Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bioinspiration in light harvesting and catalysis

Abstract

Capturing and converting solar energy into fuels and feedstocks is a global challenge that spans numerous disciplines and fields of research. Billions of years of evolution have allowed natural organisms to hone strategies for harvesting light from the sun and storing energy in the form of carbon–carbon and carbon–hydrogen bonds. Photosynthetic antenna proteins capture solar photons and funnel photoexcitations to reaction centres with high yields, and enzymes catalyze multi-electron reactions, facilitating chemical transformations not yet efficiently implemented using artificially engineered catalysts. Researchers in renewable energy often look to nature to understand the mechanisms at work and, if possible, to explore their translation into artificial systems. Here, we review advances in bioinspiration across the fields of biological light harvesting and chemical energy conversion. We examine how multi-photon and multi-electron reactions in biology can inspire new methods in photoredox chemistry to achieve novel, selective and complex organic transformations; how carbonic-dehydrogenase-inspired design principles enable catalytic reactions such as the conversion of CO2 into useful products such as fuels; and how concepts from photosynthetic antenna complexes and reaction centres can benefit artificial light-harvesting materials. We then consider areas in which bioinspiration could enable advances in the rational design of molecules and materials, the expansion of the synthetic capabilities of catalysts and the valorization of molecular building blocks. We highlight the challenges that must be overcome to realize these advances and propose new directions that may use bioinspiration to achieve them.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Z-schemes in photocatalysis and multi-electron photochemistry.
Fig. 2: Bio-inspired catalysis at different length scales.
Fig. 3: Reactant-transport strategies in catalyst systems.
Fig. 4: Long-range exciton transport and energy funnelling in photosynthesis and planar, organic, photovoltaic-device architectures.
Fig. 5: Bioinspiration in materials science and chemistry.

References

  1. 1.

    Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    CAS  Google Scholar 

  2. 2.

    Hammarström, L. & Hammes-Schiffer, S. Artificial photosynthesis and solar fuels. Acc. Chem. Res. 42, 1859–1860 (2009).

    Google Scholar 

  3. 3.

    Babcock, G. T. et al. Water oxidation in photosystem II: from radical chemistry to multielectron chemistry. Biochemistry 28, 9557–9565 (1989).

    CAS  Google Scholar 

  4. 4.

    Zhu, X.-G., Long, S. P. & Ort, D. R. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr. Opin. Biotechnol. 19, 153–159 (2008).

    CAS  Google Scholar 

  5. 5.

    Tanaka, S. & Marcus, R. A. Electron transfer model for the electric field effect on quantum yield of charge separation in bacterial photosynthetic reaction centers. J. Phys. Chem. B 101, 5031–5045 (1997).

    CAS  Google Scholar 

  6. 6.

    Loach, P. A. & Sekura, D. L. Primary photochemistry and electron transport in Rhodospirillum rubrum. Biochemistry 7, 2642–2649 (1968).

    CAS  Google Scholar 

  7. 7.

    Cho, H. M., Mancino, L. J. & Blankenship, R. E. Light saturation curves and quantum yields in reaction centers from photosynthetic bacteria. Biophys. J. 45, 455–461 (1984).

    CAS  Google Scholar 

  8. 8.

    van Grondelle, R., Dekker, J. P., Gillbro, T. & Sundstrom, V. Energy transfer and trapping in photosynthesis. Biochim. Biophys. Acta 1187, 1–65 (1994).

    CAS  Google Scholar 

  9. 9.

    Penwell, S. B., Ginsberg, L. D. S., Noriega, R. & Ginsberg, N. S. Resolving ultrafast exciton migration in organic solids at the nanoscale. Nat. Mater. 16, 1136–1141 (2017).

    CAS  Google Scholar 

  10. 10.

    Markov, D. E., Amsterdam, E., Blom, P. W. M., Sieval, A. B. & Hummelen, J. C. Accurate measurement of the exciton diffusion length in a conjugated polymer using a heterostructure with a side-chain cross-linked fullerene layer. J. Phys. Chem. A 109, 5266–5274 (2005).

    CAS  Google Scholar 

  11. 11.

    Mikhnenko, O. V., Blom, P. W. M. & Nguyen, T.-Q. Exciton diffusion in organic semiconductors. Energy Environ. Sci. 8, 1867–1888 (2015).

    Google Scholar 

  12. 12.

    Bolton, J. R., Strickler, S. J. & Connolly, J. S. Limiting and realizable efficiencies of solar photolysis of water. Nature 316, 495–500 (1985).

    CAS  Google Scholar 

  13. 13.

    Kuriki, R. et al. Nature-inspired, highly durable CO2 reduction system consisting of a binuclear ruthenium(ii) complex and an organic semiconductor using visible light. J. Am. Chem. Soc. 138, 5159–5170 (2016).

    CAS  Google Scholar 

  14. 14.

    Khaselev, O. & Turner, J. A. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998).

    CAS  Google Scholar 

  15. 15.

    Cheng, W.-H. et al. Monolithic photoelectrochemical device for direct water splitting with 19% efficiency. ACS Energy Lett. 3, 1795–1800 (2018).

    CAS  Google Scholar 

  16. 16.

    Jin, J., Yu, J., Guo, D., Cui, C. & Ho, W. A hierarchical Z-scheme CdS–WO3 photocatalyst with enhanced CO2 reduction activity. Small 11, 5262–5271 (2015).

    CAS  Google Scholar 

  17. 17.

    Jiang, Z. et al. A hierarchical Z-scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Adv. Mater. 30, 1706108 (2018).

    Google Scholar 

  18. 18.

    Di, T., Zhu, B., Cheng, B., Yu, J. & Xu, J. A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance. J. Catal. 352, 532–541 (2017).

    CAS  Google Scholar 

  19. 19.

    Wang, L., Zheng, X., Chen, L., Xiong, Y. & Xu, H. Van der Waals heterostructures comprised of ultrathin polymer nanosheets for efficient Z-scheme overall water splitting. Angew. Chem. 130, 3512–3516 (2018).

    Google Scholar 

  20. 20.

    Sahara, G. et al. Photoelectrochemical reduction of CO2 coupled to water oxidation using a photocathode with a Ru(II)–Re(I) complex photocatalyst and a CoOx/TaON photoanode. J. Am. Chem. Soc. 138, 14152–14158 (2016).

    CAS  Google Scholar 

  21. 21.

    Sahara, G. et al. Photoelectrochemical CO2 reduction using a Ru(ii)–Re(i) multinuclear metal complex on a p-type semiconducting NiO electrode. Chem. Commun. 51, 10722–10725 (2015).

    CAS  Google Scholar 

  22. 22.

    Yoshitomi, F., Sekizawa, K., Maeda, K. & Ishitani, O. Selective formic acid production via CO2 reduction with visible light using a hybrid of a perovskite tantalum oxynitride and a binuclear ruthenium(II) complex. ACS Appl. Mater. Interfaces 7, 13092–13097 (2015).

    CAS  Google Scholar 

  23. 23.

    Iwase, A. et al. Water splitting and CO2 reduction under visible light irradiation using Z-scheme systems consisting of metal sulfides, CoOx-Loaded BiVO4, and a reduced graphene oxide electron mediator. J. Am. Chem. Soc. 138, 10260–10264 (2016).

    CAS  Google Scholar 

  24. 24.

    Muraoka, K. et al. A visible-light-driven Z-scheme CO2 reduction system using Ta3N5 and a Ru(II) binuclear complex. Bull. Chem. Soc. Jpn 92, 124–126 (2019).

    CAS  Google Scholar 

  25. 25.

    Shaw, M. H., Twilton, J. & MacMillan, D. W. C. Photoredox catalysis in organic chemistry. J. Org. Chem. 81, 6898–6926 (2016).

    CAS  Google Scholar 

  26. 26.

    Narayanam, J. M. R. & Stephenson, C. R. J. Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev. 40, 102–113 (2011).

    CAS  Google Scholar 

  27. 27.

    Xuan, J. & Xiao, W.-J. Visible-light photoredox catalysis. Angew. Chem. Int. Ed. 51, 6828–6838 (2012).

    CAS  Google Scholar 

  28. 28.

    Reckenthäler, M. & Griesbeck, A. G. Photoredox catalysis for organic syntheses. Adv. Synth. Catal. 355, 2727–2744 (2013).

    Google Scholar 

  29. 29.

    Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    CAS  Google Scholar 

  30. 30.

    Schultz, D. M. & Yoon, T. P. Solar synthesis: prospects in visible light photocatalysis. Science 343, 1239176 (2014).

    Google Scholar 

  31. 31.

    Vila, C. Merging visible-light-photoredox and nickel catalysis. ChemCatChem 7, 1790–1793 (2015).

    CAS  Google Scholar 

  32. 32.

    Levin, M. D., Kim, S. & Toste, F. D. Photoredox catalysis unlocks single-electron elementary steps in transition metal catalyzed cross-coupling. ACS Cent. Sci. 2, 293–301 (2016).

    CAS  Google Scholar 

  33. 33.

    Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    CAS  Google Scholar 

  34. 34.

    Huo, H. et al. Asymmetric photoredox transition-metal catalysis activated by visible light. Nature 515, 100–103 (2014).

    CAS  Google Scholar 

  35. 35.

    Iqbal, N., Jung, J., Park, S. & Cho, E. J. Controlled trifluoromethylation reactions of alkynes through visible-light photoredox catalysis. Angew. Chem. 126, 549–552 (2014).

    Google Scholar 

  36. 36.

    Ravetz, B. D. et al. Photoredox catalysis using infrared light via triplet fusion upconversion. Nature 565, 343–346 (2019).

    CAS  Google Scholar 

  37. 37.

    Suga, M. et al. Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature 517, 99–103 (2015).

    CAS  Google Scholar 

  38. 38.

    Najafpour, M. M. et al. Proposed mechanisms for water oxidation by Photosystem II and nanosized manganese oxides. Biochim. Biophys. Acta 1858, 156–174 (2017).

    CAS  Google Scholar 

  39. 39.

    Najafpour, M. M. et al. Damage management in water-oxidizing catalysts: from photosystem II to nanosized metal oxides. ACS Catal. 5, 1499–1512 (2015).

    CAS  Google Scholar 

  40. 40.

    Aro, E.-M., Virgin, I. & Andersson, B. Photoinhibition of photosystem II. inactivation, protein damage and turnover. Biochim. Biophys. Acta 1143, 113–134 (1993).

    CAS  Google Scholar 

  41. 41.

    Kodaimati, M. S., Lian, S., Schatz, G. C. & Weiss, E. A. Energy transfer-enhanced photocatalytic reduction of protons within quantum dot light-harvesting–catalyst assemblies. Proc. Natl Acad. Sci. USA 115, 8290–8295 (2018).

    CAS  Google Scholar 

  42. 42.

    Jiang, Y., Wang, C., Rogers, C. R., Kodaimati, M. S. & Weiss, E. A. Regio- and diastereoselective intermolecular [2+2] cycloadditions photocatalysed by quantum dots. Nat. Chem. 11, 1034–1040 (2019).

    CAS  Google Scholar 

  43. 43.

    Yuan, Y.-P. et al. Improving photocatalytic hydrogen production of metal–organic framework UiO-66 octahedrons by dye-sensitization. Appl. Catal. B Environ. 168–169, 572–576 (2015).

    Google Scholar 

  44. 44.

    Tian, J. et al. Supramolecular metal-organic frameworks that display high homogeneous and heterogeneous photocatalytic activity for H2 production. Nat. Commun. 7, 11580 (2016).

    CAS  Google Scholar 

  45. 45.

    Orazietti, M., Kuss-Petermann, M., Hamm, P. & Wenger, O. S. Light-driven electron accumulation in a molecular pentad. Angew. Chem. Int. Ed. 55, 9407–9410 (2016).

    CAS  Google Scholar 

  46. 46.

    Kuss-Petermann, M., Orazietti, M., Neuburger, M., Hamm, P. & Wenger, O. S. Intramolecular light-driven accumulation of reduction equivalents by proton-coupled electron transfer. J. Am. Chem. Soc. 139, 5225–5232 (2017).

    CAS  Google Scholar 

  47. 47.

    Cardona, T., Sedoud, A., Cox, N. & Rutherford, A. W. Charge separation in photosystem II: a comparative and evolutionary overview. Biochim. Biophys. Acta 1817, 26–43 (2012).

    CAS  Google Scholar 

  48. 48.

    Congreve, D. N. et al. External quantum efficiency above 100% in a singlet-exciton-fission–based organic photovoltaic cell. Science 340, 334–337 (2013).

    CAS  Google Scholar 

  49. 49.

    Lee, J., Jadhav, P. & Baldo, M. A. High efficiency organic multilayer photodetectors based on singlet exciton fission. Appl. Phys. Lett. 95, 033301 (2009).

    Google Scholar 

  50. 50.

    Kim, J. H., Hansora, D., Sharma, P., Jang, J.-W. & Lee, J. S. Toward practical solar hydrogen production – an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 48, 1908–1971 (2019).

    CAS  Google Scholar 

  51. 51.

    Ardo, S. et al. Pathways to electrochemical solar-hydrogen technologies. Energy Environ. Sci. 11, 2768–2783 (2018).

    CAS  Google Scholar 

  52. 52.

    Foster, S. L. et al. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 1, 490–500 (2018).

    Google Scholar 

  53. 53.

    Appel, A. M. et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem. Rev. 113, 6621–6658 (2013).

    CAS  Google Scholar 

  54. 54.

    Can, M., Armstrong, F. A. & Ragsdale, S. W. Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase. Chem. Rev. 114, 4149–4174 (2014).

    CAS  Google Scholar 

  55. 55.

    Kung, Y. & Drennan, C. L. in The Biological Chemistry of Nickel Ch. 7 (eds Zamble, D., Rowińska-Żyrek, M. & Kozlowski, H.) 121–148 (Royal Society of Chemistry, 2017).

  56. 56.

    Smith, P. T., Nichols, E. M., Cao, Z. & Chang, C. J. Hybrid catalysts for artificial photosynthesis: merging approaches from molecular, materials, and biological catalysis. Acc. Chem. Res. 53, 575–587 (2020).

    CAS  Google Scholar 

  57. 57.

    Kung, Y., Doukov, T. I., Seravalli, J., Ragsdale, S. W. & Drennan, C. L. Crystallographic snapshots of cyanide- and water-bound C-clusters from bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase. Biochemistry 48, 7432–7440 (2009).

    CAS  Google Scholar 

  58. 58.

    Heo, J., Halbleib, C. M. & Ludden, P. W. Redox-dependent activation of CO dehydrogenase from Rhodospirillum rubrum. Proc. Natl Acad. Sci. USA 98, 7690–7693 (2001).

    CAS  Google Scholar 

  59. 59.

    Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015).

    CAS  Google Scholar 

  60. 60.

    Baek, J. et al. Bioinspired metal–organic framework catalysts for selective methane oxidation to methanol. J. Am. Chem. Soc. 140, 18208–18216 (2018).

    CAS  Google Scholar 

  61. 61.

    Handoko, A. D., Wei, F., Jenndy, Yeo, B. S. & Seh, Z. W. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 1, 922–934 (2018).

    CAS  Google Scholar 

  62. 62.

    Hall, A. S., Yoon, Y., Wuttig, A. & Surendranath, Y. Mesostructure-induced selectivity in CO2 reduction catalysis. J. Am. Chem. Soc. 137, 14834–14837 (2015).

    CAS  Google Scholar 

  63. 63.

    Yoon, Y., Hall, A. S. & Surendranath, Y. Tuning of silver catalyst mesostructure promotes selective carbon dioxide conversion into fuels. Angew. Chem. Int. Ed. 55, 15282–15286 (2016).

    CAS  Google Scholar 

  64. 64.

    Zhuang, T.-T. et al. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nat. Catal. 1, 946–951 (2018).

    CAS  Google Scholar 

  65. 65.

    Raugei, S. et al. Experimental and computational mechanistic studies guiding the rational design of molecular electrocatalysts for production and oxidation of hydrogen. Inorg. Chem. 55, 445–460 (2016).

    CAS  Google Scholar 

  66. 66.

    Helm, M. L., Stewart, M. P., Bullock, R. M., DuBois, M. R. & DuBois, D. L. A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s−1 for H2 production. Science 333, 863–866 (2011).

    CAS  Google Scholar 

  67. 67.

    Li, W. et al. A bio-inspired coordination polymer as outstanding water oxidation catalyst via second coordination sphere engineering. Nat. Commun. 10, 5074 (2019).

    CAS  Google Scholar 

  68. 68.

    Ung, G. & Peters, J. C. Low-temperature N2 binding to two-coordinate L2Fe0 enables reductive trapping of L2FeN2 and NH3 generation. Angew. Chem. Int. Ed. 54, 532–535 (2015).

    CAS  Google Scholar 

  69. 69.

    Lee, Y., Mankad, N. P. & Peters, J. C. Triggering N2 uptake via redox-induced expulsion of coordinated NH3 and N2 silylation at trigonal bipyramidal iron. Nat. Chem. 2, 558–565 (2010).

    CAS  Google Scholar 

  70. 70.

    Costentin, C., Drouet, S., Robert, M. & Savéant, J.-M. A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst. Science 338, 90–94 (2012).

    CAS  Google Scholar 

  71. 71.

    Schmeier, T. J., Dobereiner, G. E., Crabtree, R. H. & Hazari, N. Secondary coordination sphere interactions facilitate the insertion step in an iridium(III) CO2 reduction catalyst. J. Am. Chem. Soc. 133, 9274–9277 (2011).

    CAS  Google Scholar 

  72. 72.

    Haviv, E. et al. A thiourea tether in the second coordination sphere as a binding site for CO2 and a proton donor promotes the electrochemical reduction of CO2 to CO catalyzed by a rhenium bipyridine-type complex. J. Am. Chem. Soc. 140, 12451–12456 (2018).

    CAS  Google Scholar 

  73. 73.

    Chapovetsky, A. et al. Pendant hydrogen-bond donors in cobalt catalysts independently enhance CO2 reduction. ACS Cent. Sci. 4, 397–404 (2018).

    CAS  Google Scholar 

  74. 74.

    Nichols, E. M., Derrick, J. S., Nistanaki, S. K., Smith, P. T. & Chang, C. J. Positional effects of second-sphere amide pendants on electrochemical CO2 reduction catalyzed by iron porphyrins. Chem. Sci. 9, 2952–2960 (2018).

    CAS  Google Scholar 

  75. 75.

    Azcarate, I., Costentin, C., Robert, M. & Savéant, J.-M. Through-space charge interaction substituent effects in molecular catalysis leading to the design of the most efficient catalyst of CO2-to-CO electrochemical conversion. J. Am. Chem. Soc. 138, 16639–16644 (2016).

    CAS  Google Scholar 

  76. 76.

    Han, Z., Kortlever, R., Chen, H.-Y., Peters, J. C. & Agapie, T. CO2 reduction selective for C≥2 products on polycrystalline copper with N-substituted pyridinium additives. ACS Cent. Sci. 3, 853–859 (2017).

    CAS  Google Scholar 

  77. 77.

    Jiao, Y., Zheng, Y., Chen, P., Jaroniec, M. & Qiao, S.-Z. Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol. J. Am. Chem. Soc. 139, 18093–18100 (2017).

    CAS  Google Scholar 

  78. 78.

    Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016).

    CAS  Google Scholar 

  79. 79.

    Li, Y. H., Liu, P. F., Li, C. & Yang, H. G. Sharp-tipped zinc nanowires as an efficient electrocatalyst for carbon dioxide reduction. Chem. Eur. J. 24, 15486–15490 (2018).

    CAS  Google Scholar 

  80. 80.

    Hammes-Schiffer, S. Proton-coupled electron transfer: moving together and charging forward. J. Am. Chem. Soc. 137, 8860–8871 (2015).

    CAS  Google Scholar 

  81. 81.

    Hammes-Schiffer, S. Theory of proton-coupled electron transfer in energy conversion processes. Acc. Chem. Res. 42, 1881–1889 (2009).

    CAS  Google Scholar 

  82. 82.

    Kai, T., Zhou, M., Duan, Z., Henkelman, G. A. & Bard, A. J. Detection of CO2•− in the electrochemical reduction of carbon dioxide in N,N-dimethylformamide by scanning electrochemical microscopy. J. Am. Chem. Soc. 139, 18552–18557 (2017).

    CAS  Google Scholar 

  83. 83.

    Mondal, B., Song, J., Neese, F. & Ye, S. Bio-inspired mechanistic insights into CO2 reduction. Curr. Opin. Chem. Biol. 25, 103–109 (2015).

    CAS  Google Scholar 

  84. 84.

    Jackson, M. N., Pegis, M. L. & Surendranath, Y. Graphite-conjugated acids reveal a molecular framework for proton-coupled electron transfer at electrode surfaces. ACS Cent. Sci. 5, 831–841 (2019).

    CAS  Google Scholar 

  85. 85.

    Jackson, M. N. et al. Strong electronic coupling of molecular sites to graphitic electrodes via pyrazine conjugation. J. Am. Chem. Soc. 140, 1004–1010 (2018).

    CAS  Google Scholar 

  86. 86.

    Cai, R. & Minteer, S. D. Nitrogenase bioelectrocatalysis: from understanding electron-transfer mechanisms to energy applications. ACS Energy Lett. 3, 2736–2742 (2018).

    CAS  Google Scholar 

  87. 87.

    Milton, R. D. et al. Bioelectrochemical Haber–Bosch process: an ammonia-producing H2/N2 fuel cell. Angew. Chem. Int. Ed. 56, 2680–2683 (2017).

    CAS  Google Scholar 

  88. 88.

    Yuan, M. & Minteer, S. D. Redox polymers in electrochemical systems: From methods of mediation to energy storage. Curr. Opin. Electrochem. 15, 1–6 (2019).

    Google Scholar 

  89. 89.

    Li, Y. C. et al. Electrolysis of CO2 to syngas in bipolar membrane-based electrochemical cells. ACS Energy Lett. 1, 1149–1153 (2016).

    CAS  Google Scholar 

  90. 90.

    Salvatore, D. A. et al. Electrolysis of gaseous CO2 to CO in a flow cell with a bipolar membrane. ACS Energy Lett. 3, 149–154 (2017).

    Google Scholar 

  91. 91.

    Bakker, J. G. C., Van Grondelle, R. & Den Hollander, W. T. F. Trapping, loss and annihilation of excitations in a photosynthetic system: II. Experiments with the purple bacteria Rhodospirillum rubrum and Rhodopseudomonas capsulata. Biochim. Biophys. Acta 725, 508–518 (1983).

    CAS  Google Scholar 

  92. 92.

    Gillbro, T., Sandström, Å., Spangfort, M., Sundström, V. & van Grondelle, R. Excitation energy annihilation in aggregates of chlorophyll ab complexes. Biochim. Biophys. Acta 934, 369–374 (1988).

    CAS  Google Scholar 

  93. 93.

    Hashimoto, H., Sugai, Y., Uragami, C., Gardiner, A. T. & Cogdell, R. J. Natural and artificial light-harvesting systems utilizing the functions of carotenoids. J. Photochem. Photobiol. C Photochem. Rev. 25, 46–70 (2015).

    CAS  Google Scholar 

  94. 94.

    Barzda, V. et al. Singlet–singlet annihilation kinetics in aggregates and trimers of LHCII. Biophys. J. 80, 2409–2421 (2001).

    CAS  Google Scholar 

  95. 95.

    Geacintov, N. E., Breton, J., Swenberg, C. E. & Paillotin, G. A single pulse picosecond laser study of exciton dynamics in chloroplasts. Photochem. Photobiol. 26, 629–638 (1977).

    Google Scholar 

  96. 96.

    Haedler, A. T. et al. Long-range energy transport in single supramolecular nanofibres at room temperature. Nature 523, 196–199 (2015).

    CAS  Google Scholar 

  97. 97.

    Krueger, B. P., Scholes, G. D. & Fleming, G. R. Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J. Phys. Chem. B 102, 5378–5386 (1998).

    CAS  Google Scholar 

  98. 98.

    Caram, J. R. et al. Room-temperature micron-scale exciton migration in a stabilized emissive molecular aggregate. Nano Lett. 16, 6808–6815 (2016).

    CAS  Google Scholar 

  99. 99.

    Li, J.-J., Chen, Y., Yu, J., Cheng, N. & Liu, Y. A supramolecular artificial light-harvesting system with an ultrahigh antenna effect. Adv. Mater. 29, 1701905 (2017).

    Google Scholar 

  100. 100.

    Scholes, G. D., Fleming, G. R., Olaya-Castro, A. & van Grondelle, R. Lessons from nature about solar light harvesting. Nat. Chem. 3, 763–774 (2011).

    CAS  Google Scholar 

  101. 101.

    Sim, M. et al. Dependence of exciton diffusion length on crystalline order in conjugated polymers. J. Phys. Chem. C 118, 760–766 (2014).

    CAS  Google Scholar 

  102. 102.

    Mikhnenko, O. V. et al. Exciton diffusion length in narrow bandgap polymers. Energy Environ. Sci. 5, 6960–6965 (2012).

    CAS  Google Scholar 

  103. 103.

    Cui, Y. et al. Organic photovoltaic cell with 17% efficiency and superior processability. Natl. Sci. Rev. 7, 1239–1246 (2019).

    Google Scholar 

  104. 104.

    Scholes, G. D. Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 54, 57–87 (2003).

    CAS  Google Scholar 

  105. 105.

    Förster, T. Zwischenmolekulare energiewanderung und fluoreszenz. Ann. Phys. 437, 55–75 (1948).

    Google Scholar 

  106. 106.

    Scholes, G. D., Jordanides, X. J. & Fleming, G. R. Adapting the Förster theory of energy transfer for modeling dynamics in aggregated molecular assemblies. J. Phys. Chem. B 105, 1640–1651 (2001).

    CAS  Google Scholar 

  107. 107.

    Medintz, I. L. & Hildebrandt, N. FRET - Förster Resonance Energy Transfer: From Theory to Applications (Wiley, 2013).

  108. 108.

    Cnops, K. et al. 8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer. Nat. Commun. 5, 3406 (2014).

    Google Scholar 

  109. 109.

    Gupta, V., Bharti, V., Kumar, M., Chand, S. & Heeger, A. J. Polymer–polymer Förster resonance energy transfer significantly boosts the power conversion efficiency of bulk-heterojunction solar cells. Adv. Mater. 27, 4398–4404 (2015).

    CAS  Google Scholar 

  110. 110.

    Mohapatra, A. A. et al. Förster resonance energy transfer drives higher efficiency in ternary blend organic solar cells. ACS Appl. Energy Mater. 1, 4874–4882 (2018).

    CAS  Google Scholar 

  111. 111.

    Xu, W.-L. et al. Förster resonance energy transfer and energy cascade in broadband photodetectors with ternary polymer bulk heterojunction. J. Phys. Chem. C 119, 21913–21920 (2015).

    CAS  Google Scholar 

  112. 112.

    Feron, K. et al. Utilizing energy transfer in binary and ternary bulk heterojunction organic solar cells. ACS Appl. Mater. Interfaces 8, 20928–20937 (2016).

    CAS  Google Scholar 

  113. 113.

    Nam, M. et al. Long-term efficient organic photovoltaics based on quaternary bulk heterojunctions. Nat. Commun. 8, 14068 (2017).

    CAS  Google Scholar 

  114. 114.

    Kramer, I. J., Levina, L., Debnath, R., Zhitomirsky, D. & Sargent, E. H. Solar cells using quantum funnels. Nano Lett. 11, 3701–3706 (2011).

    CAS  Google Scholar 

  115. 115.

    Baek, S.-W. et al. Efficient hybrid colloidal quantum dot/organic solar cells mediated by near-infrared sensitizing small molecules. Nat. Energy 4, 969–976 (2019).

    CAS  Google Scholar 

  116. 116.

    Quintero-Bermudez, R. et al. Ligand-induced surface charge density modulation generates local type-II band alignment in reduced-dimensional perovskites. J. Am. Chem. Soc. 141, 13459–13467 (2019).

    CAS  Google Scholar 

  117. 117.

    Proppe, A. H. et al. Synthetic control over quantum well width distribution and carrier migration in low-dimensional perovskite photovoltaics. J. Am. Chem. Soc. 140, 2890–2896 (2018).

    CAS  Google Scholar 

  118. 118.

    Cao, D. H., Stoumpos, C. C., Farha, O. K., Hupp, J. T. & Kanatzidis, M. G. 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 137, 7843–7850 (2015).

    CAS  Google Scholar 

  119. 119.

    Giebink, N. C., Lassiter, B. E., Wiederrecht, G. P., Wasielewski, M. R. & Forrest, S. R. Ideal diode equation for organic heterojunctions. II. The role of polaron pair recombination. Phys. Rev. B 82, 155306 (2010).

    Google Scholar 

  120. 120.

    Schlenker, C. W. et al. Cascade organic solar cells. Chem. Mater. 23, 4132–4140 (2011).

    CAS  Google Scholar 

  121. 121.

    Nikolis, V. C. et al. Reducing voltage losses in cascade organic solar cells while maintaining high external quantum efficiencies. Adv. Energy Mater. 7, 1700855 (2017).

    Google Scholar 

  122. 122.

    Cnops, K., Rand, B. P., Cheyns, D. & Heremans, P. Enhanced photocurrent and open-circuit voltage in a 3-layer cascade organic solar cell. Appl. Phys. Lett. 101, 143301 (2012).

    Google Scholar 

  123. 123.

    Gasparini, N., Salleo, A., McCulloch, I. & Baran, D. The role of the third component in ternary organic solar cells. Nat. Rev. Mater. 4, 229–242 (2019).

    Google Scholar 

  124. 124.

    Wang, C. et al. Ternary organic solar cells with enhanced open circuit voltage. Nano Energy 37, 24–31 (2017).

    CAS  Google Scholar 

  125. 125.

    Lu, L., Xu, T., Chen, W., Landry, E. S. & Yu, L. Ternary blend polymer solar cells with enhanced power conversion efficiency. Nat. Photonics 8, 716–722 (2014).

    CAS  Google Scholar 

  126. 126.

    Gasparini, N. et al. Designing ternary blend bulk heterojunction solar cells with reduced carrier recombination and a fill factor of 77%. Nat. Energy 1, 16118 (2016).

    CAS  Google Scholar 

  127. 127.

    Schwarze, M. et al. Impact of molecular quadrupole moments on the energy levels at organic heterojunctions. Nat. Commun. 10, 2466 (2019).

    Google Scholar 

  128. 128.

    Schwarze, M. et al. Band structure engineering in organic semiconductors. Science 352, 1446–1449 (2016).

    CAS  Google Scholar 

  129. 129.

    Arias-Rotondo, D. M. & McCusker, J. K. The photophysics of photoredox catalysis: a roadmap for catalyst design. Chem. Soc. Rev. 45, 5803–5820 (2016).

    CAS  Google Scholar 

  130. 130.

    Ebbesen, T. W. Hybrid light–matter states in a molecular and material science perspective. Acc. Chem. Res. 49, 2403–2412 (2016).

    CAS  Google Scholar 

  131. 131.

    Thomas, A. et al. Tilting a ground-state reactivity landscape by vibrational strong coupling. Science 363, 615–619 (2019).

    CAS  Google Scholar 

  132. 132.

    Thomas, A. et al. Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field. Angew. Chem. Int. Ed. 128, 11634–11638 (2016).

    Google Scholar 

  133. 133.

    Ruggenthaler, M. et al. Quantum-electrodynamical density-functional theory: bridging quantum optics and electronic-structure theory. Phys. Rev. A 90, 012508 (2014).

    Google Scholar 

  134. 134.

    Tokatly, I. V. Time-dependent density functional theory for many-electron systems interacting with cavity photons. Phys. Rev. Lett. 110, 233001 (2013).

    CAS  Google Scholar 

  135. 135.

    Flick, J. & Narang, P. Cavity-correlated electron-nuclear dynamics from first principles. Phys. Rev. Lett. 121, 113002 (2018).

    CAS  Google Scholar 

  136. 136.

    Flick, J. & Narang, P. Excited-state nanophotonic and polaritonic chemistry with ab initio potential-energy surfaces. Preprint at arXiv https://arxiv.org/abs/1907.04646 (2019).

  137. 137.

    Costentin, C. & Nocera, D. G. Self-healing catalysis in water. Proc. Natl Acad. Sci. USA 114, 13380–13384 (2017).

    CAS  Google Scholar 

  138. 138.

    Yang, Y. & Urban, M. W. Self-healing polymeric materials. Chem. Soc. Rev. 42, 7446–7467 (2013).

    CAS  Google Scholar 

  139. 139.

    Ricca, E., Brucher, B. & Schrittwieser, J. H. Multi-enzymatic cascade reactions: overview and perspectives. Adv. Synth. Catal. 353, 2239–2262 (2011).

    CAS  Google Scholar 

  140. 140.

    Hickey, D. P., Gaffney, E. M. & Minteer, S. D. Electrometabolic pathways: recent developments in bioelectrocatalytic cascades. Top. Curr. Chem. 376, 43 (2018).

    Google Scholar 

  141. 141.

    Cazelles, R. et al. Reduction of CO2 to methanol by a polyenzymatic system encapsulated in phospholipids–silica nanocapsules. New J. Chem. 37, 3721–3730 (2013).

    CAS  Google Scholar 

  142. 142.

    Lum, Y. & Ager, J. W. Sequential catalysis controls selectivity in electrochemical CO2 reduction on Cu. Energy Environ. Sci. 11, 2935–2944 (2018).

    CAS  Google Scholar 

  143. 143.

    Deng, Y. & Yeo, B. S. Characterization of electrocatalytic water splitting and CO2 reduction reactions using in situ/operando Raman spectroscopy. ACS Catal. 7, 7873–7889 (2017).

    CAS  Google Scholar 

  144. 144.

    Luna, P. D. et al. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1, 103–110 (2018).

    Google Scholar 

  145. 145.

    Genovese, C. et al. Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon. Nat. Commun. 9, 935 (2018).

    Google Scholar 

  146. 146.

    Luo, J. et al. A compact tunable polarized X-ray source based on laser-plasma helical undulators. Sci. Rep. 6, 29101 (2016).

    CAS  Google Scholar 

  147. 147.

    Maurizio, C., Rovezzi, M., Bardelli, F., Pais, H. G. & D’Acapito, F. Setup for optimized grazing incidence x-ray absorption experiments on thin films on substrates. Rev. Sci. Instrum. 80, 063904 (2009).

    CAS  Google Scholar 

  148. 148.

    Young, I. D. et al. Structure of photosystem II and substrate binding at room temperature. Nature 540, 453–457 (2016).

    CAS  Google Scholar 

  149. 149.

    Kern, J. et al. Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature. Science 340, 491–495 (2013).

    CAS  Google Scholar 

  150. 150.

    Kupitz, C. et al. Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature 513, 261–265 (2014).

    CAS  Google Scholar 

  151. 151.

    Göttle, A. J. & Koper, M. T. M. Proton-coupled electron transfer in the electrocatalysis of CO2 reduction: prediction of sequential vs. concerted pathways using DFT. Chem. Sci. 8, 458–465 (2017).

    Google Scholar 

  152. 152.

    Brockherde, F. et al. Bypassing the Kohn-Sham equations with machine learning. Nat. Commun. 8, 1872 (2017).

    Google Scholar 

  153. 153.

    Čorić, I., Mercado, B. Q., Bill, E., Vinyard, D. J. & Holland, P. L. Binding of dinitrogen to an iron–sulfur–carbon site. Nature 526, 96–99 (2015).

    Google Scholar 

  154. 154.

    Rodriguez, M. M., Bill, E., Brennessel, W. W. & Holland, P. L. N2 reduction and hydrogenation to ammonia by a molecular iron-potassium complex. Science 334, 780–783 (2011).

    CAS  Google Scholar 

  155. 155.

    Gómez-Bombarelli, R. et al. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat. Mater. 15, 1120–1127 (2016).

    Google Scholar 

  156. 156.

    Granda, J. M., Donina, L., Dragone, V., Long, D.-L. & Cronin, L. Controlling an organic synthesis robot with machine learning to search for new reactivity. Nature 559, 377–381 (2018).

    CAS  Google Scholar 

  157. 157.

    Ahneman, D. T., Estrada, J. G., Lin, S., Dreher, S. D. & Doyle, A. G. Predicting reaction performance in C–N cross-coupling using machine learning. Science 360, 186–190 (2018).

    CAS  Google Scholar 

  158. 158.

    Scheuring, S. & Sturgis, J. N. Chromatic adaptation of photosynthetic membranes. Science 309, 484–487 (2005).

    CAS  Google Scholar 

  159. 159.

    Bahatyrova, S. et al. The native architecture of a photosynthetic membrane. Nature 430, 1058–1062 (2004).

    CAS  Google Scholar 

  160. 160.

    McDermott, G. et al. Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374, 517–521 (1995).

    CAS  Google Scholar 

  161. 161.

    Sundström, V., Pullerits, T. & van Grondelle, R. Photosynthetic light-harvesting: reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J. Phys. Chem. B 103, 2327–2346 (1999).

    Google Scholar 

  162. 162.

    Zheng, X. et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. 10, 149–154 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

All authors acknowledge support from CIFAR for facilitating meetings that helped conceive this work and related collaborations. C.J.C. thanks DOE/LBNL grant 101528-002 for funding. G.S.-C., A.G.D. and G.D.S acknowledge support from the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy through grant no. DE-SC0019370. A.H.P. was partly funded through a CGS D grant from NSERC. We thank Fraser Armstrong, Barry Rand, Koen Vandewal and Johannes Benduhn for helpful discussions.

Author information

Affiliations

Authors

Contributions

All authors contributed to the discussion of content. A.H.P. and Y.C.L. gathered content and wrote the initial draft, with input from all co-authors. All authors helped revise the manuscript before submission.

Corresponding author

Correspondence to Edward H. Sargent.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Proppe, A.H., Li, Y.C., Aspuru-Guzik, A. et al. Bioinspiration in light harvesting and catalysis. Nat Rev Mater 5, 828–846 (2020). https://doi.org/10.1038/s41578-020-0222-0

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing