Abstract
The osmotic pressure difference between river water and seawater is a promising source of renewable energy. However, current osmotic energy conversion processes show limited power output, mainly owing to the low performance of commercial ion-exchange membranes. Nanofluidic channels with tailored ion transport dynamics enable high-performance reverse electrodialysis to efficiently harvest renewable osmotic energy. In this Review, we discuss ion diffusion through nanofluidic channels and investigate the rational design and optimization of advanced membrane architectures. We highlight how the structure and charge distribution can be tailored to minimize resistance and promote energy conversion, and examine the possibility of integrating nanofluidic osmotic energy conversion with other technologies, such as desalination and water splitting. Finally, we give an outlook to future applications and discuss challenges that need to be overcome to enable large-scale, real-world applications.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Helmholtz, H. Studien über electrische Grenzschichten. Ann. Phys. 243, 337–382 (1879).
Gouy, M. Sur la constitution de la charge électrique à la surface d’un électrolyte. J. Phys. Theor. Appl. 9, 457–468 (1910).
Stern, O. The theory of the electrolytic double shift. Z. Elektrochem. Angew. Phys. Chem. 30, 508–516 (1924).
Bocquet, L. & Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39, 1073–1095 (2010).
Rollings, R. C., Kuan, A. T. & Golovchenko, J. A. Ion selectivity of graphene nanopores. Nat. Commun. 7, 11408 (2016).
Esfandiar, A. et al. Size effect in ion transport through angstrom-scale slits. Science 358, 511–513 (2017).
Feng, J. D. et al. Identification of single nucleotides in MoS2 nanopores. Nat. Nanotechnol. 10, 1070–1076 (2015).
Tunuguntla, R. H., Allen, F. I., Kim, K., Belliveau, A. & Noy, A. Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins. Nat. Nanotechnol. 11, 639–644 (2016).
Plesa, C. et al. Direct observation of DNA knots using a solid-state nanopore. Nat. Nanotechnol. 11, 1093–1097 (2016).
Yan, C. S. et al. Engineering 2D nanofluidic Li-ion transport channels for superior electrochemical energy storage. Adv. Mater. 29, 1703909 (2017).
Zhang, Z. H. et al. Emerging hydrovoltaic technology. Nat. Nanotechnol. 13, 1109–1119 (2018).
Levin, S. et al. A nanofluidic device for parallel single nanoparticle catalysis in solution. Nat. Commun. 10, 4426 (2019).
Faucher, S. et al. Critical knowledge gaps in mass transport through single-digit nanopores: A review and perspective. J. Phys. Chem. C 123, 21309–21326 (2019).
Zhan, H. et al. Solvation-involved nanoionics: New opportunities from 2D nanomaterial laminar membranes. Adv. Mater. 32, e1904562 (2020).
Xue, L. et al. Solid-state nanopore sensors. Nat. Rev. Mater. 5, 931–951 (2020).
Xiao, J. et al. Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics. Nat. Nanotechnol. 15, 683–689 (2020).
Bocquet, L. Nanofluidics coming of age. Nat. Mater. 19, 254–256 (2020).
Lucas, R. A., Lin, C. Y., Baker, L. A. & Siwy, Z. S. Ionic amplifying circuits inspired by electronics and biology. Nat. Commun. 11, 1568 (2020).
Doyle, D. A. et al. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).
Tagliazucchi, M. & Szleifer, I. Transport mechanisms in nanopores and nanochannels: can we mimic nature? Mater. Today 18, 131–142 (2015).
Zhang, Z., Wen, L. & Jiang, L. Bioinspired smart asymmetric nanochannel membranes. Chem. Soc. Rev. 47, 322–356 (2018).
Li, J., Stein, D. & McMullan, C. Ion-beam sculpting at nanometre length scales. Nature 412, 166–169 (2001).
Storm, A. J., Chen, J. H., Ling, X. S., Zandbergen, H. W. & Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2, 537–540 (2003).
Liu, K., Feng, J. D., Kis, A. & Radenovic, A. Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano 8, 2504–2511 (2014).
Graf, M. et al. Fabrication and practical applications of molybdenum disulfide nanopores. Nat. Protoc. 14, 1130–1168 (2019).
Apel, P., Korchev, Y., Siwy, Z., Spohr, R. & Yoshida, M. Diode-like single-ion track membrane prepared by electro-stopping. Nucl. Instrum. Methods Phys. Res. B 184, 337–346 (2001).
Ali, M. et al. Single cigar-shaped nanopores functionalized with amphoteric amino acid chains: Experimental and theoretical characterization. ACS Nano 6, 3631–3640 (2012).
Pérez-Mitta, G. et al. Polydopamine meets solid-state nanopores: a bioinspired integrative surface chemistry approach to tailor the functional properties of nanofluidic diodes. J. Am. Chem. Soc. 137, 6011–6017 (2015).
Xiao, K. et al. A tunable ionic diode based on a biomimetic structure-tailorable nanochannel. Angew. Chem. Int. Ed. 56, 8168–8172 (2017).
Hsu, J. P. et al. Unraveling the anomalous surface-charge-dependent osmotic power using a single funnel-shaped nanochannel. ACS Nano 13, 13374–13381 (2019).
Harrell, C., Kohli, P., Siwy, Z. & Martin, C. DNA-nanotube artificial ion channels. J. Am. Chem. Soc. 126, 15646–15647 (2004).
Siwy, Z., Heins, E., Harrell, C. C., Kohli, P. & Martin, C. R. Conical-nanotube ion-current rectifiers: The role of surface charge. J. Am. Chem. Soc. 126, 10850–10851 (2004).
Cayre, O., Chang, S. & Velev, O. D. Polyelectrolyte diode: Nonlinear current response of a junction between aqueous ionic gels. J. Am. Chem. Soc. 129, 10801–10806 (2007).
Xia, F. et al. Gating of single synthetic nanopores by proton-driven DNA molecular motors. J. Am. Chem. Soc. 130, 8345–8350 (2008).
Kalman, E. B., Vlassiouk, I. & Siwy, Z. S. Nanofluidic bipolar transistors. Adv. Mater. 20, 293–297 (2008).
Yan, R., Liang, W., Fan, R. & Yang, P. Nanofluidic diodes based on nanotube heterojunctions. Nano Lett. 9, 3820–3825 (2009).
Lan, W. J., Holden, D. A. & White, H. S. Pressure-dependent ion current rectification in conical-shaped glass nanopores. J. Am. Chem. Soc. 133, 13300–13303 (2011).
Zhang, H. et al. Bioinspired artificial single ion pump. J. Am. Chem. Soc. 135, 16102–16110 (2013).
Kneller, A. R., Haywood, D. G. & Jacobson, S. C. AC electroosmotic pumping in nanofluidic funnels. Anal. Chem. 88, 6390–6394 (2016).
Feng, J. D. et al. Observation of ionic Coulomb blockade in nanopores. Nat. Mater. 15, 850–855 (2016).
Pérez-Mitta, G., Albesa, A. G., Trautmann, C., Toimil-Molares, M. E. & Azzaroni, O. Bioinspired integrated nanosystems based on solid-state nanopores: “iontronic” transduction of biological, chemical and physical stimuli. Chem. Sci. 8, 890–913 (2017).
Ali, M. et al. Lithium ion recognition with nanofluidic diodes through host–guest complexation in confined geometries. Anal. Chem. 90, 6820–6826 (2018).
Fu, K., Han, D., Kwon, S. R. & Bohn, P. W. Asymmetric nafion-coated nanopore electrode arrays as redox-cycling-based electrochemical diodes. ACS Nano 12, 9177–9185 (2018).
Kavokine, N., Marbach, S., Siria, A. & Bocquet, L. Ionic Coulomb blockade as a fractional Wien effect. Nat. Nanotechnol. 14, 573–578 (2019).
Wang, M. et al. Dynamic curvature nanochannel-based membrane with anomalous ionic transport behaviors and reversible rectification switch. Adv. Mater. 31, 1805130 (2019).
Pérez-Mitta, G., Toimil-Molares, M. E., Trautmann, C., Marmisolle, W. A. & Azzaroni, O. Molecular design of solid-state nanopores: Fundamental concepts and applications. Adv. Mater. 31, e1901483 (2019).
Acar, E. T., Buchsbaum, S. F., Combs, C., Fornasiero, F. & Siwy, Z. S. Biomimetic potassium-selective nanopores. Sci. Adv. 5, eaav2568 (2019).
Lu, J. et al. Efficient metal ion sieving in rectifying subnanochannels enabled by metal–organic frameworks. Nat. Mater. 19, 767–774 (2020).
Woermann, D. Electrochemical transport properties of a cone-shaped nanopore: high and low electrical conductivity states depending on the sign of an applied electrical potential difference. Phys. Chem. Chem. Phys. 5, 1853–1858 (2003).
Cervera, J., Schiedt, B. & Ramirez, P. A Poisson/Nernst-Planck model for ionic transport through synthetic conical nanopores. Europhys. Lett. 71, 35–41 (2005).
White, H. S. & Bund, A. Ion current rectification at nanopores in glass membranes. Langmuir 24, 2212–2218 (2008).
Siwy, Z. S. Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv. Funct. Mater. 16, 735–746 (2006).
Tagliazucchi, M., Azzaroni, O. & Szleifer, I. Responsive polymers end-tethered in solid-state nanochannels: When nanoconfinement really matters. J. Am. Chem. Soc. 132, 12404–12411 (2010).
Siria, A. et al. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494, 455–458 (2013). This paper reports that diffusio-osmotic transport in a single transmembrane boron nitride nanotube greatly contributes to osmotic energy conversion.
Lin, C. Y., Combs, C., Su, Y. S., Yeh, L. H. & Siwy, Z. S. Rectification of concentration polarization in mesopores leads to high conductance ionic diodes and high performance osmotic power. J. Am. Chem. Soc. 141, 3691–3698 (2019).
Logan, B. E. & Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 488, 313–319 (2012).
Siria, A., Bocquet, M. L. & Bocquet, L. New avenues for the large-scale harvesting of blue energy. Nat. Rev. Chem. 1, 0091 (2017).
Pattle, R. E. Production of electric power by mixing fresh and salt water in the hydroelectric pile. Nature 174, 660–660 (1954). This paper was the first to propose the concept of harvesting salinity gradient energy using reverse electrodialysis technology.
Vermaas, D. A., Saakes, M. & Nijmeijer, K. Doubled power density from salinity gradients at reduced intermembrane distance. Environ. Sci. Technol. 45, 7089–7095 (2011).
Hong, J. G. et al. Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: A review. J. Membr. Sci. 486, 71–88 (2015).
Mei, Y. & Tang, C. Y. Y. Recent developments and future perspectives of reverse electrodialysis technology: A review. Desalination 425, 156–174 (2018).
Schroeder, T. B. H. et al. An electric-eel-inspired soft power source from stacked hydrogels. Nature 552, 214–218 (2017). This report adopts an electric-eel-inspired power concept to construct a soft and flexible artificial electric organ based on charged 3D hydrogel membranes.
Xu, J. & Lavan, D. A. Designing artificial cells to harness the biological ion concentration gradient. Nat. Nanotechnol. 3, 666–670 (2008).
Guo, W. et al. Energy harvesting with single-ion-selective nanopores: A concentration-gradient-driven nanofluidic power source. Adv. Funct. Mater. 20, 1339–1344 (2010). This study reports a systematic investigation of a solid-state single nanofluidic channel for the harvesting of salinity gradient energy in the form of reverse electrodialysis.
Veerman, J., Saakes, M., Metz, S. J. & Harmsen, G. J. Reverse electrodialysis: Performance of a stack with 50 cells on the mixing of sea and river water. J. Membr. Sci. 327, 136–144 (2009).
Veerman, J., Saakes, M., Metz, S. J. & Harmsen, G. J. Reverse electrodialysis: A validated process model for design and optimization. Chem. Eng. J. 166, 256–268 (2011).
Vermaas, D. A. et al. High efficiency in energy generation from salinity gradients with reverse electrodialysis. ACS Sustain. Chem. Eng. 1, 1295–1302 (2013).
Yip, N. Y., Vermaas, D. A., Nijmeijer, K. & Elimelech, M. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients. Environ. Sci. Technol. 48, 4925–4936 (2014).
Varcoe, J. R. et al. Anion-exchange membranes in electrochemical energy systems. Energy Environ. Sci. 7, 3135–3191 (2014).
Zhu, X. P., He, W. H. & Logan, B. E. Influence of solution concentration and salt types on the performance of reverse electrodialysis cells. J. Membr. Sci. 494, 154–160 (2015).
Yip, N. Y., Brogioli, D., Hamelers, H. V. M. & Nijmeijer, K. Salinity gradients for sustainable energy: Primer, progress, and prospects. Environ. Sci. Technol. 50, 12072–12094 (2016).
Zhang, B. P., Hong, J. G., Xie, S. H., Xia, S. M. & Chen, Y. S. An integrative modeling and experimental study on the ionic resistance of ion-exchange membranes. J. Membr. Sci. 524, 362–369 (2017).
Kamcev, J., Paul, D. R. & Freeman, B. D. Effect of fixed charge group concentration on equilibrium ion sorption in ion exchange membranes. J. Mater. Chem. A 5, 4638–4650 (2017).
Gurreri, L. et al. Multi-physical modelling of reverse electrodialysis. Desalination 423, 52–64 (2017).
Ran, J. et al. Ion exchange membranes: New developments and applications. J. Membr. Sci. 522, 267–291 (2017).
Tedesco, M., Cipollina, A., Tamburini, A. & Micale, G. Towards 1 kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines. J. Membr. Sci. 522, 226–236 (2017).
Tufa, R. A. et al. Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage. Appl. Energy 225, 290–331 (2018).
Gao, H., Zhang, B., Tong, X. & Chen, Y. S. Monovalent-anion selective and antifouling polyelectrolytes multilayer anion exchange membrane for reverse electrodialysis. J. Membr. Sci. 567, 68–75 (2018).
Kamcev, J. et al. Salt concentration dependence of ionic conductivity in ion exchange membranes. J. Membr. Sci. 547, 123–133 (2018).
Avci, A. H., Tufa, R. A., Fontananova, E., Di Profio, G. & Curcio, E. Reverse Electrodialysis for energy production from natural river water and seawater. Energy 165, 512–521 (2018).
Long, R., Li, B. D., Liu, Z. C. & Liu, W. Performance analysis of reverse electrodialysis stacks: Channel geometry and flow rate optimization. Energy 158, 427–436 (2018).
Zhang, B., Gao, H., Xiao, C., Tong, X. & Chen, Y. S. The trade-off between membrane permselectivity and conductivity: A percolation simulation of mass transport. J. Membr. Sci. 597, 117751 (2020).
Galama, A. H. et al. Membrane resistance: The effect of salinity gradients over a cation exchange membrane. J. Membr. Sci. 467, 279–291 (2014).
He, D. et al. A cationic diode based on asymmetric nafion film deposits. ACS Appl. Mater. Interfaces 9, 11272–11278 (2017).
Cipollina, A. & Micale, G. Sustainable Energy from Salinity Gradients (Woodhead Publishing, 2016).
Kim, D.-K., Duan, C. H., Chen, Y. F. & Majumdar, A. Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels. Microfluid. Nanofluid. 9, 1215–1224 (2010). This paper shows that inorganic nanofluidic channels are comparable to organic ion-exchange membranes in terms of power density and energy conversion efficiency.
Guan, W., Fan, R. & Reed, M. A. Field-effect reconfigurable nanofluidic ionic diodes. Nat. Commun. 2, 506 (2011).
Raidongia, K. & Huang, J. Nanofluidic ion transport through reconstructed layered materials. J. Am. Chem. Soc. 134, 16528–16531 (2012). This paper investigates nanofluidic ion transport behaviour through laminar membranes fabricated with 2D materials.
Perry, J. M., Harms, Z. D. & Jacobson, S. C. 3D nanofluidic channels shaped by electron-beam-induced etching. Small 8, 1521–1526 (2012).
Zhang, Z. et al. Engineered asymmetric heterogeneous membrane: A concentration-gradient-driven energy harvesting device. J. Am. Chem. Soc. 137, 14765–14772 (2015).
Liu, K. et al. Geometrical effect in 2D nanopores. Nano Lett. 17, 4223–4230 (2017).
Marbach, S., Dean, D. S. & Bocquet, L. Transport and dispersion across wiggling nanopores. Nat. Phys. 14, 1108–1113 (2018).
Macha, M., Marion, S., Nandigana, V. V. R. & Radenovic, A. 2D materials as an emerging platform for nanopore-based power generation. Nat. Rev. Mater. 4, 588–605 (2019).
Guo, Y. et al. Sulfonated sub-nanochannels in a robust MOF membrane: Harvesting salinity gradient power. ACS Appl. Mater. Interfaces 11, 35496–35500 (2019).
Li, T. et al. A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Sci. Adv. 5, eaau4238 (2019).
Kuang, Z. F. et al. Bioinspired fractal nanochannels for high-performance salinity gradient energy conversion. J. Power Sources 418, 33–41 (2019).
Laucirica, G. et al. Shape matters: Enhanced osmotic energy harvesting in bullet-shaped nanochannels. Nano Energy 71, 104612 (2020).
Thiruraman, J. P., Masih Das, P. & Drndic, M. Ions and water dancing through atom-scale holes: A perspective toward “Size Zero”. ACS Nano 14, 3736–3746 (2020).
Yin, J. et al. Waving potential in graphene. Nat. Commun. 5, 3582 (2014).
Duan, C. & Majumdar, A. Anomalous ion transport in 2-nm hydrophilic nanochannels. Nat. Nanotechnol. 5, 848–852 (2010).
Marbach, S. & Bocquet, L. Osmosis, from molecular insights to large-scale applications. Chem. Soc. Rev. 48, 3102–3144 (2019).
Gao, J. et al. High-performance ionic diode membrane for salinity gradient power generation. J. Am. Chem. Soc. 136, 12265–12272 (2014). This report demonstrates the use of an ionic rectifying heterogeneous membrane for osmotic energy conversion.
Choi, E., Kwon, K., Kim, D. & Park, J. Tunable reverse electrodialysis microplatform with geometrically controlled self-assembled nanoparticle network. Lab Chip 15, 168–178 (2015).
Kang, B. D., Kim, H. J., Lee, M. G. & Kim, D.-K. Numerical study on energy harvesting from concentration gradient by reverse electrodialysis in anodic alumina nanopores. Energy 86, 525–538 (2015).
Feng, J. et al. Single-layer MoS2 nanopores as nanopower generators. Nature 536, 197–200 (2016). This paper reports the use of a single-layer MoS2 nanopore for osmotic energy conversion, with an estimated power density of 106 W m−2.
Hwang, J., Kataoka, S., Endo, A. & Daiguji, H. Enhanced energy harvesting by concentration gradient-driven ion transport in SBA-15 mesoporous silica thin films. Lab Chip 16, 3824–3832 (2016).
Zhang, Z. et al. Ultrathin and ion-selective Janus membranes for high-performance osmotic energy conversion. J. Am. Chem. Soc. 139, 8905–8914 (2017).
Huang, Z. et al. The impact of membrane surface charges on the ion transport in MoS2 nanopore power generators. Appl. Phys. Lett. 111, 263104 (2017).
Zhu, X. B. et al. Unique ion rectification in hypersaline environment: A high-performance and sustainable power generator system. Sci. Adv. 4, eaau1665 (2018).
Yu, C. C. et al. A smart cyto-compatible asymmetric polypyrrole membrane for salinity power generation. Nano Energy 53, 475–482 (2018).
Xin, W. et al. High-performance silk-based hybrid membranes employed for osmotic energy conversion. Nat. Commun. 10, 3876 (2019).
Hong, S. et al. Two-dimensional Ti3C2Tx MXene membranes as nanofluidic osmotic power generators. ACS Nano 13, 8917–8925 (2019).
Zhang, Z. et al. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat. Commun. 10, 2920 (2019). This paper highlights the potential of the coupling of surface charge and space charge in nanoconfinement for osmotic power generation.
Chen, C. et al. Bio-inspired nanocomposite membranes for osmotic energy harvesting. Joule 4, 247–261 (2020).
Ding, L. et al. Oppositely charged Ti3C2Tx MXene membranes with 2D nanofluidic channels for osmotic energy harvesting. Angew. Chem. Int. Ed. 59, 8798–8804 (2020).
Liu, X. et al. Power generation by reverse electrodialysis in a single-layer nanoporous membrane made from core-rim polycyclic aromatic hydrocarbons. Nat. Nanotechnol. 15, 307–312 (2020). This study reports interfacial synthesis of an atomically thin nanoporous membrane with a power density of 67 W m−2, which is about two orders of magnitude higher than that of traditional ion-exchange membranes.
Zhao, Y. et al. Robust sulfonated poly (ether ether ketone) nanochannels for high-performance osmotic energy conversion. Natl Sci. Rev. 7, 1349–1359 (2020).
Lee, Y., Kim, H. J. & Kim, D.-K. Power generation from concentration gradient by reverse electrodialysis in anisotropic nanoporous anodic aluminum oxide membranes. Energies 13, 904 (2020).
Long, R., Zhao, Y. A., Kuang, Z. F., Liu, Z. C. & Liu, W. Hydrodynamic slip enhanced nanofluidic reverse electrodialysis for salinity gradient energy harvesting. Desalination 477, 114263 (2020).
Ji, J. et al. Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs. Adv. Funct. Mater. 27, 1603623 (2017).
Wang, C., Choi, E. & Park, J. High-voltage nanofluidic energy generator based on ion-concentration-gradients mimicking electric eels. Nano Energy 43, 291–299 (2018).
Wu, Q. Y. et al. Salinity-gradient power generation with ionized wood membranes. Adv. Energy Mater. 10, 1902590 (2020).
Cao, L. X. et al. Towards understanding the nanofluidic reverse electrodialysis system: well matched charge selectivity and ionic composition. Energy Environ. Sci. 4, 2259–2266 (2011).
Parks, G. A. Isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem. Rev. 65, 177–198 (1965).
Cheng, L. J. & Guo, L. J. Ionic current rectification, breakdown, and switching in heterogeneous oxide nanofluidic devices. ACS Nano 3, 575–584 (2009).
Zhang, Z. et al. A bioinspired multifunctional heterogeneous membrane with ultrahigh ionic rectification and highly efficient selective ionic gating. Adv. Mater. 28, 144–150 (2016).
Laucirica, G., Toimil-Molares, M. E., Trautmann, C., Marmisolle, W. A. & Azzaroni, O. Polyaniline for improved blue energy harvesting: Highly-rectifying nanofluidic diodes operating in hypersaline conditions via one-step functionalization. ACS Appl. Mater. Interfaces 12, 28148–28157 (2020).
Sachar, H. S., Sivasankar, V. S., Etha, S. A., Chen, G. & Das, S. Ionic current in nanochannels grafted with pH-responsive polyelectrolyte brushes modeled using augmented strong stretching theory. Electrophoresis 41, 554–561 (2020).
Pérez-Mitta, G., Marmisollé, W. A., Trautmann, C., Toimil-Molares, M. E. & Azzaroni, O. An all-plastic field-effect nanofluidic diode gated by a conducting polymer layer. Adv. Mater. 29, 1700972 (2017).
Pérez-Mitta, G. et al. Highly sensitive biosensing with solid-state nanopores displaying enzymatically reconfigurable rectification properties. Nano Lett. 18, 3303–3310 (2018).
Ding, D., Gao, P., Ma, Q., Wang, D. & Xia, F. Biomolecule-functionalized solid-state ion nanochannels/nanopores: Features and techniques. Small 15, e1804878 (2019).
Zhan, K. et al. Tannic acid modified single nanopore with multivalent metal ions recognition and ultra-trace level detection. Nano Today 33, 100868 (2020).
Weidenhammer, P. & Jacobasch, H. J. Investigation of adhesion properties of polymer materials by atomic force microscopy and zeta potential measurements. J. Colloid Interface Sci. 180, 232–236 (1996).
Abdel-Karim, A. et al. Fabrication of modified polyethersulfone membranes for wastewater treatment by submerged membrane bioreactor. Sep. Purif. Technol. 175, 36–46 (2017).
Afonso, M. D. Surface charge on loose nanofiltration membranes. Desalination 191, 262–272 (2006).
Evans, B. W., Hattori, K. & Baronnet, A. Serpentinite: What, why, where? Elements 9, 99–106 (2013).
Santos, J. C. C. et al. Exfoliation and characterization of a two-dimensional serpentine-based material. Nanotechnology 30, 445705 (2019).
Feng, B., Lu, Y. P., Feng, Q. M., Ding, P. & Luo, N. Mechanisms of surface charge development of serpentine mineral. Trans. Nonferrous Met. Soc. China 23, 1123–1128 (2013).
Duman, O. & Tunc, S. Electrokinetic properties of vermiculite and expanded vermiculite: Effects of pH, clay concentration and mono- and multivalent electrolytes. Sep. Sci. Technol. 43, 3755–3776 (2008).
Shao, J. J., Raidongia, K., Koltonow, A. R. & Huang, J. Self-assembled two-dimensional nanofluidic proton channels with high thermal stability. Nat. Commun. 6, 7602 (2015).
Cheng, H. et al. Electrokinetic energy conversion in self-assembled 2D nanofluidic channels with Janus nanobuilding blocks. Adv. Mater. 29, 1700177 (2017).
Xue, G. B. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 12, 317–321 (2017).
Graf, M. et al. Light-enhanced blue energy generation using MoS2 nanopores. Joule 3, 1549–1564 (2019).
Xiao, K. et al. Artificial light-driven ion pump for photoelectric energy conversion. Nat. Commun. 10, 74 (2019).
Li, Z. et al. Simultaneous recovery of metal ions and electricity harvesting via K-Carrageenan@ZIF-8 membrane. ACS Appl. Mater. Interfaces 11, 34039–34045 (2019).
Picallo, C. B., Gravelle, S., Joly, L., Charlaix, E. & Bocquet, L. Nanofluidic osmotic diodes: theory and molecular dynamics simulations. Phys. Rev. Lett. 111, 244501 (2013).
Li, R., Jiang, J., Liu, Q., Xie, Z. & Zhai, J. Hybrid nanochannel membrane based on polymer/MOF for high-performance salinity gradient power generation. Nano Energy 53, 643–649 (2018).
Yang, H. C. et al. Janus membranes: Creating asymmetry for energy efficiency. Adv. Mater. 30, 1801495 (2018).
Zhang, Z. et al. Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface. Nat. Commun. 11, 875 (2020).
Zhu, Y., Zhan, K. & Hou, X. Interface design of nanochannels for energy utilization. ACS Nano 12, 908–911 (2018).
Koltonow, A. R. & Huang, J. Two-dimensional nanofluidics. Science 351, 1395–1396 (2016).
Cheng, C. et al. Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing. Sci. Adv. 2, e1501272 (2016).
Qin, S. et al. High and stable ionic conductivity in 2D nanofluidic ion channels between boron nitride layers. J. Am. Chem. Soc. 139, 6314–6320 (2017).
Hong, S. et al. Scalable graphene-based membranes for ionic sieving with ultrahigh charge selectivity. Nano Lett. 17, 728–732 (2017).
Zheng, S., Tu, Q., Urban, J. J., Li, S. & Mi, B. Swelling of graphene oxide membranes in aqueous solution: Characterization of interlayer spacing and insight into water transport mechanisms. ACS Nano 11, 6440–6450 (2017).
Kang, Y., Xia, Y., Wang, H. T. & Zhang, X. W. 2D laminar membranes for selective water and ion transport. Adv. Funct. Mater. 29, 1902014 (2019).
Zhou, Y. B. et al. Decoupling ionic and electronic pathways in low-dimensional hybrid conductors. J. Am. Chem. Soc. 141, 17830–17837 (2019).
Kim, C. M., Hong, S., Li, R., Kim, I. S. & Wang, P. Janus graphene oxide-doped, lamellar composite membranes with strong aqueous stability. ACS Sustain. Chem. Eng. 7, 7252–7259 (2019).
Ling, S. J. et al. Design and function of biomimetic multilayer water purification membranes. Sci. Adv. 3, e1601939 (2017).
Zhang, Z. et al. Oxidation promoted osmotic energy conversion in black phosphorus membranes. Proc. Natl Acad. Sci. USA 117, 13959–13966 (2020).
Kong, X. Y., Wen, L. P. & Jiang, L. Towards practical osmotic energy capture by a layer-by-layer membrane. Trends Chem. 2, 180–182 (2020).
Chen, C. et al. Bioinspired ultrastrong nanocomposite membranes for salinity gradient energy harvesting from organic solutions. Adv. Energy Mater. 10, 1904098 (2020).
Park, H. et al. Dynamic assembly of liquid crystalline graphene oxide gel fibers for ion transport. Sci. Adv. 4, eaau2104 (2018).
Lee, K. H. et al. Graphene quantum dots/graphene fiber nanochannels for osmotic power generation. J. Mater. Chem. A 7, 23727–23732 (2019).
Kong, W. Q. et al. Strong, water-stable ionic cable from bio-hydrogel. Chem. Mater. 31, 9288–9294 (2019).
Ghanbari, H. & Esfandiar, A. Ion transport through graphene oxide fibers as promising candidate for blue energy harvesting. Carbon 165, 267–274 (2020).
Park, C. H., Bae, H., Kim, C. S., Peck, D. H. & Lee, J. Nanofluidic energy harvesting through a biological 1D protein-embedded nanofilm membrane by interfacial polymerization. Nano Energy 74, 104906 (2020).
Liu, K. et al. On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nat. Chem. 11, 994–1000 (2019).
Gao, J. et al. Understanding the giant gap between single-pore- and membrane-based nanofluidic osmotic power generators. Small 15, 1804279 (2019).
Długołęcki, P. et al. On the resistances of membrane, diffusion boundary layer and double layer in ion exchange membrane transport. J. Membr. Sci. 349, 369–379 (2010).
Wang, L. D. et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat. Nanotechnol. 12, 509–522 (2017).
Pakulski, D., Czepa, W., Del Buffa, S., Ciesielski, A. & Samorì, P. Atom-thick membranes for water purification and blue energy harvesting. Adv. Funct. Mater. 30, 1902394 (2020).
Huang, W. C. & Hsu, J. P. Ultrashort nanopores of large radius can generate anomalously high salinity gradient power. Electrochim. Acta 353, 136613 (2020).
Caglar, M. et al. Tunable anion-selective transport through monolayer graphene and hexagonal boron nitride. ACS Nano 14, 2729–2738 (2020).
Cao, L. X. et al. Anomalous channel-length dependence in nanofluidic osmotic energy conversion. Adv. Funct. Mater. 27, 1604302 (2017).
Li, H. et al. On the role of heterogeneous nanopore junction in osmotic power generation. Chin. J. Chem. 37, 469–473 (2019).
Xiao, F. L. et al. A general strategy to simulate osmotic energy conversion in multi-pore nanofluidic systems. Mater. Chem. Front. 2, 935–941 (2018).
Su, J. et al. Anomalous pore-density dependence in nanofluidic osmotic power generation. Chin. J. Chem. 36, 417–420 (2018).
Schoch, R., Han, J. & Renaud, P. Transport phenomena in nanofluidics. Rev. Mod. Phys. 80, 839–883 (2008).
Wen, L., Hou, X., Tian, Y., Zhai, J. & Jiang, L. Bio-inspired photoelectric conversion based on smart-gating nanochannels. Adv. Funct. Mater. 20, 2636–2642 (2010).
Rao, S. et al. A proteorhodopsin-based biohybrid light-powering pH sensor. Phys. Chem. Chem. Phys. 15, 15821–15824 (2013).
Meng, Z. Y. et al. Artificial ion channels regulating light-induced ionic currents in photoelectrical conversion systems. Adv. Mater. 26, 2329–2334 (2014).
Rao, S. et al. A light-powered bio-capacitor with nanochannel modulation. Adv. Mater. 26, 5846–5850 (2014).
Lu, S., Guo, Z., Xiang, Y. & Jiang, L. Photoelectric frequency response in a bioinspired bacteriorhodopsin/alumina nanochannel hybrid nanosystem. Adv. Mater. 28, 9851–9856 (2016).
Marcotte, A., Mouterde, T., Niguès, A., Siria, A. & Bocquet, L. Mechanically activated ionic transport across single-digit carbon nanotubes. Nat. Mater. 19, 1057–1061 (2020).
Poddar, A., Maity, D., Bandopadhyay, A. & Chakraborty, S. Electrokinetics in polyelectrolyte grafted nanofluidic channels modulated by the ion partitioning effect. Soft Matter 12, 5968–5978 (2016).
Qin, S. et al. Nanofluidic electric generators constructed from boron nitride nanosheet membranes. Nano Energy 47, 368–373 (2018).
Jubin, L., Poggioli, A., Siria, A. & Bocquet, L. Dramatic pressure-sensitive ion conduction in conical nanopores. Proc. Natl Acad. Sci. USA 115, 4063–4068 (2018).
Lin, T. W. & Hsu, J. P. Pressure-driven energy conversion of conical nanochannels: Anomalous dependence of power generated and efficiency on pH. J. Colloid Interface Sci. 564, 491–498 (2019).
van der Heyden, F. H., Bonthuis, D., Stein, D., Meyer, C. & Dekker, C. Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Lett. 7, 1022–1025 (2007).
Ren, Y. Q. & Stein, D. Slip-enhanced electrokinetic energy conversion in nanofluidic channels. Nanotechnology 19, 195707 (2008).
Guo, W. et al. Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane. Adv. Mater. 25, 6064–6068 (2013).
Ding, T. P. et al. All-printed porous carbon film for electricity generation from evaporation-driven water flow. Adv. Funct. Mater. 27, 1700551 (2017).
Li, J. et al. Surface functional modification boosts the output of an evaporation-driven water flow nanogenerator. Nano Energy 58, 797–802 (2019).
Qin, Y. S. et al. Constant electricity generation in nanostructured silicon by evaporation-driven water flow. Angew. Chem. Int. Ed. 59, 10619–10625 (2020).
Yin, J., Zhou, J. X., Fang, S. M. & Guo, W. L. Hydrovoltaic energy on the way. Joule 4, 1852–1855 (2020).
Straub, A. P., Yip, N. Y., Lin, S., Lee, J. & Elimelech, M. Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes. Nat. Energy 1, 16090 (2016).
Rahimi, M. et al. Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity. Energy Environ. Sci. 11, 276–285 (2018).
Li, T. et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nat. Mater. 18, 608–613 (2019).
Han, C. G. et al. Giant thermopower of ionic gelatin near room temperature. Science 368, 1091–1098 (2020).
Yu, B. et al. Thermosensitive crystallization–boosted liquid thermocells for low-grade heat harvesting. Science 370, 342–346 (2020).
Xie, G. H. et al. Skin-inspired low-grade heat energy harvesting using directed ionic flow through conical nanochannels. Adv. Energy Mater. 8, 1800459 (2018).
Zhang, W., Wang, Q., Zeng, M. & Zhao, C. Thermoelectric effect and temperature-gradient-driven electrokinetic flow of electrolyte solutions in charged nanocapillaries. Int. J. Heat. Mass Transf. 143, 118569 (2019).
Zhong, J. X. & Huang, C. L. Influence factors of thermal driven ion transport in nano-channel for thermoelectricity application. Int. J. Heat Mass Transf. 152, 119501 (2020).
Chen, K. X., Yao, L. N. & Su, B. Bionic thermoelectric response with nanochannels. J. Am. Chem. Soc. 141, 8608–8615 (2019).
Long, R., Kuang, Z., Liu, Z. & Liu, W. Temperature regulated reverse electrodialysis in charged nanopores. J. Membr. Sci. 561, 1–9 (2018).
Chen, K. X. et al. Thermo-osmotic energy conversion and storage by nanochannels. J. Mater. Chem. A 7, 25258–25261 (2019).
Mai, V. P. & Yang, R. J. Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect. Appl. Energy 274, 115294 (2020).
Long, R., Kuang, Z., Liu, Z. & Liu, W. Ionic thermal up-diffusion in nanofluidic salinity-gradient energy harvesting. Natl Sci. Rev. 6, 1266–1273 (2019).
Long, R., Luo, Z., Kuang, Z., Liu, Z. & Liu, W. Effects of heat transfer and the membrane thermal conductivity on the thermally nanofluidic salinity gradient energy conversion. Nano Energy 67, 104284 (2019).
Mei, Y. & Tang, C. Y. Y. Co-locating reverse electrodialysis with reverse osmosis desalination: Synergies and implications. J. Membr. Sci. 539, 305–312 (2017).
Li, W. et al. A novel hybrid process of reverse electrodialysis and reverse osmosis for low energy seawater desalination and brine management. Appl. Energy 104, 592–602 (2013).
Tufa, R. A. et al. Hydrogen production from industrial wastewaters: An integrated reverse electrodialysis - Water electrolysis energy system. J. Clean. Prod. 203, 418–426 (2018).
Lee, J. et al. Reverse electrodialysis-assisted solar water splitting. Sci. Rep. 7, 12281 (2017).
Kim, Y. & Logan, B. E. Hydrogen production from inexhaustible supplies of fresh and salt water using microbial reverse-electrodialysis electrolysis cells. Proc. Natl Acad. Sci. USA 108, 16176–16181 (2011).
Cusick, R. D., Kim, Y. & Logan, B. E. Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells. Science 335, 1474–1477 (2012).
Kim, Y. & Logan, B. E. Microbial reverse electrodialysis cells for synergistically enhanced power production. Environ. Sci. Technol. 45, 5834–5839 (2011).
Kingsbury, R. S., Chu, K. & Coronell, O. Energy storage by reversible electrodialysis: The concentration battery. J. Membr. Sci. 495, 502–516 (2015).
van Egmond, W. J. et al. The concentration gradient flow battery as electricity storage system: Technology potential and energy dissipation. J. Power Sources 325, 129–139 (2016).
Micari, M. et al. Effect of different aqueous solutions of pure salts and salt mixtures in reverse electrodialysis systems for closed-loop applications. J. Membr. Sci. 551, 315–325 (2018).
Tamburini, A. et al. Reverse electrodialysis heat engine for sustainable power production. Appl. Energy 206, 1334–1353 (2017).
Micari, M. et al. Towards the first proof of the concept of a Reverse ElectroDialysis-Membrane Distillation Heat Engine. Desalination 453, 77–88 (2019).
Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).
Epsztein, R., DuChanois, R. M., Ritt, C. L., Noy, A. & Elimelech, M. Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 15, 426–436 (2020).
Cheng, C., Jiang, G., Simon, G. P., Liu, J. Z. & Li, D. Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes. Nat. Nanotechnol. 13, 685–690 (2018).
Comtet, J. et al. Direct observation of water-mediated single-proton transport between hBN surface defects. Nat. Nanotechnol. 15, 598–604 (2020).
Grosjean, B. et al. Chemisorption of hydroxide on 2D materials from DFT calculations: Graphene versus hexagonal boron nitride. J. Phys. Chem. Lett. 7, 4695–4700 (2016).
Lucas, R. A., Lin, C. Y. & Siwy, Z. S. Electrokinetic phenomena in organic solvents. J. Phys. Chem. B 123, 6123–6131 (2019).
Yan, Y., Sheng, Q., Wang, C., Xue, J. & Chang, H.-C. Energy conversion efficiency of nanofluidic batteries: Hydrodynamic slip and access resistance. J. Phys. Chem. C 117, 8050–8061 (2013).
Gadaleta, A. et al. Sub-additive ionic transport across arrays of solid-state nanopores. Phys. Fluids 26, 012005 (2014).
Green, Y., Eshel, R., Park, S. & Yossifon, G. Interplay between nanochannel and microchannel resistances. Nano Lett. 16, 2744–2748 (2016).
Rankin, D. J., Bocquet, L. & Huang, D. M. Entrance effects in concentration-gradient-driven flow through an ultrathin porous membrane. J. Chem. Phys. 151, 044705 (2019).
O’Hern, S. C. et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 14, 1234–1241 (2014).
Yang, S., Zhang, P. P., Nia, A. S. & Feng, X. L. Emerging 2D materials produced via electrochemistry. Adv. Mater. 32, 1907857 (2020).
Zhao, C. Q. et al. Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature 580, 210–215 (2020).
Chang, H. K., Choi, E. & Park, J. Paper-based energy harvesting from salinity gradients. Lab Chip 16, 700–708 (2016).
Acknowledgements
This work was supported by the National Key R&D Program of China (2017YFA0206904, 2017YFA0206900) and the National Natural Science Foundation (21625303, 21905287, 21988102). Z.Z. acknowledges the support of the Alexander von Humboldt Foundation.
Author information
Authors and Affiliations
Contributions
All authors contributed to the discussion of content and writing of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhang, Z., Wen, L. & Jiang, L. Nanofluidics for osmotic energy conversion. Nat Rev Mater 6, 622–639 (2021). https://doi.org/10.1038/s41578-021-00300-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41578-021-00300-4
This article is cited by
-
Recent Advances in Fibrous Materials for Hydroelectricity Generation
Nano-Micro Letters (2025)
-
Bioinspired light-driven chloride pump with helical porphyrin channels
Nature Communications (2024)
-
Salinity gradient induced blue energy generation using two-dimensional membranes
npj 2D Materials and Applications (2024)
-
Osmotic energy conversion in serpentinite-hosted deep-sea hydrothermal vents
Nature Communications (2024)
-
Unlocking osmotic energy harvesting potential in challenging real-world hypersaline environments through vermiculite-based hetero-nanochannels
Nature Communications (2024)