Scholar 

  323. 323.

    Milan, D. C. et al. The single-molecule electrical conductance of a rotaxane–hexayne supramolecular assembly. Nanoscale 9, 355–361 (2017).

    CAS  Article  Google Scholar 

  324. 324.

    Berná, J. et al. A catalytic palladium active-metal template pathway to [2]rotaxanes. Angew. Chem. Int. Ed. 46, 5709–5713 (2007).

    Article  CAS  Google Scholar 

  325. 325.

    Weisbach, N., Baranová, Z., Gauthier, S., Reibenspies, J. H. & Gladysz, J. A. A new type of insulated molecular wire: a rotaxane derived from a metal-capped conjugated tetrayne. Chem. Commun. 48, 7562–7564 (2012).

    CAS  Article  Google Scholar 

  326. 326.

    Movsisyan, L. D. et al. Polyyne rotaxanes: stabilization by encapsulation. J. Am. Chem. Soc. 138, 1366–1376 (2016).

    CAS  Article  Google Scholar 

  327. 327.

    Schrettl, S. et al. Facile synthesis of oligoyne amphiphiles and their rotaxanes. Chem. Sci. 6, 564–574 (2015).

    CAS  Article  Google Scholar 

  328. 328.

    Woltering, S. L., Gawel, P., Christensen, K. E., Thompson, A. L. & Anderson, H. L. Photochemical unmasking of polyyne rotaxanes. J. Am. Chem. Soc. 142, 13523–13532 (2020).

    CAS  Article  Google Scholar 

  329. 329.

    Chen, H. et al. Single-molecule charge transport through positively charged electrostatic anchors. J. Am. Chem. Soc. 143, 2886–2895 (2021).

    CAS  Article  Google Scholar 

  330. 330.

    Joo, Y., Agarkar, V., Sung, S. H., Savoie, B. M. & Boudouris, B. W. A nonconjugated radical polymer glass with high electrical conductivity. Science 359, 1391–1395 (2018).

    CAS  Article  Google Scholar 

  331. 331.

    Zhu, Z. et al. Oligomeric pseudorotaxanes adopting infinite-chain lattice superstructures. Angew. Chem. Int. Ed. 51, 7231–7235 (2012).

    CAS  Article  Google Scholar 

  332. 332.

    Tayi, A. S. et al. Room-temperature ferroelectricity in supramolecular networks of charge-transfer complexes. Nature 488, 485–489 (2012).

    CAS  Article  Google Scholar 

  333. 333.

    Frisenda, R., Stefani, D. & van der Zant, H. S. J. Quantum transport through a single conjugated rigid molecule, a mechanical break junction study. Acc. Chem. Res. 51, 1359–1367 (2018).

    CAS  Article  Google Scholar 

  334. 334.

    Stoddart, J. F. Dawning of the age of molecular nanotopology. Nano Lett. 20, 5597–5600 (2020).

    CAS  Article  Google Scholar 

  335. 335.

    Lambert, N. et al. Quantum biology. Nat. Phys. 9, 10–18 (2013).

    CAS  Article  Google Scholar 

  336. 336.

    Fereiro, J. A. et al. Tunneling explains efficient electron transport via protein junctions. Proc. Natl Acad. Sci. USA 115, E4577–E4583 (2018).

    CAS  Article  Google Scholar 

  337. 337.

    Lindsay, S. Ubiquitous electron transport in non-electron transfer proteins. Life 10, 72 (2020).

    CAS  Article  Google Scholar 

  338. 338.

    Cai, K. et al. Highly stable organic bisradicals protected by mechanical bonds. J. Am. Chem. Soc. 142, 7190–7197 (2020).

    CAS  Article  Google Scholar 

  339. 339.

    Zhang, W. et al. A solid-state switch containing an electrochemically switchable bistable poly[n]rotaxane. J. Mater. Chem. 21, 1487–1495 (2011).

    CAS  Article  Google Scholar 

  340. 340.

    Deng, H., Olson, M. A., Stoddart, J. F. & Yaghi, O. M. Robust dynamics. Nat. Chem. 2, 439–443 (2010).

    CAS  Article  Google Scholar 

  341. 341.

    Li, Q. et al. Docking in metal–organic frameworks. Science 325, 855–859 (2009).

    CAS  Article  Google Scholar 

  342. 342.

    Zhao, Y.-L. et al. Rigid-strut-containing crown ethers and [2]catenanes for incorporation into metal–organic frameworks. Chem. Eur. J. 15, 13356–13380 (2009).

    CAS  Article  Google Scholar 

  343. 343.

    Vukotic, V. N., Harris, K. J., Zhu, K., Schurko, R. W. & Loeb, S. J. Metal–organic frameworks with dynamic interlocked components. Nat. Chem. 4, 456–460 (2012).

    CAS  Article  Google Scholar 

  344. 344.

    Zhu, K., O’Keefe, C. A., Vukotic, V. N., Schurko, R. W. & Loeb, S. J. A molecular shuttle that operates inside a metal–organic framework. Nat. Chem. 7, 514–519 (2015).

    CAS  Article  Google Scholar 

  345. 345.

    McGonigal, P. R. et al. Electrochemically addressable trisradical rotaxanes organized within a metal–organic framework. Proc. Natl Acad. Sci. USA 112, 11161–11168 (2015).

    CAS  Article  Google Scholar 

  346. 346.

    Chen, Q. et al. A redox-active bistable molecular switch mounted inside a metal–organic framework. J. Am. Chem. Soc. 138, 14242–14245 (2016).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank M. E. Schott for feedback on the manuscript, and N. Xin, Y. Jiao, L. Zhang, K. Cai and D. Shen for their discussion and support in preparing the manuscript. The authors also thank Northwestern University for its continuing financial support.

Author information

Affiliations

Authors

Contributions

Both authors contributed to all aspects of the manuscript.

Corresponding authors

Correspondence to Hongliang Chen or J. Fraser Stoddart.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Fraser Stoddart, J. From molecular to supramolecular electronics. Nat Rev Mater 6, 804–828 (2021). https://doi.org/10.1038/s41578-021-00302-2

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing