Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nanofluidics for osmotic energy conversion

Abstract

The osmotic pressure difference between river water and seawater is a promising source of renewable energy. However, current osmotic energy conversion processes show limited power output, mainly owing to the low performance of commercial ion-exchange membranes. Nanofluidic channels with tailored ion transport dynamics enable high-performance reverse electrodialysis to efficiently harvest renewable osmotic energy. In this Review, we discuss ion diffusion through nanofluidic channels and investigate the rational design and optimization of advanced membrane architectures. We highlight how the structure and charge distribution can be tailored to minimize resistance and promote energy conversion, and examine the possibility of integrating nanofluidic osmotic energy conversion with other technologies, such as desalination and water splitting. Finally, we give an outlook to future applications and discuss challenges that need to be overcome to enable large-scale, real-world applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Theoretical and practical milestones in nanofluidics for osmotic energy conversion.
Fig. 2: Nanofluidic channels for osmotic energy conversion.
Fig. 3: Surface charging principles.
Fig. 4: Advanced membrane architectures.
Fig. 5: Promoting osmotic energy conversion.
Fig. 6: Other energy conversion systems.
Fig. 7: Coupling with other technologies.

Similar content being viewed by others

References

  1. Helmholtz, H. Studien über electrische Grenzschichten. Ann. Phys. 243, 337–382 (1879).

    Article  Google Scholar 

  2. Gouy, M. Sur la constitution de la charge électrique à la surface d’un électrolyte. J. Phys. Theor. Appl. 9, 457–468 (1910).

    Article  CAS  Google Scholar 

  3. Stern, O. The theory of the electrolytic double shift. Z. Elektrochem. Angew. Phys. Chem. 30, 508–516 (1924).

    CAS  Google Scholar 

  4. Bocquet, L. & Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39, 1073–1095 (2010).

    Article  CAS  Google Scholar 

  5. Rollings, R. C., Kuan, A. T. & Golovchenko, J. A. Ion selectivity of graphene nanopores. Nat. Commun. 7, 11408 (2016).

    Article  CAS  Google Scholar 

  6. Esfandiar, A. et al. Size effect in ion transport through angstrom-scale slits. Science 358, 511–513 (2017).

    Article  CAS  Google Scholar 

  7. Feng, J. D. et al. Identification of single nucleotides in MoS2 nanopores. Nat. Nanotechnol. 10, 1070–1076 (2015).

    Article  CAS  Google Scholar 

  8. Tunuguntla, R. H., Allen, F. I., Kim, K., Belliveau, A. & Noy, A. Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins. Nat. Nanotechnol. 11, 639–644 (2016).

    Article  CAS  Google Scholar 

  9. Plesa, C. et al. Direct observation of DNA knots using a solid-state nanopore. Nat. Nanotechnol. 11, 1093–1097 (2016).

    Article  CAS  Google Scholar 

  10. Yan, C. S. et al. Engineering 2D nanofluidic Li-ion transport channels for superior electrochemical energy storage. Adv. Mater. 29, 1703909 (2017).

    Article  Google Scholar 

  11. Zhang, Z. H. et al. Emerging hydrovoltaic technology. Nat. Nanotechnol. 13, 1109–1119 (2018).

    Article  CAS  Google Scholar 

  12. Levin, S. et al. A nanofluidic device for parallel single nanoparticle catalysis in solution. Nat. Commun. 10, 4426 (2019).

    Article  CAS  Google Scholar 

  13. Faucher, S. et al. Critical knowledge gaps in mass transport through single-digit nanopores: A review and perspective. J. Phys. Chem. C 123, 21309–21326 (2019).

    Article  CAS  Google Scholar 

  14. Zhan, H. et al. Solvation-involved nanoionics: New opportunities from 2D nanomaterial laminar membranes. Adv. Mater. 32, e1904562 (2020).

    Article  Google Scholar 

  15. Xue, L. et al. Solid-state nanopore sensors. Nat. Rev. Mater. 5, 931–951 (2020).

    Article  Google Scholar 

  16. Xiao, J. et al. Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics. Nat. Nanotechnol. 15, 683–689 (2020).

    Article  CAS  Google Scholar 

  17. Bocquet, L. Nanofluidics coming of age. Nat. Mater. 19, 254–256 (2020).

    Article  CAS  Google Scholar 

  18. Lucas, R. A., Lin, C. Y., Baker, L. A. & Siwy, Z. S. Ionic amplifying circuits inspired by electronics and biology. Nat. Commun. 11, 1568 (2020).

    Article  CAS  Google Scholar 

  19. Doyle, D. A. et al. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  CAS  Google Scholar 

  20. Tagliazucchi, M. & Szleifer, I. Transport mechanisms in nanopores and nanochannels: can we mimic nature? Mater. Today 18, 131–142 (2015).

    Article  CAS  Google Scholar 

  21. Zhang, Z., Wen, L. & Jiang, L. Bioinspired smart asymmetric nanochannel membranes. Chem. Soc. Rev. 47, 322–356 (2018).

    Article  CAS  Google Scholar 

  22. Li, J., Stein, D. & McMullan, C. Ion-beam sculpting at nanometre length scales. Nature 412, 166–169 (2001).

    Article  CAS  Google Scholar 

  23. Storm, A. J., Chen, J. H., Ling, X. S., Zandbergen, H. W. & Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2, 537–540 (2003).

    Article  CAS  Google Scholar 

  24. Liu, K., Feng, J. D., Kis, A. & Radenovic, A. Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano 8, 2504–2511 (2014).

    Article  CAS  Google Scholar 

  25. Graf, M. et al. Fabrication and practical applications of molybdenum disulfide nanopores. Nat. Protoc. 14, 1130–1168 (2019).

    Article  CAS  Google Scholar 

  26. Apel, P., Korchev, Y., Siwy, Z., Spohr, R. & Yoshida, M. Diode-like single-ion track membrane prepared by electro-stopping. Nucl. Instrum. Methods Phys. Res. B 184, 337–346 (2001).

    Article  CAS  Google Scholar 

  27. Ali, M. et al. Single cigar-shaped nanopores functionalized with amphoteric amino acid chains: Experimental and theoretical characterization. ACS Nano 6, 3631–3640 (2012).

    Article  CAS  Google Scholar 

  28. Pérez-Mitta, G. et al. Polydopamine meets solid-state nanopores: a bioinspired integrative surface chemistry approach to tailor the functional properties of nanofluidic diodes. J. Am. Chem. Soc. 137, 6011–6017 (2015).

    Article  Google Scholar 

  29. Xiao, K. et al. A tunable ionic diode based on a biomimetic structure-tailorable nanochannel. Angew. Chem. Int. Ed. 56, 8168–8172 (2017).

    Article  CAS  Google Scholar 

  30. Hsu, J. P. et al. Unraveling the anomalous surface-charge-dependent osmotic power using a single funnel-shaped nanochannel. ACS Nano 13, 13374–13381 (2019).

    Article  CAS  Google Scholar 

  31. Harrell, C., Kohli, P., Siwy, Z. & Martin, C. DNA-nanotube artificial ion channels. J. Am. Chem. Soc. 126, 15646–15647 (2004).

    Article  CAS  Google Scholar 

  32. Siwy, Z., Heins, E., Harrell, C. C., Kohli, P. & Martin, C. R. Conical-nanotube ion-current rectifiers: The role of surface charge. J. Am. Chem. Soc. 126, 10850–10851 (2004).

    Article  CAS  Google Scholar 

  33. Cayre, O., Chang, S. & Velev, O. D. Polyelectrolyte diode: Nonlinear current response of a junction between aqueous ionic gels. J. Am. Chem. Soc. 129, 10801–10806 (2007).

    Article  CAS  Google Scholar 

  34. Xia, F. et al. Gating of single synthetic nanopores by proton-driven DNA molecular motors. J. Am. Chem. Soc. 130, 8345–8350 (2008).

    Article  CAS  Google Scholar 

  35. Kalman, E. B., Vlassiouk, I. & Siwy, Z. S. Nanofluidic bipolar transistors. Adv. Mater. 20, 293–297 (2008).

    Article  CAS  Google Scholar 

  36. Yan, R., Liang, W., Fan, R. & Yang, P. Nanofluidic diodes based on nanotube heterojunctions. Nano Lett. 9, 3820–3825 (2009).

    Article  CAS  Google Scholar 

  37. Lan, W. J., Holden, D. A. & White, H. S. Pressure-dependent ion current rectification in conical-shaped glass nanopores. J. Am. Chem. Soc. 133, 13300–13303 (2011).

    Article  CAS  Google Scholar 

  38. Zhang, H. et al. Bioinspired artificial single ion pump. J. Am. Chem. Soc. 135, 16102–16110 (2013).

    Article  CAS  Google Scholar 

  39. Kneller, A. R., Haywood, D. G. & Jacobson, S. C. AC electroosmotic pumping in nanofluidic funnels. Anal. Chem. 88, 6390–6394 (2016).

    Article  CAS  Google Scholar 

  40. Feng, J. D. et al. Observation of ionic Coulomb blockade in nanopores. Nat. Mater. 15, 850–855 (2016).

    Article  CAS  Google Scholar 

  41. Pérez-Mitta, G., Albesa, A. G., Trautmann, C., Toimil-Molares, M. E. & Azzaroni, O. Bioinspired integrated nanosystems based on solid-state nanopores: “iontronic” transduction of biological, chemical and physical stimuli. Chem. Sci. 8, 890–913 (2017).

    Article  Google Scholar 

  42. Ali, M. et al. Lithium ion recognition with nanofluidic diodes through host–guest complexation in confined geometries. Anal. Chem. 90, 6820–6826 (2018).

    Article  CAS  Google Scholar 

  43. Fu, K., Han, D., Kwon, S. R. & Bohn, P. W. Asymmetric nafion-coated nanopore electrode arrays as redox-cycling-based electrochemical diodes. ACS Nano 12, 9177–9185 (2018).

    Article  CAS  Google Scholar 

  44. Kavokine, N., Marbach, S., Siria, A. & Bocquet, L. Ionic Coulomb blockade as a fractional Wien effect. Nat. Nanotechnol. 14, 573–578 (2019).

    Article  CAS  Google Scholar 

  45. Wang, M. et al. Dynamic curvature nanochannel-based membrane with anomalous ionic transport behaviors and reversible rectification switch. Adv. Mater. 31, 1805130 (2019).

    Article  Google Scholar 

  46. Pérez-Mitta, G., Toimil-Molares, M. E., Trautmann, C., Marmisolle, W. A. & Azzaroni, O. Molecular design of solid-state nanopores: Fundamental concepts and applications. Adv. Mater. 31, e1901483 (2019).

    Article  Google Scholar 

  47. Acar, E. T., Buchsbaum, S. F., Combs, C., Fornasiero, F. & Siwy, Z. S. Biomimetic potassium-selective nanopores. Sci. Adv. 5, eaav2568 (2019).

    Article  CAS  Google Scholar 

  48. Lu, J. et al. Efficient metal ion sieving in rectifying subnanochannels enabled by metal–organic frameworks. Nat. Mater. 19, 767–774 (2020).

    Article  CAS  Google Scholar 

  49. Woermann, D. Electrochemical transport properties of a cone-shaped nanopore: high and low electrical conductivity states depending on the sign of an applied electrical potential difference. Phys. Chem. Chem. Phys. 5, 1853–1858 (2003).

    Article  CAS  Google Scholar 

  50. Cervera, J., Schiedt, B. & Ramirez, P. A Poisson/Nernst-Planck model for ionic transport through synthetic conical nanopores. Europhys. Lett. 71, 35–41 (2005).

    Article  CAS  Google Scholar 

  51. White, H. S. & Bund, A. Ion current rectification at nanopores in glass membranes. Langmuir 24, 2212–2218 (2008).

    Article  CAS  Google Scholar 

  52. Siwy, Z. S. Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv. Funct. Mater. 16, 735–746 (2006).

    Article  CAS  Google Scholar 

  53. Tagliazucchi, M., Azzaroni, O. & Szleifer, I. Responsive polymers end-tethered in solid-state nanochannels: When nanoconfinement really matters. J. Am. Chem. Soc. 132, 12404–12411 (2010).

    Article  CAS  Google Scholar 

  54. Siria, A. et al. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494, 455–458 (2013). This paper reports that diffusio-osmotic transport in a single transmembrane boron nitride nanotube greatly contributes to osmotic energy conversion.

    Article  CAS  Google Scholar 

  55. Lin, C. Y., Combs, C., Su, Y. S., Yeh, L. H. & Siwy, Z. S. Rectification of concentration polarization in mesopores leads to high conductance ionic diodes and high performance osmotic power. J. Am. Chem. Soc. 141, 3691–3698 (2019).

    Article  CAS  Google Scholar 

  56. Logan, B. E. & Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 488, 313–319 (2012).

    Article  CAS  Google Scholar 

  57. Siria, A., Bocquet, M. L. & Bocquet, L. New avenues for the large-scale harvesting of blue energy. Nat. Rev. Chem. 1, 0091 (2017).

    Article  CAS  Google Scholar 

  58. Pattle, R. E. Production of electric power by mixing fresh and salt water in the hydroelectric pile. Nature 174, 660–660 (1954). This paper was the first to propose the concept of harvesting salinity gradient energy using reverse electrodialysis technology.

    Article  CAS  Google Scholar 

  59. Vermaas, D. A., Saakes, M. & Nijmeijer, K. Doubled power density from salinity gradients at reduced intermembrane distance. Environ. Sci. Technol. 45, 7089–7095 (2011).

    Article  CAS  Google Scholar 

  60. Hong, J. G. et al. Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: A review. J. Membr. Sci. 486, 71–88 (2015).

    Article  CAS  Google Scholar 

  61. Mei, Y. & Tang, C. Y. Y. Recent developments and future perspectives of reverse electrodialysis technology: A review. Desalination 425, 156–174 (2018).

    Article  CAS  Google Scholar 

  62. Schroeder, T. B. H. et al. An electric-eel-inspired soft power source from stacked hydrogels. Nature 552, 214–218 (2017). This report adopts an electric-eel-inspired power concept to construct a soft and flexible artificial electric organ based on charged 3D hydrogel membranes.

    Article  CAS  Google Scholar 

  63. Xu, J. & Lavan, D. A. Designing artificial cells to harness the biological ion concentration gradient. Nat. Nanotechnol. 3, 666–670 (2008).

    Article  CAS  Google Scholar 

  64. Guo, W. et al. Energy harvesting with single-ion-selective nanopores: A concentration-gradient-driven nanofluidic power source. Adv. Funct. Mater. 20, 1339–1344 (2010). This study reports a systematic investigation of a solid-state single nanofluidic channel for the harvesting of salinity gradient energy in the form of reverse electrodialysis.

    Article  CAS  Google Scholar 

  65. Veerman, J., Saakes, M., Metz, S. J. & Harmsen, G. J. Reverse electrodialysis: Performance of a stack with 50 cells on the mixing of sea and river water. J. Membr. Sci. 327, 136–144 (2009).

    Article  CAS  Google Scholar 

  66. Veerman, J., Saakes, M., Metz, S. J. & Harmsen, G. J. Reverse electrodialysis: A validated process model for design and optimization. Chem. Eng. J. 166, 256–268 (2011).

    Article  CAS  Google Scholar 

  67. Vermaas, D. A. et al. High efficiency in energy generation from salinity gradients with reverse electrodialysis. ACS Sustain. Chem. Eng. 1, 1295–1302 (2013).

    Article  CAS  Google Scholar 

  68. Yip, N. Y., Vermaas, D. A., Nijmeijer, K. & Elimelech, M. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients. Environ. Sci. Technol. 48, 4925–4936 (2014).

    Article  CAS  Google Scholar 

  69. Varcoe, J. R. et al. Anion-exchange membranes in electrochemical energy systems. Energy Environ. Sci. 7, 3135–3191 (2014).

    Article  CAS  Google Scholar 

  70. Zhu, X. P., He, W. H. & Logan, B. E. Influence of solution concentration and salt types on the performance of reverse electrodialysis cells. J. Membr. Sci. 494, 154–160 (2015).

    Article  CAS  Google Scholar 

  71. Yip, N. Y., Brogioli, D., Hamelers, H. V. M. & Nijmeijer, K. Salinity gradients for sustainable energy: Primer, progress, and prospects. Environ. Sci. Technol. 50, 12072–12094 (2016).

    Article  CAS  Google Scholar 

  72. Zhang, B. P., Hong, J. G., Xie, S. H., Xia, S. M. & Chen, Y. S. An integrative modeling and experimental study on the ionic resistance of ion-exchange membranes. J. Membr. Sci. 524, 362–369 (2017).

    Article  CAS  Google Scholar 

  73. Kamcev, J., Paul, D. R. & Freeman, B. D. Effect of fixed charge group concentration on equilibrium ion sorption in ion exchange membranes. J. Mater. Chem. A 5, 4638–4650 (2017).

    Article  CAS  Google Scholar 

  74. Gurreri, L. et al. Multi-physical modelling of reverse electrodialysis. Desalination 423, 52–64 (2017).

    Article  CAS  Google Scholar 

  75. Ran, J. et al. Ion exchange membranes: New developments and applications. J. Membr. Sci. 522, 267–291 (2017).

    Article  CAS  Google Scholar 

  76. Tedesco, M., Cipollina, A., Tamburini, A. & Micale, G. Towards 1 kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines. J. Membr. Sci. 522, 226–236 (2017).

    Article  CAS  Google Scholar 

  77. Tufa, R. A. et al. Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage. Appl. Energy 225, 290–331 (2018).

    Article  CAS  Google Scholar 

  78. Gao, H., Zhang, B., Tong, X. & Chen, Y. S. Monovalent-anion selective and antifouling polyelectrolytes multilayer anion exchange membrane for reverse electrodialysis. J. Membr. Sci. 567, 68–75 (2018).

    Article  CAS  Google Scholar 

  79. Kamcev, J. et al. Salt concentration dependence of ionic conductivity in ion exchange membranes. J. Membr. Sci. 547, 123–133 (2018).

    Article  CAS  Google Scholar 

  80. Avci, A. H., Tufa, R. A., Fontananova, E., Di Profio, G. & Curcio, E. Reverse Electrodialysis for energy production from natural river water and seawater. Energy 165, 512–521 (2018).

    Article  CAS  Google Scholar 

  81. Long, R., Li, B. D., Liu, Z. C. & Liu, W. Performance analysis of reverse electrodialysis stacks: Channel geometry and flow rate optimization. Energy 158, 427–436 (2018).

    Article  Google Scholar 

  82. Zhang, B., Gao, H., Xiao, C., Tong, X. & Chen, Y. S. The trade-off between membrane permselectivity and conductivity: A percolation simulation of mass transport. J. Membr. Sci. 597, 117751 (2020).

    Article  CAS  Google Scholar 

  83. Galama, A. H. et al. Membrane resistance: The effect of salinity gradients over a cation exchange membrane. J. Membr. Sci. 467, 279–291 (2014).

    Article  CAS  Google Scholar 

  84. He, D. et al. A cationic diode based on asymmetric nafion film deposits. ACS Appl. Mater. Interfaces 9, 11272–11278 (2017).

    Article  CAS  Google Scholar 

  85. Cipollina, A. & Micale, G. Sustainable Energy from Salinity Gradients (Woodhead Publishing, 2016).

  86. Kim, D.-K., Duan, C. H., Chen, Y. F. & Majumdar, A. Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels. Microfluid. Nanofluid. 9, 1215–1224 (2010). This paper shows that inorganic nanofluidic channels are comparable to organic ion-exchange membranes in terms of power density and energy conversion efficiency.

    Article  CAS  Google Scholar 

  87. Guan, W., Fan, R. & Reed, M. A. Field-effect reconfigurable nanofluidic ionic diodes. Nat. Commun. 2, 506 (2011).

    Article  Google Scholar 

  88. Raidongia, K. & Huang, J. Nanofluidic ion transport through reconstructed layered materials. J. Am. Chem. Soc. 134, 16528–16531 (2012). This paper investigates nanofluidic ion transport behaviour through laminar membranes fabricated with 2D materials.

    Article  CAS  Google Scholar 

  89. Perry, J. M., Harms, Z. D. & Jacobson, S. C. 3D nanofluidic channels shaped by electron-beam-induced etching. Small 8, 1521–1526 (2012).

    Article  CAS  Google Scholar 

  90. Zhang, Z. et al. Engineered asymmetric heterogeneous membrane: A concentration-gradient-driven energy harvesting device. J. Am. Chem. Soc. 137, 14765–14772 (2015).

    Article  CAS  Google Scholar 

  91. Liu, K. et al. Geometrical effect in 2D nanopores. Nano Lett. 17, 4223–4230 (2017).

    Article  CAS  Google Scholar 

  92. Marbach, S., Dean, D. S. & Bocquet, L. Transport and dispersion across wiggling nanopores. Nat. Phys. 14, 1108–1113 (2018).

    Article  CAS  Google Scholar 

  93. Macha, M., Marion, S., Nandigana, V. V. R. & Radenovic, A. 2D materials as an emerging platform for nanopore-based power generation. Nat. Rev. Mater. 4, 588–605 (2019).

    Article  CAS  Google Scholar 

  94. Guo, Y. et al. Sulfonated sub-nanochannels in a robust MOF membrane: Harvesting salinity gradient power. ACS Appl. Mater. Interfaces 11, 35496–35500 (2019).

    Article  CAS  Google Scholar 

  95. Li, T. et al. A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Sci. Adv. 5, eaau4238 (2019).

    Article  CAS  Google Scholar 

  96. Kuang, Z. F. et al. Bioinspired fractal nanochannels for high-performance salinity gradient energy conversion. J. Power Sources 418, 33–41 (2019).

    Article  CAS  Google Scholar 

  97. Laucirica, G. et al. Shape matters: Enhanced osmotic energy harvesting in bullet-shaped nanochannels. Nano Energy 71, 104612 (2020).

    Article  CAS  Google Scholar 

  98. Thiruraman, J. P., Masih Das, P. & Drndic, M. Ions and water dancing through atom-scale holes: A perspective toward “Size Zero”. ACS Nano 14, 3736–3746 (2020).

    Article  CAS  Google Scholar 

  99. Yin, J. et al. Waving potential in graphene. Nat. Commun. 5, 3582 (2014).

    Article  CAS  Google Scholar 

  100. Duan, C. & Majumdar, A. Anomalous ion transport in 2-nm hydrophilic nanochannels. Nat. Nanotechnol. 5, 848–852 (2010).

    Article  CAS  Google Scholar 

  101. Marbach, S. & Bocquet, L. Osmosis, from molecular insights to large-scale applications. Chem. Soc. Rev. 48, 3102–3144 (2019).

    Article  CAS  Google Scholar 

  102. Gao, J. et al. High-performance ionic diode membrane for salinity gradient power generation. J. Am. Chem. Soc. 136, 12265–12272 (2014). This report demonstrates the use of an ionic rectifying heterogeneous membrane for osmotic energy conversion.

    Article  CAS  Google Scholar 

  103. Choi, E., Kwon, K., Kim, D. & Park, J. Tunable reverse electrodialysis microplatform with geometrically controlled self-assembled nanoparticle network. Lab Chip 15, 168–178 (2015).

    Article  CAS  Google Scholar 

  104. Kang, B. D., Kim, H. J., Lee, M. G. & Kim, D.-K. Numerical study on energy harvesting from concentration gradient by reverse electrodialysis in anodic alumina nanopores. Energy 86, 525–538 (2015).

    Article  CAS  Google Scholar 

  105. Feng, J. et al. Single-layer MoS2 nanopores as nanopower generators. Nature 536, 197–200 (2016). This paper reports the use of a single-layer MoS2 nanopore for osmotic energy conversion, with an estimated power density of 106 W m−2.

    Article  CAS  Google Scholar 

  106. Hwang, J., Kataoka, S., Endo, A. & Daiguji, H. Enhanced energy harvesting by concentration gradient-driven ion transport in SBA-15 mesoporous silica thin films. Lab Chip 16, 3824–3832 (2016).

    Article  CAS  Google Scholar 

  107. Zhang, Z. et al. Ultrathin and ion-selective Janus membranes for high-performance osmotic energy conversion. J. Am. Chem. Soc. 139, 8905–8914 (2017).

    Article  CAS  Google Scholar 

  108. Huang, Z. et al. The impact of membrane surface charges on the ion transport in MoS2 nanopore power generators. Appl. Phys. Lett. 111, 263104 (2017).

    Article  Google Scholar 

  109. Zhu, X. B. et al. Unique ion rectification in hypersaline environment: A high-performance and sustainable power generator system. Sci. Adv. 4, eaau1665 (2018).

    Article  CAS  Google Scholar 

  110. Yu, C. C. et al. A smart cyto-compatible asymmetric polypyrrole membrane for salinity power generation. Nano Energy 53, 475–482 (2018).

    Article  CAS  Google Scholar 

  111. Xin, W. et al. High-performance silk-based hybrid membranes employed for osmotic energy conversion. Nat. Commun. 10, 3876 (2019).

    Article  Google Scholar 

  112. Hong, S. et al. Two-dimensional Ti3C2Tx MXene membranes as nanofluidic osmotic power generators. ACS Nano 13, 8917–8925 (2019).

    Article  CAS  Google Scholar 

  113. Zhang, Z. et al. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat. Commun. 10, 2920 (2019). This paper highlights the potential of the coupling of surface charge and space charge in nanoconfinement for osmotic power generation.

    Article  Google Scholar 

  114. Chen, C. et al. Bio-inspired nanocomposite membranes for osmotic energy harvesting. Joule 4, 247–261 (2020).

    Article  CAS  Google Scholar 

  115. Ding, L. et al. Oppositely charged Ti3C2Tx MXene membranes with 2D nanofluidic channels for osmotic energy harvesting. Angew. Chem. Int. Ed. 59, 8798–8804 (2020).

    Article  Google Scholar 

  116. Liu, X. et al. Power generation by reverse electrodialysis in a single-layer nanoporous membrane made from core-rim polycyclic aromatic hydrocarbons. Nat. Nanotechnol. 15, 307–312 (2020). This study reports interfacial synthesis of an atomically thin nanoporous membrane with a power density of 67 W m−2, which is about two orders of magnitude higher than that of traditional ion-exchange membranes.

    Article  CAS  Google Scholar 

  117. Zhao, Y. et al. Robust sulfonated poly (ether ether ketone) nanochannels for high-performance osmotic energy conversion. Natl Sci. Rev. 7, 1349–1359 (2020).

    Article  CAS  Google Scholar 

  118. Lee, Y., Kim, H. J. & Kim, D.-K. Power generation from concentration gradient by reverse electrodialysis in anisotropic nanoporous anodic aluminum oxide membranes. Energies 13, 904 (2020).

    Article  CAS  Google Scholar 

  119. Long, R., Zhao, Y. A., Kuang, Z. F., Liu, Z. C. & Liu, W. Hydrodynamic slip enhanced nanofluidic reverse electrodialysis for salinity gradient energy harvesting. Desalination 477, 114263 (2020).

    Article  CAS  Google Scholar 

  120. Ji, J. et al. Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs. Adv. Funct. Mater. 27, 1603623 (2017).

    Article  Google Scholar 

  121. Wang, C., Choi, E. & Park, J. High-voltage nanofluidic energy generator based on ion-concentration-gradients mimicking electric eels. Nano Energy 43, 291–299 (2018).

    Article  CAS  Google Scholar 

  122. Wu, Q. Y. et al. Salinity-gradient power generation with ionized wood membranes. Adv. Energy Mater. 10, 1902590 (2020).

    Article  CAS  Google Scholar 

  123. Cao, L. X. et al. Towards understanding the nanofluidic reverse electrodialysis system: well matched charge selectivity and ionic composition. Energy Environ. Sci. 4, 2259–2266 (2011).

    Article  CAS  Google Scholar 

  124. Parks, G. A. Isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem. Rev. 65, 177–198 (1965).

    Article  CAS  Google Scholar 

  125. Cheng, L. J. & Guo, L. J. Ionic current rectification, breakdown, and switching in heterogeneous oxide nanofluidic devices. ACS Nano 3, 575–584 (2009).

    Article  CAS  Google Scholar 

  126. Zhang, Z. et al. A bioinspired multifunctional heterogeneous membrane with ultrahigh ionic rectification and highly efficient selective ionic gating. Adv. Mater. 28, 144–150 (2016).

    Article  CAS  Google Scholar 

  127. Laucirica, G., Toimil-Molares, M. E., Trautmann, C., Marmisolle, W. A. & Azzaroni, O. Polyaniline for improved blue energy harvesting: Highly-rectifying nanofluidic diodes operating in hypersaline conditions via one-step functionalization. ACS Appl. Mater. Interfaces 12, 28148–28157 (2020).

    Article  CAS  Google Scholar 

  128. Sachar, H. S., Sivasankar, V. S., Etha, S. A., Chen, G. & Das, S. Ionic current in nanochannels grafted with pH-responsive polyelectrolyte brushes modeled using augmented strong stretching theory. Electrophoresis 41, 554–561 (2020).

    Article  CAS  Google Scholar 

  129. Pérez-Mitta, G., Marmisollé, W. A., Trautmann, C., Toimil-Molares, M. E. & Azzaroni, O. An all-plastic field-effect nanofluidic diode gated by a conducting polymer layer. Adv. Mater. 29, 1700972 (2017).

    Article  Google Scholar 

  130. Pérez-Mitta, G. et al. Highly sensitive biosensing with solid-state nanopores displaying enzymatically reconfigurable rectification properties. Nano Lett. 18, 3303–3310 (2018).

    Article  Google Scholar 

  131. Ding, D., Gao, P., Ma, Q., Wang, D. & Xia, F. Biomolecule-functionalized solid-state ion nanochannels/nanopores: Features and techniques. Small 15, e1804878 (2019).

    Article  Google Scholar 

  132. Zhan, K. et al. Tannic acid modified single nanopore with multivalent metal ions recognition and ultra-trace level detection. Nano Today 33, 100868 (2020).

    Article  CAS  Google Scholar 

  133. Weidenhammer, P. & Jacobasch, H. J. Investigation of adhesion properties of polymer materials by atomic force microscopy and zeta potential measurements. J. Colloid Interface Sci. 180, 232–236 (1996).

    Article  CAS  Google Scholar 

  134. Abdel-Karim, A. et al. Fabrication of modified polyethersulfone membranes for wastewater treatment by submerged membrane bioreactor. Sep. Purif. Technol. 175, 36–46 (2017).

    Article  CAS  Google Scholar 

  135. Afonso, M. D. Surface charge on loose nanofiltration membranes. Desalination 191, 262–272 (2006).

    Article  CAS  Google Scholar 

  136. Evans, B. W., Hattori, K. & Baronnet, A. Serpentinite: What, why, where? Elements 9, 99–106 (2013).

    Article  CAS  Google Scholar 

  137. Santos, J. C. C. et al. Exfoliation and characterization of a two-dimensional serpentine-based material. Nanotechnology 30, 445705 (2019).

    Article  CAS  Google Scholar 

  138. Feng, B., Lu, Y. P., Feng, Q. M., Ding, P. & Luo, N. Mechanisms of surface charge development of serpentine mineral. Trans. Nonferrous Met. Soc. China 23, 1123–1128 (2013).

    Article  CAS  Google Scholar 

  139. Duman, O. & Tunc, S. Electrokinetic properties of vermiculite and expanded vermiculite: Effects of pH, clay concentration and mono- and multivalent electrolytes. Sep. Sci. Technol. 43, 3755–3776 (2008).

    Article  CAS  Google Scholar 

  140. Shao, J. J., Raidongia, K., Koltonow, A. R. & Huang, J. Self-assembled two-dimensional nanofluidic proton channels with high thermal stability. Nat. Commun. 6, 7602 (2015).

    Article  Google Scholar 

  141. Cheng, H. et al. Electrokinetic energy conversion in self-assembled 2D nanofluidic channels with Janus nanobuilding blocks. Adv. Mater. 29, 1700177 (2017).

    Article  Google Scholar 

  142. Xue, G. B. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 12, 317–321 (2017).

    Article  CAS  Google Scholar 

  143. Graf, M. et al. Light-enhanced blue energy generation using MoS2 nanopores. Joule 3, 1549–1564 (2019).

    Article  CAS  Google Scholar 

  144. Xiao, K. et al. Artificial light-driven ion pump for photoelectric energy conversion. Nat. Commun. 10, 74 (2019).

    Article  CAS  Google Scholar 

  145. Li, Z. et al. Simultaneous recovery of metal ions and electricity harvesting via K-Carrageenan@ZIF-8 membrane. ACS Appl. Mater. Interfaces 11, 34039–34045 (2019).

    Article  CAS  Google Scholar 

  146. Picallo, C. B., Gravelle, S., Joly, L., Charlaix, E. & Bocquet, L. Nanofluidic osmotic diodes: theory and molecular dynamics simulations. Phys. Rev. Lett. 111, 244501 (2013).

    Article  Google Scholar 

  147. Li, R., Jiang, J., Liu, Q., Xie, Z. & Zhai, J. Hybrid nanochannel membrane based on polymer/MOF for high-performance salinity gradient power generation. Nano Energy 53, 643–649 (2018).

    Article  CAS  Google Scholar 

  148. Yang, H. C. et al. Janus membranes: Creating asymmetry for energy efficiency. Adv. Mater. 30, 1801495 (2018).

    Article  Google Scholar 

  149. Zhang, Z. et al. Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface. Nat. Commun. 11, 875 (2020).

    Article  Google Scholar 

  150. Zhu, Y., Zhan, K. & Hou, X. Interface design of nanochannels for energy utilization. ACS Nano 12, 908–911 (2018).

    Article  CAS  Google Scholar 

  151. Koltonow, A. R. & Huang, J. Two-dimensional nanofluidics. Science 351, 1395–1396 (2016).

    Article  CAS  Google Scholar 

  152. Cheng, C. et al. Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing. Sci. Adv. 2, e1501272 (2016).

    Article  Google Scholar 

  153. Qin, S. et al. High and stable ionic conductivity in 2D nanofluidic ion channels between boron nitride layers. J. Am. Chem. Soc. 139, 6314–6320 (2017).

    Article  CAS  Google Scholar 

  154. Hong, S. et al. Scalable graphene-based membranes for ionic sieving with ultrahigh charge selectivity. Nano Lett. 17, 728–732 (2017).

    Article  CAS  Google Scholar 

  155. Zheng, S., Tu, Q., Urban, J. J., Li, S. & Mi, B. Swelling of graphene oxide membranes in aqueous solution: Characterization of interlayer spacing and insight into water transport mechanisms. ACS Nano 11, 6440–6450 (2017).

    Article  CAS  Google Scholar 

  156. Kang, Y., Xia, Y., Wang, H. T. & Zhang, X. W. 2D laminar membranes for selective water and ion transport. Adv. Funct. Mater. 29, 1902014 (2019).

    Article  Google Scholar 

  157. Zhou, Y. B. et al. Decoupling ionic and electronic pathways in low-dimensional hybrid conductors. J. Am. Chem. Soc. 141, 17830–17837 (2019).

    Article  CAS  Google Scholar 

  158. Kim, C. M., Hong, S., Li, R., Kim, I. S. & Wang, P. Janus graphene oxide-doped, lamellar composite membranes with strong aqueous stability. ACS Sustain. Chem. Eng. 7, 7252–7259 (2019).

    Article  CAS  Google Scholar 

  159. Ling, S. J. et al. Design and function of biomimetic multilayer water purification membranes. Sci. Adv. 3, e1601939 (2017).

    Article  Google Scholar 

  160. Zhang, Z. et al. Oxidation promoted osmotic energy conversion in black phosphorus membranes. Proc. Natl Acad. Sci. USA 117, 13959–13966 (2020).

    Article  CAS  Google Scholar 

  161. Kong, X. Y., Wen, L. P. & Jiang, L. Towards practical osmotic energy capture by a layer-by-layer membrane. Trends Chem. 2, 180–182 (2020).

    Article  CAS  Google Scholar 

  162. Chen, C. et al. Bioinspired ultrastrong nanocomposite membranes for salinity gradient energy harvesting from organic solutions. Adv. Energy Mater. 10, 1904098 (2020).

    Article  CAS  Google Scholar 

  163. Park, H. et al. Dynamic assembly of liquid crystalline graphene oxide gel fibers for ion transport. Sci. Adv. 4, eaau2104 (2018).

    Article  CAS  Google Scholar 

  164. Lee, K. H. et al. Graphene quantum dots/graphene fiber nanochannels for osmotic power generation. J. Mater. Chem. A 7, 23727–23732 (2019).

    Article  CAS  Google Scholar 

  165. Kong, W. Q. et al. Strong, water-stable ionic cable from bio-hydrogel. Chem. Mater. 31, 9288–9294 (2019).

    Article  CAS  Google Scholar 

  166. Ghanbari, H. & Esfandiar, A. Ion transport through graphene oxide fibers as promising candidate for blue energy harvesting. Carbon 165, 267–274 (2020).

    Article  CAS  Google Scholar 

  167. Park, C. H., Bae, H., Kim, C. S., Peck, D. H. & Lee, J. Nanofluidic energy harvesting through a biological 1D protein-embedded nanofilm membrane by interfacial polymerization. Nano Energy 74, 104906 (2020).

    Article  CAS  Google Scholar 

  168. Liu, K. et al. On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nat. Chem. 11, 994–1000 (2019).

    Article  CAS  Google Scholar 

  169. Gao, J. et al. Understanding the giant gap between single-pore- and membrane-based nanofluidic osmotic power generators. Small 15, 1804279 (2019).

    Article  Google Scholar 

  170. Długołęcki, P. et al. On the resistances of membrane, diffusion boundary layer and double layer in ion exchange membrane transport. J. Membr. Sci. 349, 369–379 (2010).

    Article  Google Scholar 

  171. Wang, L. D. et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat. Nanotechnol. 12, 509–522 (2017).

    Article  CAS  Google Scholar 

  172. Pakulski, D., Czepa, W., Del Buffa, S., Ciesielski, A. & Samorì, P. Atom-thick membranes for water purification and blue energy harvesting. Adv. Funct. Mater. 30, 1902394 (2020).

    Article  CAS  Google Scholar 

  173. Huang, W. C. & Hsu, J. P. Ultrashort nanopores of large radius can generate anomalously high salinity gradient power. Electrochim. Acta 353, 136613 (2020).

    Article  CAS  Google Scholar 

  174. Caglar, M. et al. Tunable anion-selective transport through monolayer graphene and hexagonal boron nitride. ACS Nano 14, 2729–2738 (2020).

    Article  CAS  Google Scholar 

  175. Cao, L. X. et al. Anomalous channel-length dependence in nanofluidic osmotic energy conversion. Adv. Funct. Mater. 27, 1604302 (2017).

    Article  Google Scholar 

  176. Li, H. et al. On the role of heterogeneous nanopore junction in osmotic power generation. Chin. J. Chem. 37, 469–473 (2019).

    Article  CAS  Google Scholar 

  177. Xiao, F. L. et al. A general strategy to simulate osmotic energy conversion in multi-pore nanofluidic systems. Mater. Chem. Front. 2, 935–941 (2018).

    Article  CAS  Google Scholar 

  178. Su, J. et al. Anomalous pore-density dependence in nanofluidic osmotic power generation. Chin. J. Chem. 36, 417–420 (2018).

    Article  CAS  Google Scholar 

  179. Schoch, R., Han, J. & Renaud, P. Transport phenomena in nanofluidics. Rev. Mod. Phys. 80, 839–883 (2008).

    Article  CAS  Google Scholar 

  180. Wen, L., Hou, X., Tian, Y., Zhai, J. & Jiang, L. Bio-inspired photoelectric conversion based on smart-gating nanochannels. Adv. Funct. Mater. 20, 2636–2642 (2010).

    Article  CAS  Google Scholar 

  181. Rao, S. et al. A proteorhodopsin-based biohybrid light-powering pH sensor. Phys. Chem. Chem. Phys. 15, 15821–15824 (2013).

    Article  CAS  Google Scholar 

  182. Meng, Z. Y. et al. Artificial ion channels regulating light-induced ionic currents in photoelectrical conversion systems. Adv. Mater. 26, 2329–2334 (2014).

    Article  CAS  Google Scholar 

  183. Rao, S. et al. A light-powered bio-capacitor with nanochannel modulation. Adv. Mater. 26, 5846–5850 (2014).

    Article  CAS  Google Scholar 

  184. Lu, S., Guo, Z., Xiang, Y. & Jiang, L. Photoelectric frequency response in a bioinspired bacteriorhodopsin/alumina nanochannel hybrid nanosystem. Adv. Mater. 28, 9851–9856 (2016).

    Article  CAS  Google Scholar 

  185. Marcotte, A., Mouterde, T., Niguès, A., Siria, A. & Bocquet, L. Mechanically activated ionic transport across single-digit carbon nanotubes. Nat. Mater. 19, 1057–1061 (2020).

    Article  CAS  Google Scholar 

  186. Poddar, A., Maity, D., Bandopadhyay, A. & Chakraborty, S. Electrokinetics in polyelectrolyte grafted nanofluidic channels modulated by the ion partitioning effect. Soft Matter 12, 5968–5978 (2016).

    Article  CAS  Google Scholar 

  187. Qin, S. et al. Nanofluidic electric generators constructed from boron nitride nanosheet membranes. Nano Energy 47, 368–373 (2018).

    Article  CAS  Google Scholar 

  188. Jubin, L., Poggioli, A., Siria, A. & Bocquet, L. Dramatic pressure-sensitive ion conduction in conical nanopores. Proc. Natl Acad. Sci. USA 115, 4063–4068 (2018).

    Article  CAS  Google Scholar 

  189. Lin, T. W. & Hsu, J. P. Pressure-driven energy conversion of conical nanochannels: Anomalous dependence of power generated and efficiency on pH. J. Colloid Interface Sci. 564, 491–498 (2019).

    Article  Google Scholar 

  190. van der Heyden, F. H., Bonthuis, D., Stein, D., Meyer, C. & Dekker, C. Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Lett. 7, 1022–1025 (2007).

    Article  Google Scholar 

  191. Ren, Y. Q. & Stein, D. Slip-enhanced electrokinetic energy conversion in nanofluidic channels. Nanotechnology 19, 195707 (2008).

    Article  Google Scholar 

  192. Guo, W. et al. Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane. Adv. Mater. 25, 6064–6068 (2013).

    Article  CAS  Google Scholar 

  193. Ding, T. P. et al. All-printed porous carbon film for electricity generation from evaporation-driven water flow. Adv. Funct. Mater. 27, 1700551 (2017).

    Article  Google Scholar 

  194. Li, J. et al. Surface functional modification boosts the output of an evaporation-driven water flow nanogenerator. Nano Energy 58, 797–802 (2019).

    Article  CAS  Google Scholar 

  195. Qin, Y. S. et al. Constant electricity generation in nanostructured silicon by evaporation-driven water flow. Angew. Chem. Int. Ed. 59, 10619–10625 (2020).

    Article  CAS  Google Scholar 

  196. Yin, J., Zhou, J. X., Fang, S. M. & Guo, W. L. Hydrovoltaic energy on the way. Joule 4, 1852–1855 (2020).

    Article  Google Scholar 

  197. Straub, A. P., Yip, N. Y., Lin, S., Lee, J. & Elimelech, M. Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes. Nat. Energy 1, 16090 (2016).

    Article  CAS  Google Scholar 

  198. Rahimi, M. et al. Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity. Energy Environ. Sci. 11, 276–285 (2018).

    Article  CAS  Google Scholar 

  199. Li, T. et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nat. Mater. 18, 608–613 (2019).

    Article  CAS  Google Scholar 

  200. Han, C. G. et al. Giant thermopower of ionic gelatin near room temperature. Science 368, 1091–1098 (2020).

    Article  CAS  Google Scholar 

  201. Yu, B. et al. Thermosensitive crystallization–boosted liquid thermocells for low-grade heat harvesting. Science 370, 342–346 (2020).

    Article  CAS  Google Scholar 

  202. Xie, G. H. et al. Skin-inspired low-grade heat energy harvesting using directed ionic flow through conical nanochannels. Adv. Energy Mater. 8, 1800459 (2018).

    Article  Google Scholar 

  203. Zhang, W., Wang, Q., Zeng, M. & Zhao, C. Thermoelectric effect and temperature-gradient-driven electrokinetic flow of electrolyte solutions in charged nanocapillaries. Int. J. Heat. Mass Transf. 143, 118569 (2019).

    Article  CAS  Google Scholar 

  204. Zhong, J. X. & Huang, C. L. Influence factors of thermal driven ion transport in nano-channel for thermoelectricity application. Int. J. Heat Mass Transf. 152, 119501 (2020).

    Article  CAS  Google Scholar 

  205. Chen, K. X., Yao, L. N. & Su, B. Bionic thermoelectric response with nanochannels. J. Am. Chem. Soc. 141, 8608–8615 (2019).

    Article  CAS  Google Scholar 

  206. Long, R., Kuang, Z., Liu, Z. & Liu, W. Temperature regulated reverse electrodialysis in charged nanopores. J. Membr. Sci. 561, 1–9 (2018).

    Article  CAS  Google Scholar 

  207. Chen, K. X. et al. Thermo-osmotic energy conversion and storage by nanochannels. J. Mater. Chem. A 7, 25258–25261 (2019).

    Article  CAS  Google Scholar 

  208. Mai, V. P. & Yang, R. J. Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect. Appl. Energy 274, 115294 (2020).

    Article  CAS  Google Scholar 

  209. Long, R., Kuang, Z., Liu, Z. & Liu, W. Ionic thermal up-diffusion in nanofluidic salinity-gradient energy harvesting. Natl Sci. Rev. 6, 1266–1273 (2019).

    Article  Google Scholar 

  210. Long, R., Luo, Z., Kuang, Z., Liu, Z. & Liu, W. Effects of heat transfer and the membrane thermal conductivity on the thermally nanofluidic salinity gradient energy conversion. Nano Energy 67, 104284 (2019).

    Article  Google Scholar 

  211. Mei, Y. & Tang, C. Y. Y. Co-locating reverse electrodialysis with reverse osmosis desalination: Synergies and implications. J. Membr. Sci. 539, 305–312 (2017).

    Article  CAS  Google Scholar 

  212. Li, W. et al. A novel hybrid process of reverse electrodialysis and reverse osmosis for low energy seawater desalination and brine management. Appl. Energy 104, 592–602 (2013).

    Article  CAS  Google Scholar 

  213. Tufa, R. A. et al. Hydrogen production from industrial wastewaters: An integrated reverse electrodialysis - Water electrolysis energy system. J. Clean. Prod. 203, 418–426 (2018).

    Article  CAS  Google Scholar 

  214. Lee, J. et al. Reverse electrodialysis-assisted solar water splitting. Sci. Rep. 7, 12281 (2017).

    Article  Google Scholar 

  215. Kim, Y. & Logan, B. E. Hydrogen production from inexhaustible supplies of fresh and salt water using microbial reverse-electrodialysis electrolysis cells. Proc. Natl Acad. Sci. USA 108, 16176–16181 (2011).

    Article  CAS  Google Scholar 

  216. Cusick, R. D., Kim, Y. & Logan, B. E. Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells. Science 335, 1474–1477 (2012).

    Article  CAS  Google Scholar 

  217. Kim, Y. & Logan, B. E. Microbial reverse electrodialysis cells for synergistically enhanced power production. Environ. Sci. Technol. 45, 5834–5839 (2011).

    Article  CAS  Google Scholar 

  218. Kingsbury, R. S., Chu, K. & Coronell, O. Energy storage by reversible electrodialysis: The concentration battery. J. Membr. Sci. 495, 502–516 (2015).

    Article  CAS  Google Scholar 

  219. van Egmond, W. J. et al. The concentration gradient flow battery as electricity storage system: Technology potential and energy dissipation. J. Power Sources 325, 129–139 (2016).

    Article  Google Scholar 

  220. Micari, M. et al. Effect of different aqueous solutions of pure salts and salt mixtures in reverse electrodialysis systems for closed-loop applications. J. Membr. Sci. 551, 315–325 (2018).

    Article  CAS  Google Scholar 

  221. Tamburini, A. et al. Reverse electrodialysis heat engine for sustainable power production. Appl. Energy 206, 1334–1353 (2017).

    Article  CAS  Google Scholar 

  222. Micari, M. et al. Towards the first proof of the concept of a Reverse ElectroDialysis-Membrane Distillation Heat Engine. Desalination 453, 77–88 (2019).

    Article  CAS  Google Scholar 

  223. Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    Article  Google Scholar 

  224. Epsztein, R., DuChanois, R. M., Ritt, C. L., Noy, A. & Elimelech, M. Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 15, 426–436 (2020).

    Article  CAS  Google Scholar 

  225. Cheng, C., Jiang, G., Simon, G. P., Liu, J. Z. & Li, D. Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes. Nat. Nanotechnol. 13, 685–690 (2018).

    Article  CAS  Google Scholar 

  226. Comtet, J. et al. Direct observation of water-mediated single-proton transport between hBN surface defects. Nat. Nanotechnol. 15, 598–604 (2020).

    Article  CAS  Google Scholar 

  227. Grosjean, B. et al. Chemisorption of hydroxide on 2D materials from DFT calculations: Graphene versus hexagonal boron nitride. J. Phys. Chem. Lett. 7, 4695–4700 (2016).

    Article  CAS  Google Scholar 

  228. Lucas, R. A., Lin, C. Y. & Siwy, Z. S. Electrokinetic phenomena in organic solvents. J. Phys. Chem. B 123, 6123–6131 (2019).

    Article  CAS  Google Scholar 

  229. Yan, Y., Sheng, Q., Wang, C., Xue, J. & Chang, H.-C. Energy conversion efficiency of nanofluidic batteries: Hydrodynamic slip and access resistance. J. Phys. Chem. C 117, 8050–8061 (2013).

    Article  CAS  Google Scholar 

  230. Gadaleta, A. et al. Sub-additive ionic transport across arrays of solid-state nanopores. Phys. Fluids 26, 012005 (2014).

    Article  Google Scholar 

  231. Green, Y., Eshel, R., Park, S. & Yossifon, G. Interplay between nanochannel and microchannel resistances. Nano Lett. 16, 2744–2748 (2016).

    Article  CAS  Google Scholar 

  232. Rankin, D. J., Bocquet, L. & Huang, D. M. Entrance effects in concentration-gradient-driven flow through an ultrathin porous membrane. J. Chem. Phys. 151, 044705 (2019).

    Article  Google Scholar 

  233. O’Hern, S. C. et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 14, 1234–1241 (2014).

    Article  Google Scholar 

  234. Yang, S., Zhang, P. P., Nia, A. S. & Feng, X. L. Emerging 2D materials produced via electrochemistry. Adv. Mater. 32, 1907857 (2020).

    Article  CAS  Google Scholar 

  235. Zhao, C. Q. et al. Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature 580, 210–215 (2020).

    Article  CAS  Google Scholar 

  236. Chang, H. K., Choi, E. & Park, J. Paper-based energy harvesting from salinity gradients. Lab Chip 16, 700–708 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFA0206904, 2017YFA0206900) and the National Natural Science Foundation (21625303, 21905287, 21988102). Z.Z. acknowledges the support of the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion of content and writing of the manuscript.

Corresponding authors

Correspondence to Liping Wen or Lei Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wen, L. & Jiang, L. Nanofluidics for osmotic energy conversion. Nat Rev Mater 6, 622–639 (2021). https://doi.org/10.1038/s41578-021-00300-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00300-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing