Anisotropic reticular chemistry

Abstract

Reticular chemistry has been focused on making simple structures in which a few kinds of components are linked to make crystals such as metal–organic frameworks (MOFs). While this chemistry has grown into a large field, a more extensive area with fascinating directions is emerging through the introduction of multiplicity and variation into the components of MOFs. When the MOF backbone is composed of more than two kinds of components, the resulting backbone multiplicity is regular repeats of those units. However, when variations involve multiple functionalization of the organic linkers or multiple metalation of metal-containing building units, it results in an aperiodic spatial arrangement of these variations, without altering the regularity of the MOF backbone. Such variance is represented by unique sequences of functionality or metal, and the very aperiodic nature of their spatial arrangement gives rise to anisotropy. These MOF constructs represent a new form of matter in which the sequences of such units are bound to an ordered backbone, thus adding complexity to an otherwise simple system, while preserving its overall crystallinity. It’s worth noting that, when a molecule capable of either continuous or multistate anisotropic motion is integrated within a sequence in a MOF, the resulting property goes beyond what is possible in simple systems. We term this emerging area ‘anisotropic reticular chemistry’.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Molecular components in metal–organic frameworks (MOFs).
Fig. 2: Emergence of anisotropic reticular chemistry.
Fig. 3: Backbone variance in multinary metal–organic frameworks.
Fig. 4: Structure editing for backbone variance in metal–organic frameworks.
Fig. 5: Functionality variance in multivariate metal–organic frameworks (MTV-MOFs).
Fig. 6: Metal variance in multivariate metal–organic frameworks (MTV-MOFs).
Fig. 7: Different modes of anisotropic motion in metal–organic frameworks.

References

  1. 1.

    Yaghi, O. M., Kalmutzki, M. J. & Diercks, C. S. Introduction to Reticular Chemistry: Metal-Organic Frameworks and Covalent Organic Frameworks (Wiley, 2019).

  2. 2.

    Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Google Scholar 

  3. 3.

    Kalmutzki, M. J., Hanikel, N. & Yaghi, O. M. Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci. Adv. 4, eaat9180 (2018).

    CAS  Google Scholar 

  4. 4.

    Li, H., Eddaoudi, M., Groy, T. L. & Yaghi, O. M. Establishing microporosity in open metal–organic frameworks: gas sorption isotherms for Zn(BDC) (BDC = 1,4-benzenedicarboxylate). J. Am. Chem. Soc. 120, 8571–8572 (1998).

    CAS  Google Scholar 

  5. 5.

    Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999).

    CAS  Google Scholar 

  6. 6.

    Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 103, 10186–10191 (2006).

    CAS  Google Scholar 

  7. 7.

    Banerjee, R. et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319, 939–943 (2008).

    CAS  Google Scholar 

  8. 8.

    Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    CAS  Google Scholar 

  9. 9.

    Férey, G. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).

    Google Scholar 

  10. 10.

    Zhang, J.-P., Zhang, Y.-B., Lin, J.-B. & Chen, X.-M. Metal azolate frameworks: from crystal engineering to functional materials. Chem. Rev. 112, 1001–1033 (2012).

    CAS  Google Scholar 

  11. 11.

    Gonzalez, M. I. et al. Confinement of atomically defined metal halide sheets in a metal–organic framework. Nature 577, 64–68 (2019).

    Google Scholar 

  12. 12.

    Li, L. et al. Ethane/ethylene separation in a metal–organic framework with iron-peroxo sites. Science 362, 443–446 (2018).

    CAS  Google Scholar 

  13. 13.

    Chen, K.-J. et al. Synergistic sorbent separation for one-step ethylene purification from a four-component mixture. Science 366, 241–246 (2019).

    CAS  Google Scholar 

  14. 14.

    Li, P. et al. Bottom-up construction of a superstructure in a porous uranium-organic crystal. Science 356, 624–627 (2017).

    CAS  Google Scholar 

  15. 15.

    Gu, C. et al. Design and control of gas diffusion process in a nanoporous soft crystal. Science 363, 387–391 (2019).

    CAS  Google Scholar 

  16. 16.

    Liu, G. et al. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nat. Mater. 17, 283–289 (2018).

    CAS  Google Scholar 

  17. 17.

    Fateeva, A. et al. A water-stable porphyrin-based metal–organic framework active for visible-light photocatalysis. Angew. Chem. Int. Ed. 51, 7440–7444 (2012).

    CAS  Google Scholar 

  18. 18.

    Krause, S. et al. A pressure-amplifying framework material with negative gas adsorption transitions. Nature 532, 348–352 (2016).

    CAS  Google Scholar 

  19. 19.

    Boyd, P. G. et al. Data-driven design of metal–organic frameworks for wet flue gas CO2 capture. Nature 576, 253–256 (2019).

    CAS  Google Scholar 

  20. 20.

    Lo, S.-H. et al. Rapid desolvation-triggered domino lattice rearrangement in a metal–organic framework. Nat. Chem. 12, 90–97 (2020).

    Google Scholar 

  21. 21.

    Yan, Y. et al. Metal–organic polyhedral frameworks: high H2 adsorption capacities and neutron powder diffraction studies. J. Am. Chem. Soc. 132, 4092–4094 (2010).

    CAS  Google Scholar 

  22. 22.

    Liao, P.-Q., Huang, N.-Y., Zhang, W.-X., Zhang, J.-P. & Chen, X.-M. Controlling guest conformation for efficient purification of butadiene. Science 356, 1193–1196 (2017).

    CAS  Google Scholar 

  23. 23.

    Cao, L. et al. Self-supporting metal–organic layers as single-site solid catalysts. Angew. Chem. Int. Ed. 55, 4962–4966 (2016).

    CAS  Google Scholar 

  24. 24.

    Sheberia, D. et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220–224 (2016).

    Google Scholar 

  25. 25.

    Farha, O. K. et al. Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 134, 15016–15021 (2012).

    CAS  Google Scholar 

  26. 26.

    Hwang, Y. K. et al. Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angew. Chem. Int. Ed. 47, 4144–4148 (2008).

    CAS  Google Scholar 

  27. 27.

    Rodenas, T. et al. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14, 48–55 (2015).

    CAS  Google Scholar 

  28. 28.

    Zhao, M. et al. Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature 539, 76–80 (2016).

    CAS  Google Scholar 

  29. 29.

    Nugent, P. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80–84 (2013).

    CAS  Google Scholar 

  30. 30.

    Zhai, Q.-G. et al. An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials. Nat. Commun. 7, 13645 (2016).

    CAS  Google Scholar 

  31. 31.

    Sun, C.-Y. et al. Efficient and tunable white-light emission of metal–organic frameworks by iridium-complex encapsulation. Nat. Commun. 4, 2717 (2013).

    Google Scholar 

  32. 32.

    Mo, K., Yang, Y. & Cui, Y. A homochiral metal–organic framework as an effective asymmetric catalyst for cyanohydrin synthesis. J. Am. Chem. Soc. 136, 1746–1749 (2014).

    CAS  Google Scholar 

  33. 33.

    McHugh, L. N. et al. Hydrolytic stability in hemilabile metal–organic frameworks. Nat. Chem. 10, 10960–11102 (2018).

    Google Scholar 

  34. 34.

    Cui, X. et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 353, 141–144 (2016).

    CAS  Google Scholar 

  35. 35.

    Taylor, J. M. et al. Facile proton conduction via ordered water molecules in a phosphonate metal–organic framework. J. Am. Chem. Soc. 132, 14055–14057 (2010).

    CAS  Google Scholar 

  36. 36.

    Horcajada, P. et al. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 9, 172–178 (2010).

    CAS  Google Scholar 

  37. 37.

    Bloch, W. M. et al. Capturing snapshots of post-synthetic metallation chemistry in metal–organic frameworks. Nat. Chem. 6, 906–913 (2014).

    CAS  Google Scholar 

  38. 38.

    Dong, R. et al. High-mobility band-like charge transport in a semiconducting two-dimensional metal–organic framework. Nat. Mater. 17, 1027–1032 (2018).

    CAS  Google Scholar 

  39. 39.

    Bennett, T. D. et al. Melt-quenched glasses of metal–organic frameworks. J. Am. Chem. Soc. 138, 3484–3492 (2016).

    CAS  Google Scholar 

  40. 40.

    Feng, L., Wang, K.-Y., Day, G. S. & Zhou, H.-C. The chemistry of multi-component and hierarchical framework compounds. Chem. Soc. Rev. 48, 4823–4853 (2019).

    CAS  Google Scholar 

  41. 41.

    Furukawa, S., Reboul, J., Diring, S., Sumida, K. & Kitagawa, S. Structuring of metal–organic frameworks at the mesoscopic/macroscopic scale. Chem. Soc. Rev. 43, 5700–5734 (2014).

    CAS  Google Scholar 

  42. 42.

    Pang, Q., Tu, B. & Li, Q. Metal–organic frameworks with multicomponents in order. Coord. Chem. Rev. 388, 107–125 (2019).

    CAS  Google Scholar 

  43. 43.

    Jiao, J., Gong, W., Wu, X., Yang, S. & Cui, Y. Multivariate crystalline porous materials: Synthesis, property and potential application. Coord. Chem. Rev. 385, 174–190 (2019).

    CAS  Google Scholar 

  44. 44.

    Furukawa, H., Müller, U. & Yaghi, O. M. “Heterogeneity within order” in metal–organic frameworks. Angew. Chem. Int. Ed. 54, 3417–3430 (2015).

    CAS  Google Scholar 

  45. 45.

    Chevreau, H. et al. Mixed-linker hybrid superpolyhedra for the production of a series of large-pore iron(III) carboxylate metal–organic frameworks. Angew. Chem. Int. Ed. 52, 5056–5060 (2013).

    CAS  Google Scholar 

  46. 46.

    Jiang, H. et al. Enriching the reticular chemistry repertoire: merged nets approach for the rational design of intricate mixed-linker metal–organic framework platforms. J. Am. Chem. Soc. 140, 8858–8867 (2018).

    CAS  Google Scholar 

  47. 47.

    Kondo, M. et al. Rational synthesis of stable channel-like cavities with methane gas adsorption properties: [{Cu2(pzdc)2(L)}n] (pzdc = pyrazine-2,3-dicarboxylate; L = a pillar ligand). Angew. Chem. Int. Ed. 38, 140–143 (1999).

    CAS  Google Scholar 

  48. 48.

    Dybtsev, D. N., Chun, H. & Kim, K. Rigid and flexible: a highly porous metal–organic framework with unusual guest-dependent dynamic behavior. Angew. Chem. Int. Ed. 116, 5145–5146 (2004).

    Google Scholar 

  49. 49.

    Farha, O. K., Malliakas, C. D., Kanatzidis, M. G. & Hupp, J. T. Control over catenation in metal–organic frameworks via rational design of the organic building blocks. J. Am. Chem. Soc. 132, 950–952 (2010).

    CAS  Google Scholar 

  50. 50.

    Koh, K., Wong-Foy, A. G. & Matzger, A. J. A crystalline mesoporous coordination copolymer with high microporosity. Angew. Chem. Int. Ed. 47, 677–680 (2008).

    CAS  Google Scholar 

  51. 51.

    Koh, K., Wong-Foy, A. G. & Matzger, A. J. A porous coordination copolymer with over 5000 m2/g BET surface area. J. Am. Chem. Soc. 131, 4184–4185 (2009).

    CAS  Google Scholar 

  52. 52.

    Koh, K., Wong-Foy, A. G. & Matzger, A. J. Coordination copolymerization mediated by Zn4O(CO2R)6 metal clusters: a balancing act between statistics and geometry. J. Am. Chem. Soc. 132, 15005–15010 (2010).

    CAS  Google Scholar 

  53. 53.

    Furukawa, H. et al. Ultrahigh porosity in metal–organic frameworks. Science 329, 424–428 (2010).

    CAS  Google Scholar 

  54. 54.

    Klein, N. et al. A mesoporous metal–organic framework. Angew. Chem. Int. Ed. 48, 9954–9957 (2009).

    CAS  Google Scholar 

  55. 55.

    Hönicke, I. M. et al. Balancing mechanical stability and ultrahigh porosity in crystalline framework materials. Angew. Chem. Int. Ed. 57, 13780–13783 (2018).

    Google Scholar 

  56. 56.

    Liu, L., Konstas, K., Hill, M. R. & Telfer, S. G. Programmed pore architectures in modular quaternary metal–organic frameworks. J. Am. Chem. Soc. 135, 17731–17734 (2013).

    CAS  Google Scholar 

  57. 57.

    Liu, L., Zhou, T.-Y. & Telfer, S. G. Modulating the performance of an asymmetric organocatalyst by tuning its spatial environment in a metal–organic framework. J. Am. Chem. Soc. 139, 13936–13943 (2017).

    CAS  Google Scholar 

  58. 58.

    Liang, C.-C. et al. Engineering of pore geometry for ultrahigh capacity methane storage in mesoporous metal–organic frameworks. J. Am. Chem. Soc. 139, 13300–13303 (2017).

    CAS  Google Scholar 

  59. 59.

    Wong-Foy, A. G., Lebel, O. & Matzger, A. J. Porous crystal derived from a tricarboxylate linker with two distinct binding motifs. J. Am. Chem. Soc. 129, 15740–15741 (2007).

    CAS  Google Scholar 

  60. 60.

    Nouar, F. J. et al. Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal-organic frameworks. J. Am. Chem. Soc. 130, 1833–1835 (2008).

    CAS  Google Scholar 

  61. 61.

    Tu, B. et al. Heterogeneity within a mesoporous metal–organic framework with three distinct metal-containing building units. J. Am. Chem. Soc. 137, 13456–13459 (2015).

    CAS  Google Scholar 

  62. 62.

    Tu, B. et al. Reversible redox activity in multicomponent metal–organic frameworks constructed from trinuclear copper pyrazolate building blocks. J. Am. Chem. Soc. 139, 7998–8007 (2017).

    CAS  Google Scholar 

  63. 63.

    Liu, Q. et al. Mesoporous cages in chemically robust MOFs created by a large number of vertices with reduced connectivity. J. Am. Chem. Soc. 141, 488–496 (2019).

    CAS  Google Scholar 

  64. 64.

    Tu, B. et al. Harnessing bottom-up self-assembly to position five distinct components in an ordered porous framework. Angew. Chem. Int. Ed. 58, 5348–5353 (2019).

    CAS  Google Scholar 

  65. 65.

    Schaate, A. et al. Modulated synthesis of Zr-based metal–organic frameworks: from nano to single crystals. Chem. Eur. J. 17, 6643–6651 (2011).

    CAS  Google Scholar 

  66. 66.

    Trickett, C. A. et al. Definitive molecular level characterization of defects in UiO-66 crystals. Angew. Chem. Int. Ed. 54, 11162–11167 (2015).

    CAS  Google Scholar 

  67. 67.

    Fu, Y. et al. Duet of acetate and water at the defects of metal–organic frameworks. Nano Lett. 19, 1618–1624 (2019).

    CAS  Google Scholar 

  68. 68.

    Fang, Z., Bueken, B., De Vos, D. E. & Fischer, R. A. Defect-engineered metal–organic frameworks. Angew. Chem. Int. Ed. 54, 7234–7254 (2015).

    CAS  Google Scholar 

  69. 69.

    Wang, Y., Liu, Q., Zhang, Q., Peng, B. & Deng, H. Molecular vise approach to create metal-binding sites in MOFs and detection of biomarkers. Angew. Chem. Int. Ed. 57, 7120–7125 (2018).

    CAS  Google Scholar 

  70. 70.

    Yang, S. et al. A partially interpenetrated metal–organic framework for selective hysteretic sorption of carbon dioxide. Nat. Mater. 11, 710–716 (2012).

    CAS  Google Scholar 

  71. 71.

    Choi, K. M., Jeon, H. J., Kang, J. K. & Yaghi, O. M. Heterogeneity within order in crystals of a porous metal–organic framework. J. Am. Chem. Soc. 133, 11920–11923 (2011).

    CAS  Google Scholar 

  72. 72.

    Liu, Y. & Tang, Z. Multifunctional nanoparticle@MOF core–shell nanostructures. Adv. Mater. 25, 5819–5825 (2013).

    CAS  Google Scholar 

  73. 73.

    Cliffe, M. J. et al. Correlated defect nanoregions in a metal–organic framework. Nat. Commun. 5, 4176 (2014).

    CAS  Google Scholar 

  74. 74.

    Liu, L. et al. Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution. Nat. Chem. 11, 622–628 (2019).

    CAS  Google Scholar 

  75. 75.

    Koo, J. et al. Hollowing out MOFs: hierarchical micro- and mesoporous MOFs with tailorable porosity via selective acid etching. Chem. Sci. 8, 6799–6803 (2017).

    CAS  Google Scholar 

  76. 76.

    Gong, X. et al. Metal-organic frameworks for the exploit of distance between active sites in efficient photocatalysis. Angew. Chem. Int. Ed. 59, 5326–5331 (2020).

    CAS  Google Scholar 

  77. 77.

    Luo, L. et al. Directional engraving within single crystalline metal–organic framework particles via oxidative linker cleaving. J. Am. Chem. Soc. 141, 20365–20370 (2019).

    CAS  Google Scholar 

  78. 78.

    Yan, J., MacDonald, J. C., Maag, A. R., Coudert, F.-X. & Burdette, S. C. MOF decomposition and introduction of repairable defects using a photodegradable strut. Chem. Eur. J. 25, 8393–8400 (2019).

    CAS  Google Scholar 

  79. 79.

    Feng, L. et al. Creating hierarchical pores by controlled linker thermolysis in multivariate metal–organic frameworks. J. Am. Chem. Soc. 140, 2363–2372 (2018).

    CAS  Google Scholar 

  80. 80.

    Yuan, S. et al. Construction of hierarchically porous metal–organic frameworks through linker labilization. Nat. Commun. 8, 15356 (2017).

    CAS  Google Scholar 

  81. 81.

    Guillerm, V., Xu, H., Albalad, J., Imaz, I. & Maspoch, D. Postsynthetic selective ligand cleavage by solid–gas phase ozonolysis fuses micropores into mesopores in metal–organic frameworks. J. Am. Chem. Soc. 140, 15022–15030 (2018).

    CAS  Google Scholar 

  82. 82.

    Tu, B. et al. Ordered vacancies and their chemistry in metal–organic frameworks. J. Am. Chem. Soc. 136, 14465–14471 (2014).

    CAS  Google Scholar 

  83. 83.

    Yuan, S. et al. Sequential linker installation: precise placement of functional groups in multivariate metal–organic frameworks. J. Am. Chem. Soc. 137, 3177–3180 (2015).

    CAS  Google Scholar 

  84. 84.

    Zhang, X., Frey, B. L., Chen, Y.-S. & Zhang, J. Topology-guided stepwise insertion of three secondary linkers in zirconium metal–organic frameworks. J. Am. Chem. Soc. 140, 7710–7715 (2018).

    CAS  Google Scholar 

  85. 85.

    Pang, J. et al. Enhancing pore-environment complexity using a trapezoidal linker: toward stepwise assembly of multivariate quinary metal–organic frameworks. J. Am. Chem. Soc. 140, 12328–12332 (2018).

    CAS  Google Scholar 

  86. 86.

    Kapustin, E. A., Lee, S., Alshammari, A. S. & Yaghi, O. M. Molecular retrofitting adapts a metal–organic framework to extreme pressure. ACS Cent. Sci. 3, 662–667 (2017).

    CAS  Google Scholar 

  87. 87.

    Wei, Y.-S. et al. Coordination templated [2+2+2] cyclotrimerization in a porous coordination framework. Nat. Commun. 6, 8348 (2015).

    CAS  Google Scholar 

  88. 88.

    Deng, H. et al. Multiple functional groups of varying ratios in metal–organic frameworks. Science 327, 846–850 (2010).

    CAS  Google Scholar 

  89. 89.

    Burrows, A. D., Frost, C. G., Mahon, M. F. & Richardson, C. Post-synthetic modification of tagged metal–organic frameworks. Angew. Chem. Int. Ed. 47, 8482–8486 (2008).

    CAS  Google Scholar 

  90. 90.

    Kleist, W., Jutz, F., Maciejewski, M. & Baiker, A. Mixed-linker metal-organic frameworks as catalysts for the synthesis of propylene carbonate from propylene oxide and CO2. Eur. J. Inorg. Chem. 2009, 3552–3561 (2009).

    Google Scholar 

  91. 91.

    Taylor-Pashow, K. M., Della Rocca, J., Xie, Z., Tran, S. & Lin, W. Postsynthetic modifications of iron-carboxylate nanoscale metal–organic frameworks for imaging and drug delivery. J. Am. Chem. Soc. 131, 14261–14263 (2009).

    CAS  Google Scholar 

  92. 92.

    Burrows, A. D. Mixed-component metal–organic frameworks (MC-MOFs): enhancing functionality through solid solution formation and surface modifications. CrystEngComm. 13, 3623–3642 (2011).

    CAS  Google Scholar 

  93. 93.

    Zhang, Y.-B. et al. Introduction of functionality, selection of topology, and enhancement of gas adsorption in multivariate metal–organic framework-177. J. Am. Chem. Soc. 137, 2641–2650 (2015).

    CAS  Google Scholar 

  94. 94.

    Osborn Popp, T. M. & Yaghi, O. M. Sequence-dependent materials. Acc. Chem. Res. 50, 532–534 (2017).

    CAS  Google Scholar 

  95. 95.

    Qin, J.-S., Yuan, S., Wang, Q., Alsalme, A. & Zhou, H.-C. Mixed-linker strategy for the construction of multifunctional metal–organic frameworks. J. Mater. Chem. A 5, 4280–4291 (2017).

    CAS  Google Scholar 

  96. 96.

    Kong, X. et al. Mapping of functional groups in metal–organic frameworks. Science 341, 882–885 (2013).

    CAS  Google Scholar 

  97. 97.

    Choi, K. M., Na, K., Somorjai, G. A. & Yaghi, O. M. Chemical environment control and enhanced catalytic performance of platinum nanoparticles embedded in nanocrystalline metal–organic frameworks. J. Am. Chem. Soc. 137, 7810–7816 (2015).

    CAS  Google Scholar 

  98. 98.

    Kalaj, M., Palomba, J. M., Bentz, K. C. & Cohen, S. M. Multiple functional groups in UiO-66 improve chemical warfare agent simulant degradation. Chem. Commun. 55, 5367–5370 (2019).

    CAS  Google Scholar 

  99. 99.

    Dong, D., Sun, Y., Chu, J., Zhang, X. & Deng, H. Multivariate metal–organic frameworks for dialing-in the binding and programming the release of drug molecules. J. Am. Chem. Soc. 39, 14209–14216 (2017).

    Google Scholar 

  100. 100.

    Newsome, W. J. et al. Solid state multicolor emission in substitutional solid solutions of metal-organic frameworks. J. Am. Chem. Soc. 141, 11298–11303 (2019).

    CAS  Google Scholar 

  101. 101.

    Li, B. et al. Porous metal–organic frameworks with Lewis basic nitrogen sites for high-capacity methane storage. Energy Environ. Sci. 8, 2504–2511 (2015).

    CAS  Google Scholar 

  102. 102.

    Kim, M., Cahill, J. F., Fei, H., Prather, K. A. & Cohen, S. M. Postsynthetic ligand and cation exchange in robust metal–organic frameworks. J. Am. Chem. Soc. 134, 18082–18088 (2012).

    CAS  Google Scholar 

  103. 103.

    Szilágyi, P. A. ́ Interplay of linker functionalization and hydrogen adsorption in the metal–organic framework MIL-101. J. Phys. Chem. C 118, 19572–19579 (2014).

    Google Scholar 

  104. 104.

    Jayachandrababu, K. C., Sholl, D. S. & Nair, S. Structural and mechanistic differences in mixed-linker zeolitic imidazolate framework synthesis by solvent assisted linker exchange and de novo routes. J. Am. Chem. Soc. 139, 5906–5915 (2017).

    CAS  Google Scholar 

  105. 105.

    Boissonnault, J. A., Wong-Foy, A. G. & Matzger, A. J. Core–shell structures arise naturally during ligand exchange in metal–organic frameworks. J. Am. Chem. Soc. 139, 14841–14844 (2017).

    CAS  Google Scholar 

  106. 106.

    Li, T., Kozlowski, M. T., Doud, E. A., Blakely, M. N. & Rosi, N. L. Stepwise ligand exchange for the preparation of a family of mesoporous MOFs. J. Am. Chem. Soc. 135, 11688–11691 (2013).

    CAS  Google Scholar 

  107. 107.

    Fracaroli, A. M. et al. Seven post-synthetic covalent reactions in tandem leading to enzyme-like complexity within metal–organic framework crystals. J. Am. Chem. Soc. 138, 8352–8355 (2016).

    CAS  Google Scholar 

  108. 108.

    Caskey, S. R. & Matzger, A. J. Selective metal substitution for the preparation of heterobimetallic microporous coordination polymers. Inorg. Chem. 47, 7942–7944 (2008).

    CAS  Google Scholar 

  109. 109.

    Serre, C. et al. Synthesis, characterisation and luminescent properties of a new three-dimensional lanthanide trimesate: M((C6H3)-(CO2)3) (M = Y, Ln) or MIL-78. J. Mater. Chem. 14, 1540–1543 (2004).

    CAS  Google Scholar 

  110. 110.

    de Lill, D. T., de Bettencourt-Dias, A. & Cahill, C. L. Exploring lanthanide luminescence in metal-organic frameworks: synthesis, structure, and guest-sensitized luminescence of a mixed europium/terbium-adipate framework and a terbium-adipate framework. Inorg. Chem. 46, 3960–3965 (2007).

    Google Scholar 

  111. 111.

    Schubert, D. M., Visi, M. Z. & Knobler, C. B. Acid-catalyzed synthesis of zinc imidazolates and related bimetallic metal-organic framework compounds. Main Group. Chem. 7, 311–322 (2008).

    CAS  Google Scholar 

  112. 112.

    White, K. A. et al. Near-infrared luminescent lanthanide MOF barcodes. J. Am. Chem. Soc. 131, 18069–18071 (2009).

    CAS  Google Scholar 

  113. 113.

    Soares-Santos, P. C. et al. Photoluminescent 3D lanthanide–organic frameworks with 2,5-pyridinedicarboxylic and 1,4-phenylenediacetic acids. Cryst. Growth Des. 8, 2505–2516 (2008).

    CAS  Google Scholar 

  114. 114.

    Jee, B. et al. Continuous wave and pulsed electron spin resonance spectroscopy of paramagnetic framework cupric ions in the Zn(II) doped porous coordination polymer Cu3−xZnx(btc)2. J. Phys. Chem. C 114, 16630–16639 (2010).

    CAS  Google Scholar 

  115. 115.

    Wang, L. J. et al. Synthesis and characterization of metal–organic framework-74 containing 2, 4, 6, 8, and 10 different metals. Inorg. Chem. 53, 5881–5883 (2014).

    CAS  Google Scholar 

  116. 116.

    Liu, Q., Cong, H. & Deng, H. Deciphering the spatial arrangement of metals and correlation to reactivity in multivariate metal–organic frameworks. J. Am. Chem. Soc. 138, 13822–13825 (2016).

    CAS  Google Scholar 

  117. 117.

    Castillo-Blas, C. et al. Addressed realization of multication complex arrangements in metal–organic frameworks. Sci. Adv. 3, e1700773 (2017).

    Google Scholar 

  118. 118.

    Jiao, Y. et al. Tuning the kinetic water stability and adsorption interactions of Mg-MOF-74 by partial substitution with Co or Ni. Ind. Eng. Chem. Res. 54, 12408–12414 (2015).

    CAS  Google Scholar 

  119. 119.

    Botas, J. A., Calleja, G., Sánchez-Sánchez, M. & Orcajo, M. G. Cobalt doping of the MOF-5 framework and its effect on gas-adsorption properties. Langmuir 26, 5300–5303 (2010).

    CAS  Google Scholar 

  120. 120.

    Zhai, Q.-G., Bu, X., Mao, C., Zhao, X. & Feng, P. Systematic and dramatic tuning on gas sorption performance in heterometallic metal–organic frameworks. J. Am. Chem. Soc. 138, 2524–2527 (2016).

    CAS  Google Scholar 

  121. 121.

    Xia, Q. et al. Multivariate metal–organic frameworks as multifunctional heterogeneous asymmetric catalysts for sequential reactions. J. Am. Chem. Soc. 139, 8259–8266 (2017).

    CAS  Google Scholar 

  122. 122.

    Evans, J. D., Sumby, C. J. & Doonan, C. J. Post-synthetic metalation of metal–organic frameworks. Chem. Soc. Rev. 43, 5933–5951 (2014).

    CAS  Google Scholar 

  123. 123.

    Das, S., Kim, H. & Kim, K. Metathesis in single crystal: complete and reversible exchange of metal ions constituting the frameworks of metal–organic frameworks. J. Am. Chem. Soc. 131, 3814–3815 (2009).

    CAS  Google Scholar 

  124. 124.

    Brozek, C. K. & Dincă, M. Ti3+-, V2+/3+-, Cr2+/3+-, Mn2+-, and Fe2+-substituted MOF-5 and redox reactivity in Cr- and Fe-MOF-5. J. Am. Chem. Soc. 135, 12886–12891 (2013).

    CAS  Google Scholar 

  125. 125.

    Liu, T.-F. et al. Stepwise synthesis of robust metal–organic frameworks via postsynthetic metathesis and oxidation of metal nodes in a single-crystal to single-crystal transformation. J. Am. Chem. Soc. 136, 7813–7816 (2014).

    CAS  Google Scholar 

  126. 126.

    Bloch, E. D. et al. Metal insertion in a microporous metal–organic framework lined with 2,2′-bipyridine. J. Am. Chem. Soc. 132, 14382–14384 (2010).

    CAS  Google Scholar 

  127. 127.

    Tan, C., Han, X., Li, Z., Liu, Y. & Cui, Y. Controlled exchange of achiral linkers with chiral linkers in Zr-based UiO-68 metal–organic framework. J. Am. Chem. Soc. 140, 16229–16236 (2018).

    CAS  Google Scholar 

  128. 128.

    Nguyen, H. G. T. et al. Vanadium-node-functionalized UiO-66: a thermally stable MOF-supported catalyst for the gas-phase oxidative dehydrogenation of cyclohexene. ACS Catal. 4, 2496–2500 (2014).

    CAS  Google Scholar 

  129. 129.

    Kim, I. S. et al. Targeted single-site MOF node modification: trivalent metal loading via atomic layer deposition. Chem. Mater. 27, 4772–4778 (2015).

    CAS  Google Scholar 

  130. 130.

    Manna, K. et al. Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes. Nat. Commun. 7, 12610 (2016).

    CAS  Google Scholar 

  131. 131.

    Ji, P. et al. Single-site cobalt catalysts at new Zr123-O)83-OH)82-OH)6 metal–organic framework nodes for highly active hydrogenation of nitroarenes, nitriles, and isocyanides. J. Am. Chem. Soc. 139, 7004–7011 (2017).

    CAS  Google Scholar 

  132. 132.

    Manna, K., Ji, P., Greene, F. X. & Lin, W. Metal–organic framework nodes support single-site magnesium–alkyl catalysts for hydroboration and hydroamination reactions. J. Am. Chem. Soc. 138, 7488–7491 (2016).

    CAS  Google Scholar 

  133. 133.

    Krajnc, A., Kos, T., Zabukovec Logar, N. & Mali, G. A simple NMR based method for studying the spatial distribution of linkers within mixed-linker metal–organic frameworks. Angew. Chem. Int. Ed. 54, 10535–10538 (2015).

    CAS  Google Scholar 

  134. 134.

    Jayachandrababu, K. C. et al. Structure elucidation of mixed-linker zeolitic imidazolate frameworks by solid-state 1H CRAMPS NMR spectroscopy and computational modeling. J. Am. Chem. Soc. 138, 7325–7336 (2016).

    CAS  Google Scholar 

  135. 135.

    Schrimpf, W. et al. Chemical diversity in a metal–organic framework revealed by fluorescence lifetime imaging. Nat. Commun. 9, 1647 (2018).

    Google Scholar 

  136. 136.

    Zhao, Y. et al. Mesoscopic constructs of ordered and oriented metal–organic frameworks on plasmonic silver nanocrystals. J. Am. Chem. Soc. 137, 2199–2202 (2015).

    CAS  Google Scholar 

  137. 137.

    Schneemann, A. et al. Flexible metal–organic frameworks. Chem. Soc. Rev. 43, 6062–6096 (2014).

    CAS  Google Scholar 

  138. 138.

    Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nat. Chem. 1, 695–704 (2009).

    CAS  Google Scholar 

  139. 139.

    Deng, H., Olson, M. A., Stoddart, J. F. & Yaghi, O. M. Robust dynamics. Nat. Chem. 2, 439–443 (2010).

    CAS  Google Scholar 

  140. 140.

    Serre, C. et al. Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy. J. Am. Chem. Soc. 124, 13519–13526 (2002).

    CAS  Google Scholar 

  141. 141.

    Maji, T. K., Matsuda, R. & Kitagawa, S. A flexible interpenetrating coordination framework with a bimodal porous functionality. Nat. Mater. 6, 142–147 (2007).

    CAS  Google Scholar 

  142. 142.

    Liu, Y. et al. Weaving of organic threads into a crystalline covalent organic framework. Science 351, 365–369 (2016).

    CAS  Google Scholar 

  143. 143.

    Coskun, A. et al. Metal–organic frameworks incorporating copper-complexed rotaxanes. Angew. Chem. Int. Ed. 51, 2160–2163 (2012).

    CAS  Google Scholar 

  144. 144.

    Park, J. et al. Reversible alteration of CO2 adsorption upon photochemical or thermal treatment in a metal–organic framework. J. Am. Chem. Soc. 134, 99–102 (2012).

    CAS  Google Scholar 

  145. 145.

    Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    CAS  Google Scholar 

  146. 146.

    Park, J., Feng, D., Yuan, S. & Zhou, H.-C. Photochromic metal–organic frameworks: reversible control of singlet oxygen generation. Angew. Chem. Int. Ed. 54, 430–435 (2015).

    CAS  Google Scholar 

  147. 147.

    Williams, D. E. et al. Energy transfer on demand: photoswitch-directed behavior of metal–porphyrin frameworks. J. Am. Chem. Soc. 136, 11886–11889 (2014).

    CAS  Google Scholar 

  148. 148.

    Walton, I. M. et al. The role of atropisomers on the photo-reactivity and fatigue of diarylethene-based metal–organic frameworks. New J. Chem. 40, 101–106 (2014).

    Google Scholar 

  149. 149.

    Brown, J. W. et al. Photophysical pore control in an azobenzene-containing metal–organic framework. Chem. Sci. 4, 2858–2864 (2013).

    CAS  Google Scholar 

  150. 150.

    Danowski, W. et al. Unidirectional rotary motion in a metal–organic framework. Nat. Nanotechnol. 14, 488–494 (2019).

    CAS  Google Scholar 

  151. 151.

    Zhu, K., O’Keefe, C. A., Vukotic, V. N., Schurko, R. W. & Loeb, S. J. A molecular shuttle that operates inside a metal–organic framework. Nat. Chem. 7, 514–519 (2015).

    CAS  Google Scholar 

  152. 152.

    Chen, Q. et al. A redox-active bistable molecular switch mounted inside a metal–organic framework. J. Am. Chem. Soc. 138, 14242–14245 (2016).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge King Abdulaziz City for Science and Technology (KACST) as part of a joint KACST–UC Berkeley collaboration, the National Natural Science Foundation of China (21522105, 21922103, 21961132003, 21971199 and 91622103), the National Key R&D Program of China (2018YFA0704000) and the Science & Technology Commission of Shanghai Municipality (17JC1400100 and 17JC1404000).

Author information

Affiliations

Authors

Contributions

All authors researched data for the article and contributed to the discussion of content, and writing and editing of the manuscript.

Corresponding authors

Correspondence to Omar M. Yaghi or Yue-Biao Zhang or Hexiang Deng or Qiaowei Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Tu, B., Liu, Q. et al. Anisotropic reticular chemistry. Nat Rev Mater 5, 764–779 (2020). https://doi.org/10.1038/s41578-020-0225-x

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing