Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Material properties and applications of mechanically interlocked polymers

Subjects

Abstract

Mechanically interlocked polymers (MIPs), such as polyrotaxanes and polycatenanes, are polymer architectures that incorporate a mechanical bond. In a polyrotaxane, the mechanical bond is the result of a linear dumbbell component threaded through a ring, while in a polycatenane, it is the consequence of interlocked ring components. The interlocked nature of these architectures can result in high degrees of conformational freedom and mobility of their components, which can give rise to unique property profiles. In recent years, the synthesis and studies of a range of MIPs has allowed researchers to build an initial understanding of how incorporating mechanical bonds within a polymer structure impacts its material properties. This Review focuses on the understanding of these structure–property relationships with an outlook towards their applications, specifically focusing on four main classes of MIPs: polyrotaxanes, slide-ring gels, daisy-chain polymers and polycatenanes.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Mechanically interlocked molecules and polymers.
Fig. 2: Polyrotaxanes.
Fig. 3: Main-chain polyrotaxane properties and behaviour.
Fig. 4: ‘Pulley effect’ in figure-of-eight slide-ring materials.
Fig. 5: Structure–property relationships in slide-ring materials.
Fig. 6: Engineering slide-ring materials for targeted applications.
Fig. 7: [c2]Daisy-chain polymers.
Fig. 8: Poly[2]catenane materials.
Fig. 9: Poly[n]catenanes and Olympic gels.

References

  1. 1.

    Schill, G. & Zollenkopf, H. Rotaxan-verbindungen, 1. Liebigs Ann. 721, 53–74 (1969).

    CAS  Google Scholar 

  2. 2.

    Wasserman, E. The preparation of interlocking rings: a catenane. J. Am. Chem. Soc. 82, 4433–4434 (1960).

    CAS  Google Scholar 

  3. 3.

    Dietrich-Buchecker, C. O. & Sauvage, J.-P. A synthetic molecular trefoil knot. Angew. Chem. Int. Ed. 28, 189–192 (1989).

    Google Scholar 

  4. 4.

    Chichak, K. S. Molecular borromean rings. Science 304, 1308–1312 (2004).

    CAS  Google Scholar 

  5. 5.

    Richards, V. Molecular machines. Nat. Chem. 8, 1090–1090 (2016).

    CAS  Google Scholar 

  6. 6.

    Sauvage, J.-P. From chemical topology to molecular machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11080–11093 (2017).

    CAS  Google Scholar 

  7. 7.

    Feringa, B. L. The art of building small: from molecular switches to motors (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11060–11078 (2017).

    CAS  Google Scholar 

  8. 8.

    Stoddart, J. F. Mechanically interlocked molecules (MIMs)—molecular shuttles, switches, and machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11094–11125 (2017).

    CAS  Google Scholar 

  9. 9.

    Cotí, K. K. et al. Mechanised nanoparticles for drug delivery. Nanoscale 1, 16–39 (2009).

    Google Scholar 

  10. 10.

    Garcia-Rio, L., Otero-Espinar, F. J., Luzardo-Alvarez, A. & Blanco-Mendez, J. Cyclodextrin based rotaxanes, polyrotaxanes and polypseudorotaxanes and their biomedical applications. Curr. Top. Med. Chem. 14, 478–493 (2014).

    CAS  Google Scholar 

  11. 11.

    Zhang, Y. M., Liu, Y. H. & Liu, Y. Cyclodextrin-based multistimuli-responsive supramolecular assemblies and their biological functions. Adv. Mater. 32, 1806158 (2019).

    Google Scholar 

  12. 12.

    Zhang, J. & Ma, P. X. Cyclodextrin-based supramolecular systems for drug delivery: Recent progress and future perspective. Adv. Drug Deliv. Rev. 65, 1215–1233 (2013).

    CAS  Google Scholar 

  13. 13.

    Neal, E. A. & Goldup, S. M. Chemical consequences of mechanical bonding in catenanes and rotaxanes: isomerism, modification, catalysis and molecular machines for synthesis. Chem. Commun. 50, 5128–5142 (2014).

    CAS  Google Scholar 

  14. 14.

    Evans, N. H. & Beer, P. D. Progress in the synthesis and exploitation of catenanes since the Millennium. Chem. Soc. Rev. 43, 4658–4683 (2014).

    CAS  Google Scholar 

  15. 15.

    Leigh, D. A., Marcos, V. & Wilson, M. R. Rotaxane catalysts. ACS Catal. 4, 4490–4497 (2014).

    CAS  Google Scholar 

  16. 16.

    Beves, J. E., Blight, B. A., Campbell, C. J., Leigh, D. A. & McBurney, R. T. Strategies and tactics for the metal-directed synthesis of rotaxanes, knots, catenanes, and higher order links. Angew. Chem. Int. Ed. 50, 9260–9327 (2011).

    CAS  Google Scholar 

  17. 17.

    Hubin, T. J. & Busch, D. H. Template routes to interlocked molecular structures and orderly molecular entanglements. Coord. Chem. Rev. 200–202, 5–52 (2000).

    Google Scholar 

  18. 18.

    Niu, Z. & Gibson, H. W. Polycatenanes. Chem. Rev. 109, 6024–6046 (2009).

    CAS  Google Scholar 

  19. 19.

    Fang, L. et al. Mechanically bonded macromolecules. Chem. Soc. Rev. 39, 17–29 (2010).

    CAS  Google Scholar 

  20. 20.

    Arunachalam, M. & Gibson, H. W. Recent developments in polypseudorotaxanes and polyrotaxanes. Prog. Polym. Sci. 39, 1043–1073 (2014).

    CAS  Google Scholar 

  21. 21.

    Takata, T., Kihara, N. & Furusho, Y. Polyrotaxanes and polycatenanes: recent advances in syntheses and applications of polymers comprising of interlocked structures. Adv. Polym. Sci. 171, 1–75 (2004).

    CAS  Google Scholar 

  22. 22.

    Huang, F. H. & Gibson, H. W. Polypseudorotaxanes and polyrotaxanes. Prog. Polym. Sci. 30, 982–1018 (2005).

    CAS  Google Scholar 

  23. 23.

    Harrison, I. T. & Harrison, S. Synthesis of a stable complex of a macrocycle and a threaded chain. J. Am. Chem. Soc. 89, 5723–5724 (1967).

    CAS  Google Scholar 

  24. 24.

    Wenz, G. & Keller, B. Threading cyclodextrin rings on polymer chains. Angew. Chem. Int. Ed. Engl. 31, 197–199 (1992).

    Google Scholar 

  25. 25.

    Harada, A. The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature 356, 325–327 (1992).

    CAS  Google Scholar 

  26. 26.

    Fleury, G. et al. Synthesis and characterization of high molecular weight polyrotaxanes: Towards the control over a wide range of threaded α-cyclodextrins. Soft Matter 1, 378–385 (2005).

    CAS  Google Scholar 

  27. 27.

    Miyake, K. et al. Formation process of cyclodextrin necklace−analysis of hydrogen bonding on a molecular level. J. Am. Chem. Soc. 125, 5080–5085 (2003).

    CAS  Google Scholar 

  28. 28.

    Inomata, A. et al. Crystallinity and cooperative motions of cyclic molecules in partially threaded solid-state polyrotaxanes. Macromolecules 43, 4660–4666 (2010).

    CAS  Google Scholar 

  29. 29.

    Kato, K., Mizusawa, T., Yokoyama, H. & Ito, K. Polyrotaxane glass: peculiar mechanics attributable to the isolated dynamics of different components. J. Phys. Chem. Lett. 6, 4043–4048 (2015).

    CAS  Google Scholar 

  30. 30.

    Mayumi, K. & Ito, K. Structure and dynamics of polyrotaxane and slide-ring materials. Polymer 51, 959–967 (2010).

    CAS  Google Scholar 

  31. 31.

    Zhao, C. et al. Sliding mode of cyclodextrin in polyrotaxane and slide-ring gel. J. Phys. Condens. Matter 17, S2841–S2846 (2005).

    CAS  Google Scholar 

  32. 32.

    Yasuda, Y. et al. Molecular dynamics of polyrotaxane in solution investigated by quasi-elastic neutron scattering and molecular dynamics simulation: sliding motion of rings on polymer. J. Am. Chem. Soc. 141, 9655–9663 (2019).

    CAS  Google Scholar 

  33. 33.

    Yasuda, Y. et al. Sliding dynamics of ring on polymer in rotaxane: a coarse-grained molecular dynamics simulation study. Macromolecules 52, 3787–3793 (2019).

    CAS  Google Scholar 

  34. 34.

    Mayumi, K. et al. Concentration-induced conformational change in linear polymer threaded into cyclic molecules. Macromolecules 41, 6480–6485 (2008).

    CAS  Google Scholar 

  35. 35.

    Yamada, S., Sanada, Y., Tamura, A., Yui, N. & Sakurai, K. Chain architecture and flexibility of α-cyclodextrin/PEG polyrotaxanes in dilute solutions. Polym. J. 47, 464–467 (2015).

    CAS  Google Scholar 

  36. 36.

    Gibson, H. W., Liu, S., Gong, C., Ji, Q. & Joseph, E. Studies of the formation of poly(ester rotaxane)s from diacid chlorides, diols, and crown ethers and their properties. Macromolecules 30, 3711–3727 (1997).

    CAS  Google Scholar 

  37. 37.

    Gong, C. & Gibson, H. W. Controlling microstructure in polymeric molecular shuttles: Solvent-induced localization of macrocycles in poly(urethane/crown ether) rotaxanes. Angew. Chem. Int. Ed. Engl. 36, 2331–2333 (1997).

    CAS  Google Scholar 

  38. 38.

    Shen, Y. X., Xie, D. & Gibson, H. W. Polyrotaxanes Based on polyurethane backbones and crown ether cyclics. 1. Synthesis. J. Am. Chem. Soc. 116, 537–548 (1994).

    CAS  Google Scholar 

  39. 39.

    Gong, C., Glass, T. E. & Gibson, H. W. Poly(urethane/crown ether rotaxane)s with solvent switchable microstructures. Macromolecules 31, 308–313 (1998).

    CAS  Google Scholar 

  40. 40.

    Gong, C., Ji, Q., Subramaniam, C. & Gibson, H. W. Main chain polyrotaxanes by threading crown ethers onto a preformed polyurethane: preparation and properties. Macromolecules 31, 1814–1818 (1998).

    CAS  Google Scholar 

  41. 41.

    Gong, C. & Gibson, H. W. Synthesis and characterization of a polyester/crown ether rotaxane derived from a difunctional blocking group. Macromolecules 29, 7029–7033 (1996).

    CAS  Google Scholar 

  42. 42.

    Gong, C. G. & Gibson, H. W. Polyrotaxanes and related structures: Synthesis and properties. Curr. Opin. Solid State Mater. Sci. 2, 647–652 (1997).

    CAS  Google Scholar 

  43. 43.

    Gong, C. & Gibson, H. W. Dethreading during the preparation of polyrotaxanes. Macromol. Chem. Phys. 198, 2321–2332 (1997).

    CAS  Google Scholar 

  44. 44.

    Chen, Z. et al. Effect of component mobility on the properties of macromolecular [2]rotaxanes. Angew. Chem. Int. Ed. 55, 2778–2781 (2016).

    CAS  Google Scholar 

  45. 45.

    Uenuma, S. et al. Drastic change of mechanical properties of polyrotaxane bulk: ABA–BAB sequence change depending on ring position. ACS Macro Lett. 8, 140–144 (2019).

    CAS  Google Scholar 

  46. 46.

    Uenuma, S. et al. Self-assembled structure of polyrotaxane consisting of β-cyclodextrin and poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) triblock copolymer in bulk system. Chem. Lett. 45, 991–993 (2016).

    CAS  Google Scholar 

  47. 47.

    Lin, Q., Li, L., Tang, M., Hou, X. & Ke, C. Rapid macroscale shape morphing of 3D-printed polyrotaxane monoliths amplified from pH-controlled nanoscale ring motions. J. Mater. Chem. C 6, 11956–11960 (2018).

    CAS  Google Scholar 

  48. 48.

    Lin, Q., Hou, X. & Ke, C. Ring shuttling controls macroscopic motion in a three-dimensional printed polyrotaxane monolith. Angew. Chem. Int. Ed. Engl. 56, 4452–4457 (2017).

    CAS  Google Scholar 

  49. 49.

    Lin, Q., Tang, M. & Ke, C. Thermo-responsive 3D-printed polyrotaxane monolith. Polym. Chem. 11, 304–308 (2020).

    CAS  Google Scholar 

  50. 50.

    Kato, K., Nemoto, K., Mayumi, K., Yokoyama, H. & Ito, K. Ductile glass of polyrotaxane toughened by stretch-induced intramolecular phase separation. ACS Appl. Mater. Interfaces 9, 32436–32440 (2017).

    CAS  Google Scholar 

  51. 51.

    Kato, K., Mizusawa, T., Yokoyama, H. & Ito, K. Effect of topological constraint and confined motions on the viscoelasticity of polyrotaxane glass with different interactions between rings. J. Phys. Chem. C 121, 1861–1869 (2017).

    CAS  Google Scholar 

  52. 52.

    Kato, K., Ohara, A., Yokoyama, H. & Ito, K. Prolonged glass transition due to topological constraints in polyrotaxanes. J. Am. Chem. Soc. 141, 12502–12506 (2019).

    CAS  Google Scholar 

  53. 53.

    Cardin, D. J. Encapsulated conducting polymers. Adv. Mater. 14, 553–563 (2002).

    CAS  Google Scholar 

  54. 54.

    Mayumi, K., Ito, K. & Kato, K. Polyrotaxane and Slide-Ring Materials (Royal Society of Chemistry, 2015).

  55. 55.

    Frampton, M. J. & Anderson, H. L. Insulated molecular wires. Angew. Chem. Int. Ed. Engl. 46, 1028–1064 (2007).

    CAS  Google Scholar 

  56. 56.

    Terao, J., Tang, A., Michels, J. J., Krivokapic, A. & Anderson, H. L. Synthesis of poly(para-phenylenevinylene) rotaxanes by aqueous Suzuki coupling. Chem. Commun. 56–57 (2004).

  57. 57.

    Cacialli, F. et al. Cyclodextrin-threaded conjugated polyrotaxanes as insulated molecular wires with reduced interstrand interactions. Nat. Mater. 1, 160–164 (2002).

    CAS  Google Scholar 

  58. 58.

    Taylor, P. N. et al. Insulated molecular wires: synthesis of conjugated polyrotaxanes by Suzuki coupling in water. Angew. Chem. Int. Ed. Engl. 39, 3456–3460 (2000).

    CAS  Google Scholar 

  59. 59.

    Michels, J. J. et al. Synthesis of conjugated polyrotaxanes. Chem. Eur. J. 9, 6167–6176 (2003).

    CAS  Google Scholar 

  60. 60.

    van den Boogaard, M. et al. Synthesis of insulated single-chain semiconducting polymers based on polythiophene, polyfluorene, and β-cyclodextrin. Chem. Mater. 16, 4383–4385 (2004).

    Google Scholar 

  61. 61.

    Ikeda, T., Higuchi, M. & Kurth, D. G. From thiophene [2]rotaxane to polythiophene polyrotaxane. J. Am. Chem. Soc. 131, 9158–9159 (2009).

    CAS  Google Scholar 

  62. 62.

    Farcas, A. et al. Molecular wire formation from poly[2,7-(9,9-dioctylfluorene)-alt-(5,5′-bithiophene/cucurbit[7]uril)] polyrotaxane copolymer. Eur. Polym. J. 62, 124–129.

  63. 63.

    Belosludov, R. V., Mizuseki, H., Ichinoseki, K. & Kawazoe, Y. Theoretical study on inclusion complex of polyaniline covered by cyclodextrins for molecular device. Jpn. J. Appl. Phys. 41, 2739–2741 (2002).

    CAS  Google Scholar 

  64. 64.

    Belosludov, R. V. et al. Molecular enamel wires for electronic devices: Theoretical study. Jpn. J. Appl. Phys. 42, 2492–2494 (2003).

    CAS  Google Scholar 

  65. 65.

    Brovelli, S. et al. Tuning intrachain versus interchain photophysics via control of the threading ratio of conjugated polyrotaxanes. Nano Lett. 8, 4546–4551 (2008).

    CAS  Google Scholar 

  66. 66.

    Oddy, F. E. et al. Influence of cyclodextrin size on fluorescence quenching in conjugated polyrotaxanes by methyl viologen in aqueous solution. J. Mater. Chem. 19, 2846–2852 (2009).

    CAS  Google Scholar 

  67. 67.

    Farcas, A. et al. Cucurbit[7]uril-threaded poly(3,4-ethylenedioxythiophene): a novel processable conjugated polyrotaxane. Eur. J. Org. Chem. 2019, 3442–3450 (2019).

    CAS  Google Scholar 

  68. 68.

    Terao, J. & Tsuji, Y. New synthetic methods of π-conjugated inclusion complexes with high conductivity. J. Incl. Phenom. Macrocycl. Chem. 80, 165–175 (2014).

    CAS  Google Scholar 

  69. 69.

    Grigoras, M. & Stafie, L. Electrically insulated molecular wires. Supramol. Chem. 22, 237–248 (2010).

    CAS  Google Scholar 

  70. 70.

    Terao, J. et al. Insulated molecular wire with highly conductive π-conjugated polymer core. J. Am. Chem. Soc. 131, 18046–18047 (2009).

    CAS  Google Scholar 

  71. 71.

    Terao, J. et al. Design principle for increasing charge mobility of π-conjugated polymers using regularly localized molecular orbitals. Nat. Commun. 4, 1691 (2013).

    Google Scholar 

  72. 72.

    Wankar, J. et al. Recent advances in host–guest self-assembled cyclodextrin carriers: implications for responsive drug delivery and biomedical engineering. Adv. Funct. Mater. 30, 1909049 (2020).

    CAS  Google Scholar 

  73. 73.

    Tamura, A. & Yui, N. Threaded macromolecules as a versatile framework for biomaterials. Chem. Commun. 50, 13433–13446 (2014).

    CAS  Google Scholar 

  74. 74.

    Li, J. J., Zhao, F. & Li, J. Polyrotaxanes for applications in life science and biotechnology. Appl. Microbiol. Biotechnol. 90, 427–443 (2011).

    CAS  Google Scholar 

  75. 75.

    Loethen, S., Kim, J.-M. & Thompson, D. H. Biomedical applications of cyclodextrin based polyrotaxanes. Polym. Rev. 47, 383–418 (2007).

    CAS  Google Scholar 

  76. 76.

    Arisaka, Y. & Yui, N. Polyrotaxane-based biointerfaces with dynamic biomaterial functions. J. Mater. Chem. B 7, 2123–2129 (2019).

    CAS  Google Scholar 

  77. 77.

    Yui, N. & Ooya, T. Molecular mobility of interlocked structures exploiting new functions of advanced biomaterials. Chem. Eur. J. 12, 6730–6737 (2006).

    CAS  Google Scholar 

  78. 78.

    Patel, P., Pol, A., Jain, R. & Dandekar, P. in Encyclopedia of Biomedical Polymers and Polymeric Biomaterials (ed. Mishra, M.) (CRC Press, 2015).

  79. 79.

    Ooya, T. et al. Effects of polyrotaxane structure on polyion complexation with DNA. Sci. Technol. Adv. Mater. 5, 363–369 (2004).

    CAS  Google Scholar 

  80. 80.

    Ooya, T. et al. Biocleavable polyrotaxane-plasmid DNA polyplex for enhanced gene delivery. J. Am. Chem. Soc. 128, 3852–3853 (2006).

    CAS  Google Scholar 

  81. 81.

    Mammen, M., Choi, S.-K. & Whitesides, G. M. Polyvalent interactions in biological systems: implications for design and use of mMultivalent ligands and inhibitors. Angew. Chem. Int. Ed. Engl. 37, 2754–2794 (1998).

    Google Scholar 

  82. 82.

    Seo, J.-H. et al. Inducing rapid cellular response on RGD-binding threaded macromolecular surfaces. J. Am. Chem. Soc. 135, 5513–5516 (2013).

    CAS  Google Scholar 

  83. 83.

    Ooya, T., Eguchi, M. & Yui, N. Supramolecular design for multivalent interaction: maltose mobility along polyrotaxane enhanced binding with concanavalin A. J. Am. Chem. Soc. 125, 13016–13017 (2003).

    CAS  Google Scholar 

  84. 84.

    Sluysmans, D. & Stoddart, J. F. The burgeoning of mechanically interlocked molecules in chemistry. Trends Chem. 1, 185–197 (2019).

    CAS  Google Scholar 

  85. 85.

    Berná, J. et al. Macroscopic transport by synthetic molecular machines. Nat. Mater. 4, 704–710 (2005).

    Google Scholar 

  86. 86.

    Sun, X. et al. Towards the self-assembly of polyrotaxanes. Macromol. Symp. 77, 191–207 (1994).

    CAS  Google Scholar 

  87. 87.

    Zhang, W. et al. Folding of a donor–acceptor polyrotaxane by using noncovalent bonding interactions. Proc. Natl Acad. Sci. USA 105, 6514–6519 (2008).

    CAS  Google Scholar 

  88. 88.

    Zhu, Z. et al. Synthesis and solution-state dynamics of donor–acceptor oligorotaxane foldamers. Chem. Sci. 4, 1470–1483 (2013).

    CAS  Google Scholar 

  89. 89.

    Basu, S. et al. Donor–acceptor oligorotaxanes made to order. Chem. Eur. J. 17, 2107–2119 (2011).

    CAS  Google Scholar 

  90. 90.

    Zhu, Z. et al. Oligomeric pseudorotaxanes adopting infinite-chain lattice superstructures. Angew. Chem. Int. Ed. Engl. 51, 7231–7235 (2012).

    CAS  Google Scholar 

  91. 91.

    Sluysmans, D. et al. Synthetic oligorotaxanes exert high forces when folding under mechanical load. Nat. Nanotechnol. 13, 209–213 (2018).

    CAS  Google Scholar 

  92. 92.

    Sluysmans, D., Devaux, F., Bruns, C. J., Stoddart, J. F. & Duwez, A.-S. Dynamic force spectroscopy of synthetic oligorotaxane foldamers. Proc. Natl Acad. Sci. USA 115, 9362–9366 (2018).

    CAS  Google Scholar 

  93. 93.

    Pezzato, C. et al. An efficient artificial molecular pump. Tetrahedron 73, 4849–4857 (2017).

    CAS  Google Scholar 

  94. 94.

    Qiu, Y. et al. A molecular dual pump. J. Am. Chem. Soc. 141, 17472–17476 (2019).

    CAS  Google Scholar 

  95. 95.

    Qiu, Y. et al. A precise polyrotaxane synthesizer. Science 368, 1247–1253 (2020).

    CAS  Google Scholar 

  96. 96.

    Whittaker, A. K. in Modern Magnetic Resonance (ed. Webb, G. A.) 583–589 (Springer, 2006).

  97. 97.

    Okumura, Y. & Ito, K. The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv. Mater. 13, 485–487 (2001).

    CAS  Google Scholar 

  98. 98.

    Ito, K. Slide-ring materials using topological supramolecular architecture. Curr. Opin. Solid State Mater. Sci. 14, 28–34 (2010).

    CAS  Google Scholar 

  99. 99.

    Karino, T., Okumura, Y., Ito, K. & Shibayama, M. SANS studies on spatial inhomogeneities of slide-ring gels. Macromolecules 37, 6177–6182 (2004).

    CAS  Google Scholar 

  100. 100.

    Liu, C., Kadono, H., Yokoyama, H., Mayumi, K. & Ito, K. Crack propagation resistance of slide-ring gels. Polymer 181, 121782 (2019).

    CAS  Google Scholar 

  101. 101.

    Kato, K., Ikeda, Y. & Ito, K. Direct determination of cross-link density and its correlation with the elastic modulus of a gel with slidable cross-links. ACS Macro Lett. 8, 700–704 (2019).

    Google Scholar 

  102. 102.

    Jiang, L. et al. Highly stretchable and instantly recoverable slide-ring gels consisting of enzymatically synthesized polyrotaxane with low host coverage. Chem. Mater. 30, 5013–5019 (2018).

    CAS  Google Scholar 

  103. 103.

    Wang, Z. et al. Highly stretchable and compressible shape memory hydrogels based on polyurethane network and supramolecular interaction. Mater. Today Commun. 17, 246–251 (2018).

    Google Scholar 

  104. 104.

    Kato, K., Karube, K., Nakamura, N. & Ito, K. The effect of ring size on the mechanical relaxation dynamics of polyrotaxane gels. Polym. Chem. 6, 2241–2248 (2015).

    CAS  Google Scholar 

  105. 105.

    Liu, C. et al. Direct observation of large deformation and fracture behavior at the crack tip of slide-ring gel. J. Electrochem. Soc. 166, B3143–B3147 (2019).

    CAS  Google Scholar 

  106. 106.

    Higgs, P. G. & Ball, R. C. Trapped entanglements in rubbers. A unification of models. Europhys. Lett. 8, 357–361 (1989).

    CAS  Google Scholar 

  107. 107.

    Kość, M. “Belt-loop” model of chain entanglement. Colloid Polym. Sci. 266, 105–113 (1988).

    Google Scholar 

  108. 108.

    Adolf, D. Origins of entanglement effects in rubber elasticity. Macromolecules 21, 228–230 (1988).

    CAS  Google Scholar 

  109. 109.

    Kholodenko, A. L. & Vilgis, T. A. Some geometrical and topological problems in polymer physics. Phys. Rep. 298, 251–370 (1998).

    CAS  Google Scholar 

  110. 110.

    Edwards, S. F. & Vilgis, T. The effect of entanglements in rubber elasticity. Polymer 27, 483–492 (1986).

    CAS  Google Scholar 

  111. 111.

    Graessley, W. W. & Pearson, D. S. Stress–strain behavior in polymer networks containing nonlocalized junctions. J. Chem. Phys. 66, 3363–3370 (1977).

    CAS  Google Scholar 

  112. 112.

    Ziabicki, A. Contribution of entrapped entanglements to equilibrium elasticity of rubber networks. Colloid Polym. Sci. 254, 1–5 (1976).

    CAS  Google Scholar 

  113. 113.

    Marrucci, G. A mechanical model for rubbers containing entanglements. Rheol. Acta 18, 193–198 (1979).

    CAS  Google Scholar 

  114. 114.

    Ito, K. Novel cross-linking concept of polymer network: synthesis, structure, and properties of slide-ring gels with freely movable junctions. Polym. J. 39, 489–499 (2007).

    CAS  Google Scholar 

  115. 115.

    Yasuda, Y. et al. Molecular dynamics simulation and theoretical model of elasticity in slide-ring gels. ACS Macro Lett. 9, 1280–1285 (2020).

    CAS  Google Scholar 

  116. 116.

    Kato, K., Yasuda, T. & Ito, K. Viscoelastic properties of slide-ring gels reflecting sliding dynamics of partial chains and entropy of ring components. Macromolecules 46, 310–316 (2013).

    CAS  Google Scholar 

  117. 117.

    Fleury, G., Schlatter, G., Brochon, C. & Hadziioannou, G. From high molecular weight precursor polyrotaxanes to supramolecular sliding networks. The ‘sliding gels’. Polymer 46, 8494–8501 (2005).

    CAS  Google Scholar 

  118. 118.

    Rubinstein, M. & Colby, R. H. Polymer Physics (Oxford Univ. Press, 2003).

  119. 119.

    Koga, T. & Tanaka, F. Elastic properties of polymer networks with sliding junctions. Eur. Phys. J. E 17, 225–229 (2005).

    CAS  Google Scholar 

  120. 120.

    Zhang, Z. et al. Designing the slide-ring polymer network with both good mechanical and damping properties via molecular dynamics simulation. Polymers 10, 964 (2018).

    Google Scholar 

  121. 121.

    Gavrilov, A. A. & Potemkin, I. I. Adaptive structure of gels and microgels with sliding cross-links: enhanced softness, stretchability and permeability. Soft Matter 14, 5098–5105 (2018).

    CAS  Google Scholar 

  122. 122.

    Karino, T. et al. SANS studies on deformation mechanism of slide-ring gel. Macromolecules 38, 6161–6167 (2005).

    CAS  Google Scholar 

  123. 123.

    Karino, T., Shibayama, M., Okumura, Y. & Ito, K. SANS study on pulley effect of slide-ring gel. Phys. B Condens. Matter 385–386, 807–809 (2006).

    Google Scholar 

  124. 124.

    Shinohara, Y. et al. Small-angle X-ray scattering study of the pulley effect of slide-ring gels. Macromolecules 39, 7386–7391 (2006).

    CAS  Google Scholar 

  125. 125.

    Kato, K., Yasuda, T. & Ito, K. Peculiar elasticity and strain hardening attributable to counteracting entropy of chain and ring in slide-ring gels. Polymer 55, 2614–2619 (2014).

    CAS  Google Scholar 

  126. 126.

    Mayumi, K., Tezuka, M., Bando, A. & Ito, K. Mechanics of slide-ring gels: novel entropic elasticity of a topological network formed by ring and string. Soft Matter 8, 8179–8183 (2012).

    CAS  Google Scholar 

  127. 127.

    de Gennes, P.-G. Sliding gels. Phys. A 271, 231–237 (1999).

    Google Scholar 

  128. 128.

    Tonks, L. The complete equation of state of one, two and three-dimensional gases of hard elastic spheres. Phys. Rev. 50, 955–963 (1936).

    CAS  Google Scholar 

  129. 129.

    Sevick, E. M. & Williams, D. R. M. Piston-rotaxanes as molecular shock absorbers. Langmuir 26, 5864–5868 (2010).

    CAS  Google Scholar 

  130. 130.

    Gao, Y., Williams, D. R. M. & Sevick, E. M. Dynamics of molecular shock-absorbers: Energy dissipation and the fluctuation theorem. Soft Matter 7, 5739–5744 (2011).

    CAS  Google Scholar 

  131. 131.

    Pinson, M. B., Sevick, E. M. & Williams, D. R. M. Mobile rings on a polyrotaxane lead to a yield force. Macromolecules 46, 4191–4197 (2013).

    CAS  Google Scholar 

  132. 132.

    Boesten, R. J. J., Sevick, E. M. & Williams, D. R. M. Piston rotaxane monolayers: shear swelling and nanovalve behavior. Macromolecules 43, 7244–7249 (2010).

    CAS  Google Scholar 

  133. 133.

    Sevick, E., Williams, D., Sevick, E. M. & Williams, D. R. M. A piston-rotaxane with two potential stripes: force transitions and yield stresses. Molecules 18, 13398–13409 (2013).

    CAS  Google Scholar 

  134. 134.

    Metzler, R., Kantor, Y. & Kardar, M. Force-extension relations for polymers with sliding links. Phys. Rev. E 66, 022102 (2002).

    Google Scholar 

  135. 135.

    Ito, K. Novel entropic elasticity of polymeric materials: why is slide-ring gel so soft? Polym. J. 44, 38–41 (2012).

    CAS  Google Scholar 

  136. 136.

    Müller, T., Sommer, J.-U. & Lang, M. Tendomers – force sensitive bis-rotaxanes with jump-like deformation behavior. Soft Matter 15, 3671–3679 (2019).

    Google Scholar 

  137. 137.

    Kato, K., Okabe, Y., Okazumi, Y. & Ito, K. A significant impact of host–guest stoichiometry on the extensibility of polyrotaxane gels. Chem. Commun. 51, 16180–16183 (2015).

    CAS  Google Scholar 

  138. 138.

    Murakami, T., Schmidt, B. V. K. J., Brown, H. R. & Hawker, C. J. Structural versatility in slide-ring gels: influence of co-threaded cyclodextrin spacers. J. Polym. Sci. A Polym. Chem. 55, 1156–1165 (2017).

    CAS  Google Scholar 

  139. 139.

    Liu, C., Kadono, H., Yokoyama, H., Mayumi, K. & Ito, K. Crack propagation resistance of slide-ring gels. Polymer 181, 121782 (2019).

    CAS  Google Scholar 

  140. 140.

    Araki, J., Kataoka, T. & Ito, K. Preparation of a “sliding graft copolymer”, an organic solvent-soluble polyrotaxane containing mobile side chains, and its application for a crosslinked elastomeric supramolecular film. Soft Matter 4, 245–249 (2008).

    Google Scholar 

  141. 141.

    Kato, K., Hori, A. & Ito, K. An efficient synthesis of low-covered polyrotaxanes grafted with poly(ε-caprolactone) and the mechanical properties of its cross-linked elastomers. Polymer 147, 67–73 (2018).

    CAS  Google Scholar 

  142. 142.

    Li, X. et al. Highly toughened polylactide with novel sliding graft copolymer by in situ reactive compatibilization, crosslinking and chain extension. Polymer 55, 4313–4323 (2014).

    CAS  Google Scholar 

  143. 143.

    Fleury, G., Schlatter, G., Brochon, C. & Hadziioannou, G. Unveiling the sliding motion in topological networks: influence of the swelling solvent on the relaxation dynamics. Adv. Mater. 18, 2847–2851 (2006).

    CAS  Google Scholar 

  144. 144.

    Fleury, G. et al. Topological polymer networks with sliding cross-link points: The “sliding gels”. Relationship between their molecular structure and the viscoelastic as well as the swelling properties. Macromolecules 40, 535–543 (2007).

    CAS  Google Scholar 

  145. 145.

    Sawada, J., Aoki, D., Otsuka, H. & Takata, T. A guiding principle for strengthening crosslinked polymers: synthesis and application of mobility-controlling rotaxane crosslinkers. Angew. Chem. Int. Ed. Engl. 58, 2765–2768 (2019).

    CAS  Google Scholar 

  146. 146.

    Koyama, Y. Synthesis of topologically crosslinked polymers with rotaxane-crosslinking points. Polym. J. 46, 315–322 (2014).

    CAS  Google Scholar 

  147. 147.

    Sawada, J., Aoki, D., Uchida, S., Otsuka, H. & Takata, T. Synthesis of vinylic macromolecular rotaxane cross-linkers endowing network polymers with toughness. ACS Macro Lett. 4, 598–601 (2015).

    CAS  Google Scholar 

  148. 148.

    Iijima, K., Aoki, D., Otsuka, H. & Takata, T. Synthesis of rotaxane cross-linked polymers with supramolecular cross-linkers based on γ-CD and PTHF macromonomers: The effect of the macromonomer structure on the polymer properties. Polymer 128, 392–396 (2017).

    CAS  Google Scholar 

  149. 149.

    Tan, S., Blencowe, A., Ladewig, K. & Qiao, G. G. A novel one-pot approach towards dynamically cross-linked hydrogels. Soft Matter 9, 5239–5250 (2013).

    CAS  Google Scholar 

  150. 150.

    Sawada, J., Aoki, D., Sun, Y., Nakajima, K. & Takata, T. Effect of coexisting covalent cross-links on the properties of rotaxane-cross-linked polymers. ACS Appl. Polym. Mater. 2, 1061–1064 (2020).

    CAS  Google Scholar 

  151. 151.

    Noda, Y., Hayashi, Y. & Ito, K. From topological gels to slide-ring materials. J. Appl. Polym. Sci. 131, 40509 (2014).

    Google Scholar 

  152. 152.

    Minato, K. et al. Mechanical properties of supramolecular elastomers prepared from polymer-grafted polyrotaxane. Polymer 128, 386–391 (2017).

    CAS  Google Scholar 

  153. 153.

    Koyanagi, K., Takashima, Y., Yamaguchi, H. & Harada, A. Movable cross-linked polymeric materials from bulk polymerization of reactive polyrotaxane cross-linker with acrylate monomers. Macromolecules 50, 5695–5700 (2017).

    CAS  Google Scholar 

  154. 154.

    Shi, C.-Y. et al. An ultrastrong and highly stretchable polyurethane elastomer enabled by a zipper-like ring-sliding effect. Adv. Mater. 32, 2000345 (2020).

    CAS  Google Scholar 

  155. 155.

    Oku, T., Furusho, Y. & Takata, T. A concept for recyclable cross-linked polymers: Topologically networked polyrotaxane capable of undergoing reversible assembly and disassembly. Angew. Chem. Int. Ed. Engl. 43, 966–969 (2004).

    CAS  Google Scholar 

  156. 156.

    Bilig, T. et al. Polyrotaxane networks formed via rotaxanation utilizing dynamic covalent chemistry of disulfide. Macromolecules 41, 8496–8503 (2008).

    CAS  Google Scholar 

  157. 157.

    Kohsaka, Y., Nakazono, K., Koyama, Y., Asai, S. & Takata, T. Size-complementary rotaxane cross-linking for the stabilization and degradation of a supramolecular network. Angew. Chem. Int. Ed. Engl. 50, 4872–4875 (2011).

    CAS  Google Scholar 

  158. 158.

    Sugihara, N. et al. Ion-conductive and elastic slide-ring gel Li electrolytes swollen with ionic liquid. Electrochim. Acta 229, 166–172 (2017).

    CAS  Google Scholar 

  159. 159.

    Zhuo, Y. et al. An ultra-durable icephobic coating by a molecular pulley. Soft Matter 15, 3607–3611 (2019).

    CAS  Google Scholar 

  160. 160.

    Choi, S., Kwon, T., Coskun, A. & Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357, 279–283 (2017).

    CAS  Google Scholar 

  161. 161.

    Yoo, D.-J. et al. Highly elastic polyrotaxane binders for mechanically stable lithium hosts in lithium-metal batteries. Adv. Mater. 31, 1901645 (2019).

    Google Scholar 

  162. 162.

    Rowan, S. J., Cantrill, S. J., Cousins, G. R. L., Sanders, J. K. M. & Stoddart, J. F. Dynamic covalent chemistry. Angew. Chem. Int. Ed. Engl. 41, 898–952 (2002).

    Google Scholar 

  163. 163.

    Nakahata, M., Mori, S., Takashima, Y., Yamaguchi, H. & Harada, A. Self-healing materials formed by cross-linked polyrotaxanes with reversible bonds. Chem 1, 766–775 (2016).

    CAS  Google Scholar 

  164. 164.

    Zheng, S. Y. et al. Slide-ring cross-links mediated tough metallosupramolecular hydrogels with superior self-recoverability. Macromolecules 52, 6748–6755 (2019).

    CAS  Google Scholar 

  165. 165.

    Sood, N., Bhardwaj, A., Mehta, S. & Mehta, A. Stimuli-responsive hydrogels in drug delivery and tissue engineering. Drug Deliv. 23, 748–770 (2016).

    CAS  Google Scholar 

  166. 166.

    Imran, A. Bin, Seki, T. & Takeoka, Y. Recent advances in hydrogels in terms of fast stimuli responsiveness and superior mechanical performance. Polym. J. 42, 839–851 (2010).

    Google Scholar 

  167. 167.

    Koetting, M. C., Peters, J. T., Steichen, S. D. & Peppas, N. A. Stimulus-responsive hydrogels: Theory, modern advances, and applications. Mater. Sci. Eng. R Rep. 93, 1–49 (2015).

    Google Scholar 

  168. 168.

    Sakai, T. et al. Photoresponsive slide-ring gel. Adv. Mater. 19, 2023–2025 (2007).

    CAS  Google Scholar 

  169. 169.

    Haq, M. A., Su, Y. & Wang, D. Mechanical properties of PNIPAM based hydrogels: A review. Mater. Sci. Eng. C 70, 842–855 (2017).

    Google Scholar 

  170. 170.

    Imran, A. Bin, Seki, T., Ito, K. & Takeoka, Y. Poly(N-isopropylacrylamide) gel prepared using a hydrophilic polyrotaxane-based movable cross-linker. Macromolecules 43, 1975–1980 (2010).

    Google Scholar 

  171. 171.

    Bin Imran, A. et al. Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network. Nat. Commun. 5, 5124 (2014).

    Google Scholar 

  172. 172.

    Ohmori, K. et al. Molecular weight dependency of polyrotaxane-cross-linked polymer gel extensibility. Chem. Commun. 52, 13757–13759 (2016).

    CAS  Google Scholar 

  173. 173.

    Kobayashi, Y., Zheng, Y., Takashima, Y., Yamaguchi, H. & Harada, A. Physical and adhesion properties of supramolecular hydrogels cross-linked by movable cross-linking molecule and host-guest interactions. Chem. Lett. 47, 1387–1390 (2018).

    CAS  Google Scholar 

  174. 174.

    Ikura, R. et al. Preparation of hydrophilic polymeric materials with movable cross-linkers and their mechanical property. Polymer 196, 122465 (2020).

    CAS  Google Scholar 

  175. 175.

    Yasumoto, A. et al. Highly responsive hydrogel prepared using poly(N-isopropylacrylamide)-grafted polyrotaxane as a building block designed by reversible deactivation radical polymerization and click chemistry. Macromolecules 50, 364–374 (2017).

    CAS  Google Scholar 

  176. 176.

    Seo, J., Yui, N. & Seo, J.-H. Development of a supramolecular accelerator simultaneously to increase the cross-linking density and ductility of an epoxy resin. Chem. Eng. J. 356, 303–311 (2019).

    CAS  Google Scholar 

  177. 177.

    Wang, X.-S. et al. Relaxation and reinforcing effects of polyrotaxane in an epoxy resin matrix. Macromolecules 39, 1046–1052 (2006).

    CAS  Google Scholar 

  178. 178.

    Levita, G., Petris, De, Marchetti, S., Lazzeri, A. & Crosslink, A. Density and fracture toughness of epoxy resins. J. Mater. Sci. 26, 2348–2352 (1991).

    CAS  Google Scholar 

  179. 179.

    Ohtsuka, K. & Zhao, C. Properties of bismaleimide resin modified with polyrotaxane as a stress relaxation material. Polym. Int. 67, 1112–1117 (2018).

    CAS  Google Scholar 

  180. 180.

    Li, X. et al. Miscibility, intramolecular specific interactions and mechanical properties of a DGEBA based epoxy resin toughened with a sliding graft copolymer. Chinese J. Polym. Sci. 33, 433–443 (2015).

    Google Scholar 

  181. 181.

    Seo, J., Moon, S. W., Kang, H., Choi, B.-H. & Seo, J.-H. Foldable and extremely scratch-resistant hard coating materials from molecular necklace-like cross-linkers. ACS Appl. Mater. Interfaces 11, 27306–27317 (2019).

    CAS  Google Scholar 

  182. 182.

    Pruksawan, S., Samitsu, S., Yokoyama, H. & Naito, M. Homogeneously dispersed polyrotaxane in epoxy adhesive and its improvement in the fracture toughness. Macromolecules 52, 2464–2475 (2019).

    CAS  Google Scholar 

  183. 183.

    Wang, P., Gao, Z., Yuan, M., Zhu, J. & Wang, F. Mechanically linked poly[2]rotaxanes constructed from the benzo-21-crown-7/secondary ammonium salt recognition motif. Polym. Chem. 7, 3664–3668 (2016).

    CAS  Google Scholar 

  184. 184.

    Zhang, M. et al. Preparation of a daisy chain via threading-followed-by-polymerization. Macromolecules 44, 9629–9634 (2011).

    CAS  Google Scholar 

  185. 185.

    Sasabe, H. et al. Synthesis of poly[2]rotaxane by Sonogashira polycondensation. J. Polym. Sci. A Polym. Chem. 45, 4154–4160 (2007).

    CAS  Google Scholar 

  186. 186.

    Rotzler, J. & Mayor, M. Molecular daisy chains. Chem. Soc. Rev. 42, 44–62 (2013).

    CAS  Google Scholar 

  187. 187.

    Bruns, C. J. & Stoddart, J. F. Rotaxane-based molecular muscles. Acc. Chem. Res. 47, 2186–2199 (2014).

    CAS  Google Scholar 

  188. 188.

    Clark, P. G., Day, M. W. & Grubbs, R. H. Switching and extension of a [c2]daisy-chain dimer polymer. J. Am. Chem. Soc. 131, 13631–13633 (2009).

    CAS  Google Scholar 

  189. 189.

    Fang, L. et al. Acid-base actuation of [c2]daisy chains. J. Am. Chem. Soc. 131, 7126–7134 (2009).

    CAS  Google Scholar 

  190. 190.

    Hmadeh, M. et al. On the thermodynamic and kinetic investigations of a [c2]daisy chain polymer. J. Mater. Chem. 20, 3422–3430 (2010).

    CAS  Google Scholar 

  191. 191.

    Guidry, E. N., Li, J., Stoddart, J. F. & Grubbs, R. H. Bifunctional [c2]daisy-chains and their incorporation into mechanically interlocked polymers. J. Am. Chem. Soc. 129, 8944–8945 (2007).

    CAS  Google Scholar 

  192. 192.

    Mariani, G. et al. Integration of molecular machines into supramolecular materials: Actuation between equilibrium polymers and crystal-like gels. Nanoscale 9, 18456–18466 (2017).

    CAS  Google Scholar 

  193. 193.

    Goujon, A. et al. Controlled sol–gel transitions by actuating molecular machine based supramolecular polymers. J. Am. Chem. Soc. 139, 4923–4928 (2017).

    CAS  Google Scholar 

  194. 194.

    Xia, D. & Xue, M. A supramolecular polymer gel with dual-responsiveness constructed by crown ether based molecular recognition. Polym. Chem. 5, 5591–5597 (2014).

    CAS  Google Scholar 

  195. 195.

    Bruns, C. J. & Stoddart, J. F. Supramolecular polymers: Molecular machines muscle up. Nat. Nanotechnol. 8, 9–10 (2013).

    CAS  Google Scholar 

  196. 196.

    Zhao, Y. L., Zhang, R. Q., Minot, C., Hermann, K. & Van Hove, M. A. Revealing highly unbalanced energy barriers in the extension and contraction of the muscle-like motion of a [c2]daisy chain. Phys. Chem. Chem. Phys. 17, 18318–18326 (2015).

    CAS  Google Scholar 

  197. 197.

    Du, G., Moulin, E., Jouault, N., Buhler, E. & Giuseppone, N. Muscle-like supramolecular polymers: Integrated motion from thousands of molecular machines. Angew. Chem. Int. Ed. Engl. 51, 12504–12508 (2012).

    CAS  Google Scholar 

  198. 198.

    Goujon, A. et al. Bistable [c2] daisy chain rotaxanes as reversible muscle-like actuators in mechanically active gels. J. Am. Chem. Soc. 139, 14825–14828 (2017).

    CAS  Google Scholar 

  199. 199.

    Iwaso, K., Takashima, Y. & Harada, A. Fast response dry-type artificial molecular muscles with [c2]daisy chains. Nat. Chem. 8, 625–632 (2016).

    CAS  Google Scholar 

  200. 200.

    Ikejiri, S., Takashima, Y., Osaki, M., Yamaguchi, H. & Harada, A. Solvent-free photoresponsive artificial muscles rapidly driven by molecular machines. J. Am. Chem. Soc. 140, 17308–17315 (2018).

    CAS  Google Scholar 

  201. 201.

    Geerts, Y., Muscat, D. & Müllen, K. Synthesis of oligo[2]catenanes. Macromol. Chem. Phys. 196, 3425–3435 (1995).

    CAS  Google Scholar 

  202. 202.

    Muscat, D., Witte, A., Köhler, W., Müllen, K. & Geerts, Y. Synthesis of a novel poly[2]-catenane containing rigid catenanes. Macromol. Rapid Commun. 18, 233–241 (1997).

    CAS  Google Scholar 

  203. 203.

    Muscat, D. et al. Synthesis and characterization of poly[2]-catenanes containing rigid catenane segments. Macromolecules 32, 1737–1745 (1999).

    CAS  Google Scholar 

  204. 204.

    Fustin, C.-A. et al. Mechanically linked polycarbonate. J. Am. Chem. Soc. 125, 2200–2207 (2003).

    CAS  Google Scholar 

  205. 205.

    Fustin, C.-A., Bailly, C., Clarkson, G. J., Galow, T. H. & Leigh, D. A. Solution and solid-state properties of mechanically linked polycarbonates. Macromolecules 37, 66–70 (2004).

    CAS  Google Scholar 

  206. 206.

    Fustin, C.-A. et al. Mechanically linked poly(ethylene terephthalate). Macromolecules 37, 7884–7892 (2004).

    CAS  Google Scholar 

  207. 207.

    Van Quaethem, A., Lussis, P., Leigh, D. A., Duwez, A.-S. & Fustin, C.-A. Probing the mobility of catenane rings in single molecules. Chem. Sci. 5, 1449–1452 (2014).

    Google Scholar 

  208. 208.

    Xing, H., Li, Z., Wu, Z. L. & Huang, F. Catenane crosslinked mechanically adaptive polymer gel. Macromol. Rapid Commun. 39, 1700361 (2018).

    Google Scholar 

  209. 209.

    Ahamed, B. N., Van Velthem, P., Robeyns, K. & Fustin, C.-A. Influence of a single catenane on the solid-state properties of mechanically linked polymers. ACS Macro Lett. 6, 468–472 (2017).

    CAS  Google Scholar 

  210. 210.

    Xing, H. et al. Mechanochemistry of an interlocked poly[2]catenane: from single molecule to bulk gel. CCS Chem. 1, 513–523 (2019).

    Google Scholar 

  211. 211.

    Wang, W. & Xing, H. A novel supramolecular polymer network based on a catenane-type crosslinker. Polym. Chem. 9, 2087–2091 (2018).

    CAS  Google Scholar 

  212. 212.

    Gan, Y., Dong, D. & Hogen-Esch, T. E. Synthesis and characterization of a catenated polystyrene−poly(2-vinylpyridine) block copolymer. Macromolecules 35, 6799–6803 (2002).

    CAS  Google Scholar 

  213. 213.

    Bunha, A. K., Mangadlao, J., Felipe, M. J., Pangilinan, K. & Advincula, R. Catenated PS-PMMA block copolymers via supramolecularly templated ATRP initiator approach. Macromol. Rapid Commun. 33, 1214–1219 (2012).

    CAS  Google Scholar 

  214. 214.

    Bunha, A. et al. Polymeric catenanes synthesized via ‘click’ chemistry and atom transfer radical coupling. Chem. Commun. 51, 7528–7531 (2015).

    CAS  Google Scholar 

  215. 215.

    Cao, P.-F., Mangadlao, J. D., de Leon, A., Su, Z. & Advincula, R. C. Catenated poly(ε-caprolactone) and poly(L-lactide) via ring-expansion strategy. Macromolecules 48, 3825–3833 (2015).

    CAS  Google Scholar 

  216. 216.

    Ishikawa, K., Yamamoto, T., Asakawa, M. & Tezuka, Y. Effective synthesis of polymer catenanes by cooperative electrostatic/hydrogen-bonding self-assembly and covalent fixation. Macromolecules 43, 168–176 (2010).

    CAS  Google Scholar 

  217. 217.

    Ohta, Y., Nakamura, M., Matsushita, Y. & Takano, A. Synthesis, separation and characterization of knotted ring polymers. Polymer 53, 466–470 (2012).

    CAS  Google Scholar 

  218. 218.

    Weidmann, J.-L. et al. Poly[2]catenanes and cyclic oligo[2]catenanes containing alternating topological and covalent bonds: synthesis and characterization. Chem. Eur. J. 5, 1841–1851 (2002).

    Google Scholar 

  219. 219.

    Wu, Q. et al. Poly[n]catenanes: Synthesis of molecular interlocked chains. Science 358, 1434–1439 (2017).

    CAS  Google Scholar 

  220. 220.

    Pakula, T. & Jeszka, K. Simulation of single complex macromolecules. 1. Structure and dynamics of catenanes. Macromolecules 32, 6821–6830 (1999).

    CAS  Google Scholar 

  221. 221.

    Rauscher, P. M., Rowan, S. J. & de Pablo, J. J. Topological effects in isolated poly[n]catenanes: molecular dynamics simulations and rouse mode analysis. ACS Macro Lett. 7, 938–943 (2018).

    CAS  Google Scholar 

  222. 222.

    Amabilino, D. B., Ashton, P. R., Reder, A. S., Spencer, N. & Stoddart, J. F. Olympiadane. Angew. Chem. Int. Ed. Engl. 33, 1286–1290 (1994).

    Google Scholar 

  223. 223.

    Iwamoto, H. et al. Synthesis of linear [5]catenanes via olefin metathesis dimerization of pseudorotaxanes composed of a [2]catenane and a secondary ammonium salt. Chem. Commun. 52, 319–322 (2016).

    CAS  Google Scholar 

  224. 224.

    Amabilino, D. B. et al. The five-stage self-assembly of a branched heptacatenane. Angew. Chem. Int. Ed. Engl. 36, 2070–2072 (1997).

    CAS  Google Scholar 

  225. 225.

    Watanabe, N., Ikari, Y., Kihara, N. & Takata, T. Bridged polycatenane. Macromolecules 37, 6663–6666 (2004).

    CAS  Google Scholar 

  226. 226.

    Brereton, M. G. The statistical mechanics of a concatenated polymer chain. J. Phys. A Math. Gen. 34, 5131 (2001).

    CAS  Google Scholar 

  227. 227.

    Ahmadian Dehaghani, Z., Chubak, I., Likos, C. N. & Ejtehadi, M. R. Effects of topological constraints on linked ring polymers in solvents of varying quality. Soft Matter 16, 3029–3038 (2020).

    CAS  Google Scholar 

  228. 228.

    Rauscher, P. M., Schweizer, K. S., Rowan, S. J. & de Pablo, J. J. Thermodynamics and structure of poly[n]catenane melts. Macromolecules 53, 3390–3408 (2020).

    CAS  Google Scholar 

  229. 229.

    Rauscher, P. M., Schweizer, K. S., Rowan, S. J. & de Pablo, J. J. Dynamics of poly[n]catenane melts. J. Chem. Phys. 152, 214901 (2020).

    CAS  Google Scholar 

  230. 230.

    de Gennes, P.-G. Scaling Concepts in Polymer Physics (Cornell Univ. Press, 1979).

  231. 231.

    Raphaël, E., Gay, C. & de Gennes, P.-G. Progressive construction of an “Olympic” gel. J. Stat. Phys. 89, 111–118 (1997).

    Google Scholar 

  232. 232.

    Pickett, G. T. DNA-origami technique for olympic gels. Europhys. Lett. 76, 616–622 (2006).

    CAS  Google Scholar 

  233. 233.

    Fischer, J., Lang, M. & Sommer, J.-U. The formation and structure of Olympic gels. J. Chem. Phys. 143, 243114 (2015).

    CAS  Google Scholar 

  234. 234.

    Vilgis, T. A. & Otto, M. Elasticity of entangled polymer loops: Olympic gels. Phys. Rev. E 56, R1314–R1317 (1997).

    CAS  Google Scholar 

  235. 235.

    Lang, M., Fischer, J., Werner, M. & Sommer, J.-U. Swelling of Olympic gels. Phys. Rev. Lett. 112, 238001 (2014).

    CAS  Google Scholar 

  236. 236.

    Lang, M., Fischer, J., Werner, M. & Sommer, J.-U. Olympic gels: concatenation and swelling. Macromol. Symp. 358, 140–147 (2015).

    CAS  Google Scholar 

  237. 237.

    Endo, K., Shiroi, T., Murata, N., Kojima, G. & Yamanaka, T. Synthesis and characterization of poly(1,2-dithiane). Macromolecules 37, 3143–3150 (2004).

    CAS  Google Scholar 

  238. 238.

    Kim, Y. S. et al. Gelation of the genome by topoisomerase II targeting anticancer agents. Soft Matter 9, 1656–1663 (2013).

    CAS  Google Scholar 

  239. 239.

    Arakawa, R., Watanabe, T., Fukuo, T. & Endo, K. Determination of cyclic structure for polydithiane using electrospray ionization mass spectrometry. J. Polym. Sci. A Polym. Chem. 38, 4403–4406 (2000).

    CAS  Google Scholar 

  240. 240.

    Endo, K. & Yamanaka, T. Copolymerization of lipoic acid with 1,2-dithiane and characterization of the copolymer as an interlocked cyclic polymer. Macromolecules 39, 4038–4043 (2006).

    CAS  Google Scholar 

  241. 241.

    Borst, P. & Hoeijmakers, J. H. J. Kinetoplast DNA. Plasmid 2, 20–40 (1979).

    CAS  Google Scholar 

  242. 242.

    Riou, G. & Delain, E. Electron microscopy of the circular kinetoplastic DNA from Trypanosoma cruzi: occurrence of catenated forms. Proc. Natl Acad. Sci. USA 62, 210–217 (1969).

    CAS  Google Scholar 

  243. 243.

    Cavalcanti, D. P., Gonçalves, D. L., Costa, L. T. & de Souza, W. The structure of the kinetoplast DNA network of Crithidia fasciculata revealed by atomic force microscopy. Micron 42, 553–559 (2011).

    CAS  Google Scholar 

  244. 244.

    Renger, H. C. & Wolstenholme, D. R. Form and structure of kinetoplast DNA of Crithidia. J. Cell Biol. 54, 346–364 (1972).

    CAS  Google Scholar 

  245. 245.

    Krasnow, M. & Cozzarelli, N. Catenation of DNA rings by topoisomerases. Mechanism of control by spermidine. J. Biol. Chem. 257, 2687–2693 (1982).

    CAS  Google Scholar 

  246. 246.

    Waldeck, W., Theobald, M. & Zentgraf, H. Catenation of DNA by eucaryotic topoisomerase II associated with simian virus 40 minichromosomes. EMBO J. 2, 1255–1261 (1983).

    CAS  Google Scholar 

  247. 247.

    Krajina, B. A., Zhu, A., Heilshorn, S. C. & Spakowitz, A. J. Active DNA olympic hydrogels driven by topoisomerase activity. Phys. Rev. Lett. 121, 148001 (2018).

    CAS  Google Scholar 

  248. 248.

    Imholt, L. et al. Grafted polyrotaxanes as highly conductive electrolytes for lithium metal batteries. J. Power Sources 409, 148–158 (2019).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by National Science Foundation (NSF) grant number CHE-1903603. P.M.R. thanks the NSF for the award of a Graduate Research Fellowship, grant number 1746045.

Author information

Affiliations

Authors

Contributions

All authors contributed to the writing, reviewing and editing of the manuscript.

Corresponding author

Correspondence to Stuart J. Rowan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hart, L.F., Hertzog, J.E., Rauscher, P.M. et al. Material properties and applications of mechanically interlocked polymers. Nat Rev Mater 6, 508–530 (2021). https://doi.org/10.1038/s41578-021-00278-z

Download citation

Search

Quick links