Solid-state nanopore sensors

Abstract

Nanopore-based sensors have established themselves as a prominent tool for solution-based, single-molecule analysis of the key building blocks of life, including nucleic acids, proteins, glycans and a large pool of biomolecules that have an essential role in life and healthcare. The predominant molecular readout method is based on measuring the temporal fluctuations in the ionic current through the pore. Recent advances in materials science and surface chemistries have not only enabled more robust and sensitive devices but also facilitated alternative detection modalities based on field-effect transistors, quantum tunnelling and optical methods such as fluorescence and plasmonic sensing. In this Review, we discuss recent advances in nanopore fabrication and sensing strategies that endow nanopores not only with sensitivity but also with selectivity and high throughput, and highlight some of the challenges that still need to be addressed.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Methods of fabricating small and thin nanopores.
Fig. 2: Selective sensing of analytes using molecular carriers.
Fig. 3: Nanopore field-effect transistors and tunnelling junctions.
Fig. 4: Photon-based sensing.

Change history

  • 01 October 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Feynman, R. P. in Engineering and Science Magazine Vol. XXIII 22–36 (California Institute of Technology, 1960).

  2. 2.

    Zhang, A. & Lieber, C. M. Nano-bioelectronics. Chem. Rev. 116, 215–257 (2016).

    CAS  Google Scholar 

  3. 3.

    Miles, B. N. et al. Single molecule sensing with solid-state nanopores: novel materials, methods, and applications. Chem. Soc. Rev. 42, 15–28 (2013).

    CAS  Google Scholar 

  4. 4.

    Sako, Y. & Yanagida, T. Single-molecule visualization in cell biology. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/nrm1193 (2003).

    Article  Google Scholar 

  5. 5.

    Katan, A. J. & Dekker, C. High-speed AFM reveals the dynamics of single biomolecules at the nanometer scale. Cell 147, 979–982 (2011).

    CAS  Google Scholar 

  6. 6.

    Kodera, N., Yamamoto, D., Ishikawa, R. & Ando, T. Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468, 72–76 (2010).

    CAS  Google Scholar 

  7. 7.

    Zhang, B. et al. Role of contacts in long-range protein conductance. Proc. Natl Acad. Sci. USA 116, 5886–5891 (2019).

    CAS  Google Scholar 

  8. 8.

    Binnig, G. & Rohrer, H. Scanning tunneling microscopy. Surf. Sci. 126, 236–244 (1983).

    CAS  Google Scholar 

  9. 9.

    Hirschfeld, T. Optical microscopic observation of single small molecules. J. Opt. Soc. Am. 66, 1124–1124 (1976).

    Google Scholar 

  10. 10.

    Varongchayakul, N., Song, J., Meller, A. & Grinstaff, M. W. Single-molecule protein sensing in a nanopore: a tutorial. Chem. Soc. Rev. 47, 8512–8524 (2018).

    CAS  Google Scholar 

  11. 11.

    Lindsay, S. The promises and challenges of solid-state sequencing. Nat. Nanotechnol. 11, 109–111 (2016).

    CAS  Google Scholar 

  12. 12.

    Deamer, D., Akeson, M. & Branton, D. Three decades of nanopore sequencing. Nat. Biotechnol. 34, 518–524 (2016).

    CAS  Google Scholar 

  13. 13.

    Manrao, E. A. et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 30, 349–353 (2012).

    CAS  Google Scholar 

  14. 14.

    Rusk, N. MinION takes center stage. Nat. Methods 12, 12–13 (2015).

    CAS  Google Scholar 

  15. 15.

    Ashton, P. M. et al. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat. Biotechnol. 33, 296–300 (2015).

    CAS  Google Scholar 

  16. 16.

    Galenkamp, N. S., Soskine, M., Hermans, J., Wloka, C. & Maglia, G. Direct electrical quantification of glucose and asparagine from bodily fluids using nanopores. Nat. Commun. 9, 4085 (2018).

    Google Scholar 

  17. 17.

    Cai, S. L., Sze, J. Y. Y., Ivanov, A. P. & Edel, J. B. Small molecule electro-optical binding assay using nanopores. Nat. Commun. 10, 1797 (2019).

    Google Scholar 

  18. 18.

    Sze, J. Y. Y., Ivanov, A. P., Cass, A. E. G. & Edel, J. B. Single molecule multiplexed nanopore protein screening in human serum using aptamer modified DNA carriers. Nat. Commun. 8, 1552 (2017).

    Google Scholar 

  19. 19.

    Chinappi, M. & Cecconi, F. Protein sequencing via nanopore based devices: a nanofluidics perspective. J. Phys. Condens. Matter. 30, 204002 (2018).

    Google Scholar 

  20. 20.

    Restrepo-Perez, L., Joo, C. & Dekker, C. Paving the way to single-molecule protein sequencing. Nat. Nanotechnol. 13, 786–796 (2018).

    CAS  Google Scholar 

  21. 21.

    Yu, R. J., Ying, Y. L., Gao, R. & Long, Y. T. Confined nanopipette sensing: from single molecules, single nanoparticles, to single cells. Angew. Chem. Int. Ed. 58, 3706–3714 (2019).

    CAS  Google Scholar 

  22. 22.

    Rotem, D., Jayasinghe, L., Salichou, M. & Bayley, H. Protein detection by nanopores equipped with aptamers. J. Am. Chem. Soc. 134, 2781–2787 (2012).

    CAS  Google Scholar 

  23. 23.

    Qing, Y. J., Ionescu, S. A., Pulcu, G. S. & Bayley, H. Directional control of a processive molecular hopper. Science 361, 908–911 (2018).

    CAS  Google Scholar 

  24. 24.

    Plesa, C., Ruitenberg, J. W., Witteveen, M. J. & Dekker, C. Detection of individual proteins bound along DNA using solid-state nanopores. Nano Lett. 15, 3153–3158 (2015).

    CAS  Google Scholar 

  25. 25.

    Chien, C.-C., Shekar, S., Niedzwiecki, D. J., Shepard, K. L. & Drndić, M. Single-stranded DNA translocation recordings through solid-state nanopores on glass chips at 10 MHz measurement bandwidth. ACS Nano 13, 10545–10554 (2019).

    CAS  Google Scholar 

  26. 26.

    Lin, X. Y., Ivanov, A. P. & Edel, J. B. Selective single molecule nanopore sensing of proteins using DNA aptamer-functionalised gold nanoparticles. Chem. Sci. 8, 3905–3912 (2017).

    CAS  Google Scholar 

  27. 27.

    Cadinu, P., Kang, M., Nadappuram, B. P., Ivanov, A. P. & Edel, J. B. Individually addressable multi-nanopores for single-molecule targeted operations. Nano Lett. 20, 2012–2019 (2020).

    CAS  Google Scholar 

  28. 28.

    Xue, L. et al. Gated single-molecule transport in double-barreled nanopores. ACS Appl. Mater. Interfaces 10, 38621–38629 (2018).

    CAS  Google Scholar 

  29. 29.

    Ivanov, A. P. et al. DNA tunneling detector embedded in a nanopore. Nano Lett. 11, 279–285 (2011).

    CAS  Google Scholar 

  30. 30.

    Al Sulaiman, D., Cadinu, P., Ivanov, A. P., Edel, J. B. & Ladame, S. Chemically modified hydrogel-filled nanopores: a tunable platform for single-molecule sensing. Nano Lett. 18, 6084–6093 (2018).

    CAS  Google Scholar 

  31. 31.

    Ren, R. et al. Nanopore extended field-effect transistor for selective single-molecule biosensing. Nat. Commun. 8, 586 (2017).

    Google Scholar 

  32. 32.

    Xie, P., Xiong, Q., Fang, Y., Qing, Q. & Lieber, C. M. Local electrical potential detection of DNA by nanowire-nanopore sensors. Nat. Nanotechnol. 7, 119–125 (2011).

    Google Scholar 

  33. 33.

    Heerema, S. J. et al. Probing DNA translocations with inplane current signals in a graphene nanoribbon with a nanopore. ACS Nano 12, 2623–2633 (2018).

    CAS  Google Scholar 

  34. 34.

    Traversi, F. et al. Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nat. Nanotechnol. 8, 939–945 (2013).

    CAS  Google Scholar 

  35. 35.

    Venkatesan, B. M. & Bashir, R. Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 6, 615–624 (2011).

    CAS  Google Scholar 

  36. 36.

    Li, J. et al. Ion-beam sculpting at nanometre length scales. Nature 412, 166–169 (2001).

    CAS  Google Scholar 

  37. 37.

    Storm, A. J., Chen, J. H., Ling, X. S., Zandbergen, H. W. & Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2, 537–540 (2003).

    CAS  Google Scholar 

  38. 38.

    Gierak, J. et al. Sub-5nm FIB direct patterning of nanodevices. Microelectron. Eng. 84, 779–783 (2007).

    CAS  Google Scholar 

  39. 39.

    Yang, J. et al. Rapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection. Nanotechnology 22, 285310 (2011).

    Google Scholar 

  40. 40.

    Kennedy, E., Dong, Z., Tennant, C. & Timp, G. Reading the primary structure of a protein with 0.07 nm3 resolution using a subnanometre-diameter pore. Nat. Nanotechnol. 11, 968–976 (2016).

    CAS  Google Scholar 

  41. 41.

    Rigo, E. et al. Measurements of the size and correlations between ions using an electrolytic point contact. Nat. Commun. 10, 2382 (2019).

    Google Scholar 

  42. 42.

    Kwok, H., Briggs, K. & Tabard-Cossa, V. Nanopore fabrication by controlled dielectric breakdown. PLoS ONE 9, e92880 (2014).

    Google Scholar 

  43. 43.

    Yanagi, I., Akahori, R., Hatano, T. & Takeda, K.-I. Fabricating nanopores with diameters of sub-1 nm to 3 nm using multilevel pulse-voltage injection. Sci. Rep. 4, 5000 (2014).

    CAS  Google Scholar 

  44. 44.

    Arcadia, C. E., Reyes, C. C. & Rosenstein, J. K. In situ nanopore fabrication and single-molecule sensing with microscale liquid contacts. ACS Nano 11, 4907–4915 (2017).

    CAS  Google Scholar 

  45. 45.

    Bandara, Y. M. N. D. Y., Karawdeniya, B. I. & Dwyer, J. R. Push-button method to create nanopores using a Tesla-Coil lighter. ACS Omega 4, 226–230 (2019).

    CAS  Google Scholar 

  46. 46.

    Zhang, Y. et al. Nanopore formation via tip-controlled local breakdown using an atomic force microscope. Small Methods 3, 1900147 (2019).

    Google Scholar 

  47. 47.

    Waugh, M. et al. Solid-state nanopore fabrication by automated controlled breakdown. Nat. Protoc. 15, 122–143 (2020).

    CAS  Google Scholar 

  48. 48.

    Wei, C., Bard, A. J. & Feldberg, S. W. Current rectification at quartz nanopipet electrodes. Anal. Chem. 69, 4627–4633 (1997).

    CAS  Google Scholar 

  49. 49.

    Piper, J. D., Clarke, R. W., Korchev, Y. E., Ying, L. & Klenerman, D. A renewable nanosensor based on a glass nanopipette. J. Am. Chem. Soc. 128, 16462–16463 (2006).

    CAS  Google Scholar 

  50. 50.

    Steinbock, L. J., Otto, O., Chimerel, C., Gornall, J. & Keyser, U. F. Detecting DNA folding with nanocapillaries. Nano Lett. 10, 2493–2497 (2010).

    CAS  Google Scholar 

  51. 51.

    Cadinu, P. et al. Double barrel nanopores as a new tool for controlling single-molecule transport. Nano Lett. 18, 2738–2745 (2018).

    CAS  Google Scholar 

  52. 52.

    Sun, L., Shigyou, K., Ando, T. & Watanabe, S. Thermally driven approach to fill sub-10-nm pipettes with batch production. Anal. Chem. 91, 14080–14084 (2019).

    CAS  Google Scholar 

  53. 53.

    Ayub, M. et al. Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing. J. Phys. Condens. Matter 22, 454128 (2010).

    Google Scholar 

  54. 54.

    Rutkowska, A. et al. Electrodeposition and bipolar effects in metallized nanopores and their use in the detection of insulin. Anal. Chem. 87, 2337–2344 (2015).

    CAS  Google Scholar 

  55. 55.

    Choi, J., Lee, C. C. & Park, S. Scalable fabrication of sub-10 nm polymer nanopores for DNA analysis. Microsyst. Nanoeng. 5, 12 (2019).

    Google Scholar 

  56. 56.

    Nam, S. et al. Graphene nanopore with a self-integrated optical antenna. Nano Lett. 14, 5584–5589 (2014).

    CAS  Google Scholar 

  57. 57.

    de Vreede, L. J., van den Berg, A. & Eijkel, J. C. T. Nanopore fabrication by heating Au particles on ceramic substrates. Nano Lett. 15, 727–731 (2015).

    Google Scholar 

  58. 58.

    de Vreede, L. J., Muniz, M. S., van den Berg, A. & Eijkel, J. C. T. Nanopore fabrication in silicon oxynitride membranes by heating Au-particles. J. Micromech. Microeng. 26, 037001 (2016).

    Google Scholar 

  59. 59.

    Apel, P. Y., Korchev, Y. E., Siwy, Z., Spohr, R. & Yoshida, M. Diode-like single-ion track membrane prepared by electro-stopping. Nucl. Instrum. Methods. Phys. Res. B 184, 337–346 (2001).

    CAS  Google Scholar 

  60. 60.

    Siwy, Z. S. et al. Calcium-induced voltage gating in single conical nanopores. Nano Lett. 6, 1729–1734 (2006).

    CAS  Google Scholar 

  61. 61.

    Vlassiouk, I., Apel, P. Y., Dmitriev, S. N., Healy, K. & Siwy, Z. S. Versatile ultrathin nanoporous silicon nitride membranes. Proc. Natl Acad. Sci. USA 106, 21039–21044 (2009).

    CAS  Google Scholar 

  62. 62.

    Park, S. R., Peng, H. & Ling, X. S. Fabrication of nanopores in silicon chips using feedback chemical etching. Small 3, 116–119 (2007).

    CAS  Google Scholar 

  63. 63.

    Schmidt, T., Zhang, M., Sychugov, I., Roxhed, N. & Linnros, J. Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication. Nanotechnology 26, 314001 (2015).

    Google Scholar 

  64. 64.

    Chen, Q., Wang, Y., Deng, T. & Liu, Z. Fabrication of nanopores and nanoslits with feature sizes down to 5 nm by wet etching method. Nanotechnology 29, 085301 (2018).

    Google Scholar 

  65. 65.

    Tsujino, K. & Matsumura, M. Boring deep cylindrical nanoholes in silicon using silver nanoparticles as a catalyst. Adv. Mater. 17, 1045–1047 (2005).

    CAS  Google Scholar 

  66. 66.

    James, T. et al. Voltage-gated ion transport through semiconducting conical nanopores formed by metal nanoparticle-assisted plasma etching. Nano Lett. 12, 3437–3442 (2012).

    CAS  Google Scholar 

  67. 67.

    Lee, K. et al. Recent progress in solid-state nanopores. Adv. Mater. 30, 1704680 (2018).

    Google Scholar 

  68. 68.

    Chen, Q. & Liu, Z. Fabrication and applications of solid-state nanopores. Sensors 19, 1886 (2019).

    CAS  Google Scholar 

  69. 69.

    Danda, G. & Drndić, M. Two-dimensional nanopores and nanoporous membranes for ion and molecule transport. Curr. Opin. Biotechnol. 55, 124–133 (2019).

    CAS  Google Scholar 

  70. 70.

    Wu, M.-Y., Krapf, D., Zandbergen, M., Zandbergen, H. & Batson, P. E. Formation of nanopores in a SiN/SiO2 membrane with an electron beam. Appl. Phys. Lett. 87, 113106 (2005).

    Google Scholar 

  71. 71.

    Kim, M. J., Wanunu, M., Bell, D. C. & Meller, A. Rapid fabrication of uniformly sized nanopores and nanopore arrays for parallel DNA analysis. Adv. Mater. 18, 3149–3153 (2006).

    CAS  Google Scholar 

  72. 72.

    van den Hout, M. et al. Controlling nanopore size, shape and stability. Nanotechnology 21, 115304 (2010).

    Google Scholar 

  73. 73.

    Wanunu, M. et al. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat. Nanotechnol. 5, 807–814 (2010).

    CAS  Google Scholar 

  74. 74.

    Sawafta, F., Carlsen, A. T. & Hall, A. R. Membrane thickness dependence of nanopore formation with a focused helium ion beam. Sensors 14, 8150–8161 (2014).

    Google Scholar 

  75. 75.

    Rodríguez-Manzo, J. A., Puster, M., Nicolaï, A., Meunier, V. & Drndić, M. DNA translocation in nanometer thick silicon nanopores. ACS Nano 9, 6555–6564 (2015).

    Google Scholar 

  76. 76.

    Gilboa, T., Zrehen, A., Girsault, A. & Meller, A. Optically-monitored nanopore fabrication using a focused laser beam. Sci. Rep. 8, 9765 (2018).

    Google Scholar 

  77. 77.

    Yamazaki, H., Hu, R., Zhao, Q. & Wanunu, M. Photothermally assisted thinning of silicon nitride membranes for ultrathin asymmetric nanopores. ACS Nano 12, 12472–12481 (2018).

    CAS  Google Scholar 

  78. 78.

    Yanagi, I., Hamamura, H., Akahori, R. & Takeda, K.-I. Two-step breakdown of a SiN membrane for nanopore fabrication: Formation of thin portion and penetration. Sci. Rep. 8, 10129 (2018).

    Google Scholar 

  79. 79.

    Larkin, J., Henley, R. Y., Jadhav, V., Korlach, J. & Wanunu, M. Length-independent DNA packing into nanopore zero-mode waveguides for low-input DNA sequencing. Nat. Nanotechnol. 12, 1169–1175 (2017).

    CAS  Google Scholar 

  80. 80.

    Merchant, C. A. et al. DNA translocation through graphene nanopores. Nano Lett. 10, 2915–2921 (2010).

    CAS  Google Scholar 

  81. 81.

    Wang, R. et al. Single-molecule discrimination of labeled DNAs and polypeptides using photoluminescent-free TiO2 nanopores. ACS Nano 12, 11648–11656 (2018).

    CAS  Google Scholar 

  82. 82.

    Sainiemi, L., Grigoras, K. & Franssila, S. Suspended nanostructured alumina membranes. Nanotechnology 20, 075306 (2009).

    Google Scholar 

  83. 83.

    Venkatesan, B. M. et al. Highly sensitive, mechanically stable nanopore sensors for DNA analysis. Adv. Mater. 21, 2771–2776 (2009).

    CAS  Google Scholar 

  84. 84.

    Venkatesan, B. M., Shah, A. B., Zuo, J.-M. & Bashir, R. DNA sensing using nanocrystalline surface-enhanced Al2O3 nanopore sensors. Adv. Funct. Mater. 20, 1266–1275 (2010).

    CAS  Google Scholar 

  85. 85.

    Wang, L. et al. Ultrathin oxide films by atomic layer deposition on graphene. Nano Lett. 12, 3706–3710 (2012).

    CAS  Google Scholar 

  86. 86.

    Jadhav, V., Hoogerheide, D. P., Korlach, J. & Wanunu, M. Porous zero-mode waveguides for picogram-level DNA capture. Nano Lett. 19, 921–929 (2019).

    Google Scholar 

  87. 87.

    Venkatesan, B. M. et al. Stacked graphene-Al2O3 nanopore sensors for sensitive detection of DNA and DNA–protein complexes. ACS Nano 6, 441–450 (2012).

    CAS  Google Scholar 

  88. 88.

    Larkin, J. et al. Slow DNA transport through nanopores in hafnium oxide membranes. ACS Nano 7, 10121–10128 (2013).

    CAS  Google Scholar 

  89. 89.

    Shim, J., Rivera, J. A. & Bashir, R. Electron beam induced local crystallization of HfO2 nanopores for biosensing applications. Nanoscale 5, 10887–10893 (2013).

    CAS  Google Scholar 

  90. 90.

    Chen, P. et al. Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Lett. 4, 1333–1337 (2004).

    CAS  Google Scholar 

  91. 91.

    dela Torre, R., Larkin, J., Singer, A. & Meller, A. Fabrication and characterization of solid-state nanopore arrays for high-throughput DNA sequencing. Nanotechnology 23, 385308 (2012).

    Google Scholar 

  92. 92.

    Cabello-Aguilar, S. et al. Slow translocation of polynucleotides and their discrimination by α-hemolysin inside a single track-etched nanopore designed by atomic layer deposition. Nanoscale 5, 9582–9586 (2013).

    CAS  Google Scholar 

  93. 93.

    Sze, J. Y. Y., Kumar, S., Ivanov, A. P., Oh, S. H. & Edel, J. B. Fine tuning of nanopipettes using atomic layer deposition for single molecule sensing. Analyst 140, 4828–4834 (2015).

    CAS  Google Scholar 

  94. 94.

    Park, K.-B. et al. Highly reliable and low-noise solid-state nanopores with an atomic layer deposited ZnO membrane on a quartz substrate. Nanoscale 9, 18772–18780 (2017).

    CAS  Google Scholar 

  95. 95.

    Pitchford, W. H. et al. Synchronized optical and electronic detection of biomolecules using a low noise nanopore platform. ACS Nano 9, 1740–1748 (2015).

    CAS  Google Scholar 

  96. 96.

    Wang, Y., Chen, Q., Deng, T. & Liu, Z. Nanopore fabricated in pyramidal HfO2 film by dielectric breakdown method. Appl. Phys. Lett. 111, 143103 (2017).

    Google Scholar 

  97. 97.

    Wang, Y., Chen, Q., Deng, T. & Liu, Z. Self-aligned nanopore formed on a SiO2 pyramidal membrane by a multipulse dielectric breakdown method. J. Phys. Chem. C 122, 11516–11523 (2018).

    CAS  Google Scholar 

  98. 98.

    Garaj, S. et al. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–193 (2010).

    CAS  Google Scholar 

  99. 99.

    Schneider, G. F. et al. DNA translocation through graphene nanopores. Nano Lett. 10, 3163–3167 (2010).

    CAS  Google Scholar 

  100. 100.

    Waduge, P., Larkin, J., Upmanyu, M., Kar, S. & Wanunu, M. Programmed synthesis of freestanding graphene nanomembrane arrays. Small 11, 597–603 (2015).

    CAS  Google Scholar 

  101. 101.

    Walker, M. I., Weatherup, R. S., Bell, N. A. W., Hofmann, S. & Keyser, U. F. Free-standing graphene membranes on glass nanopores for ionic current measurements. Appl. Phys. Lett. 106, 023119 (2015).

    Google Scholar 

  102. 102.

    Schneider, G. F. et al. Tailoring the hydrophobicity of graphene for its use as nanopores for DNA translocation. Nat. Commun. 4, 2619 (2013).

    Google Scholar 

  103. 103.

    Balan, A., Chien, C.-C., Engelke, R. & Drndić, M. Suspended solid-state membranes on glass chips with sub 1-pF capacitance for biomolecule sensing applications. Sci. Rep. 5, 17775 (2015).

    CAS  Google Scholar 

  104. 104.

    Liu, S. et al. Boron nitride nanopores: highly sensitive DNA single-molecule detectors. Adv. Mater. 25, 4549–4554 (2013).

    CAS  Google Scholar 

  105. 105.

    Zhou, Z. et al. DNA translocation through hydrophilic nanopore in hexagonal boron nitride. Sci. Rep. 3, 3287 (2013).

    Google Scholar 

  106. 106.

    Park, K.-B. et al. Noise and sensitivity characteristics of solid-state nanopores with a boron nitride 2-D membrane on a pyrex substrate. Nanoscale 8, 5755–5763 (2016).

    CAS  Google Scholar 

  107. 107.

    Liu, K., Feng, J., Kis, A. & Radenovic, A. Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano 8, 2504–2511 (2014).

    CAS  Google Scholar 

  108. 108.

    Waduge, P. et al. Direct and scalable deposition of atomically thin low-noise MoS2 membranes on apertures. ACS Nano 9, 7352–7359 (2015).

    CAS  Google Scholar 

  109. 109.

    Danda, G. et al. Monolayer WS2 nanopores for DNA translocation with light-adjustable sizes. ACS Nano 11, 1937–1945 (2017).

    CAS  Google Scholar 

  110. 110.

    Shen, Y. et al. In situ repair of 2D chalcogenides under electron beam irradiation. Adv. Mater. 30, 1705954 (2018).

    Google Scholar 

  111. 111.

    Mojtabavi, M., VahidMohammadi, A., Liang, W., Beidaghi, M. & Wanunu, M. Single-molecule sensing using nanopores in two-dimensional transition metal carbide (MXene) membranes. ACS Nano 13, 3042–3053 (2019).

    CAS  Google Scholar 

  112. 112.

    Cun, H. et al. Wafer-scale MOCVD growth of monolayer MoS2 on sapphire and SiO2. Nano Res. 12, 2646–2652 (2019).

    CAS  Google Scholar 

  113. 113.

    Graf, M. et al. Fabrication and practical applications of molybdenum disulfide nanopores. Nat. Protoc. 14, 1130–1168 (2019).

    CAS  Google Scholar 

  114. 114.

    Song, B. et al. Atomic-scale electron-beam sculpting of near-defect-free graphene nanostructures. Nano Lett. 11, 2247–2250 (2011).

    CAS  Google Scholar 

  115. 115.

    Emmrich, D. et al. Nanopore fabrication and characterization by helium ion microscopy. Appl. Phys. Lett. 108, 163103 (2016).

    Google Scholar 

  116. 116.

    Gilbert, S. M., Liu, S., Schumm, G. & Zettl, A. Nanopatterning hexagonal boron nitride with helium ion milling: towards atomically-thin, nanostructured insulators. MRS Adv. 3, 327–331 (2018).

    CAS  Google Scholar 

  117. 117.

    Kuan, A. T., Lu, B., Xie, P., Szalay, T. & Golovchenko, J. A. Electrical pulse fabrication of graphene nanopores in electrolyte solution. Appl. Phys. Lett. 106, 203109 (2015).

    Google Scholar 

  118. 118.

    Feng, J. et al. Electrochemical reaction in single layer MoS2: nanopores opened atom by atom. Nano Lett. 15, 3431–3438 (2015).

    CAS  Google Scholar 

  119. 119.

    Surwade, S. P. et al. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 10, 459–464 (2015).

    CAS  Google Scholar 

  120. 120.

    Feng, J. et al. Identification of single nucleotides in MoS2 nanopores. Nat. Nanotechnol. 10, 1070–1076 (2015).

    CAS  Google Scholar 

  121. 121.

    Liang, S. et al. Noise in nanopore sensors: sources, models, reduction, and benchmarking. Nanotechnol. Precis. Eng. 3, 9–17 (2020).

    Google Scholar 

  122. 122.

    Fragasso, A., Schmid, S. & Dekker, C. Comparing current noise in biological and solid-state nanopores. ACS Nano 14, 1338–1349 (2020).

    CAS  Google Scholar 

  123. 123.

    Uram, J. D., Ke, K. & Mayer, M. Noise and bandwidth of current recordings from submicrometer pores and nanopores. ACS Nano 2, 857–872 (2008).

    CAS  Google Scholar 

  124. 124.

    Rosenstein, J. K., Wanunu, M., Merchant, C. A., Drndic, M. & Shepard, K. L. Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nat. Methods 9, 487–492 (2012).

    CAS  Google Scholar 

  125. 125.

    Tabard-Cossa, V., Trivedi, D., Wiggin, M., Jetha, N. N. & Marziali, A. Noise analysis and reduction in solid-state nanopores. Nanotechnology 18, 305505 (2007).

    Google Scholar 

  126. 126.

    Lee, M.-H. et al. A low-noise solid-state nanopore platform based on a highly insulating substrate. Sci. Rep. 4, 7448 (2014).

    Google Scholar 

  127. 127.

    de Vreede, L. et al. Wafer scale fabrication of fused silica chips for low-noise recording of resistive pulses through nanopores. Nanotechnology 30, 265301 (2019).

    Google Scholar 

  128. 128.

    Choi, W. et al. A low-noise silicon nitride nanopore device on a polymer substrate. PLoS ONE 13, e0200831 (2018).

    Google Scholar 

  129. 129.

    Xia, P. et al. Sapphire nanopores for low-noise DNA sensing. Preprint at bioRxiv 2020.03.02.973826 (2020).

  130. 130.

    Fragasso, A., Pud, S. & Dekker, C. 1/f noise in solid-state nanopores is governed by access and surface regions. Nanotechnology 30, 395202 (2019).

    CAS  Google Scholar 

  131. 131.

    Radenovic, A., Trepagnier, E., Csencsits, R., Downing, K. H. & Liphardt, J. Fabrication of 10 nm diameter hydrocarbon nanopores. Appl. Phys. Lett. 93, 183101 (2008).

    Google Scholar 

  132. 132.

    Hoogerheide, D. P., Garaj, S. & Golovchenko, J. A. Probing surface charge fluctuations with solid-state nanopores. Phys. Rev. Lett. 102, 256804 2009).

    Google Scholar 

  133. 133.

    Smeets, R. M. M., Keyser, U. F., Wu, M. Y., Dekker, N. H. & Dekker, C. Nanobubbles in solid-state nanopores. Phys. Rev. Lett. 97, 088101 (2006).

    CAS  Google Scholar 

  134. 134.

    Li, Y. et al. Photoresistance switching of plasmonic nanopores. Nano Lett. 15, 776–782 (2015).

    CAS  Google Scholar 

  135. 135.

    Gravelle, S., Netz, R. R. & Bocquet, L. Adsorption kinetics in open nanopores as a source of low-frequency noise. Nano Lett. 19, 7265–7272 (2019).

    CAS  Google Scholar 

  136. 136.

    Beamish, E., Kwok, H., Tabard-Cossa, V. & Godin, M. Precise control of the size and noise of solid-state nanopores using high electric fields. Nanotechnology 23, 405301 (2012).

    Google Scholar 

  137. 137.

    Kumar, A., Park, K.-B., Kim, H.-M. & Kim, K.-B. Noise and its reduction in graphene based nanopore devices. Nanotechnology 24, 495503 (2013).

    Google Scholar 

  138. 138.

    Heerema, S. J. et al. 1/f noise in graphene nanopores. Nanotechnology 26, 074001 (2015).

    CAS  Google Scholar 

  139. 139.

    Wen, C. et al. Generalized noise study of solid-state nanopores at low frequencies. ACS Sens. 2, 300–307 (2017).

    CAS  Google Scholar 

  140. 140.

    Wanunu, M. & Meller, A. Chemically modified solid-state nanopores. Nano Lett. 7, 1580–1585 (2007).

    CAS  Google Scholar 

  141. 141.

    Wei, R., Pedone, D., Zürner, A., Döblinger, M. & Rant, U. Fabrication of metallized nanopores in silicon nitride membranes for single-molecule sensing. Small 6, 1406–1414 (2010).

    CAS  Google Scholar 

  142. 142.

    Hu, R. et al. Intrinsic and membrane-facilitated α-synuclein oligomerization revealed by label-free detection through solid-state nanopores. Sci. Rep. 6, 20776 (2016).

    CAS  Google Scholar 

  143. 143.

    Xie, Y. et al. Surface modification of single track-etched nanopores with surfactant CTAB. Langmuir 25, 8870–8874 (2009).

    CAS  Google Scholar 

  144. 144.

    Eggenberger, O. M., Ying, C. & Mayer, M. Surface coatings for solid-state nanopores. Nanoscale 11, 19636–19657 (2019).

    CAS  Google Scholar 

  145. 145.

    Anderson, B. N., Muthukumar, M. & Meller, A. pH tuning of DNA translocation time through organically functionalized nanopores. ACS Nano 7, 1408–1414 (2013).

    CAS  Google Scholar 

  146. 146.

    Bandara, Y. M. N. D. Y., Karawdeniya, B. I., Hagan, J. T., Chevalier, R. B. & Dwyer, J. R. Chemically functionalizing controlled dielectric breakdown silicon nitride nanopores by direct photohydrosilylation. ACS Appl. Mater. Interfaces 11, 30411–30420 (2019).

    CAS  Google Scholar 

  147. 147.

    Ying, C. et al. Formation of single nanopores with diameters of 20–50 nm in silicon nitride membranes using laser-assisted controlled breakdown. ACS Nano 12, 11458–11470 (2018).

    CAS  Google Scholar 

  148. 148.

    Yusko, E. C. et al. Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat. Nanotechnol. 6, 253–260 (2011).

    CAS  Google Scholar 

  149. 149.

    Yusko, E. C. et al. Real-time shape approximation and fingerprinting of single proteins using a nanopore. Nat. Nanotechnol. 12, 360–367 (2016).

    Google Scholar 

  150. 150.

    Houghtaling, J. et al. Estimation of shape, volume, and dipole moment of individual proteins freely transiting a synthetic nanopore. ACS Nano 13, 5231–5242 (2019).

    CAS  Google Scholar 

  151. 151.

    Venkatesan, B. M. et al. Lipid bilayer coated Al2O3 nanopore sensors: towards a hybrid biological solid-state nanopore. Biomed. Microdevices 13, 671–682 (2011).

    CAS  Google Scholar 

  152. 152.

    Hernández-Ainsa, S. et al. Lipid-coated nanocapillaries for DNA sensing. Analyst 138, 104–106 (2013).

    Google Scholar 

  153. 153.

    Gutsmann, T., Heimburg, T., Keyser, U., Mahendran, K. R. & Winterhalter, M. Protein reconstitution into freestanding planar lipid membranes for electrophysiological characterization. Nat. Protoc. 10, 188–198 (2015).

    Google Scholar 

  154. 154.

    Shan, Y. P. et al. Surface modification of graphene nanopores for protein translocation. Nanotechnology 24, 495102–495102 (2013).

    CAS  Google Scholar 

  155. 155.

    Hall, A. R. et al. Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores. Nat. Nanotechnol. 5, 874–877 (2010).

    CAS  Google Scholar 

  156. 156.

    Bell, N. A. W. et al. DNA origami nanopores. Nano Lett. 12, 512–517 (2012).

    CAS  Google Scholar 

  157. 157.

    Cressiot, B., Greive, S. J., Mojtabavi, M., Antson, A. A. & Wanunu, M. Thermostable virus portal proteins as reprogrammable adapters for solid-state nanopore sensors. Nat. Commun. 9, 4652 (2018).

    Google Scholar 

  158. 158.

    Langecker, M. et al. Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 338, 932–936 (2012).

    CAS  Google Scholar 

  159. 159.

    Burns, J. R., Stulz, E. & Howorka, S. Self-assembled DNA nanopores that span lipid bilayers. Nano Lett. 13, 2351–2356 (2013).

    CAS  Google Scholar 

  160. 160.

    Cressiot, B. et al. Porphyrin-assisted docking of a thermophage portal protein into lipid bilayers: nanopore engineering and characterization. ACS Nano 11, 11931–11945 (2017).

    CAS  Google Scholar 

  161. 161.

    Fahie, M., Chisholm, C. & Chen, M. Resolved single-molecule detection of individual species within a mixture of anti-biotin antibodies using an engineered monomeric nanopore. ACS Nano 9, 1089–1098 (2015).

    CAS  Google Scholar 

  162. 162.

    Wu, H. C. & Bayley, H. Single-molecule detection of nitrogen mustards by covalent reaction within a protein nanopore. J. Am. Chem. Soc. 130, 6813–6819 (2008).

    CAS  Google Scholar 

  163. 163.

    Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 4, 265–270 (2009).

    CAS  Google Scholar 

  164. 164.

    Wang, G. L., Zhang, B., Wayment, J. R., Harris, J. M. & White, H. S. Electrostatic-gated transport in chemically modified glass nanopore electrodes. J. Am. Chem. Soc. 128, 7679–7686 (2006).

    CAS  Google Scholar 

  165. 165.

    Fang, X. H. & Tan, W. H. Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc. Chem. Res. 43, 48–57 (2010).

    CAS  Google Scholar 

  166. 166.

    Wilson, D. S. & Szostak, J. W. In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 68, 611–647 (1999).

    CAS  Google Scholar 

  167. 167.

    Bock, L. C., Griffin, L. C., Latham, J. A., Vermaas, E. H. & Toole, J. J. Selection of single-stranded-DNA molecules that bind and inhibit human thrombin. Nature 355, 564–566 (1992).

    CAS  Google Scholar 

  168. 168.

    Soskine, M. et al. An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry. Nano Lett. 12, 4895–4900 (2012).

    CAS  Google Scholar 

  169. 169.

    Ying, Y.-L. & Long, Y.-T. Nanopore-based single-biomolecule interfaces: from information to knowledge. J. Am. Chem. Soc. 141, 15720–15729 (2019).

    CAS  Google Scholar 

  170. 170.

    Wei, R. S., Gatterdam, V., Wieneke, R., Tampe, R. & Rant, U. Stochastic sensing of proteins with receptor-modified solid-state nanopores. Nat. Nanotechnol. 7, 257–263 (2012).

    CAS  Google Scholar 

  171. 171.

    Plesa, C. et al. Fast translocation of proteins through solid state nanopores. Nano Lett. 13, 658–663 (2013).

    CAS  Google Scholar 

  172. 172.

    Bell, N. A. W. & Keyser, U. F. Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores. Nat. Nanotechnol. 11, 645–651 (2016).

    CAS  Google Scholar 

  173. 173.

    Yang, W. et al. Detection of CRISPR-dCas9 on DNA with solid-state nanopores. Nano Lett. 18, 6469–6474 (2018).

    CAS  Google Scholar 

  174. 174.

    Talaga, D. S. & Li, J. L. Single-molecule protein unfolding in solid state nanopores. J. Am. Chem. Soc. 131, 9287–9297 (2009).

    CAS  Google Scholar 

  175. 175.

    Firnkes, M., Pedone, D., Knezevic, J., Doblinger, M. & Rant, U. Electrically facilitated translocations of proteins through silicon nitride nanopores: conjoint and competitive action of diffusion, electrophoresis, and electroosmosis. Nano Lett. 10, 2162–2167 (2010).

    CAS  Google Scholar 

  176. 176.

    Weckman, N. E. et al. Multiplexed DNA identification using site specific dCas9 barcodes and nanopore sensing. ACS Sens. 4, 2065–2072 (2019).

    CAS  Google Scholar 

  177. 177.

    Albrecht, T. Single-molecule analysis with solid-state nanopores. Annu. Rev. Anal. Chem. 12, 371–387 (2019).

    Google Scholar 

  178. 178.

    Chuah, K. et al. Nanopore blockade sensors for ultrasensitive detection of proteins in complex biological samples. Nat. Commun. 10, 2109 (2019).

    Google Scholar 

  179. 179.

    Wang, H., Yang, R. H., Yang, L. & Tan, W. H. Nucleic acid conjugated nanomaterials for enhanced molecular recognition. ACS Nano 3, 2451–2460 (2009).

    CAS  Google Scholar 

  180. 180.

    Saha, K., Agasti, S. S., Kim, C., Li, X. N. & Rotello, V. M. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112, 2739–2779 (2012).

    CAS  Google Scholar 

  181. 181.

    Giljohann, D. A. et al. Gold nanoparticles for biology and medicine. Angew. Chem. Int. Ed. 49, 3280–3294 (2010).

    CAS  Google Scholar 

  182. 182.

    Li, S. et al. Dual-mode ultrasensitive quantification of microRNA in living cells by chiroplasmonic nanopyramids self-assembled from gold and upconversion nanoparticles. J. Am. Chem. Soc. 138, 306–312 (2016).

    CAS  Google Scholar 

  183. 183.

    Cao, Y. W. C., Jin, R. C. & Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536–1540 (2002).

    CAS  Google Scholar 

  184. 184.

    Nath, N. & Chilkoti, A. Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. Anal. Chem. 76, 5370–5378 (2004).

    CAS  Google Scholar 

  185. 185.

    Leff, D. V., Brandt, L. & Heath, J. R. Synthesis and characterization of hydrophobic, organically-soluble gold nanocrystals functionalized with primary amines. Langmuir 12, 4723–4730 (1996).

    CAS  Google Scholar 

  186. 186.

    Jana, N. R., Earhart, C. & Ying, J. Y. Synthesis of water-soluble and functionalized nanoparticles by silica coating. Chem. Mater. 19, 5074–5082 (2007).

    CAS  Google Scholar 

  187. 187.

    Blundell, E., Vogel, R. & Platt, M. Particle-by-particle charge analysis of DNA-modified nanoparticles using tunable resistive pulse sensing. Langmuir 32, 1082–1090 (2016).

    CAS  Google Scholar 

  188. 188.

    Wang, H., Tang, H. R., Yang, C. & Li, Y. X. Selective single molecule nanopore sensing of microRNA using PNA functionalized magnetic core-shell Fe3O4-Au nanoparticles. Anal. Chem. 91, 7965–7970 (2019).

    CAS  Google Scholar 

  189. 189.

    Ang, Y. S. & Yung, L.-Y. L. Rapid and label-free single-nucleotide discrimination via an integrative nanoparticle–nanopore approach. ACS Nano 6, 8815–8823 (2012).

    CAS  Google Scholar 

  190. 190.

    Karhanek, M., Kemp, J. T., Pourmand, N., Davis, R. W. & Webb, C. D. Single DNA molecule detection using nanopipettes and nanoparticles. Nano Lett. 5, 403–407 (2005).

    CAS  Google Scholar 

  191. 191.

    Wang, Y. X. et al. Resistive-pulse measurements with nanopipettes: detection of Au nanoparticles and nanoparticle-bound anti-peanut IgY. Chem. Sci. 4, 655–663 (2013).

    CAS  Google Scholar 

  192. 192.

    Cai, H. et al. Resistive-pulse measurements with nanopipettes: detection of vascular endothelial growth factor C (VEGF-C) using antibody-decorated nanoparticles. Anal. Chem. 87, 6403–6410 (2015).

    CAS  Google Scholar 

  193. 193.

    Wu, X. L. et al. Unexpected chirality of nanoparticle dimers and ultrasensitive chiroplasmonic bioanalysis. J. Am. Chem. Soc. 135, 18629–18636 (2013).

    CAS  Google Scholar 

  194. 194.

    Yeo, W. H. et al. Dielectrophoretic concentration of low-abundance nanoparticles using a nanostructured tip. Nanotechnology 23, 485707 (2012).

    Google Scholar 

  195. 195.

    Paulose Nadappuram, B et. al. Nanoscale tweezers for single-cell biopsies. Nat. Nanotechnol. 14, 80–88 (2019).

    Google Scholar 

  196. 196.

    Squires, A., Atas, E. & Meller, A. Nanopore sensing of individual transcription factors bound to DNA. Sci. Rep. 5, 11643 (2015).

    CAS  Google Scholar 

  197. 197.

    Japrung, D. et al. SSB binding to single-stranded DNA probed using solid-state nanopore sensors. J. Phys. Chem. B 118, 11605–11612 (2014).

    CAS  Google Scholar 

  198. 198.

    Yu, J. S. et al. Identifying the location of a single protein along the DNA strand using solid-state nanopores. ACS Nano 9, 5289–5298 (2015).

    CAS  Google Scholar 

  199. 199.

    Bell, N. A. W. & Keyser, U. F. Specific protein detection using designed DNA carriers and nanopores. J. Am. Chem. Soc. 137, 2035–2041 (2015).

    CAS  Google Scholar 

  200. 200.

    Nivala, J., Marks, D. B. & Akeson, M. Unfoldase-mediated protein translocation through an alpha-hemolysin nanopore. Nat. Biotechnol. 31, 247–250 (2013).

    CAS  Google Scholar 

  201. 201.

    Wloka, C. et al. Label-free and real-time detection of protein ubiquitination with a biological nanopore. ACS Nano 11, 4387–4394 (2017).

    CAS  Google Scholar 

  202. 202.

    Loh, A. Y. Y. et al. Electric single-molecule hybridization detector for short DNA fragments. Anal. Chem. 90, 14063–14071 (2018).

    CAS  Google Scholar 

  203. 203.

    Chen, K. K. et al. Digital data storage using DNA nanostructures and solid-state nanopores. Nano Lett. 19, 1210–1215 (2019).

    Google Scholar 

  204. 204.

    Ketterer, P. et al. DNA origami scaffold for studying intrinsically disordered proteins of the nuclear pore complex. Nat. Commun. 9, 902 (2018).

    Google Scholar 

  205. 205.

    Tian, K., He, Z. J., Wang, Y., Chen, S. J. & Gu, L. Q. Designing a polycationic probe for simultaneous enrichment and detection of MicroRNAs in a nanopore. ACS Nano 7, 3962–3969 (2013).

    CAS  Google Scholar 

  206. 206.

    Xi, D. M. et al. Nanopore-based selective discrimination of microRNAs with single-nucleotide difference using locked nucleic acid-modified probes. Anal. Chem. 88, 10540–10546 (2016).

    CAS  Google Scholar 

  207. 207.

    Tian, K., Decker, K., Aksimentiev, A. & Gu, L. Q. Interference-free detection of genetic biomarkers using synthetic dipole-facilitated nanopore dielectrophoresis. ACS Nano 11, 1204–1213 (2017).

    CAS  Google Scholar 

  208. 208.

    Ying, Y. L., Wang, H. Y., Sutherland, T. C. & Long, Y. T. Monitoring of an ATP-binding aptamer and its conformational changes using an alpha-hemolysin nanopore. Small 7, 87–94 (2011).

    CAS  Google Scholar 

  209. 209.

    Restrepo-Perez, L. et al. Resolving chemical modifications to a single amino acid within a peptide using a biological nanopore. ACS Nano 13, 13668–13676 (2019).

    CAS  Google Scholar 

  210. 210.

    Gershow, M. & Golovchenko, J. A. Recapturing and trapping single molecules with a solid-state nanopore. Nat. Nanotechnol. 2, 775–779 (2007).

    CAS  Google Scholar 

  211. 211.

    Langecker, M., Pedone, D., Simmel, F. C. & Rant, U. Electrophoretic time-of-flight measurements of single DNA molecules with two stacked nanopores. Nano Lett. 11, 5002–5007 (2011).

    CAS  Google Scholar 

  212. 212.

    Pud, S. et al. Mechanical trapping of DNA in a double-nanopore system. Nano Lett. 16, 8021–8028 (2016).

    CAS  Google Scholar 

  213. 213.

    Liu, X., Zhang, Y. N., Nagel, R., Reisner, W. & Dunbar, W. B. Controlling DNA tug-of-war in a dual nanopore device. Small 15, 1901704 (2019).

    Google Scholar 

  214. 214.

    Cui, Y., Wei, Q. Q., Park, H. K. & Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001).

    CAS  Google Scholar 

  215. 215.

    Zhan, B. B. et al. Graphene field-effect transistor and its application for electronic sensing. Small 10, 4042–4065 (2014).

    CAS  Google Scholar 

  216. 216.

    Tans, S. J., Verschueren, A. R. M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).

    CAS  Google Scholar 

  217. 217.

    Nakatsuka, N. et al. Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing. Science 362, 319–324 (2018).

    CAS  Google Scholar 

  218. 218.

    Elnathan, R. et al. Biorecognition layer engineering: overcoming screening limitations of nanowire-based FET devices. Nano Lett. 12, 5245–5254 (2012).

    CAS  Google Scholar 

  219. 219.

    Gao, N. et al. Specific detection of biomolecules in physiological solutions using graphene transistor biosensors. Proc. Natl Acad. Sci. USA 113, 14633–14638 (2016).

    CAS  Google Scholar 

  220. 220.

    Patolsky, F. et al. Electrical detection of single viruses. Proc. Natl Acad. Sci. USA 101, 14017–14022 (2004).

    CAS  Google Scholar 

  221. 221.

    Panday, N. et al. Simultaneous ionic current and potential detection of nanoparticles by a multifunctional nanopipette. ACS Nano 10, 11237–11248 (2016).

    CAS  Google Scholar 

  222. 222.

    Puster, M. et al. Cross-talk between ionic and nanoribbon current signals in graphene nanoribbon-nanopore sensors for single-molecule detection. Small 11, 6309–6316 (2015).

    CAS  Google Scholar 

  223. 223.

    Graf, M., Lihter, M., Altus, D., Marion, S. & Radenovic, A. Transverse detection of DNA using a MoS2 nanopore. Nano Lett. 19, 9075–9083 (2019).

    CAS  Google Scholar 

  224. 224.

    Nam, S. W., Rooks, M. J., Kim, K. B. & Rossnagel, S. M. Ionic field effect transistors with sub-10 nm multiple nanopores. Nano Lett. 9, 2044–2048 (2009).

    CAS  Google Scholar 

  225. 225.

    Xue, L. Nanopore-ionic field-effect transistors for selective single-molecule detection of small molecules (in the press).

  226. 226.

    Ren, R. et al. Selective sensing of proteins using aptamer functionalized nanopore extended field-effect transistors. Small Methods, 2000356 (2020).

  227. 227.

    Ivanov, A. R., Freedman, K. J., Kim, M. J., Albrecht, T. & Edel, J. B. High precision fabrication and positioning of nanoelectrodes in a nanopore. ACS Nano 8, 1940–1948 (2014).

    CAS  Google Scholar 

  228. 228.

    Peng, H., Rossnagel, S. M., Royyuru, A. K., Stolovitzky, G. A. & Wang, D. Fabrication of tunneling junction for nanopore DNA sequencing. US Patent 9,222,930 B2 (2015).

  229. 229.

    Pang, P. et al. Fixed-gap tunnel junction for reading DNA nucleotides. ACS Nano 8, 11994–12003 (2014).

    CAS  Google Scholar 

  230. 230.

    Tyagi, P. Multilayer edge molecular electronics devices: a review. J. Mater. Chem. 21, 4733–4742 (2011).

    CAS  Google Scholar 

  231. 231.

    Di Ventra, M. & Taniguchi, M. Decoding DNA, RNA and peptides with quantum tunnelling. Nat. Nanotechnol. 11, 117–126 (2016).

    Google Scholar 

  232. 232.

    Zwolak, M. & Di Ventra, M. Electronic signature of DNA nucleotides via transverse transport. Nano Lett. 5, 421–424 (2005).

    CAS  Google Scholar 

  233. 233.

    Lagerqvist, J., Zwolak, M. & Di Ventra, M. Fast DNA sequencing via transverse electronic transport. Nano Lett. 6, 779–782 (2006).

    CAS  Google Scholar 

  234. 234.

    Spinney, P. S., Collins, S. D., Howitt, D. G. & Smith, R. L. Fabrication and characterization of a solid-state nanopore with self-aligned carbon nanoelectrodes for molecular detection. Nanotechnology 23, 135501 (2012).

    Google Scholar 

  235. 235.

    Saha, K. K., Drndic, M. & Nikolic, B. K. DNA base-specific modulation of microampere transverse edge currents through a metallic graphene nanoribbon with a nanopore. Nano Lett. 12, 50–55 (2012).

    CAS  Google Scholar 

  236. 236.

    Fanget, A. et al. Nanopore integrated nanogaps for DNA detection. Nano Lett. 14, 244–249 (2014).

    CAS  Google Scholar 

  237. 237.

    Gehring, P., Thijssen, J. M. & van der Zant, H. S. J. Single-molecule quantum-transport phenomena in break junctions. Nat. Rev. Phys. 1, 381–396 (2019).

    Google Scholar 

  238. 238.

    Xiang, D., Jeong, H., Lee, T. & Mayer, D. Mechanically controllable break junctions for molecular electronics. Adv. Mater. 25, 4845–4867 (2013).

    CAS  Google Scholar 

  239. 239.

    Thomas, J. O. et al. Understanding resonant charge transport through weakly coupled single-molecule junctions. Nat. Commun. 10, 4628 (2019).

    Google Scholar 

  240. 240.

    Puczkarski, P. et al. Low-frequency noise in graphene tunnel junctions. ACS Nano 12, 9451–9460 (2018).

    CAS  Google Scholar 

  241. 241.

    Xiang, J. et al. A controllable electrochemical fabrication of metallic electrodes with a nanometer/angstrom-sized gap using an electric double layer as feedback. Angew. Chem. Int. Ed. 44, 1265–1268 (2005).

    CAS  Google Scholar 

  242. 242.

    Li, C. Z., He, H. X. & Tao, N. J. Quantized tunneling current in the metallic nanogaps formed by electrodeposition and etching. Appl. Phys. Lett. 77, 3995–3997 (2000).

    CAS  Google Scholar 

  243. 243.

    Heerema, S. J. & Dekker, C. Graphene nanodevices for DNA sequencing. Nat. Nanotechnol. 11, 127–136 (2016).

    CAS  Google Scholar 

  244. 244.

    Farimani, A. B., Min, K. & Aluru, N. R. DNA base detection using a single-layer MoS2. ACS Nano 8, 7914–7922 (2014).

    CAS  Google Scholar 

  245. 245.

    Zhang, B. T. et al. Observation of giant conductance fluctuations in a protein. Nano Futures 1, 035002 (2017).

    Google Scholar 

  246. 246.

    Zhang, B. T. & Lindsay, S. Electronic decay length in a protein molecule. Nano Lett. 19, 4017–4022 (2019).

    CAS  Google Scholar 

  247. 247.

    Im, J., Sen, S., Lindsay, S. & Zhang, P. M. Recognition tunneling of canonical and modified RNA nucleotides for their identification with the aid of machine learning. ACS Nano 12, 7067–7075 (2018).

    CAS  Google Scholar 

  248. 248.

    Lindsay, S. et al. Recognition tunneling. Nanotechnology 21, 262001 (2010).

    Google Scholar 

  249. 249.

    Gilboa, T. & Meller, A. Optical sensing and analyte manipulation in solid-state nanopores. Analyst 140, 4733–4747 (2015).

    CAS  Google Scholar 

  250. 250.

    Spitzberg, J. D., Zrehen, A., van Kooten, X. F. & Meller, A. Plasmonic-nanopore biosensors for superior single-molecule detection. Adv. Mater. 31, 1900422 (2019).

    Google Scholar 

  251. 251.

    Garoli, D., Yamazaki, H., Maccaferri, N. & Wanunu, M. Plasmonic nanopores for single-molecule detection and manipulation: toward sequencing applications. Nano Lett. 19, 7553–7562 (2019).

    CAS  Google Scholar 

  252. 252.

    Dahlin, A. B. Sensing applications based on plasmonic nanopores: the hole story. Analyst 140, 4748–4759 (2015).

    CAS  Google Scholar 

  253. 253.

    Miller, A. E. et al. Single-molecule dynamics of phytochrome-bound fluorophores probed by fluorescence correlation spectroscopy. Proc. Natl Acad. Sci USA 103, 11136–11141 (2006).

    CAS  Google Scholar 

  254. 254.

    Chen, P. et al. Probing single DNA molecule transport using fabricated nanopores. Nano Lett. 4, 2293–2298 (2004).

    CAS  Google Scholar 

  255. 255.

    Ito, T., Sun, L. & Crooks, R. M. Observation of DNA transport through a single carbon nanotube channel using fluorescence microscopy. Chem. Commun., 1482-1483 (2003).

  256. 256.

    Nykypanchuk, D., Strey, H. H. & Hoagland, D. A. Brownian motion of DNA confined within a two-dimensional array. Science 297, 987–990 (2002).

    CAS  Google Scholar 

  257. 257.

    Mannion, J. T., Reccius, C. H., Cross, J. D. & Craighead, H. G. Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels. Biophys. J. 90, 4538–4545 (2006).

    CAS  Google Scholar 

  258. 258.

    Chansin, G. A. et al. Single-molecule spectroscopy using nanoporous membranes. Nano Lett. 7, 2901–2906 (2007).

    CAS  Google Scholar 

  259. 259.

    Chansin, G. A. T. et al. Resizing metal-coated nanopores using a scanning electron microscope. Small 7, 2736–2741 (2011).

    CAS  Google Scholar 

  260. 260.

    Freedman, K. J. et al. Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping. Nat. Commun. 7, 10217 (2016).

    CAS  Google Scholar 

  261. 261.

    Ando, G., Hyun, C., Li, J. & Mitsui, T. Directly observing the motion of DNA molecules near solid-state nanopores. ACS Nano 6, 10090–10097 (2012).

    CAS  Google Scholar 

  262. 262.

    Yamazaki, H., Mizuguchi, T., Esashika, K. & Saiki, T. Electro-osmotic trapping and compression of single DNA molecules while passing through a nanopore. Analyst 144, 5381–5388 (2019).

    CAS  Google Scholar 

  263. 263.

    Auger, T. et al. Zero-mode waveguide detection of flow-driven DNA translocation through nanopores. Phys. Rev. Lett. 113, 028302 (2014).

    Google Scholar 

  264. 264.

    Yamazaki, H., Esashika, K. & Saiki, T. A 150 nm ultraviolet excitation volume on a porous silicon membrane for direct optical observation of DNA coil relaxation during capture into nanopores. Nano Futures 1, 011001 (2017).

    Google Scholar 

  265. 265.

    Assad, O. N., Di Fiori, N., Squires, A. H. & Meller, A. Two color DNA barcode detection in photoluminescence suppressed silicon nitride nanopores. Nano Lett. 15, 745–752 (2015).

    CAS  Google Scholar 

  266. 266.

    Assad, O. N. et al. Light-enhancing plasmonic-nanopore biosensor for superior single-molecule detection. Adv. Mater. 29, 1605442 (2017).

    Google Scholar 

  267. 267.

    Soni, G. V. et al. Synchronous optical and electrical detection of biomolecules traversing through solid-state nanopores. Rev. Sci. Instrum. 81, 014301 (2010).

    Google Scholar 

  268. 268.

    McNally, B. et al. Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays. Nano Lett. 10, 2237–2244 (2010).

    CAS  Google Scholar 

  269. 269.

    Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).

    CAS  Google Scholar 

  270. 270.

    Larkin, J., Foquet, M., Turner, S. W., Korlach, J. & Wanunu, M. Reversible positioning of single molecules inside zero-mode waveguides. Nano Lett. 14, 6023–6029 (2014).

    CAS  Google Scholar 

  271. 271.

    Gilboa, T. et al. Single-molecule DNA methylation quantification using electro-optical sensing in solid-state nanopores. ACS Nano 10, 8861–8870 (2016).

    CAS  Google Scholar 

  272. 272.

    Sawafta, F., Clancy, B., Carlsen, A. T., Huber, M. & Hall, A. R. Solid-state nanopores and nanopore arrays optimized for optical detection. Nanoscale 6, 6991–6996 (2014).

    CAS  Google Scholar 

  273. 273.

    Roelen, Z., Bustamante, J. A., Carlsen, A., Baker-Murray, A. & Tabard-Cossa, V. Instrumentation for low noise nanopore-based ionic current recording under laser illumination. Rev. Sci. Instrum. 89, 015007 (2018).

    Google Scholar 

  274. 274.

    Ivankin, A. et al. Label-free optical detection of biomolecular translocation through nanopore arrays. ACS Nano 8, 10774–10781 (2014).

    CAS  Google Scholar 

  275. 275.

    Anderson, B. N. et al. Probing solid-state nanopores with light for the detection of unlabeled analytes. ACS Nano 8, 11836–11845 (2014).

    CAS  Google Scholar 

  276. 276.

    Wang, Y. et al. Fabrication of multiple nanopores in a SiNx membrane via controlled breakdown. Sci. Rep. 8, 1234 (2018).

    Google Scholar 

  277. 277.

    Zrehen, A., Gilboa, T. & Meller, A. Real-time visualization and sub-diffraction limit localization of nanometer-scale pore formation by dielectric breakdown. Nanoscale 9, 16437–16445 (2017).

    CAS  Google Scholar 

  278. 278.

    Gilboa, T., Zvuloni, E., Zrehen, A., Squires, A. H. & Meller, A. Automated, ultra-fast laser-drilling of nanometer scale pores and nanopore arrays in aqueous solutions. Adv. Funct. Mater. 30, 1900642 (2019).

    Google Scholar 

  279. 279.

    Carter, K. P., Young, A. M. & Palmer, A. E. Fluorescent sensors for measuring metal ions in living systems. Chem. Rev. 114, 4564–4601 (2014).

    CAS  Google Scholar 

  280. 280.

    Heron, A. J., Thompson, J. R., Mason, A. E. & Wallace, M. I. Direct detection of membrane channels from gels using water-in-oil droplet bilayers. J. Am. Chem. Soc. 129, 16042–16047 (2007).

    CAS  Google Scholar 

  281. 281.

    Heron, A. J., Thompson, J. R., Cronin, B., Bayley, H. & Wallace, M. I. Simultaneous measurement of ionic current and fluorescence from single protein pores. J. Am. Chem. Soc. 131, 1652–1653 (2009).

    CAS  Google Scholar 

  282. 282.

    Wang, Y. et al. Osmosis-driven motion-type modulation of biological nanopores for parallel optical nucleic acid sensing. ACS Appl. Mater. Interfaces 10, 7788–7797 (2018).

    CAS  Google Scholar 

  283. 283.

    Wang, Y. et al. Electrode-free nanopore sensing by DiffusiOptoPhysiology. Sci. Adv. 5, eaar3309 (2019).

    Google Scholar 

  284. 284.

    Jonsson, M. P. & Dekker, C. Plasmonic nanopore for electrical profiling of optical intensity landscapes. Nano Lett. 13, 1029–1033 (2013).

    CAS  Google Scholar 

  285. 285.

    Reiner, J. E. et al. Temperature sculpting in yoctoliter volumes. J. Am. Chem. Soc. 135, 3087–3094 (2013).

    CAS  Google Scholar 

  286. 286.

    Crick, C. R. et al. Precise attoliter temperature control of nanopore sensors using a nanoplasmonic bullseye. Nano Lett. 15, 553–559 (2015).

    CAS  Google Scholar 

  287. 287.

    Crick, C. R. et al. Low-noise plasmonic nanopore biosensors for single molecule detection at elevated temperatures. ACS Photonics 4, 2835–2842 (2017).

    CAS  Google Scholar 

  288. 288.

    Li, Y. et al. Asymmetric plasmonic induced ionic noise in metallic nanopores. Nanoscale 8, 12324–12329 (2016).

    CAS  Google Scholar 

  289. 289.

    Zhu, W. et al. Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat. Commun. 7, 11495 (2016).

    CAS  Google Scholar 

  290. 290.

    Shi, X. et al. An integrated system for optical and electrical detection of single molecules/particles inside a solid-state nanopore. Faraday Discuss. 184, 85–99 (2015).

    CAS  Google Scholar 

  291. 291.

    Verschueren, D. V. et al. Label-free optical detection of DNA translocations through plasmonic nanopores. ACS Nano 13, 61–70 (2019).

    CAS  Google Scholar 

  292. 292.

    Shi, X., Verschueren, D. V. & Dekker, C. Active delivery of single DNA molecules into a plasmonic nanopore for label-free optical sensing. Nano Lett. 18, 8003–8010 (2018).

    CAS  Google Scholar 

  293. 293.

    Shi, X. et al. A scattering nanopore for single nanoentity sensing. ACS Sens. 1, 1086–1090 (2016).

    CAS  Google Scholar 

  294. 294.

    Kerman, S. et al. Raman fingerprinting of single dielectric nanoparticles in plasmonic nanopores. Nanoscale 7, 18612–18618 (2015).

    CAS  Google Scholar 

  295. 295.

    Chen, C. et al. High spatial resolution nanoslit SERS for single-molecule nucleobase sensing. Nat. Commun. 9, 1733 (2018).

    Google Scholar 

  296. 296.

    Huang, J.-A. et al. Single-molecule DNA bases discrimination in oligonucleotides by controllable trapping in plasmonic nanoholes. Nat. Commun. 10, 5321 (2019).

    Google Scholar 

  297. 297.

    Cecchini, M. P. et al. Rapid ultrasensitive single particle surface-enhanced Raman spectroscopy using metallic nanopores. Nano Lett. 13, 4602–4609 (2013).

    CAS  Google Scholar 

  298. 298.

    Freedman, K. J. et al. On-demand surface- and tip-enhanced Raman spectroscopy using dielectrophoretic trapping and nanopore sensing. ACS Photonics 3, 1036–1044 (2016).

    CAS  Google Scholar 

  299. 299.

    Ohayon, S., Girsault, A., Nasser, M., Shen-Orr, S. & Meller, A. Simulation of single-protein nanopore sensing shows feasibility for whole-proteome identification. PLoS Comput. Biol. 15, e1007067 (2019).

    CAS  Google Scholar 

  300. 300.

    Nicoli, F., Verschueren, D., Klein, M., Dekker, C. & Jonsson, M. P. DNA translocations through solid-state plasmonic nanopores. Nano Lett. 14, 6917–6925 (2014).

    CAS  Google Scholar 

  301. 301.

    Yamazaki, H. et al. Label-free single-molecule thermoscopy using a laser-heated nanopore. Nano Lett. 17, 7067–7074 (2017).

    CAS  Google Scholar 

  302. 302.

    Zhang, M. et al. Thermophoresis-controlled size-dependent DNA translocation through an array of nanopores. ACS Nano 12, 4574–4582 (2018).

    CAS  Google Scholar 

  303. 303.

    Verschueren, D., Shi, X. & Dekker, C. Nano-optical tweezing of single proteins in plasmonic nanopores. Small Methods 3, 1800465 (2019).

    Google Scholar 

  304. 304.

    Kotsifaki, D. & Nic Chormaic, S. Plasmonic optical tweezers based on nanostructures: fundamentals, advances and prospects. Nanophotonics 8, 1227–1245 (2019).

    CAS  Google Scholar 

  305. 305.

    Garoli, D. et al. Hybrid plasmonic nanostructures based on controlled integration of MoS2 flakes on metallic nanoholes. Nanoscale 10, 17105–17111 (2018).

    CAS  Google Scholar 

  306. 306.

    Im, H., Wittenberg, N. J., Lesuffleur, A., Lindquist, N. C. & Oh, S.-H. Membrane protein biosensing with plasmonic nanopore arrays and pore-spanning lipid membranes. Chem. Sci. 1, 688–696 (2010).

    CAS  Google Scholar 

  307. 307.

    Liu, Q. et al. Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data. Nat. Commun. 10, 2449 (2019).

    Google Scholar 

  308. 308.

    Nivala, J., Mulroney, L., Li, G., Schreiber, J. & Akeson, M. Discrimination among protein variants using an unfoldase-coupled nanopore. ACS Nano 8, 12365–12375 (2014).

    CAS  Google Scholar 

  309. 309.

    Cardozo, N. et al. Multiplexed direct detection of barcoded protein reporters on a nanopore array. Preprint at. bioRxiv https://doi.org/10.1101/837542 (2019).

    Article  Google Scholar 

  310. 310.

    Misiunas, K., Ermann, N. & Keyser, U. F. QuipuNet: convolutional neural network for single-molecule nanopore sensing. Nano Lett. 18, 4040–4045 (2018).

    CAS  Google Scholar 

  311. 311.

    Im, J., Lindsay, S., Wang, X. & Zhang, P. M. Single molecule identification and quantification of glycosaminoglycans using solid-state nanopores. ACS Nano 13, 6308–6318 (2019).

    CAS  Google Scholar 

  312. 312.

    Henley, R. Y. et al. Electrophoretic deformation of individual transfer RNA molecules reveals their identity. Nano Lett. 16, 138–144 (2016).

    CAS  Google Scholar 

  313. 313.

    Wei, Z. X. et al. Learning shapelets for improving single-molecule nanopore sensing. Anal. Chem. 91, 10033–10039 (2019).

    CAS  Google Scholar 

  314. 314.

    Yanagi, I., Akahori, R. & Takeda, K.-I. Stable fabrication of a large nanopore by controlled dielectric breakdown in a high-pH solution for the detection of various-sized molecules. Sci. Rep. 9, 13143 (2019).

    Google Scholar 

  315. 315.

    Storm, A. J. et al. Fast DNA translocation through a solid-state nanopore. Nano Lett. 5, 1193–1197 (2005).

    CAS  Google Scholar 

  316. 316.

    Shin, J. W., Lee, J. Y., Oh, D. H., Kim, T. W. & Cho, W. J. Shrinkage and expansion mechanisms of SiO2 elliptical membrane nanopores. Appl. Phys. Lett. 93, 221903 (2008).

    Google Scholar 

  317. 317.

    Carson, S., Wilson, J., Aksimentiev, A. & Wanunu, M. Smooth DNA transport through a narrowed pore geometry. Biophys. J. 107, 2381–2393 (2014).

    CAS  Google Scholar 

  318. 318.

    Langecker, M. et al. Nanopores suggest a negligible influence of CpG methylation on nucleosome packaging and stability. Nano Lett. 15, 783–790 (2015).

    CAS  Google Scholar 

  319. 319.

    Waduge, P. et al. Nanopore-based measurements of protein size, fluctuations, and conformational changes. ACS Nano 11, 5706–5716 (2017).

    CAS  Google Scholar 

  320. 320.

    Hu, R. et al. Differential enzyme flexibility probed using solid-state nanopores. ACS Nano 12, 4494–4502 (2018).

    CAS  Google Scholar 

  321. 321.

    Yu, J.-S. et al. Differentiation of selectively labeled peptides using solid-state nanopores. Nanoscale 11, 2510–2520 (2019).

    CAS  Google Scholar 

  322. 322.

    Fologea, D., Uplinger, J., Thomas, B., McNabb, D. S. & Li, J. Slowing DNA translocation in a solid-state nanopore. Nano Lett. 5, 1734–1737 (2005).

    CAS  Google Scholar 

  323. 323.

    Shekar, S. et al. Measurement of DNA translocation dynamics in a solid-state nanopore at 100 ns temporal resolution. Nano Lett. 16, 4483–4489 (2016).

    CAS  Google Scholar 

  324. 324.

    Carlsen, A. T., Briggs, K., Hall, A. R. & Tabard-Cossa, V. Solid-state nanopore localization by controlled breakdown of selectively thinned membranes. Nanotechnology 28, 085304 (2017).

    Google Scholar 

  325. 325.

    Garaj, S., Liu, S., Golovchenko, J. A. & Branton, D. Molecule-hugging graphene nanopores. Proc. Natl Acad. Sci. USA 110, 12192–12196 (2013).

    CAS  Google Scholar 

  326. 326.

    Goyal, G., Lee, Y. B., Darvish, A., Ahn, C. W. & Kim, M. J. Hydrophilic and size-controlled graphene nanopores for protein detection. Nanotechnology 27, 495301 (2016).

    Google Scholar 

  327. 327.

    Deng, Y. et al. Precise fabrication of a 5 nm graphene nanopore with a helium ion microscope for biomolecule detection. Nanotechnology 28, 045302 (2016).

    Google Scholar 

  328. 328.

    Liu, K. et al. Geometrical effect in 2D nanopores. Nano Lett. 17, 4223–4230 (2017).

    CAS  Google Scholar 

  329. 329.

    Liu, K. et al. Detecting topological variations of DNA at single-molecule level. Nat. Commun. 10, 3 (2019).

    CAS  Google Scholar 

  330. 330.

    Kim, H.-J. et al. Translocation of DNA and protein through a sequentially polymerized polyurea nanopore. Nanoscale 11, 444–453 (2019).

    CAS  Google Scholar 

  331. 331.

    Liu, L. et al. Simultaneous quantification of multiple cancer biomarkers in blood samples through DNA-assisted nanopore sensing. Angew. Chem. Int. Ed. 57, 11882–11887 (2018).

    CAS  Google Scholar 

  332. 332.

    Healey, M. J., Rowe, W., Siati, S., Sivakumaran, M. & Platt, M. Rapid assessment of site specific DNA methylation through resistive pulse sensing. ACS Sens. 3, 655–660 (2018).

    CAS  Google Scholar 

  333. 333.

    Singer, A., Rapireddy, S., Ly, D. H. & Meller, A. Electronic barcoding of a viral gene at the single-molecule level. Nano Lett. 12, 1722–1728 (2012).

    CAS  Google Scholar 

  334. 334.

    Carlsen, A. T., Zahid, O. K., Ruzicka, J. A., Taylor, E. W. & Hall, A. R. Selective detection and quantification of modified DNA with solid-state nanopores. Nano Lett. 14, 5488–5492 (2014).

    CAS  Google Scholar 

  335. 335.

    Zahid, O. K., Wang, F., Ruzicka, J. A., Taylor, E. W. & Hall, A. R. Sequence-specific recognition of microRNAs and other short nucleic acids with solid-state nanopores. Nano Lett. 16, 2033–2039 (2016).

    CAS  Google Scholar 

  336. 336.

    Kong, J., Bell, N. A. W. & Keyser, U. F. Quantifying nanomolar protein concentrations using designed DNA carriers and solid-state nanopores. Nano Lett. 16, 3557–3562 (2016).

    CAS  Google Scholar 

  337. 337.

    Beamish, E., Tabard-Cossa, V. & Godin, M. Identifying structure in short DNA scaffolds using solid-state nanopores. ACS Sens. 2, 1814–1820 (2017).

    CAS  Google Scholar 

  338. 338.

    Kong, J., Zhu, J. & Keyser, U. F. Single molecule based SNP detection using designed DNA carriers and solid-state nanopores. Chem. Commun. 53, 436–439 (2017).

    CAS  Google Scholar 

  339. 339.

    Lin, Y., Ying, Y.-L., Shi, X., Liu, S.-C. & Long, Y.-T. Direct sensing of cancer biomarkers in clinical samples with a designed nanopore. Chem. Commun. 53, 11564–11567 (2017).

    CAS  Google Scholar 

  340. 340.

    Kong, J., Zhu, J., Chen, K. & Keyser, U. F. Specific biosensing using DNA aptamers and nanopores. Adv. Funct. Mater. 29, 1807555 (2019).

    Google Scholar 

  341. 341.

    Zhao, X. et al. Translocation of tetrahedral DNA nanostructures through a solid-state nanopore. Nanoscale 11, 6263–6269 (2019).

    CAS  Google Scholar 

  342. 342.

    Thakur, M. et al. Wafer-scale fabrication of nanopore devices for single-molecule DNA biosensing using MoS2. Small Methods https://doi.org/10.1002/smtd.202000072 (2020).

    Article  Google Scholar 

  343. 343.

    Parkin, W. M. & Drndic, M. Signal and noise in FET-nanopore devices. ACS Sens. 3, 313–319 (2018).

    CAS  Google Scholar 

  344. 344.

    Belkin, M., Chao, S.-H., Jonsson, M. P., Dekker, C. & Aksimentiev, A. Plasmonic nanopores for trapping, controlling displacement, and sequencing of DNA. ACS Nano 9, 10598–10611 (2015).

    CAS  Google Scholar 

  345. 345.

    Kesselheim, S., Muller, W. & Holm, C. Origin of current blockades in nanopore translocation experiments. Phys. Rev. Lett. 112, 018101 (2014).

    Google Scholar 

  346. 346.

    Wilson, J., Sarthak, K., Si, W., Gao, L. Y. & Aksimentiev, A. Rapid and accurate determination of nanopore ionic current using a steric exclusion model. ACS Sens. 4, 634–644 (2019).

    CAS  Google Scholar 

Download references

Acknowledgements

J.B.E. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 724300, NanoPD and 875525, NanoPD_P). A.P.I. and J.B.E. are funded in part by BBSRC grant BB/R022429/1, EPSRC grant EP/P011985/1 and the Analytical Chemistry Trust Fund grant 600322/05. M.W. acknowledges the National Institutes of Health for support (R01 HG009186). H.Y. is a recipient of a JSPS Research Fellowship for Young Scientists (no. 20J00261) from the Japan Society for the Promotion of Science.

Author information

Affiliations

Authors

Contributions

All authors contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to Meni Wanunu or Aleksandar P. Ivanov or Joshua B. Edel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

1991 Nobel Prize in Physiology or Medicine: https://www.nobelprize.org/prizes/medicine/1991/press-release/

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xue, L., Yamazaki, H., Ren, R. et al. Solid-state nanopore sensors. Nat Rev Mater (2020). https://doi.org/10.1038/s41578-020-0229-6

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing