Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A reticular chemistry guide for the design of periodic solids

Abstract

Reticular chemistry — the linking of well-defined molecular building blocks by strong bonds into crystalline extended frameworks — has enabled the synthesis of diverse metal–organic frameworks (MOFs) and covalent organic frameworks, in which the pore shape, size and functionality can be tailored towards specific applications. Structural design methodologies are based on three main requisites: building blocks, targeted nets and isoreticular chemistry. In this Review, we highlight the well-developed and cutting-edge methodologies in reticular chemistry for the structural design and discovery of periodic solids. We illustrate the diversity of building blocks and delineate the suitable blueprint nets — namely, edge-transitive nets — for the design of MOFs. These edge-transitive nets are classified into three categories to help rationalize existing MOFs and to provide guidelines for the design of new structures. Two emerging topological concepts, namely, the merged-net approach and net-coded building units, are highlighted for their potential in synthesizing intricate or multi-component MOFs. We also consider isoreticular design strategies for the modification, expansion and contraction of building blocks, and identify challenges and opportunities in the assembly of increasingly intricate frameworks.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Representative building blocks that can be reliably obtained.
Fig. 2: Transformations of the position of linking groups in organic linkers.
Fig. 3: The formation of fcu-MOFs through the MBB and the SBB approaches.
Fig. 4: Supermolecular building layers based on hexanuclear and nonanuclear clusters.
Fig. 5: Categories of edge-transitive nets.
Fig. 6: Type I edge-transitive nets for the discovery of new metal–organic framework structures.
Fig. 7: The concept of net-coded building units.
Fig. 8: Example metal–organic frameworks based on merged nets.
Fig. 9: Ratio constant for the isoreticular expansion of merged-net structures.

References

  1. 1.

    Ockwig, N. W., Delgado-Friedrichs, O., O’Keeffe, M. & Yaghi, O. M. Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. Acc. Chem. Res. 38, 176–182 (2005).

    CAS  Google Scholar 

  2. 2.

    Yaghi, O. M. Reticular chemistry — construction, properties, and precision reactions of frameworks. J. Am. Chem. Soc. 138, 15507–15509 (2016).

    CAS  Google Scholar 

  3. 3.

    Jia, J. T. et al. Extremely hydrophobic POPs to access highly porous storage media and capturing agent for organic vapors. Chem 5, 180–191 (2019).

    CAS  Google Scholar 

  4. 4.

    Diercks, C. S. & Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 355, eaal1585 (2017).

    Google Scholar 

  5. 5.

    Yaghi, O. M., Kalmutzki, M. J. & Diercks, C. S. Introduction to Reticular Chemistry: Metal-Organic Frameworks and Covalent Organic Frameworks (Wiley, 2019).

  6. 6.

    Yaghi, O. M. Reticular chemistry in all dimensions. ACS Cent. Sci. 5, 1295–1300 (2019).

    CAS  Google Scholar 

  7. 7.

    O’Keeffe, M., Peskov, M. A., Ramsden, S. J. & Yaghi, O. M. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 41, 1782–1789 (2008).

    Google Scholar 

  8. 8.

    Chen, Z., Jiang, H., O’Keeffe, M. & Eddaoudi, M. Minimal edge-transitive nets for the design and construction of metal–organic frameworks. Faraday Discuss. 201, 127–143 (2017).

    CAS  Google Scholar 

  9. 9.

    Chen, Z. et al. Applying the power of reticular chemistry to finding the missing alb-MOF platform based on the (6,12)-coordinated edge-transitive net. J. Am. Chem. Soc. 139, 3265–3327 (2017).

    CAS  Google Scholar 

  10. 10.

    Jiang, H. et al. Enriching the reticular chemistry repertoire: merged nets approach for the rational design of intricate mixed-linker metal–organic framework platforms. J. Am. Chem. Soc. 140, 8858–8867 (2018).

    CAS  Google Scholar 

  11. 11.

    Eddaoudi, M., Sava, D. F., Eubank, J. F., Adil, K. & Guillerm, V. Zeolite-like metal–organic frameworks (ZMOFs): design, synthesis, and properties. Chem. Soc. Rev. 44, 228–249 (2015).

    CAS  Google Scholar 

  12. 12.

    Banerjee, R. et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319, 939–943 (2008).

    CAS  Google Scholar 

  13. 13.

    Yang, J. et al. Principles of designing extra-large pore openings and cages in zeolitic imidazolate frameworks. J. Am. Chem. Soc. 139, 6448–6455 (2017).

    CAS  Google Scholar 

  14. 14.

    Liu, Y., Kravtsov, V. C., Larsen, R. & Eddaoudi, M. Molecular building blocks approach to the assembly of zeolite-like metal–organic frameworks (ZMOFs) with extra-large cavities. Chem. Commun. 1488–1490 (2006).

  15. 15.

    Liu, Y., Kravtsov, V. C. & Eddaoudi, M. Template-directed assembly of zeolite-like metal–organic frameworks (ZMOFs): a usf-ZMOF with an unprecedented zeolite topology. Angew. Chem. Int. Ed. 47, 8446–8449 (2008).

    CAS  Google Scholar 

  16. 16.

    Wu, T. et al. Zeolite RHO-type net with the lightest elements. J. Am. Chem. Soc. 131, 6111–6113 (2009).

    CAS  Google Scholar 

  17. 17.

    Zhang, J. et al. Zeolitic boron imidazolate frameworks. Angew. Chem. Int. Ed. 48, 2542–2545 (2009).

    CAS  Google Scholar 

  18. 18.

    Cadiau, A. et al. Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration. Science 356, 731–735 (2017).

    CAS  Google Scholar 

  19. 19.

    Belmabkhout, Y. et al. Natural gas upgrading using a fluorinated MOF with tuned H2S and CO2 adsorption selectivity. Nat. Energy 3, 1059–1066 (2018).

    CAS  Google Scholar 

  20. 20.

    Tchalala, M. R. et al. Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air. Nat. Commun. 10, 1328 (2019).

    CAS  Google Scholar 

  21. 21.

    Nugent, P. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80–84 (2013).

    CAS  Google Scholar 

  22. 22.

    Subramanian, S. & Zaworotko, M. J. Porous solids by design: [Zn(4,4′-bpy)2(SiF6)]n·xDMF, a single framework octahedral coordination polymer with large square channels. Angew. Chem. Int. Ed. Engl. 24, 2127–2129 (1995).

    Google Scholar 

  23. 23.

    Shekhah, O. et al. A facile solvent-free synthesis route for the assembly of a highly CO2 selective and H2S tolerant NiSIFSIX metal–organic framework. Chem. Commun. 51, 13595–13598 (2015).

    CAS  Google Scholar 

  24. 24.

    Shekhah, O. et al. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture. Nat. Commun. 5, 4228 (2014).

    CAS  Google Scholar 

  25. 25.

    Bhatt, P. M. et al. A fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorption. J. Am. Chem. Soc. 138, 9301–9307 (2016).

    CAS  Google Scholar 

  26. 26.

    Cadiau, A., Adil, K., Bhatt, P. M., Belmabkhout, Y. & Eddaoudi, M. A metal-organic framework–based splitter for separating propylene from propane. Science 353, 137–140 (2016).

    CAS  Google Scholar 

  27. 27.

    Adil, K. et al. Valuing metal–organic frameworks for postcombustion carbon capture: a benchmark study for evaluating physical adsorbents. Adv. Mater. 29, 1702953 (2017).

    Google Scholar 

  28. 28.

    Chui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283, 1148–1150 (1999).

    CAS  Google Scholar 

  29. 29.

    Eubank, J. F. et al. The next chapter in MOF pillaring strategies: trigonal heterofunctional ligands to access targeted high-connected three dimensional nets, isoreticular platforms. J. Am. Chem. Soc. 133, 17532–17535 (2011).

    CAS  Google Scholar 

  30. 30.

    Chun, H. Low-level self-assembly of open framework based on three different polyhedra: metal-organic analogue of face-centered cubic dodecaboride. J. Am. Chem. Soc. 130, 800–801 (2008).

    CAS  Google Scholar 

  31. 31.

    Tu, B. et al. Reversible redox activity in multicomponent metal–organic frameworks constructed from trinuclear copper pyrazolate building blocks. J. Am. Chem. Soc. 139, 7998–8007 (2017).

    CAS  Google Scholar 

  32. 32.

    Nouar, F. et al. Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal-organic frameworks. J. Am. Chem. Soc. 130, 1833–1835 (2008).

    CAS  Google Scholar 

  33. 33.

    Quartapelle Procopio, E. et al. Cation-exchange porosity tuning in anionic metal–organic frameworks for the selective separation of gases and vapors and for catalysis. Angew. Chem. Int. Ed. 49, 7308–7311 (2010).

    CAS  Google Scholar 

  34. 34.

    Alezi, D. et al. MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage. J. Am. Chem. Soc. 137, 13308–13318 (2015).

    CAS  Google Scholar 

  35. 35.

    Towsif Abtab, S. M. et al. Reticular chemistry in action: a hydrolytically stable MOF capturing twice its weight in adsorbed water. Chem 4, 94–105 (2018).

    CAS  Google Scholar 

  36. 36.

    Serre, C., Millange, F., Surblé, S. & Férey, G. A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units. Angew. Chem. Int. Ed. 43, 6285–6289 (2004).

    Google Scholar 

  37. 37.

    Férey, G. et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040–2042 (2005).

    Google Scholar 

  38. 38.

    Feng, D. et al. Stable metal–organic frameworks containing single-molecule traps for enzyme encapsulation. Nat. Commun. 6, 5979 (2015).

    Google Scholar 

  39. 39.

    Liu, Q., Cong, H. & Deng, H. Deciphering the spatial arrangement of metals and correlation to reactivity in multivariate metal–organic frameworks. J. Am. Chem. Soc. 138, 13822–13825 (2016).

    CAS  Google Scholar 

  40. 40.

    Jia, J. et al. Highly porous and robust ionic MOFs with nia topology constructed by connecting an octahedral ligand and a trigonal prismatic metal cluster. Chem. Commun. 48, 6010–6012 (2012).

    CAS  Google Scholar 

  41. 41.

    Liu, Y. et al. Assembly of metal–organic frameworks (MOFs) based on indium-trimer building blocks: a porous MOF with soc topology and high hydrogen storage. Angew. Chem. Int. Ed. 46, 3278–3283 (2007).

    CAS  Google Scholar 

  42. 42.

    Zhang, Y.-B., Zhang, W.-X., Feng, F.-Y., Zhang, J.-P. & Chen, X.-M. A highly connected porous coordination polymer with unusual channel structure and sorption properties. Angew. Chem. Int. Ed. 48, 5287–5290 (2009).

    CAS  Google Scholar 

  43. 43.

    Jiang, G. et al. A nine-connected mixed-ligand nickel-organic framework and its gas sorption properties. Cryst. Growth Des. 11, 3713–3716 (2011).

    CAS  Google Scholar 

  44. 44.

    Zhang, Y.-B. et al. Geometry analysis and systematic synthesis of highly porous isoreticular frameworks with a unique topology. Nat. Commun. 3, 642 (2012).

    Google Scholar 

  45. 45.

    Zhao, X. et al. Selective anion exchange with nanogated isoreticular positive metal-organic frameworks. Nat. Commun. 4, 2344 (2013).

    Google Scholar 

  46. 46.

    Zhai, Q.-G. et al. An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials. Nat. Commun. 7, 13645 (2016).

    CAS  Google Scholar 

  47. 47.

    Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999).

    CAS  Google Scholar 

  48. 48.

    Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

    CAS  Google Scholar 

  49. 49.

    Montoro, C. et al. Capture of nerve agents and mustard gas analogues by hydrophobic robust MOF-5 type metal–organic frameworks. J. Am. Chem. Soc. 133, 11888–11891 (2011).

    CAS  Google Scholar 

  50. 50.

    Brozek, C. K. & Dincă, M. Ti3+-, V2+/3+-, Cr2+/3+-, Mn2+-, and Fe2+-substituted MOF-5 and redox reactivity in Cr- and Fe-MOF-5. J. Am. Chem. Soc. 135, 12886–12891 (2013).

    CAS  Google Scholar 

  51. 51.

    Luo, T.-Y. et al. Rare earth pcu metal–organic framework platform based on RE43-OH)4(COO)62+ clusters: rational design, directed synthesis, and deliberate tuning of excitation wavelengths. J. Am. Chem. Soc. 139, 9333–9340 (2017).

    CAS  Google Scholar 

  52. 52.

    Chen, D.-m, Shi, W. & Cheng, P. A cage-based cationic body-centered tetragonal metal–organic framework: single-crystal to single-crystal transformation and selective uptake of organic dyes. Chem. Commun. 51, 370–372 (2015).

    CAS  Google Scholar 

  53. 53.

    Wang, D., Zhao, T., Li, G., Huo, Q. & Liu, Y. A porous sodalite-type MOF based on tetrazolcarboxylate ligands and [Cu4Cl]7+ squares with open metal sites for gas sorption. Dalton Trans. 43, 2365–2368 (2014).

    CAS  Google Scholar 

  54. 54.

    Dincǎ, M. et al. Hydrogen storage in a microporous metal–organic framework with exposed Mn2+ coordination sites. J. Am. Chem. Soc. 128, 16876–16883 (2006).

    Google Scholar 

  55. 55.

    Castells-Gil, J. et al. Chemical engineering of photoactivity in heterometallic titanium–organic frameworks by metal doping. Angew. Chem. Int. Ed. 57, 8453–8457 (2018).

    CAS  Google Scholar 

  56. 56.

    Lammert, M. et al. Cerium-based metal organic frameworks with UiO-66 architecture: synthesis, properties and redox catalytic activity. Chem. Commun. 51, 12578–12581 (2015).

    CAS  Google Scholar 

  57. 57.

    Cavka, J. H. et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).

    Google Scholar 

  58. 58.

    Xue, D.-X. et al. Tunable rare-earth fcu-MOFs: a platform for systematic enhancement of CO2 adsorption energetics and uptake. J. Am. Chem. Soc. 135, 7660–7667 (2013).

    CAS  Google Scholar 

  59. 59.

    Xue, D.-X. et al. Topology meets MOF chemistry for pore-aperture fine tuning: ftw-MOF platform for energy-efficient separations via adsorption kinetics or molecular sieving. Chem. Commun. 54, 6404–6407 (2018).

    CAS  Google Scholar 

  60. 60.

    Furukawa, H. et al. Water adsorption in porous metal–organic frameworks and related materials. J. Am. Chem. Soc. 136, 4369–4381 (2014).

    CAS  Google Scholar 

  61. 61.

    Pang, J. et al. Control the structure of Zr-tetracarboxylate frameworks through steric tuning. J. Am. Chem. Soc. 139, 16939–16945 (2017).

    CAS  Google Scholar 

  62. 62.

    Alezi, D. et al. Quest for highly connected metal–organic framework platforms: rare-earth polynuclear clusters versatility meets net topology needs. J. Am. Chem. Soc. 137, 5421–5430 (2015).

    CAS  Google Scholar 

  63. 63.

    Alezi, D. et al. Reticular chemistry at its best: directed assembly of hexagonal building units into the awaited metal-organic framework with the intricate polybenzene topology, pbz-MOF. J. Am. Chem. Soc. 138, 12767–12770 (2016).

    CAS  Google Scholar 

  64. 64.

    Feng, D. et al. A highly stable zeotype mesoporous zirconium metal–organic framework with ultralarge pores. Angew. Chem. Int. Ed. 54, 149–154 (2015).

    CAS  Google Scholar 

  65. 65.

    Liu, Q. et al. Mesoporous cages in chemically robust MOFs created by a large number of vertices with reduced connectivity. J. Am. Chem. Soc. 141, 488–496 (2019).

    CAS  Google Scholar 

  66. 66.

    Wang, H. et al. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers. Nat. Commun. 9, 1745 (2018).

    Google Scholar 

  67. 67.

    Zhang, Y. et al. A flexible metal–organic framework with 4-connected Zr6 nodes. J. Am. Chem. Soc. 140, 11179–11183 (2018).

    CAS  Google Scholar 

  68. 68.

    Masciocchi, N. et al. Cubic octanuclear Ni(II) clusters in highly porous polypyrazolyl-based materials. J. Am. Chem. Soc. 132, 7902–7904 (2010).

    CAS  Google Scholar 

  69. 69.

    Holmberg, R. J. et al. An unprecedented CoII cuboctahedron as the secondary building unit in a Co-based metal–organic framework. Chem. Commun. 50, 5333–5335 (2014).

    CAS  Google Scholar 

  70. 70.

    Feng, D. et al. Metal–organic frameworks based on previously unknown Zr8/Hf8 cubic clusters. Inorg. Chem. 52, 12661–12667 (2013).

    CAS  Google Scholar 

  71. 71.

    Luebke, R. et al. Versatile rare earth hexanuclear clusters for the design and synthesis of highly-connected ftw-MOFs. Chem. Sci. 6, 4095–4102 (2015).

    CAS  Google Scholar 

  72. 72.

    Kapustin, E. A., Lee, S., Alshammari, A. S. & Yaghi, O. M. Molecular retrofitting adapts a metal–organic framework to extreme pressure. ACS Cent. Sci. 3, 662–667 (2017).

    CAS  Google Scholar 

  73. 73.

    Gándara, F., Furukawa, H., Lee, S. & Yaghi, O. M. High methane storage capacity in aluminum metal–organic frameworks. J. Am. Chem. Soc. 136, 5271–5274 (2014).

    Google Scholar 

  74. 74.

    Lee, S., Kapustin, E. A. & Yaghi, O. M. Coordinative alignment of molecules in chiral metal-organic frameworks. Science 353, 808–811 (2016).

    CAS  Google Scholar 

  75. 75.

    Ahnfeldt, T. et al. [Al4(OH)2(OCH3)4(H2N-bdc)3]x H2O: a 12-connected porous metal–organic framework with an unprecedented aluminum-containing brick. Angew. Chem. Int. Ed. 48, 5163–5166 (2009).

    CAS  Google Scholar 

  76. 76.

    Dan-Hardi, M. et al. A new photoactive crystalline highly porous titanium(IV) dicarboxylate. J. Am. Chem. Soc. 131, 10857–10859 (2009).

    CAS  Google Scholar 

  77. 77.

    Guillerm, V. et al. Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal–organic frameworks. Nat. Chem. 6, 673–680 (2014).

    CAS  Google Scholar 

  78. 78.

    Schoedel, A., Li, M., Li, D., O’Keeffe, M. & Yaghi, O. M. Structures of metal–organic frameworks with rod secondary building units. Chem. Rev. 116, 12466–12535 (2016).

    CAS  Google Scholar 

  79. 79.

    Deng, H. et al. Large-pore apertures in a series of metal-organic frameworks. Science 336, 1018–1023 (2012).

    CAS  Google Scholar 

  80. 80.

    Kapelewski, M. T. et al. M2(m-dobdc) (M = Mg, Mn, Fe, Co, Ni) metal–organic frameworks exhibiting increased charge density and enhanced H2 binding at the open metal sites. J. Am. Chem. Soc. 136, 12119–12129 (2014).

    CAS  Google Scholar 

  81. 81.

    McDonald, T. M. et al. Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal–organic framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 134, 7056–7065 (2012).

    CAS  Google Scholar 

  82. 82.

    Groves, J. A. et al. The first route to large pore metal phosphonates. Chem. Commun. 3305–3307 (2006).

  83. 83.

    Miller, S. R. et al. Structural transformations and adsorption of fuel-related gases of a structurally responsive nickel phosphonate metal–organic framework, Ni-STA-12. J. Am. Chem. Soc. 130, 15967–15981 (2008).

    CAS  Google Scholar 

  84. 84.

    Wharmby, M. T., Mowat, J. P. S., Thompson, S. P. & Wright, P. A. Extending the pore size of crystalline metal phosphonates toward the mesoporous regime by isoreticular synthesis. J. Am. Chem. Soc. 133, 1266–1269 (2011).

    CAS  Google Scholar 

  85. 85.

    Catarineu, N. R. et al. Two principles of reticular chemistry uncovered in a metal–organic framework of heterotritopic linkers and infinite secondary building units. J. Am. Chem. Soc. 138, 10826–10829 (2016).

    CAS  Google Scholar 

  86. 86.

    Herm, Z. R. et al. Separation of hexane isomers in a metal-organic framework with triangular channels. Science 340, 960–964 (2013).

    CAS  Google Scholar 

  87. 87.

    Yang, S. et al. Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host. Nat. Chem. 4, 887–894 (2012).

    CAS  Google Scholar 

  88. 88.

    Dai, H. et al. Reticulation of 2D semiconductors by metal–organic approach for efficient hydrogen evolution. ACS Sustain. Chem. Eng. 8, 8102–8110 (2020).

    CAS  Google Scholar 

  89. 89.

    Eddaoudi, M. et al. Porous metal–organic polyhedra: 25 Å cuboctahedron constructed from 12 Cu2(CO2)4 paddle-wheel building blocks. J. Am. Chem. Soc. 123, 4368–4369 (2001).

    CAS  Google Scholar 

  90. 90.

    Fujita, D. et al. Self-assembly of tetravalent Goldberg polyhedra from 144 small components. Nature 540, 563–566 (2016).

    CAS  Google Scholar 

  91. 91.

    Sun, Q.-F. et al. Self-assembled M24L48 polyhedra and their sharp structural switch upon subtle ligand variation. Science 328, 1144–1147 (2010).

    CAS  Google Scholar 

  92. 92.

    Guillerm, V. et al. A supermolecular building approach for the design and construction of metal–organic frameworks. Chem. Soc. Rev. 43, 6141–6172 (2014).

    CAS  Google Scholar 

  93. 93.

    Bon, V., Senkovskyy, V., Senkovska, I. & Kaskel, S. Zr(iv) and Hf(iv) based metal–organic frameworks with reo-topology. Chem. Commun. 48, 8407–8409 (2012).

    CAS  Google Scholar 

  94. 94.

    Sun, X. et al. A stable mesoporous Zr-based metal organic framework for highly efficient CO2 conversion. Inorg. Chem. 58, 7480–7487 (2019).

    CAS  Google Scholar 

  95. 95.

    Xie, L.-H., Liu, X.-M., He, T. & Li, J.-R. Metal-organic frameworks for the capture of trace aromatic volatile organic compounds. Chem 4, 1911–1927 (2018).

    CAS  Google Scholar 

  96. 96.

    Park, I.-H., Lee, E., Lee, S. S. & Vittal, J. J. Chemical patterning in single crystals of metal–organic frameworks by [2+2] cycloaddition reaction. Angew. Chem. Int. Ed. 58, 14860–14864 (2019).

    CAS  Google Scholar 

  97. 97.

    He, Y., Li, B., O’Keeffe, M. & Chen, B. Multifunctional metal–organic frameworks constructed from meta-benzenedicarboxylate units. Chem. Soc. Rev. 43, 5618–5656 (2014).

    CAS  Google Scholar 

  98. 98.

    Eddaoudi, M., Kim, J., O’Keeffe, M. & Yaghi, O. M. Cu2[o-Br-C6H3(CO2)2]2(H2O)2·(DMF)8(H2O)2: a framework deliberately designed to have the NbO structure type. J. Am. Chem. Soc. 124, 376–377 (2002).

    CAS  Google Scholar 

  99. 99.

    Li, P. et al. Bottom-up construction of a superstructure in a porous uranium-organic crystal. Science 356, 624–627 (2017).

    CAS  Google Scholar 

  100. 100.

    Guillerm, V. & Maspoch, D. Geometry mismatch and reticular chemistry: strategies to assemble metal–organic frameworks with non-default topologies. J. Am. Chem. Soc. 141, 16517–16538 (2019).

    CAS  Google Scholar 

  101. 101.

    Guillerm, V., Grancha, T., Imaz, I., Juanhuix, J. & Maspoch, D. Zigzag ligands for transversal design in reticular chemistry: unveiling new structural opportunities for metal–organic frameworks. J. Am. Chem. Soc. 140, 10153–10157 (2018).

    CAS  Google Scholar 

  102. 102.

    Nguyen, T. T. M., Le, H. M., Kawazoe, Y. & Nguyen, H. L. Reticular control of interpenetration in a complex metal–organic framework. Mater. Chem. Front. 2, 2063–2069 (2018).

    CAS  Google Scholar 

  103. 103.

    Benecke, J. et al. Polymorphous indium metal–organic frameworks based on a ferrocene linker: redox activity, porosity, and structural diversity. Inorg. Chem. 59, 9969–9978 (2020).

    CAS  Google Scholar 

  104. 104.

    Ni, Z., Yassar, A., Antoun, T. & Yaghi, O. M. Porous metal–organic truncated octahedron constructed from paddle-wheel squares and terthiophene links. J. Am. Chem. Soc. 127, 12752–12753 (2005).

    CAS  Google Scholar 

  105. 105.

    Li, J.-R., Timmons, D. J. & Zhou, H.-C. Interconversion between molecular polyhedra and metal–organic frameworks. J. Am. Chem. Soc. 131, 6368–6369 (2009).

    CAS  Google Scholar 

  106. 106.

    Li, J.-R. et al. Ligand bridging-angle-driven assembly of molecular architectures based on quadruply bonded Mo–Mo dimers. J. Am. Chem. Soc. 132, 17599–17610 (2010).

    CAS  Google Scholar 

  107. 107.

    Gosselin, E. J., Rowland, C. A., Balto, K. P., Yap, G. P. A. & Bloch, E. D. Design and synthesis of porous nickel(II) and cobalt(II) cages. Inorg. Chem. 57, 11847–11850 (2018).

    CAS  Google Scholar 

  108. 108.

    Rowland, C. A. et al. Methane storage in paddlewheel-based porous coordination cages. J. Am. Chem. Soc. 140, 11153–11157 (2018).

    CAS  Google Scholar 

  109. 109.

    Cairns, A. J. et al. Supermolecular building blocks (SBBs) and crystal design: 12-connected open frameworks based on a molecular cubohemioctahedron. J. Am. Chem. Soc. 130, 1560–1561 (2008).

    CAS  Google Scholar 

  110. 110.

    Stoeck, U., Krause, S., Bon, V., Senkovska, I. & Kaskel, S. A highly porous metal–organic framework, constructed from a cuboctahedral super-molecular building block, with exceptionally high methane uptake. Chem. Commun. 48, 10841–10843 (2012).

    CAS  Google Scholar 

  111. 111.

    Krause, S. et al. A pressure-amplifying framework material with negative gas adsorption transitions. Nature 532, 348–352 (2016).

    CAS  Google Scholar 

  112. 112.

    Stoeck, U., Senkovska, I., Bon, V., Krause, S. & Kaskel, S. Assembly of metal–organic polyhedra into highly porous frameworks for ethene delivery. Chem. Commun. 51, 1046–1049 (2015).

    CAS  Google Scholar 

  113. 113.

    Zou, Y., Park, M., Hong, S. & Lah, M. S. A designed metal–organic framework based on a metal–organic polyhedron. Chem. Commun. 2340–2342 (2008).

  114. 114.

    Zhang, P., Li, B., Zhao, Y., Meng, X. & Zhang, T. A novel (3,36)-connected and self-interpenetrated metal–organic framework with high thermal stability and gas-sorption capabilities. Chem. Commun. 47, 7722–7724 (2011).

    CAS  Google Scholar 

  115. 115.

    Lu, Z. et al. The utilization of amide groups to expand and functionalize metal–organic frameworks simultaneously. Chemistry 22, 6277–6285 (2016).

    CAS  Google Scholar 

  116. 116.

    Li, J.-R. & Zhou, H.-C. Metal–organic hendecahedra assembled from dinuclear paddlewheel nodes and mixtures of ditopic linkers with 120 and 90° bend angles. Angew. Chem. Int. Ed. 48, 8465–8468 (2009).

    CAS  Google Scholar 

  117. 117.

    Slater, A. G. et al. Reticular synthesis of porous molecular 1D nanotubes and 3D networks. Nat. Chem. 9, 17–25 (2016).

    Google Scholar 

  118. 118.

    Eubank, J. F. et al. The quest for modular nanocages: tbo-MOF as an archetype for mutual substitution, functionalization, and expansion of quadrangular pillar building blocks. J. Am. Chem. Soc. 133, 14204–14207 (2011).

    CAS  Google Scholar 

  119. 119.

    Chun, H., Dybtsev, D. N., Kim, H. & Kim, K. Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials. Chem. Eur. J. 11, 3521–3529 (2005).

    CAS  Google Scholar 

  120. 120.

    Ma, B.-Q., Mulfort, K. L. & Hupp, J. T. Microporous pillared paddle-wheel frameworks based on mixed-ligand coordination of zinc ions. Inorg. Chem. 44, 4912–4914 (2005).

    CAS  Google Scholar 

  121. 121.

    Seki, K., Takamizawa, S. & Mori, W. Design and gas adsorption property of a three-dimensional coordination polymer with a stable and highly porous framwork. Chem. Lett. 30, 332–333 (2001).

    Google Scholar 

  122. 122.

    Spanopoulos, I. et al. Reticular synthesis of HKUST-like tbo-MOFs with enhanced CH4 storage. J. Am. Chem. Soc. 138, 1568–1574 (2016).

    CAS  Google Scholar 

  123. 123.

    Moreau, F. et al. Tailoring porosity and rotational dynamics in a series of octacarboxylate metal-organic frameworks. Proc. Natl Acad. Sci. USA 114, 3056–3061 (2017).

    CAS  Google Scholar 

  124. 124.

    Liu, X., Oh, M. & Lah, M. S. Size- and shape-selective isostructural microporous metal–organic frameworks with different effective aperture sizes. Inorg. Chem. 50, 5044–5053 (2011).

    CAS  Google Scholar 

  125. 125.

    Chen, Z., Adil, K., Weseliński, J., Belmabkhout, Y. & Eddaoudi, M. A supermolecular building layer approach for gas separation and storage applications: the eea and rtl MOF platforms for CO2 capture and hydrocarbon separation. J. Mater. Chem. A 3, 6276–6281 (2015).

    CAS  Google Scholar 

  126. 126.

    Wang, R. et al. Porous zirconium metal–organic framework constructed from 2D → 3D interpenetration based on a 3,6-connected kgd net. Inorg. Chem. 53, 7086–7088 (2014).

    CAS  Google Scholar 

  127. 127.

    Li, M., O’Keeffe, M., Proserpio, D. M. & Zhang, H.-F. A new group of edge-transitive 3-periodic nets and their derived nets for reticular. Chem. Cryst. Growth Des. 20, 4062–4068 (2020).

    CAS  Google Scholar 

  128. 128.

    Chen, Z., Jiang, H., Li, M., O’Keeffe, M. & Eddaoudi, M. Reticular chemistry 3.2: typical minimal edge-transitive derived and related nets for the design and synthesis of metal–organic frameworks. Chem. Rev. 120, 8039–8065 (2020).

    CAS  Google Scholar 

  129. 129.

    Li, M., Li, D., O’Keeffe, M. & Yaghi, O. M. Topological analysis of metal–organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem. Rev. 114, 1343–1370 (2014).

    CAS  Google Scholar 

  130. 130.

    Chen, Z. et al. Enriching the reticular chemistry repertoire with minimal edge-transitive related nets: access to highly coordinated metal–organic frameworks based on double six-membered rings as net-coded building units. J. Am. Chem. Soc. 141, 20480–20489 (2019).

    CAS  Google Scholar 

  131. 131.

    Feng, D. et al. Construction of ultrastable porphyrin Zr metal–organic frameworks through linker elimination. J. Am. Chem. Soc. 135, 17105–17110 (2013).

    CAS  Google Scholar 

  132. 132.

    Gomez-Gualdron, D. A. et al. Evaluating topologically diverse metal-organic frameworks for cryo-adsorbed hydrogen storage. Energy Environ. Sci. 9, 3279–3289 (2016).

    CAS  Google Scholar 

  133. 133.

    Nguyen, P. T. K. et al. New metal–organic frameworks for chemical fixation of CO2. ACS Appl. Mater. Interfaces 10, 733–744 (2018).

    CAS  Google Scholar 

  134. 134.

    He, Y. et al. Low-energy regeneration and high productivity in a lanthanide–hexacarboxylate framework for high-pressure CO2–CH4–H2 separation. Chem. Commun. 49, 6773–6775 (2013).

    CAS  Google Scholar 

  135. 135.

    Wang, B. et al. Highly stable Zr(IV)-based metal–organic frameworks for the detection and removal of antibiotics and organic explosives in water. J. Am. Chem. Soc. 138, 6204–6216 (2016).

    CAS  Google Scholar 

  136. 136.

    Liu, T.-F. et al. Adding to the arsenal of zirconium-based metal–organic frameworks: the topology as a platform for solvent-assisted metal incorporation. Eur. J. Inorg. Chem. 2016, 4349–4352 (2016).

    CAS  Google Scholar 

  137. 137.

    Zhang, M. et al. Symmetry-guided synthesis of highly porous metal–organic frameworks with fluorite topology. Angew. Chem. Int. Ed. 53, 815–818 (2014).

    CAS  Google Scholar 

  138. 138.

    Liu, B., Wu, W.-P., Hou, L., Li, Z.-S. & Wang, Y.-Y. Two nanocage-based metal–organic frameworks with mixed-cluster SBUs and CO2 sorption selectivity. Inorg. Chem. 54, 8937–8942 (2015).

    CAS  Google Scholar 

  139. 139.

    Assen, A. H. et al. Ultra-tuning of the rare-earth fcu-MOF aperture size for selective molecular exclusion of branched paraffins. Angew. Chem. Int. Ed. 54, 14353–14358 (2015).

    CAS  Google Scholar 

  140. 140.

    Morris, W. et al. Synthesis, structure, and metalation of two new highly porous zirconium metal–organic frameworks. Inorg. Chem. 51, 6443–6445 (2012).

    CAS  Google Scholar 

  141. 141.

    Liu, T. F. et al. Topology-guided design and syntheses of highly stable mesoporous porphyrinic zirconium metal-organic frameworks with high surface area. J. Am. Chem. Soc. 137, 413–419 (2015).

    CAS  Google Scholar 

  142. 142.

    Zhang, Q. et al. Förster energy transport in metal–organic frameworks is beyond step-by-step hopping. J. Am. Chem. Soc. 138, 5308–5315 (2016).

    CAS  Google Scholar 

  143. 143.

    Feng, D. et al. A highly stable porphyrinic zirconium metal–organic framework with shp-a topology. J. Am. Chem. Soc. 136, 17714–17717 (2014).

    CAS  Google Scholar 

  144. 144.

    AbdulHalim, R. G. et al. A fine-tuned metal–organic framework for autonomous indoor moisture control. J. Am. Chem. Soc. 139, 10715–10722 (2017).

    CAS  Google Scholar 

  145. 145.

    Gilson, S. E. et al. In situ formation of unprecedented neptunium-oxide wheel clusters stabilized in a metal–organic framework. J. Am. Chem. Soc. 141, 11842–11846 (2019).

    CAS  Google Scholar 

  146. 146.

    Chen, Z. et al. Ligand-directed reticular synthesis of catalytically active missing zirconium-based metal–organic frameworks. J. Am. Chem. Soc. 141, 12229–12235 (2019).

    CAS  Google Scholar 

  147. 147.

    Eubank, J. F. et al. On demand: the singular rht net, an ideal blueprint for the construction of a metal–organic framework (MOF) platform. Angew. Chem. Int. Ed. 51, 10099–10103 (2012).

    CAS  Google Scholar 

  148. 148.

    Farha, O. K. et al. Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 134, 15016–15021 (2012).

    CAS  Google Scholar 

  149. 149.

    Sun, Q. et al. A novel polyhedron-based metal–organic framework with high performance for gas uptake and light hydrocarbon separation. Dalton Trans. 47, 5005–5010 (2018).

    CAS  Google Scholar 

  150. 150.

    Tu, B. et al. Ordered vacancies and their chemistry in metal–organic frameworks. J. Am. Chem. Soc. 136, 14465–14471 (2014).

    CAS  Google Scholar 

  151. 151.

    Wu, H., Yang, J., Su, Z.-M., Batten, S. R. & Ma, J.-F. An exceptional 54-fold interpenetrated coordination polymer with 103-srs network topology. J. Am. Chem. Soc. 133, 11406–11409 (2011).

    CAS  Google Scholar 

  152. 152.

    Furukawa, H. et al. Isoreticular expansion of metal–organic frameworks with triangular and square building units and the lowest calculated density for porous crystals. Inorg. Chem. 50, 9147–9152 (2011).

    CAS  Google Scholar 

  153. 153.

    Abrahams, B. F., Batten, S. R., Hamit, H., Hoskins, B. F. & Robson, R. A cubic (3,4)-connected net with large cavities in solvated [Cu3(tpt)4](ClO4)3 (tpt = 2,4,6-tri(4-pyridyl)-1,3,5-triazine). Angew. Chem. Int. Ed. Engl. 35, 1690–1692 (1996).

    CAS  Google Scholar 

  154. 154.

    Dybtsev, D. N., Chun, H. & Kim, K. Three-dimensional metal–organic framework with (3,4)-connected net, synthesized from an ionic liquid medium. Chem. Commun. 1594–1595 (2004).

  155. 155.

    Chen, B. et al. Cu2(ATC)·6H2O: design of open metal sites in porous metal–organic crystals (ATC: 1,3,5,7-adamantane tetracarboxylate). J. Am. Chem. Soc. 122, 11559–11560 (2000).

    CAS  Google Scholar 

  156. 156.

    Zheng, M., Liu, Y., Wang, C., Liu, S. & Lin, W. Cavity-induced enantioselectivity reversal in a chiral metal–organic framework Brønsted acid catalyst. Chem. Sci. 3, 2623–2627 (2012).

    CAS  Google Scholar 

  157. 157.

    Ma, S., Wang, X.-S., Collier, C. D., Manis, E. S. & Zhou, H.-C. Ultramicroporous metal–organic framework based on 9,10-anthracenedicarboxylate for selective gas adsorption. Inorg. Chem. 46, 8499–8501 (2007).

    CAS  Google Scholar 

  158. 158.

    Sudik, A. C., Côté, A. P., Wong-Foy, A. G., O’Keeffe, M. & Yaghi, O. M. A metal–organic framework with a hierarchical system of pores and tetrahedral building blocks. Angew. Chem. Int. Ed. 45, 2528–2533 (2006).

    CAS  Google Scholar 

  159. 159.

    Chen, Z. et al. Reticular access to highly porous acs-MOFs with rigid trigonal prismatic linkers for water sorption. J. Am. Chem. Soc. 141, 2900–2905 (2019).

    CAS  Google Scholar 

  160. 160.

    Chen, Z. et al. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science 368, 297–303 (2020).

    CAS  Google Scholar 

  161. 161.

    Chun, H. & Jung, H. Targeted synthesis of a prototype MOF based on Zn4(O)(O2C)6 units and a nonlinear dicarboxylate ligand. Inorg. Chem. 48, 417–419 (2009).

    CAS  Google Scholar 

  162. 162.

    Chae, H. K., Kim, J., Friedrichs, O. D., O’Keeffe, M. & Yaghi, O. M. Design of frameworks with mixed triangular and octahedral building blocks exemplified by the structure of [Zn4O(TCA)2] having the pyrite topology. Angew. Chem. Int. Ed. 42, 3907–3909 (2003).

    CAS  Google Scholar 

  163. 163.

    Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 103, 10186–10191 (2006).

    CAS  Google Scholar 

  164. 164.

    Schulz, M. et al. A calixarene-based metal–organic framework for highly selective NO2 detection. Angew. Chem. Int. Ed. 57, 12961–12965 (2018).

    CAS  Google Scholar 

  165. 165.

    Han, Y. et al. In-situ ligand formation-driven preparation of a heterometallic metal–organic framework for highly selective separation of light hydrocarbons and efficient mercury adsorption. ACS Appl. Mater. Interfaces 8, 23331–23337 (2016).

    CAS  Google Scholar 

  166. 166.

    Sun, D., Collins, D. J., Ke, Y., Zuo, J.-L. & Zhou, H.-C. Construction of open metal–organic frameworks based on predesigned carboxylate isomers: from achiral to chiral nets. Chem. Eur. J. 12, 3768–3776 (2006).

    CAS  Google Scholar 

  167. 167.

    Yuan, S. et al. Sequential linker installation: precise placement of functional groups in multivariate metal–organic frameworks. J. Am. Chem. Soc. 137, 3177–3180 (2015).

    CAS  Google Scholar 

  168. 168.

    Deria, P. et al. Framework-topology-dependent catalytic activity of zirconium-based (porphinato)zinc(II) MOFs. J. Am. Chem. Soc. 138, 14449–14457 (2016).

    CAS  Google Scholar 

  169. 169.

    Feng, D. et al. Zirconium-metalloporphyrin PCN-222: mesoporous metal–organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem. Int. Ed. 51, 10307–10310 (2012).

    CAS  Google Scholar 

  170. 170.

    Li, P. et al. Hierarchically engineered mesoporous metal-organic frameworks toward cell-free immobilized enzyme systems. Chem 4, 1022–1034 (2018).

    CAS  Google Scholar 

  171. 171.

    Thiam, Z. et al. Extension of the surface organometallic chemistry to metal–organic framework: development of well-defined single site [(≡Zr–O–)W(=O)(CH2tBu)3] olefin metathesis catalyst. J. Am. Chem. Soc. 142, 16690–16703 (2020).

    CAS  Google Scholar 

  172. 172.

    Jiang, H.-L. et al. An exceptionally stable, porphyrinic Zr metal–organic framework exhibiting pH-dependent fluorescence. J. Am. Chem. Soc. 135, 13934–13938 (2013).

    CAS  Google Scholar 

  173. 173.

    Zhang, Y.-Z. et al. Nanocage containing metal-organic framework constructed from a newly designed low symmetry tetra-pyrazole ligand. J. Coord. Chem. 69, 3242–3249 (2016).

    CAS  Google Scholar 

  174. 174.

    Duan, X. et al. A microporous metal–organic framework of a rare sty topology for high CH4 storage at room temperature. Chem. Commun. 49, 2043–2045 (2013).

    CAS  Google Scholar 

  175. 175.

    Lin, X. et al. High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. J. Am. Chem. Soc. 131, 2159–2171 (2009).

    CAS  Google Scholar 

  176. 176.

    Wang, X.-S. et al. Three-dimensional porous metal–metalloporphyrin framework consisting of nanoscopic polyhedral cages. J. Am. Chem. Soc. 133, 16322–16325 (2011).

    CAS  Google Scholar 

  177. 177.

    Grünker, R. et al. Topological diversity, adsorption and fluorescence properties of MOFs based on a tetracarboxylate ligand. Eur. J. Inorg. Chem. 2010, 3835–3841 (2010).

    Google Scholar 

  178. 178.

    Mohideen, M. I. H. et al. Upgrading gasoline to high octane numbers using a zeolite-like metal–organic framework molecular sieve with ana-topology. Chem. Commun. 54, 9414–9417 (2018).

    CAS  Google Scholar 

  179. 179.

    An, J. et al. Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework. Nat. Commun. 3, 604 (2012).

    Google Scholar 

  180. 180.

    Li, T., Kozlowski, M. T., Doud, E. A., Blakely, M. N. & Rosi, N. L. Stepwise ligand exchange for the preparation of a family of mesoporous MOFs. J. Am. Chem. Soc. 135, 11688–11691 (2013).

    CAS  Google Scholar 

  181. 181.

    Zhang, J., Chen, S., Zingiryan, A. & Bu, X. Integrated molecular chirality, absolute helicity, and intrinsic chiral topology in three-dimensional open-framework materials. J. Am. Chem. Soc. 130, 17246–17247 (2008).

    CAS  Google Scholar 

  182. 182.

    Zhang, J.-P., Horike, S. & Kitagawa, S. A flexible porous coordination polymer functionalized by unsaturated metal clusters. Angew. Chem. Int. Ed. 46, 889–892 (2007).

    CAS  Google Scholar 

  183. 183.

    Yuan, S. et al. Retrosynthesis of multi-component metal–organic frameworks. Nat. Commun. 9, 808 (2018).

    Google Scholar 

  184. 184.

    Furukawa, H. et al. Ultrahigh porosity in metal-organic frameworks. Science 329, 424–428 (2010).

    CAS  Google Scholar 

  185. 185.

    Liu, L., Konstas, K., Hill, M. R. & Telfer, S. G. Programmed pore architectures in modular quaternary metal–organic frameworks. J. Am. Chem. Soc. 135, 17731–17734 (2013).

    CAS  Google Scholar 

  186. 186.

    Liu, L. & Telfer, S. G. Systematic ligand modulation enhances the moisture stability and gas sorption characteristics of quaternary metal–organic frameworks. J. Am. Chem. Soc. 137, 3901–3909 (2015).

    CAS  Google Scholar 

  187. 187.

    Jiang, J., Furukawa, H., Zhang, Y.-B. & Yaghi, O. M. High methane storage working capacity in metal–organic frameworks with acrylate links. J. Am. Chem. Soc. 138, 10244–10251 (2016).

    CAS  Google Scholar 

  188. 188.

    Liang, C.-C. et al. Engineering of pore geometry for ultrahigh capacity methane storage in mesoporous metal–organic frameworks. J. Am. Chem. Soc. 139, 13300–13303 (2017).

    CAS  Google Scholar 

  189. 189.

    Hönicke, I. M. et al. Balancing mechanical stability and ultrahigh porosity in crystalline framework materials. Angew. Chem. Int. Ed. 57, 13780–13783 (2018).

    Google Scholar 

  190. 190.

    Han, D. et al. A non-interpenetrated porous metal–organic framework with high gas-uptake capacity. Chem. Commun. 47, 9861–9863 (2011).

    CAS  Google Scholar 

  191. 191.

    Klein, N. et al. Route to a family of robust, non-interpenetrated metal–organic frameworks with pto-like topology. Chem. Eur. J. 17, 13007–13016 (2011).

    CAS  Google Scholar 

  192. 192.

    Koh, K., Wong-Foy, A. G. & Matzger, A. J. A crystalline mesoporous coordination copolymer with high microporosity. Angew. Chem. Int. Ed. 47, 677–680 (2008).

    CAS  Google Scholar 

  193. 193.

    Muldoon, P. F. et al. Programmable topology in new families of heterobimetallic metal–organic frameworks. J. Am. Chem. Soc. 140, 6194–6198 (2018).

    CAS  Google Scholar 

  194. 194.

    Pang, Q., Tu, B. & Li, Q. Metal–organic frameworks with multicomponents in order. Coord. Chem. Rev. 388, 107–125 (2019).

    CAS  Google Scholar 

  195. 195.

    Furukawa, H., Müller, U. & Yaghi, O. M. “Heterogeneity within order” in metal–organic frameworks. Angew. Chem. Int. Ed. 54, 3417–3430 (2015).

    CAS  Google Scholar 

  196. 196.

    Xu, W. et al. Anisotropic reticular chemistry. Nat. Rev. Mater. 5, 764–779 (2020).

    CAS  Google Scholar 

  197. 197.

    Zhai, Q.-G., Bu, X., Zhao, X., Li, D.-S. & Feng, P. Pore space partition in metal–organic frameworks. Acc. Chem. Res. 50, 407–417 (2017).

    CAS  Google Scholar 

  198. 198.

    Zhao, X. et al. Multivariable modular design of pore space partition. J. Am. Chem. Soc. 138, 15102–15105 (2016).

    CAS  Google Scholar 

  199. 199.

    Chae, H. K. et al. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523–527 (2004).

    CAS  Google Scholar 

  200. 200.

    Zhang, Y.-B. et al. Introduction of functionality, selection of topology, and enhancement of gas adsorption in multivariate metal–organic framework-177. J. Am. Chem. Soc. 137, 2641–2650 (2015).

    CAS  Google Scholar 

  201. 201.

    Férey, G. et al. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. Angew. Chem. Int. Ed. 43, 6296–6301 (2004).

    Google Scholar 

  202. 202.

    Park, Y. K. et al. Crystal structure and guest uptake of a mesoporous metal–organic framework containing cages of 3.9 and 4.7nm in diameter. Angew. Chem. Int. Ed. 46, 8230–8233 (2007).

    CAS  Google Scholar 

  203. 203.

    Fang, Q. et al. A metal–organic framework with the zeolite MTN topology containing large cages of volume 2.5 nm3. Angew. Chem. Int. Ed. 44, 3845–3848 (2005).

    CAS  Google Scholar 

  204. 204.

    Mallick, A. et al. Unprecedented ultralow detection limit of amines using a thiadiazole-functionalized Zr(IV)-based metal–organic framework. J. Am. Chem. Soc. 141, 7245–7249 (2019).

    CAS  Google Scholar 

  205. 205.

    Cohen, S. M. The postsynthetic renaissance in porous solids. J. Am. Chem. Soc. 139, 2855–2863 (2017).

    CAS  Google Scholar 

  206. 206.

    Xue, D.-X. et al. Tunable rare earth fcu-MOF platform: access to adsorption kinetics driven gas/vapor separations via pore size contraction. J. Am. Chem. Soc. 137, 5034–5040 (2015).

    CAS  Google Scholar 

  207. 207.

    Deng, H. et al. Multiple functional groups of varying ratios in metal-organic frameworks. Science 327, 846–850 (2010).

    CAS  Google Scholar 

  208. 208.

    Kong, X. et al. Mapping of functional groups in metal-organic frameworks. Science 341, 882–885 (2013).

    CAS  Google Scholar 

  209. 209.

    Fracaroli, A. M. et al. Seven post-synthetic covalent reactions in tandem leading to enzyme-like complexity within metal–organic framework crystals. J. Am. Chem. Soc. 138, 8352–8355 (2016).

    CAS  Google Scholar 

  210. 210.

    Feng, L. et al. Creating hierarchical pores by controlled linker thermolysis in multivariate metal–organic frameworks. J. Am. Chem. Soc. 140, 2363–2372 (2018).

    CAS  Google Scholar 

  211. 211.

    Wang, L. J. et al. Synthesis and characterization of metal–organic framework-74 containing 2, 4, 6, 8, and 10 different metals. Inorg. Chem. 53, 5881–5883 (2014).

    CAS  Google Scholar 

  212. 212.

    Luo, T.-Y. et al. Multivariate stratified metal–organic frameworks: diversification using domain building blocks. J. Am. Chem. Soc. 141, 2161–2168 (2019).

    CAS  Google Scholar 

  213. 213.

    Feng, L. et al. Imprinted apportionment of functional groups in multivariate metal–organic frameworks. J. Am. Chem. Soc. 141, 14524–14529 (2019).

    CAS  Google Scholar 

  214. 214.

    Feng, L. et al. Lattice expansion and contraction in metal-organic frameworks by sequential linker reinstallation. Matter 1, 156–167 (2019).

    Google Scholar 

  215. 215.

    Lin, G. et al. 3D porphyrin-based covalent organic frameworks. J. Am. Chem. Soc. 139, 8705–8709 (2017).

    CAS  Google Scholar 

  216. 216.

    Ma, T. et al. Single-crystal x-ray diffraction structures of covalent organic frameworks. Science 361, 48–52 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the King Abdullah University of Science and Technology (KAUST) and thank V. Guillerm for helpful comments and suggestions.

Author information

Affiliations

Authors

Contributions

H.J. and M.E. formulated the content of this Review. All authors contributed to the writing and editing of the manuscript prior to submission.

Corresponding author

Correspondence to Mohamed Eddaoudi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Alezi, D. & Eddaoudi, M. A reticular chemistry guide for the design of periodic solids. Nat Rev Mater 6, 466–487 (2021). https://doi.org/10.1038/s41578-021-00287-y

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing