The surface of halide perovskites from nano to bulk

Abstract

The surface of a semiconductor often has a key role in determining its properties. For metal halide perovskites, understanding the surface features and their impact on the materials and devices is becoming increasingly important. At length scales down to the nanoscale regime, surface features become dominant in regulating the properties of perovskite materials, owing to the high surface-to-volume ratio. For perovskite bulk films in the micrometre range, defects and structural disorder readily form at the surface and affect device performance. Through concerted efforts to optimize processing techniques, high-quality perovskite thin films can now be fabricated with monolayer-like polycrystalline grains or even single crystals. Surface defects therefore remain the major obstacle to progress, pushing surface studies to the forefront of perovskite research. In this Review, we summarize and assess recent advances in the understanding of perovskite surfaces and surface strategies towards improving perovskite materials and the efficiency and stability of perovskite devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Surface terminations and disorder.
Fig. 2: Surface chemistry and defects in metal halide perovskite nanoparticles.
Fig. 3: Surface-sensitive techniques for characterizing metal halide perovskites.
Fig. 4: Surface-defect-healing strategies.
Fig. 5: Surface band-tuning strategies.
Fig. 6: Manipulation of surface tension.

References

  1. 1.

    Davison, S. G., Steshcka, M. in Basic Theory of Surface States (eds Davison, S. G. & Stęślicka, M.) 46–54 (Clarendon Press, 1992).

  2. 2.

    Shockley, W. On the surface states associated with a periodic potential. Phys. Rev. 56, 317–323 (1939).

    CAS  Google Scholar 

  3. 3.

    Kim, H. S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Google Scholar 

  4. 4.

    Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    CAS  Google Scholar 

  5. 5.

    Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    National Renewable Energy Laboratory. Best research-cell efficiencies chart. NREL https://www.nrel.gov/pv/cell-efficiency.html (2019).

  7. 7.

    Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photonics 13, 418–424 (2019).

    CAS  Google Scholar 

  8. 8.

    Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

    CAS  Google Scholar 

  9. 9.

    Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).

    CAS  Google Scholar 

  10. 10.

    Meggiolaro, D., Mosconi, E. & De Angelis, F. Formation of surface defects dominates ion migration in lead-halide perovskites. ACS Energy Lett. 4, 779–785 (2019).

    CAS  Google Scholar 

  11. 11.

    Wang, R. et al. A review of perovskites solar cell stability. Adv. Funct. Mater. 29, 1808843 (2019).

    CAS  Google Scholar 

  12. 12.

    Boles, M. A., Ling, D., Hyeon, T. & Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 15, 141–153 (2016).

    CAS  Google Scholar 

  13. 13.

    Levchuk, I. et al. Brightly luminescent and color-tunable formamidinium lead halide perovskite FAPbX3 (X = Cl, Br, I) colloidal nanocrystals. Nano Lett. 17, 2765–2770 (2017).

    CAS  Google Scholar 

  14. 14.

    Kagan, C. R. & Murray, C. B. Charge transport in strongly coupled quantum dot solids. Nat. Nanotechnol. 10, 1013–1026 (2015).

    CAS  Google Scholar 

  15. 15.

    Wang, R. et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 366, 1509–1513 (2019).

    CAS  Google Scholar 

  16. 16.

    Chen, Z. et al. Thin single crystal perovskite solar cells to harvest below-bandgap light absorption. Nat. Commun. 8, 1890 (2017).

    Google Scholar 

  17. 17.

    Min, H. et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366, 749–753 (2019).

    CAS  Google Scholar 

  18. 18.

    Jung, E. H. et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567, 511–515 (2019).

    CAS  Google Scholar 

  19. 19.

    Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019).

    CAS  Google Scholar 

  20. 20.

    Callen, H. B. Thermodynamics and an Introduction to Thermostatistics 27–35 (Wiley, 1985)

  21. 21.

    Uratani, H. & Yamashita, K. Charge carrier trapping at surface defects of perovskite solar cell absorbers: a first-principles study. J. Phys. Chem. Lett. 8, 742–746 (2017).

    CAS  Google Scholar 

  22. 22.

    Mosconi, E., Ronca, E. & De Angelis, F. First-principles investigation of the TiO2/organohalide perovskites interface: the role of interfacial chlorine. J. Phys. Chem. Lett. 5, 2619–2625 (2014).

    CAS  Google Scholar 

  23. 23.

    Quarti, C., De Angelis, F. & Beljonne, D. Influence of surface termination on the energy level alignment at the CH3NH3PbI3 perovskite/C60 interface. Chem. Mater. 29, 958–968 (2017).

    CAS  Google Scholar 

  24. 24.

    Haruyama, J., Sodeyama, K., Han, L. & Tateyama, Y. Termination dependence of tetragonal CH3NH3PbI3 surfaces for perovskite solar cells. J. Phys. Chem. Lett. 5, 2903–2909 (2014).

    CAS  Google Scholar 

  25. 25.

    Haruyama, J., Sodeyama, K., Han, L. & Tateyama, Y. Surface properties of CH3NH3PbI3 for perovskite solar cells. Acc. Chem. Res. 49, 554–561 (2016).

    CAS  Google Scholar 

  26. 26.

    Huang, X., Paudel, T. R., Dowben, P. A., Dong, S. & Tsymbal, E. Y. Electronic structure and stability of the CH3NH3PbBr3 (001) surface. Phys. Rev. B 94, 195309 (2016).

    Google Scholar 

  27. 27.

    Komesu, T. et al. Surface electronic structure of hybrid organo lead bromide perovskite single crystals. J. Phys. Chem. C 120, 21710–21715 (2016).

    CAS  Google Scholar 

  28. 28.

    Torres, A. & Rego, L. G. C. Surface effects and adsorption of methoxy anchors on hybrid lead iodide perovskites: insights for spiro-MeOTAD attachment. J. Phys. Chem. C 118, 26947–26954 (2014).

    CAS  Google Scholar 

  29. 29.

    Ran, C., Xu, J., Gao, W., Huang, C. & Dou, S. Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering. Chem. Soc. Rev. 47, 4581–4610 (2018).

    CAS  Google Scholar 

  30. 30.

    Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

    Google Scholar 

  31. 31.

    Liu, Y. et al. Atomistic origins of surface defects in CH3NH3PbBr3 perovskite and their electronic structures. ACS Nano 11, 2060–2065 (2017).

    CAS  Google Scholar 

  32. 32.

    Kim, J., Lee, S. H., Lee, J. H. & Hong, K. H. The role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 5, 1312–1317 (2014).

    CAS  Google Scholar 

  33. 33.

    Liu, N. & Yam, C. Y. First-principles study of intrinsic defects in formamidinium lead triiodide perovskite solar cell absorbers. Phys. Chem. Chem. Phys. 20, 6800–6804 (2018).

    CAS  Google Scholar 

  34. 34.

    Kabakova, I. V. et al. The effect of ionic composition on acoustic phonon speeds in hybrid perovskites from Brillouin spectroscopy and density functional theory. J. Mater. Chem. C 6, 3861–3868 (2018).

    CAS  Google Scholar 

  35. 35.

    Ohmann, R. et al. Real-space imaging of the atomic structure of organic-inorganic perovskite. J. Am. Chem. Soc. 137, 16049–16054 (2015).

    CAS  Google Scholar 

  36. 36.

    She, L., Liu, M. & Zhong, D. Atomic structures of CH3NH3PbI3 (001) surfaces. ACS Nano 10, 1126–1131 (2016).

    CAS  Google Scholar 

  37. 37.

    Stecker, C. et al. Surface defect dynamics in organic –inorganic hybrid perovskites: from mechanism to interfacial properties. ACS Nano 13, 12127–12136 (2019).

    CAS  Google Scholar 

  38. 38.

    Hieulle, J. et al. Imaging of the atomic structure of all-inorganic halide perovskites. J. Phys. Chem. Lett. 11, 818–823 (2020).

    CAS  Google Scholar 

  39. 39.

    Akkerman, Q. A. et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 137, 10276–10281 (2015).

    CAS  Google Scholar 

  40. 40.

    Meggiolaro, D., Mosconi, E. & De Angelis, F. Modeling the interaction of molecular iodine with MAPbI3: a probe of lead-halide perovskites defect chemistry. ACS Energy Lett. 3, 447–451 (2018).

    CAS  Google Scholar 

  41. 41.

    Thind, A. S. et al. Atomic structure and electrical activity of grain boundaries and Ruddlesden–Popper faults in cesium lead bromide perovskite. Adv. Mater. 31, 1805047 (2019).

    Google Scholar 

  42. 42.

    Rothmann, M. U. et al. Direct observation of intrinsic twin domains in tetragonal CH3NH3PbI3. Nat. Commun. 8, 14547 (2017).

    CAS  Google Scholar 

  43. 43.

    Kim, T. W. et al. Self-organized superlattice and phase coexistence inside thin film organometal halide perovskite. Adv. Mater. 30, 1705230 (2018).

    Google Scholar 

  44. 44.

    Aristidou, N. et al. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 8, 15218 (2017).

    Google Scholar 

  45. 45.

    Zhang, L., Ju, M. G. & Liang, W. The effect of moisture on the structures and properties of lead halide perovskites: a first-principles theoretical investigation. Phys. Chem. Chem. Phys. 18, 23174–23183 (2016).

    CAS  Google Scholar 

  46. 46.

    Mosconi, E., Azpiroz, J. M. & De Angelis, F. Ab initio molecular dynamics simulations of methylammonium lead iodide perovskite degradation by water. Chem. Mater. 27, 4885–4892 (2015).

    CAS  Google Scholar 

  47. 47.

    Koocher, N. Z., Saldana-Greco, D., Wang, F., Liu, S. & Rappe, A. M. Polarization dependence of water adsorption to CH3NH3PbI3 (001) surfaces. J. Phys. Chem. Lett. 6, 4371–4378 (2015).

    CAS  Google Scholar 

  48. 48.

    Yin, W. J., Yang, J. H., Kang, J., Yan, Y. & Wei, S. H. Halide perovskite materials for solar cells: a theoretical review. J. Mater. Chem. A 3, 8926–8942 (2015).

    CAS  Google Scholar 

  49. 49.

    Schulz, P., Cahen, D. & Kahn, A. Halide perovskites: is it all about the interfaces? Chem. Rev. 119, 3349–3417 (2019).

    CAS  Google Scholar 

  50. 50.

    Xiao, Z., Song, Z. & Yan, Y. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv. Mater. 31, 1803792 (2019).

    CAS  Google Scholar 

  51. 51.

    Brandt, R. E. et al. Searching for “defect-tolerant” photovoltaic materials: combined theoretical and experimental screening. Chem. Mater. 29, 4667–4674 (2017).

    CAS  Google Scholar 

  52. 52.

    Cheng, X., Yang, S., Cao, B., Tao, X. & Chen, Z. Single crystal perovskite solar cells: development and perspectives. Adv. Funct. Mater. 30, 1905021 (2019).

    Google Scholar 

  53. 53.

    Geng, W. et al. Effect of surface composition on electronic properties of methylammonium lead iodide perovskite. J. Mater. 1, 213–220 (2015).

    Google Scholar 

  54. 54.

    Stranks, S. D. & Plochocka, P. The influence of the Rashba effect. Nat. Mater. 17, 381–382 (2018).

    CAS  Google Scholar 

  55. 55.

    Etienne, T., Mosconi, E. & De Angelis, F. Dynamical origin of the Rashba effect in organohalide lead perovskites: a key to suppressed carrier recombination in perovskite solar cells? J. Phys. Chem. Lett. 7, 1638–1645 (2016).

    CAS  Google Scholar 

  56. 56.

    Mosconi, E., Etienne, T. & De Angelis, F. Rashba band splitting in organohalide lead perovskites: bulk and surface effects. J. Phys. Chem. Lett. 8, 2247–2252 (2017).

    CAS  Google Scholar 

  57. 57.

    Niesner, D. et al. Giant Rashba splitting in CH3NH3PbBr3 organic-inorganic perovskite. Phys. Rev. Lett. 117, 126401 (2016).

    Google Scholar 

  58. 58.

    Li, Z. et al. Optoelectronic dichotomy of mixed halide CH3NH3Pb(Br1−xClx)3 single crystals: surface versus bulk photoluminescence. J. Am. Chem. Soc. 140, 11811–11819 (2018).

    CAS  Google Scholar 

  59. 59.

    Yang, Y. et al. Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films. Nat. Energy 2, 16207 (2017).

    CAS  Google Scholar 

  60. 60.

    Yu, Z. L., Ma, Q. R., Zhao, Y. Q., Liu, B. & Cai, M. Q. Surface termination - a key factor to influence electronic and optical properties of CsSnI3. J. Phys. Chem. C 122, 9275–9282 (2018).

    CAS  Google Scholar 

  61. 61.

    Chen, B., Rudd, P. N., Yang, S., Yuan, Y. & Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019).

    CAS  Google Scholar 

  62. 62.

    Agiorgousis, M. L., Sun, Y. Y., Zeng, H. & Zhang, S. Strong covalency-induced recombination centers in perovskite solar cell material CH3NH3PbI3. J. Am. Chem. Soc. 136, 14570–14575 (2014).

    CAS  Google Scholar 

  63. 63.

    Sarmah, S. P. et al. Double charged surface layers in lead halide perovskite crystals. Nano Lett. 17, 2021–2027 (2017).

    CAS  Google Scholar 

  64. 64.

    Andaji-Garmaroudi, Z. et al. A highly emissive surface layer in mixed-halide multication perovskites. Adv. Mater. 31, 1902374 (2019).

    CAS  Google Scholar 

  65. 65.

    Anderson, N. C., Hendricks, M. P., Choi, J. J. & Owen, J. S. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding. J. Am. Chem. Soc. 135, 18536–18548 (2013).

    CAS  Google Scholar 

  66. 66.

    Akkerman, Q. A., Rainò, G., Kovalenko, M. V. & Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018).

    CAS  Google Scholar 

  67. 67.

    De Roo, J. et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10, 2071–2081 (2016).

    Google Scholar 

  68. 68.

    Ravi, V. K. et al. Origin of the substitution mechanism for the binding of organic ligands on the surface of CsPbBr3 perovskite nanocubes. J. Phys. Chem. Lett. 8, 4988–4994 (2017).

    CAS  Google Scholar 

  69. 69.

    Almeida, G. et al. Role of acid-base equilibria in the size, shape, and phase control of cesium lead bromide nanocrystals. ACS Nano 12, 1704–1711 (2018).

    CAS  Google Scholar 

  70. 70.

    Nedelcu, G. et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 15, 5635–5640 (2015).

    CAS  Google Scholar 

  71. 71.

    Li, J. et al. 50-Fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 29, 1603885 (2017).

    Google Scholar 

  72. 72.

    Pan, A. et al. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors. ACS Nano 10, 7943–7954 (2016).

    CAS  Google Scholar 

  73. 73.

    Ten Brinck, S. & Infante, I. Surface termination, morphology, and bright photoluminescence of cesium lead halide perovskite nanocrystals. ACS Energy Lett. 1, 1266–1272 (2016).

    Google Scholar 

  74. 74.

    Forde, A., Inerbaev, T., Hobbie, E. K. & Kilin, D. S. Excited-state dynamics of a CsPbBr3 nanocrystal terminated with binary ligands: sparse density of states with giant spin-orbit coupling suppresses carrier cooling. J. Am. Chem. Soc. 141, 4388–4397 (2019).

    CAS  Google Scholar 

  75. 75.

    Ten Brinck, S., Zaccaria, F. & Infante, I. Defects in lead halide perovskite nanocrystals: analogies and (many) differences with the bulk. ACS Energy Lett. 4, 2739–2747 (2019).

    Google Scholar 

  76. 76.

    Bodnarchuk, M. I. et al. Rationalizing and controlling the surface structure and electronic passivation of cesium lead halide nanocrystals. ACS Energy Lett. 4, 63–74 (2019).

    CAS  Google Scholar 

  77. 77.

    Saidaminov, M. I. et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3, 648–654 (2018).

    CAS  Google Scholar 

  78. 78.

    Giridharagopal, R., Cox, P. A. & Ginger, D. S. Functional scanning probe imaging of nanostructured solar energy materials. Acc. Chem. Res. 49, 1769–1776 (2016).

    CAS  Google Scholar 

  79. 79.

    Hou, Y. et al. Overcoming the interface losses in planar heterojunction perovskite-based solar cells. Adv. Mater. 28, 5112–5120 (2016).

    CAS  Google Scholar 

  80. 80.

    Tan, H. et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722–726 (2017).

    CAS  Google Scholar 

  81. 81.

    Li, X. et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 353, 58–62 (2016).

    CAS  Google Scholar 

  82. 82.

    Lee, J. W. et al. A bifunctional Lewis base additive for microscopic homogeneity in perovskite solar cells. Chem 3, 290–302 (2017).

    CAS  Google Scholar 

  83. 83.

    Tennyson, E. M., Doherty, T. A. S. & Stranks, S. D. Heterogeneity at multiple length scales in halide perovskite semiconductors. Nat. Rev. Mater. 4, 573–587 (2019).

    CAS  Google Scholar 

  84. 84.

    Nie, W. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015).

    CAS  Google Scholar 

  85. 85.

    Lin, L. et al. Bulk recrystallization for efficient mixed-cation mixed-halide perovskite solar cells. J. Mater. Chem. A 7, 25511–25520 (2019).

    CAS  Google Scholar 

  86. 86.

    Yang, W. S. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).

    CAS  Google Scholar 

  87. 87.

    Hieulle, J. et al. Unraveling the impact of halide mixing on perovskite stability. J. Am. Chem. Soc. 141, 3515–3523 (2019).

    CAS  Google Scholar 

  88. 88.

    Hsu, H. C. et al. Photodriven dipole reordering: key to carrier separation in metalorganic halide perovskites. ACS Nano 13, 4402–4409 (2019).

    CAS  Google Scholar 

  89. 89.

    Kim, T. W. et al. Real-time in situ observation of microstructural change in organometal halide perovskite induced by thermal degradation. Adv. Funct. Mater. 28, 1804039 (2018).

    Google Scholar 

  90. 90.

    Fan, Z. et al. Layer-by-layer degradation of methylammonium lead tri-iodide perovskite microplates. Joule 1, 548–562 (2017).

    CAS  Google Scholar 

  91. 91.

    Klein-Kedem, N., Cahen, D. & Hodes, G. Effects of light and electron beam irradiation on halide perovskites and their solar cells. Acc. Chem. Res. 49, 347–354 (2016).

    CAS  Google Scholar 

  92. 92.

    Zhou, Y., Sternlicht, H. & Padture, N. P. Transmission electron microscopy of halide perovskite materials and devices. Joule 3, 641–661 (2019).

    CAS  Google Scholar 

  93. 93.

    Rothmann, M. U. et al. Structural and chemical changes to CH3NH3PbI3 induced by electron and gallium ion beams. Adv. Mater. 30, 1800629 (2018).

    Google Scholar 

  94. 94.

    Li, Y. et al. Unravelling degradation mechanisms and atomic structure of organic-inorganic halide perovskites by cryo-EM. Joule 3, 2854–2866 (2019).

    CAS  Google Scholar 

  95. 95.

    Ji, F. et al. Simultaneous evolution of uniaxially oriented grains and ultralow-density grain-boundary network in CH3NH3PbI3 perovskite thin films mediated by precursor phase metastability. ACS Energy Lett. 2, 2727–2733 (2017).

    CAS  Google Scholar 

  96. 96.

    Liu, L. et al. Grain-boundary “patches” by in situ conversion to enhance perovskite solar cells stability. Adv. Mater. 30, 1800544 (2018).

    Google Scholar 

  97. 97.

    Kim, M., Motti, S. G., Sorrentino, R. & Petrozza, A. Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film. Energy Environ. Sci. 11, 2609–2619 (2018).

    CAS  Google Scholar 

  98. 98.

    Wang, S. et al. Targeted therapy for interfacial engineering toward stable and efficient perovskite solar cells. Adv. Mater. 31, 1903691 (2019).

    CAS  Google Scholar 

  99. 99.

    Steirer, K. X. et al. Defect tolerance in methylammonium lead triiodide perovskite. ACS Energy Lett. 1, 360–366 (2016).

    CAS  Google Scholar 

  100. 100.

    Xie, H. et al. Effects of precursor ratios and annealing on electronic structure and surface composition of CH3NH3PbI3 perovskite films. J. Phys. Chem. C 120, 215–220 (2016).

    CAS  Google Scholar 

  101. 101.

    Kim, T. G., Seo, S. W., Kwon, H., Hahn, J. & Kim, J. W. Influence of halide precursor type and its composition on the electronic properties of vacuum deposited perovskite films. Phys. Chem. Chem. Phys. 17, 24342–24348 (2015).

    CAS  Google Scholar 

  102. 102.

    Olthof, S. & Meerholz, K. Substrate-dependent electronic structure and film formation of MAPbI3 perovskites. Sci. Rep. 7, 40267 (2017).

    CAS  Google Scholar 

  103. 103.

    Hawash, Z. et al. Interfacial modification of perovskite solar cells using an ultrathin MAI layer leads to enhanced energy level alignment, efficiencies, and reproducibility. J. Phys. Chem. Lett. 8, 3947–3953 (2017).

    CAS  Google Scholar 

  104. 104.

    Xue, J. et al. Crystalline liquid-like behavior: surface-induced secondary grain growth of photovoltaic perovskite thin film. J. Am. Chem. Soc. 141, 13948–13953 (2019).

    CAS  Google Scholar 

  105. 105.

    Li, N. et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4, 408–415 (2019).

    CAS  Google Scholar 

  106. 106.

    Wu, Y. et al. Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering. Nat. Energy 1, 16148 (2016).

    CAS  Google Scholar 

  107. 107.

    Christians, J. A. et al. Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability. Nat. Energy 3, 68–74 (2018).

    CAS  Google Scholar 

  108. 108.

    Hou, Y. et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science 358, 1192–1197 (2017).

    CAS  Google Scholar 

  109. 109.

    Zhao, Q. et al. High efficiency perovskite quantum dot solar cells with charge separating heterostructure. Nat. Commun. 10, 2842 (2019).

    Google Scholar 

  110. 110.

    Li, Z. et al. Extrinsic ion migration in perovskite solar cells. Energy Environ. Sci. 10, 1234–1242 (2017).

    CAS  Google Scholar 

  111. 111.

    Alharbi, E. A. et al. Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells. Nat. Commun. 10, 3008 (2019).

    Google Scholar 

  112. 112.

    Szostak, R. et al. Nanoscale mapping of chemical composition in organic-inorganic hybrid perovskite films. Sci. Adv. 5, eaaw6619 (2019).

    CAS  Google Scholar 

  113. 113.

    Zhang, M. et al. Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells. Nat. Commun. 10, 4593 (2019).

    Google Scholar 

  114. 114.

    Xiao, M. et al. Effect of interfacial molecular orientation on power conversion efficiency of perovskite solar cells. J. Am. Chem. Soc. 139, 3378–3386 (2017).

    CAS  Google Scholar 

  115. 115.

    Xiao, M., Lu, T., Lin, T., Andre, J. S. & Chen, Z. Understanding molecular structures of buried interfaces in halide perovskite photovoltaic devices nondestructively with sub‐monolayer sensitivity using sum frequency generation vibrational spectroscopy. Adv. Energy Mater. 10, 1903053 (2019).

    Google Scholar 

  116. 116.

    Yang, J.-P. et al. Band dispersion and hole effective mass of methylammonium lead iodide perovskite. Sol. RRL 2, 1800132 (2018).

    Google Scholar 

  117. 117.

    Zu, F. et al. Constructing the electronic structure of CH3NH3PbI3 and CH3NH3PbBr3 perovskite thin films from single-crystal band structure measurements. J. Phys. Chem. Lett. 10, 601–609 (2019).

    Google Scholar 

  118. 118.

    Lee, M. I. et al. First determination of the valence band dispersion of CH3NH3PbI3 hybrid organic–inorganic perovskite. J. Phys. D Appl. Phys. 50, 26LT02 (2017).

    Google Scholar 

  119. 119.

    Wang, C. et al. Valence band dispersion measurements of perovskite single crystals using angle-resolved photoemission spectroscopy. Phys. Chem. Chem. Phys. 19, 5361–5365 (2017).

    CAS  Google Scholar 

  120. 120.

    Tao, S. et al. Absolute energy level positions in tin- and lead-based halide perovskites. Nat. Commun. 10, 2560 (2019).

    Google Scholar 

  121. 121.

    Noel, N. K. et al. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites. ACS Nano 8, 9815–9821 (2014).

    CAS  Google Scholar 

  122. 122.

    Que, M. et al. Quantum-dot-induced cesium-rich surface imparts enhanced stability to formamidinium lead iodide perovskite solar cells. ACS Energy Lett. 4, 1970–1975 (2019).

    CAS  Google Scholar 

  123. 123.

    Cho, K. T. et al. Selective growth of layered perovskites for stable and efficient photovoltaics. Energy Environ. Sci. 11, 952–959 (2018).

    CAS  Google Scholar 

  124. 124.

    Lu, J. et al. Interfacial benzenethiol modification facilitates charge transfer and improves stability of cm-sized metal halide perovskite solar cells with up to 20% efficiency. Energy Environ. Sci. 11, 1880–1889 (2018).

    CAS  Google Scholar 

  125. 125.

    Kutes, Y. et al. Mapping the photoresponse of CH3NH3PbI3 hybrid perovskite thin films at the nanoscale. Nano Lett. 16, 3434–3441 (2016).

    CAS  Google Scholar 

  126. 126.

    Yun, J. S. et al. Benefit of grain boundaries in organic–inorganic halide planar perovskite solar cells. J. Phys. Chem. Lett. 6, 875–880 (2015).

    CAS  Google Scholar 

  127. 127.

    Shao, Y. et al. Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films. Energy Environ. Sci. 9, 1752–1759 (2016).

    CAS  Google Scholar 

  128. 128.

    Xue, J. et al. A small-molecule “charge driver” enables perovskite quantum dot solar cells with efficiency approaching 13%. Adv. Mater. 31, 1900111 (2019).

    Google Scholar 

  129. 129.

    Leblebici, S. Y. et al. Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite. Nat. Energy 1, 16093 (2016).

    CAS  Google Scholar 

  130. 130.

    Eperon, G. E., Moerman, D. & Ginger, D. S. Anticorrelation between local photoluminescence and photocurrent suggests variability in contact to active layer in perovskite solar cells. ACS Nano 10, 10258–10266 (2016).

    CAS  Google Scholar 

  131. 131.

    Hermes, I. M. et al. Ferroelastic fingerprints in methylammonium lead iodide perovskite. J. Phys. Chem. C 120, 5724–5731 (2016).

    CAS  Google Scholar 

  132. 132.

    Strelcov, E. et al. CH3NH3PbI3 perovskites: ferroelasticity revealed. Sci. Adv. 3, e1602165 (2017).

    Google Scholar 

  133. 133.

    Zhao, T., Chueh, C. C., Chen, Q., Rajagopal, A. & Jen, A. K. Y. Defect passivation of organic–inorganic hybrid perovskites by diammonium iodide toward high-performance photovoltaic devices. ACS Energy Lett. 1, 757–763 (2016).

    CAS  Google Scholar 

  134. 134.

    Chen, C. et al. Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction. Nano Energy 61, 141–147 (2019).

    CAS  Google Scholar 

  135. 135.

    Chen, P. et al. In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Adv. Funct. Mater. 28, 1706923 (2018).

    Google Scholar 

  136. 136.

    Tennyson, E. M. et al. Cesium-incorporated triple cation perovskites deliver fully reversible and stable nanoscale voltage response. ACS Nano 13, 1538–1546 (2019).

    CAS  Google Scholar 

  137. 137.

    Garrett, J. L. et al. Real-time nanoscale open-circuit voltage dynamics of perovskite solar cells. Nano Lett. 17, 2554–2560 (2017).

    CAS  Google Scholar 

  138. 138.

    Zhang, F. et al. Complexities of contact potential difference measurements on metal halide perovskite surfaces. J. Phys. Chem. Lett. 10, 890–896 (2019).

    Google Scholar 

  139. 139.

    Chatterjee, S. & Pal, A. J. Influence of metal substitution on hybrid halide perovskites: towards lead-free perovskite solar cells. J. Mater. Chem. A 6, 3793–3823 (2018).

    CAS  Google Scholar 

  140. 140.

    Dasgupta, U., Bera, A. & Pal, A. J. Band diagram of heterojunction solar cells through scanning tunneling spectroscopy. ACS Energy Lett. 2, 582–591 (2017).

    CAS  Google Scholar 

  141. 141.

    Paul, G., Chatterjee, S., Bhunia, H. & Pal, A. J. Self-doping in hybrid halide perovskites via precursor stoichiometry: to probe the type of conductivity through scanning tunneling spectroscopy. J. Phys. Chem. C 122, 20194–20199 (2018).

    CAS  Google Scholar 

  142. 142.

    Yost, A. J. et al. Coexistence of two electronic nano-phases on a CH3NH3PbI3–xClx surface observed in STM measurements. ACS Appl. Mater. Interfaces 8, 29110–29116 (2016).

    CAS  Google Scholar 

  143. 143.

    Yang, Y. et al. Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal. Nat. Commun. 6, 7961 (2015).

    CAS  Google Scholar 

  144. 144.

    Chen, X., Wang, K. & Beard, M. C. Ultrafast probes at the interfaces of solar energy conversion materials. Phys. Chem. Chem. Phys. 21, 16399–16407 (2019).

    CAS  Google Scholar 

  145. 145.

    DeQuilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015).

    CAS  Google Scholar 

  146. 146.

    Koushik, D. et al. On the effect of atomic layer deposited Al2O3 on the environmental degradation of hybrid perovskite probed by positron annihilation spectroscopy. J. Mater. Chem. C 7, 5275–5284 (2019).

    CAS  Google Scholar 

  147. 147.

    Sundar, C. S. & Viswanathan, B. Positron annihilation spectroscopy. Met. Mater. Process. 8, 1–8 (1996).

    CAS  Google Scholar 

  148. 148.

    Lin, Y. et al. π-Conjugated Lewis base: efficient trap-passivation and charge-extraction for hybrid perovskite solar cells. Adv. Mater. 29, 1604545 (2017).

    Google Scholar 

  149. 149.

    Bai, Y. et al. Oligomeric silica-wrapped perovskites enable synchronous defect passivation and grain stabilization for efficient and stable perovskite photovoltaics. ACS Energy Lett. 4, 1231–1240 (2019).

    CAS  Google Scholar 

  150. 150.

    Zou, M. et al. Strengthened perovskite/fullerene interface enhances efficiency and stability of inverted planar perovskite solar cells via a tetrafluoroterephthalic acid interlayer. ACS Appl. Mater. Interfaces 11, 33515–33524 (2019).

    CAS  Google Scholar 

  151. 151.

    Wu, T. et al. Efficient and stable CsPbI3 solar cells via regulating lattice distortion with surface organic terminal groups. Adv. Mater. 31, 1900605 (2019).

    Google Scholar 

  152. 152.

    Sun, C. et al. Amino-functionalized conjugated polymer as an efficient electron transport layer for high-performance planar-heterojunction perovskite solar cells. Adv. Energy Mater. 6, 1501534 (2016).

    Google Scholar 

  153. 153.

    Chaudhary, B. et al. Poly(4-vinylpyridine)-based interfacial passivation to enhance voltage and moisture stability of lead halide perovskite solar cells. ChemSusChem 10, 2473–2479 (2017).

    CAS  Google Scholar 

  154. 154.

    Li, H. et al. Enhancing efficiency of perovskite solar cells via surface passivation with graphene oxide interlayer. ACS Appl. Mater. Interfaces 9, 38967–38976 (2017).

    CAS  Google Scholar 

  155. 155.

    Yang, G., Qin, P., Fang, G. & Li, G. A Lewis base-assisted passivation strategy towards highly efficient and stable perovskite solar cells. Sol. RRL 2, 1800055 (2018).

    Google Scholar 

  156. 156.

    Dequilettes, D. W. et al. Photoluminescence lifetimes exceeding 8 μs and quantum yields exceeding 30% in hybrid perovskite thin films by ligand passivation. ACS Energy Lett. 1, 438–444 (2016).

    CAS  Google Scholar 

  157. 157.

    Yang, X. et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 9, 570 (2018).

    Google Scholar 

  158. 158.

    Wang, Y. et al. Stabilizing heterostructures of soft perovskite semiconductors. Science 365, 687–691 (2019).

    CAS  Google Scholar 

  159. 159.

    Godding, J. S. W. et al. Oxidative passivation of metal halide perovskites. Joule 3, 2716–2731 (2019).

    CAS  Google Scholar 

  160. 160.

    Shao, Y., Xiao, Z., Bi, C., Yuan, Y. & Huang, J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014).

    CAS  Google Scholar 

  161. 161.

    Yang, S. et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 365, 473–478 (2019).

    CAS  Google Scholar 

  162. 162.

    Zhao, Y. et al. Correlations between immobilizing ions and suppressing hysteresis in perovskite solar cells. ACS Energy Lett. 1, 266–272 (2016).

    CAS  Google Scholar 

  163. 163.

    Abate, A. et al. Supramolecular halogen bond passivation of organic–inorganic halide perovskite solar cells. Nano Lett. 14, 3247–3254 (2014).

    CAS  Google Scholar 

  164. 164.

    Xu, J. et al. Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 6, 7081 (2015).

    CAS  Google Scholar 

  165. 165.

    Tu, Y. et al. Diboron-assisted interfacial defect control strategy for highly efficient planar perovskite solar cells. Adv. Mater. 30, 1805085 (2018).

    Google Scholar 

  166. 166.

    Song, Z. et al. Impact of processing temperature and composition on the formation of methylammonium lead iodide perovskites. Chem. Mater. 27, 4612–4619 (2015).

    CAS  Google Scholar 

  167. 167.

    Yang, M. et al. Facile fabrication of large-grain CH3NH3PbI3−xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening. Nat. Commun. 7, 12305 (2016).

    CAS  Google Scholar 

  168. 168.

    Han, G. et al. Facile method to reduce surface defects and trap densities in perovskite photovoltaics. ACS Appl. Mater. Interfaces 9, 21292–21297 (2017).

    CAS  Google Scholar 

  169. 169.

    Dong, Q. et al. Abnormal crystal growth in CH3NH3PbI3–xClx using a multi-cycle solution coating process. Energy Environ. Sci. 8, 2464–2470 (2015).

    CAS  Google Scholar 

  170. 170.

    Lin, Y. et al. Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures. J. Phys. Chem. Lett. 9, 654–658 (2018).

    CAS  Google Scholar 

  171. 171.

    Tai, M. et al. In situ formation of a 2D/3D heterostructure for efficient and stable CsPbI2Br solar cells. J. Mater. Chem. A 7, 22675–22682 (2019).

    CAS  Google Scholar 

  172. 172.

    Gharibzadeh, S. et al. Record open-circuit voltage wide-bandgap perovskite solar cells utilizing 2D/3D perovskite heterostructure. Adv. Energy Mater. 9, 1803699 (2019).

    Google Scholar 

  173. 173.

    Xu, Z. et al. Br-containing alkyl ammonium salt-enabled scalable fabrication of high-quality perovskite films for efficient and stable perovskite modules. J. Mater. Chem. A 7, 26849–26857 (2019).

    CAS  Google Scholar 

  174. 174.

    Yoo, J. J. et al. An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ. Sci. 12, 2192–2199 (2019).

    CAS  Google Scholar 

  175. 175.

    Wang, Y., Zhang, T., Kan, M. & Zhao, Y. Bifunctional stabilization of all-Inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics. J. Am. Chem. Soc. 140, 12345–12348 (2018).

    CAS  Google Scholar 

  176. 176.

    Niu, T. et al. Interfacial engineering at the 2D/3D heterojunction for high-performance perovskite solar cells. Nano Lett. 19, 7181–7190 (2019).

    CAS  Google Scholar 

  177. 177.

    Li, N. et al. Enhanced moisture stability of cesium-containing compositional perovskites by a feasible interfacial engineering. Adv. Mater. Interfaces 4, 1700598 (2017).

    Google Scholar 

  178. 178.

    Wang, Y. et al. Efficient α-CsPbI3 photovoltaics with surface terminated organic cations. Joule 2, 2065–2075 (2018).

    CAS  Google Scholar 

  179. 179.

    Zhou, L. et al. Highly efficient and stable planar perovskite solar cells with modulated diffusion passivation toward high power conversion efficiency and ultrahigh fill factor. Sol. RRL 3, 1900293 (2019).

    CAS  Google Scholar 

  180. 180.

    Zhou, Q. et al. High-performance perovskite solar cells with enhanced environmental stability based on a (p-FC6H4C2H4NH3)2[PbI4] capping layer. Adv. Energy Mater. 9, 1802595 (2019).

    Google Scholar 

  181. 181.

    Dong, H. et al. A modulated double‐passivation strategy toward highly efficient perovskite solar cells with efficiency over 21%. Sol. RRL 3, 1900291 (2019).

    CAS  Google Scholar 

  182. 182.

    Liu, Y. et al. Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%. Sci. Adv. 5, eaaw2543 (2019).

    CAS  Google Scholar 

  183. 183.

    Zhang, T. et al. Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells. Sci. Adv. 3, e1700841 (2017).

    Google Scholar 

  184. 184.

    Jokar, E. et al. Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells. Energy Environ. Sci. 11, 2353–2362 (2018).

    CAS  Google Scholar 

  185. 185.

    Wang, Y. et al. Thermodynamically stabilized β-CsPbI3–based perovskite solar cells with efficiencies >18%. Science 365, 591–595 (2019).

    CAS  Google Scholar 

  186. 186.

    Zheng, X. et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017).

    CAS  Google Scholar 

  187. 187.

    Dong, H. et al. Conjugated molecules “bridge”: functional ligand toward highly efficient and long-term stable perovskite solar cell. Adv. Funct. Mater. 29, 1808119 (2019).

    Google Scholar 

  188. 188.

    Weng, Y. et al. Electric dipole moment-assisted charge extraction and effective defect passivation in perovskite solar cells by depositing a PCBM:TIPD blend film on a CH3NH3PbI3 layer. J. Mater. Chem. C 7, 11559–11568 (2019).

    CAS  Google Scholar 

  189. 189.

    Zhao, S. et al. General nondestructive passivation by 4-fluoroaniline for perovskite solar cells with improved performance and stability. Small 14, 1803350 (2018).

    Google Scholar 

  190. 190.

    Noel, N. K. et al. Interfacial charge-transfer doping of metal halide perovskites for high performance photovoltaics. Energy Environ. Sci. 12, 3063–3073 (2019).

    CAS  Google Scholar 

  191. 191.

    Wang, Q., Dong, Q., Li, T., Gruverman, A. & Huang, J. Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells. Adv. Mater. 28, 6734–6739 (2016).

    CAS  Google Scholar 

  192. 192.

    Bai, S. et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571, 245–250 (2019).

    CAS  Google Scholar 

  193. 193.

    Zhang, Y. et al. High efficiency (16.37%) of cesium bromide-passivated all‐inorganic CsPbI2Br perovskite solar cells. Sol. RRL 3, 1900254 (2019).

    CAS  Google Scholar 

  194. 194.

    Zhang, Y. et al. Fusing nanowires into thin films: fabrication of graded-heterojunction perovskite solar cells with enhanced performance. Adv. Energy Mater. 9, 1900243 (2019).

    Google Scholar 

  195. 195.

    Tan, F. et al. In situ back-contact passivation improves photovoltage and fill factor in perovskite solar cells. Adv. Mater. 31, 1807435 (2019).

    Google Scholar 

  196. 196.

    Luo, D. et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 360, 1442–1446 (2018).

    CAS  Google Scholar 

  197. 197.

    Kim, H. et al. Optimal interfacial engineering with different length of alkylammonium halide for efficient and stable perovskite solar cells. Adv. Energy Mater. 9, 1902740 (2019).

    CAS  Google Scholar 

  198. 198.

    Wu, Z. et al. Highly efficient and stable perovskite solar cells via modification of energy levels at the perovskite/carbon electrode interface. Adv. Mater. 31, 1804284 (2019).

    Google Scholar 

  199. 199.

    Koushik, D. et al. High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture. Energy Environ. Sci. 10, 91–100 (2017).

    CAS  Google Scholar 

  200. 200.

    Li, B. et al. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat. Commun. 9, 1076 (2018).

    Google Scholar 

  201. 201.

    Tavakoli, M. M. et al. Controllable perovskite crystallization via antisolvent technique using chloride additives for highly efficient planar perovskite solar cells. Adv. Energy Mater. 9, 1803587 (2019).

    Google Scholar 

  202. 202.

    Poli, I., Liang, X., Baker, R., Eslava, S. & Cameron, P. J. Enhancing the hydrophobicity of perovskite solar cells using C18 capped CH3NH3PbI3 nanocrystals. J. Mater. Chem. C 6, 7149–7156 (2018).

    CAS  Google Scholar 

  203. 203.

    Qian, F. et al. Novel surface passivation for stable FA0.85MA0.15PbI3 perovskite solar cells with 21.6% efficiency. Sol. RRL 3, 1900072 (2019).

    Google Scholar 

  204. 204.

    Wang, F. et al. Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells. Adv. Mater. 28, 9986–9992 (2016).

    CAS  Google Scholar 

  205. 205.

    Zheng, X. et al. Quantum dots supply bulk- and surface-passivation agents for efficient and stable perovskite solar cells. Joule 3, 1963–1976 (2019).

    CAS  Google Scholar 

  206. 206.

    Bi, C., Kershaw, S. V., Rogach, A. L. & Tian, J. Improved stability and photodetector performance of CsPbI3 perovskite quantum dots by ligand exchange with aminoethanethiol. Adv. Funct. Mater. 29, 1902446 (2019).

    Google Scholar 

  207. 207.

    Cao, W. et al. Halide-rich synthesized cesium lead bromide perovskite nanocrystals for light-emitting diodes with improved performance. Chem. Mater. 29, 5168–5173 (2017).

    Google Scholar 

  208. 208.

    Li, X. et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 26, 2435–2445 (2016).

    CAS  Google Scholar 

  209. 209.

    Zhang, B. et al. Alkyl phosphonic acids deliver CsPbBr3 nanocrystals with high photoluminescence quantum yield and truncated octahedron shape. Chem. Mater. 31, 9140–9147 (2019).

    CAS  Google Scholar 

  210. 210.

    Koscher, B. A., Swabeck, J. K., Bronstein, N. D. & Alivisatos, A. P. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment. J. Am. Chem. Soc. 139, 6566–6569 (2017).

    CAS  Google Scholar 

  211. 211.

    Liu, F. et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano 11, 10373–10383 (2017).

    CAS  Google Scholar 

  212. 212.

    Lu, D. et al. Giant light-emission enhancement in lead halide perovskites by surface oxygen passivation. Nano Lett. 18, 6967–6973 (2018).

    CAS  Google Scholar 

  213. 213.

    Nenon, D. P. et al. Design principles for trap-free CsPbX3 nanocrystals: enumerating and eliminating surface halide vacancies with softer Lewis bases. J. Am. Chem. Soc. 140, 17760–17772 (2018).

    CAS  Google Scholar 

  214. 214.

    Almeida, G., Infante, I. & Manna, L. Resurfacing halide perovskite nanocrystals. Science 364, 833–834 (2019).

    CAS  Google Scholar 

  215. 215.

    Sanehira, E. M. et al. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. 3, eaao4204 (2017).

    Google Scholar 

  216. 216.

    Li, G. et al. Surface ligand engineering for near-unity quantum yield inorganic halide perovskite QDs and high-performance QLEDs. Chem. Mater. 30, 6099–6107 (2018).

    CAS  Google Scholar 

  217. 217.

    Song, J. et al. Organic–inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48%. Adv. Mater. 30, 1805409 (2018).

    Google Scholar 

  218. 218.

    Xue, J. et al. Surface ligand management for stable FAPbI3 perovskite quantum dot solar cells. Joule 2, 1866–1878 (2018).

    CAS  Google Scholar 

  219. 219.

    Chiba, T. et al. High-efficiency perovskite quantum-dot light-emitting devices by effective washing process and interfacial energy level alignment. ACS Appl. Mater. Interfaces 9, 18054–18060 (2017).

    CAS  Google Scholar 

  220. 220.

    Wang, Q. et al. μ-Graphene crosslinked CsPbI3 quantum dots for high efficiency solar cells with much improved stability. Adv. Energy Mater. 8, 1800007 (2018).

    Google Scholar 

  221. 221.

    Pan, J. et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 28, 8718–8725 (2016).

    CAS  Google Scholar 

  222. 222.

    Vickers, E. T. et al. Improving charge carrier delocalization in perovskite quantum dots by surface passivation with conductive aromatic ligands. ACS Energy Lett. 3, 2931–2939 (2018).

    CAS  Google Scholar 

  223. 223.

    Dai, J. et al. Charge transport between coupling colloidal perovskite quantum dots assisted by functional conjugated ligands. Angew. Chem. Int. Ed. 57, 5754–5758 (2018).

    CAS  Google Scholar 

  224. 224.

    Pan, J. et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am. Chem. Soc. 140, 562–565 (2018).

    CAS  Google Scholar 

  225. 225.

    Krieg, F. et al. Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: zwitterionic capping ligands for improved durability and stability. ACS Energy Lett. 3, 641–646 (2018).

    CAS  Google Scholar 

  226. 226.

    Swarnkar, A. et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).

    CAS  Google Scholar 

  227. 227.

    Wheeler, L. M. et al. Targeted ligand exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics. J. Am. Chem. Soc. 140, 10504–10513 (2018).

    CAS  Google Scholar 

  228. 228.

    Luo, B. et al. Organolead halide perovskite nanocrystals: branched capping ligands control crystal size and stability. Angew. Chem. Int. Ed. 55, 8864–8868 (2016).

    CAS  Google Scholar 

  229. 229.

    Sun, C. et al. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Adv. Mater. 28, 10088–10094 (2016).

    CAS  Google Scholar 

  230. 230.

    Yoon, Y. J. et al. Enabling tailorable optical properties and markedly enhanced stability of perovskite quantum dots by permanently ligating with polymer hairs. Adv. Mater. 31, 1901602 (2019).

    Google Scholar 

  231. 231.

    Zhang, H. et al. Embedding perovskite nanocrystals into a polymer matrix for tunable luminescence probes in cell imaging. Adv. Funct. Mater. 27, 1604382 (2017).

    Google Scholar 

  232. 232.

    Huang, S. et al. Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in ‘waterless’ toluene. J. Am. Chem. Soc. 138, 5749–5752 (2016).

    CAS  Google Scholar 

  233. 233.

    Huang, H. et al. Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices. Chem. Sci. 7, 5699–5703 (2016).

    CAS  Google Scholar 

  234. 234.

    Meyns, M. et al. Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion LEDs. ACS Appl. Mater. Interfaces 8, 19579–19586 (2016).

    CAS  Google Scholar 

  235. 235.

    Zhong, Q. et al. One-pot synthesis of highly stable CsPbBr3@SiO2 core–shell nanoparticles. ACS Nano 12, 8579–8587 (2018).

    CAS  Google Scholar 

  236. 236.

    He, Y. et al. Unconventional route to dual-shelled organolead halide perovskite nanocrystals with controlled dimensions, surface chemistry, and stabilities. Sci. Adv. 5, eaax4424 (2019).

    CAS  Google Scholar 

  237. 237.

    Bhaumik, S. et al. Highly stable, luminescent core–shell type methylammonium–octylammonium lead bromide layered perovskite nanoparticles. Chem. Commun. 52, 7118–7121 (2016).

    CAS  Google Scholar 

  238. 238.

    Quan, L. N. et al. Highly emissive green perovskite nanocrystals in a solid state crystalline matrix. Adv. Mater. 29, 1605945 (2017).

    Google Scholar 

  239. 239.

    Ravi, V. K., Scheidt, R. A., Dubose, J. & Kamat, P. V. Hierarchical arrays of cesium lead halide perovskite nanocrystals through electrophoretic deposition. J. Am. Chem. Soc. 140, 8887–8894 (2018).

    CAS  Google Scholar 

  240. 240.

    Yang, D. et al. CsPbBr3 quantum dots 2.0: benzenesulfonic acid equivalent ligand awakens complete purification. Adv. Mater. 31, 1900767 (2019).

    Google Scholar 

  241. 241.

    Yassitepe, E. et al. Amine-free synthesis of cesium lead halide perovskite quantum dots for efficient light-emitting diodes. Adv. Funct. Mater. 26, 8757–8763 (2016).

    CAS  Google Scholar 

  242. 242.

    Wu, W.-Q. et al. Reducing surface halide deficiency for efficient and stable iodide-based perovskite solar cells. J. Am. Chem. Soc. 142, 3989–3996 (2020).

    CAS  Google Scholar 

Download references

Acknowledgements

This article is based on work supported by the US Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office award number DE-EE0008751. The authors thank A. Z. Stieg and S. Gilbert Corder for helpful discussions regarding AFM and nano-FTIR techniques, and S. Nuryyeva, M. Mujahid and S. Tan for help with language editing prior to submission.

Author information

Affiliations

Authors

Contributions

J.X. and R.W. researched most of the data and prepared the first draft. Y.Y. revised the manuscript before submission and supervised the project.

Corresponding author

Correspondence to Yang Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Wang, R. & Yang, Y. The surface of halide perovskites from nano to bulk. Nat Rev Mater 5, 809–827 (2020). https://doi.org/10.1038/s41578-020-0221-1

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing