Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engineered biomaterials for in situ tissue regeneration

Abstract

In situ tissue regeneration harnesses the body’s regenerative potential to control cell functions for tissue repair. The design of biomaterials for in situ tissue engineering requires precise control over biophysical and biochemical cues to direct endogenous cells to the site of injury. These cues are required to induce regeneration by modulating the extracellular microenvironment or driving cellular reprogramming. In this Review, we outline two biomaterials approaches to control the regenerative capacity of the body for tissue-specific regeneration. The first approach includes the use of bioresponsive materials with an ability to direct endogenous cells, including immune cells and progenitor or stem cells, to facilitate tissue healing, integration and regeneration. The second approach focuses on in situ cellular reprogramming via delivery of transcription factors, RNA-based therapeutics, in vivo gene editing and biomaterials-driven epigenetic transformation. In addition, we highlight tools for engineering the next generation of biomaterials to modulate in situ tissue regeneration. Overall, leveraging the regenerative potential of the human body via engineered biomaterials is a simple and effective approach to replace injured or diseased tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In situ tissue engineering.
Fig. 2: Innate regeneration.
Fig. 3: Approaches to engineer biomaterials for in situ tissue regeneration.
Fig. 4: Two approaches for in situ tissue regeneration.
Fig. 5: In situ tissue regeneration by modulating the extracellular microenvironment.
Fig. 6: In situ cellular reprogramming for tissue regeneration.
Fig. 7: Emerging trends in the development of engineered biomaterials for tissue regeneration.

Similar content being viewed by others

References

  1. Langer, R. & Vacanti, J. Tissue engineering. Science 260, 920–926 (1993).

    CAS  Google Scholar 

  2. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  Google Scholar 

  3. Srivastava, D. & DeWitt, N. In vivo cellular reprogramming: the next generation. Cell 166, 1386–1396 (2016).

    CAS  Google Scholar 

  4. Ladewig, J., Koch, P. & Brüstle, O. Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies. Nat. Rev. Mol. Cell Biol. 14, 225–236 (2013).

    CAS  Google Scholar 

  5. Lutolf, M. & Hubbell, J. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23, 47–55 (2005).

    CAS  Google Scholar 

  6. Ruskowitz, E. R. & DeForest, C. A. Photoresponsive biomaterials for targeted drug delivery and 4D cell culture. Nat. Rev. Mater. 3, 17087 (2018).

    CAS  Google Scholar 

  7. Stevens, M. M. et al. In vivo engineering of organs: the bone bioreactor. Proc. Natl Acad. Sci. USA 102, 11450–11455 (2005).

    CAS  Google Scholar 

  8. Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. Wound repair and regeneration. Nature 453, 314–321 (2008).

    CAS  Google Scholar 

  9. Eming, S. A., Wynn, T. A. & Martin, P. Inflammation and metabolism in tissue repair and regeneration. Science 356, 1026–1030 (2017).

    CAS  Google Scholar 

  10. Dziki, J. L., Sicari, B. M., Wolf, M. T., Cramer, M. C. & Badylak, S. F. Immunomodulation and mobilization of progenitor cells by extracellular matrix bioscaffolds for volumetric muscle loss treatment. Tissue Eng. Part A 22, 1129–1139 (2016).

    CAS  Google Scholar 

  11. Sadtler, K. et al. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science 352, 366–370 (2016).

    CAS  Google Scholar 

  12. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    CAS  Google Scholar 

  13. Reilly, G. C. & Engler, A. J. Intrinsic extracellular matrix properties regulate stem cell differentiation. J. Biomech. 43, 55–62 (2010).

    Google Scholar 

  14. Griffin, D. R., Weaver, W. M., Scumpia, P. O., Di Carlo, D. & Segura, T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat. Mater. 14, 737–744 (2015).

    CAS  Google Scholar 

  15. Viswanathan, P. et al. 3D surface topology guides stem cell adhesion and differentiation. Biomaterials 52, 140–147 (2015).

    CAS  Google Scholar 

  16. Briquez, P. S., Clegg, L. E., Martino, M. M., Mac Gabhann, F. & Hubbell, J. A. Design principles for therapeutic angiogenic materials. Nat. Rev. Mater. 1, 15006 (2016).

    CAS  Google Scholar 

  17. Dawson, J. I., Kanczler, J. M., Yang, X. B., Attard, G. S. & Oreffo, R. O. Clay gels for the delivery of regenerative microenvironments. Adv. Mater. 23, 3304–3308 (2011).

    CAS  Google Scholar 

  18. Nih, L. R., Gojgini, S., Carmichael, S. T. & Segura, T. Dual-function injectable angiogenic biomaterial for the repair of brain tissue following stroke. Nat. Mater. 17, 642–651 (2018).

    CAS  Google Scholar 

  19. Ferrara, N., Gerber, H.-P. & LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 9, 669–676 (2003).

    CAS  Google Scholar 

  20. Hofer, A. M. & Brown, E. M. Extracellular calcium sensing and signalling. Nat. Rev. Mol. Cell Biol. 4, 530–538 (2003).

    CAS  Google Scholar 

  21. Wang, C., Lin, K., Chang, J. & Sun, J. Osteogenesis and angiogenesis induced by porous β-CaSiO3/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways. Biomaterials 34, 64–77 (2013).

    Google Scholar 

  22. Wang, Y., Yu, X., Baker, C., Murphy, W. L. & McDevitt, T. C. Mineral particles modulate osteo-chondrogenic differentiation of embryonic stem cell aggregates. Acta Biomater. 29, 42–51 (2016).

    CAS  Google Scholar 

  23. Brown, B. N., Valentin, J. E., Stewart-Akers, A. M., McCabe, G. P. & Badylak, S. F. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 30, 1482–1491 (2009).

    CAS  Google Scholar 

  24. Neves, J. et al. Immune modulation by MANF promotes tissue repair and regenerative success in the retina. Science 353, aaf3646 (2016).

    Google Scholar 

  25. Loebel, C., Mauck, R. L. & Burdick, J. A. Local nascent protein deposition and remodelling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels. Nat. Mater. 18, 883–891 (2019).

    CAS  Google Scholar 

  26. Martin, N. D. et al. In vivo behavior of decellularized vein allograft. J. Surg. Res. 129, 17–23 (2005).

    Google Scholar 

  27. Kumar, S., Anselmo, A. C., Banerjee, A., Zakrewsky, M. & Mitragotri, S. Shape and size-dependent immune response to antigen-carrying nanoparticles. J. Control. Release 220, 141–148 (2015).

    CAS  Google Scholar 

  28. Lebre, F., Hearnden, C. H. & Lavelle, E. C. Modulation of immune responses by particulate materials. Adv. Mater. 28, 5525–5541 (2016).

    CAS  Google Scholar 

  29. Singh, A. Biomaterials innovation for next generation ex vivo immune tissue engineering. Biomaterials 130, 104–110 (2017).

    CAS  Google Scholar 

  30. Moshayedi, P. et al. The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system. Biomaterials 35, 3919–3925 (2014).

    CAS  Google Scholar 

  31. Jin, W. et al. T cell activation and immune synapse organization respond to the microscale mechanics of structured surfaces. Proc. Natl Acad. Sci. USA 116, 19835–19840 (2019).

    CAS  Google Scholar 

  32. Blakney, A. K., Swartzlander, M. D. & Bryant, S. J. The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels. J. Biomed. Mater. Res. A 100, 1375–1386 (2012).

    Google Scholar 

  33. Visalakshan, R. M. et al. Biomaterial surface hydrophobicity mediated serum protein adsorption and immune responses. ACS Appl. Mater. Interfaces 11, 27615–27623 (2019).

    CAS  Google Scholar 

  34. Bartneck, M. et al. Rapid uptake of gold nanorods by primary human blood phagocytes and immunomodulatory effects of surface chemistry. ACS Nano 4, 3073–3086 (2010).

    CAS  Google Scholar 

  35. Wen, Y., Waltman, A., Han, H. & Collier, J. H. Switching the immunogenicity of peptide assemblies using surface properties. ACS Nano 10, 9274–9286 (2016).

    CAS  Google Scholar 

  36. Gallorini, S. et al. Toll-like receptor 2 dependent immunogenicity of glycoconjugate vaccines containing chemically derived zwitterionic polysaccharides. Proc. Natl Acad. Sci. USA 106, 17481–17486 (2009).

    CAS  Google Scholar 

  37. Sussman, E. M., Halpin, M. C., Muster, J., Moon, R. T. & Ratner, B. D. Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction. Ann. Biomed. Eng. 42, 1508–1516 (2014).

    Google Scholar 

  38. Vishwakarma, A. et al. Engineering immunomodulatory biomaterials to tune the inflammatory response. Trends Biotechnol. 34, 470–482 (2016).

    CAS  Google Scholar 

  39. Chung, L., Maestas, D. R. Jr, Housseau, F. & Elisseeff, J. H. Key players in the immune response to biomaterial scaffolds for regenerative medicine. Adv. Drug Deliv. Rev. 114, 184–192 (2017).

    CAS  Google Scholar 

  40. Wu, H. et al. Single-cell mass cytometry reveals in vivo immunological response to surgical biomaterials. Appl. Mater. Today 16, 169–178 (2019).

    Google Scholar 

  41. Sadtler, K. et al. Divergent immune responses to synthetic and biological scaffolds. Biomaterials 192, 405–415 (2019).

    CAS  Google Scholar 

  42. Julier, Z., Park, A. J., Briquez, P. S. & Martino, M. M. Promoting tissue regeneration by modulating the immune system. Acta Biomater. 53, 13–28 (2017).

    CAS  Google Scholar 

  43. Shamskhou, E. A. et al. Hydrogel-based delivery of Il-10 improves treatment of bleomycin-induced lung fibrosis in mice. Biomaterials 203, 52–62 (2019).

    CAS  Google Scholar 

  44. Chen, M. H. et al. Injectable supramolecular hydrogel/microgel composites for therapeutic delivery. Macromol. Biosci. 19, 1800248 (2019).

    Google Scholar 

  45. Singh, A. et al. Nanoengineered particles for enhanced intra-articular retention and delivery of proteins. Adv. Healthc. Mater. 3, 1562–1567 (2014).

    CAS  Google Scholar 

  46. Ferreira, S. A. et al. Bi-directional cell-pericellular matrix interactions direct stem cell fate. Nat. Commun. 9, 4049 (2018).

    Google Scholar 

  47. Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9, 518–526 (2010).

    CAS  Google Scholar 

  48. Jaiswal, M. K. et al. Mechanically stiff nanocomposite hydrogels at ultralow nanoparticle content. ACS Nano 10, 246–256 (2015).

    Google Scholar 

  49. Chen, G., Dong, C., Yang, L. & Lv, Y. 3D scaffolds with different stiffness but the same microstructure for bone tissue engineering. ACS Appl. Mater. Interfaces 7, 15790–15802 (2015).

    CAS  Google Scholar 

  50. Mammoto, A. et al. A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature 457, 1103–1108 (2009).

    CAS  Google Scholar 

  51. Boerckel, J. D., Uhrig, B. A., Willett, N. J., Huebsch, N. & Guldberg, R. E. Mechanical regulation of vascular growth and tissue regeneration in vivo. Proc. Natl Acad. Sci. USA 108, E674–E680 (2011).

    CAS  Google Scholar 

  52. Yim, E. K., Darling, E. M., Kulangara, K., Guilak, F. & Leong, K. W. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials 31, 1299–1306 (2010).

    CAS  Google Scholar 

  53. Jensen, S. S., Bornstein, M. M., Dard, M., Bosshardt, D. D. & Buser, D. Comparative study of biphasic calcium phosphates with different HA/TCP ratios in mandibular bone defects. A long-term histomorphometric study in minipigs. J. Biomed. Mater. Res. B 90B, 171–181 (2009).

    CAS  Google Scholar 

  54. Chu, L. et al. Osteogenesis, vascularization and osseointegration of a bioactive multiphase macroporous scaffold in the treatment of large bone defects. J. Mater. Chem. B 6, 4197–4204 (2018).

    CAS  Google Scholar 

  55. Chen, Z. et al. Osteogenic differentiation of bone marrow MSCs by β-tricalcium phosphate stimulating macrophages via BMP2 signalling pathway. Biomaterials 35, 1507–1518 (2014).

    CAS  Google Scholar 

  56. Khoshniat, S. et al. Phosphate-dependent stimulation of MGP and OPN expression in osteoblasts via the ERK1/2 pathway is modulated by calcium. Bone 48, 894–902 (2011).

    CAS  Google Scholar 

  57. Huang, Y., Wu, C., Zhang, X., Chang, J. & Dai, K. Regulation of immune response by bioactive ions released from silicate bioceramics for bone regeneration. Acta Biomater. 66, 81–92 (2018).

    CAS  Google Scholar 

  58. Guvendiren, M. & Burdick, J. A. Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat. Commun. 3, 792 (2012).

    Google Scholar 

  59. DeForest, C. A. & Anseth, K. S. Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat. Chem. 3, 925–931 (2011).

    CAS  Google Scholar 

  60. Gawade, P. M., Shadish, J. A., Badeau, B. A. & DeForest, C. A. Logic-based delivery of site-specifically modified proteins from environmentally responsive hydrogel biomaterials. Adv. Mater. 31, 1902462 (2019).

    Google Scholar 

  61. Martino, M. M. et al. Controlling integrin specificity and stem cell differentiation in 2D and 3D environments through regulation of fibronectin domain stability. Biomaterials 30, 1089–1097 (2009).

    CAS  Google Scholar 

  62. Giancotti, F. G. & Ruoslahti, E. Integrin signaling. Science 285, 1028–1033 (1999).

    CAS  Google Scholar 

  63. Burdick, J. A. & Anseth, K. S. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23, 4315–4323 (2002).

    CAS  Google Scholar 

  64. Li, S. et al. Hydrogels with precisely controlled integrin activation dictate vascular patterning and permeability. Nat. Mater. 16, 953–961 (2017).

    CAS  Google Scholar 

  65. Moulisová, V. et al. Engineered microenvironments for synergistic VEGF–Integrin signalling during vascularization. Biomaterials 126, 61–74 (2017).

    Google Scholar 

  66. Ong, K. L. et al. Off-label use of bone morphogenetic proteins in the United States using administrative data. Spine 35, 1794–1800 (2010).

    Google Scholar 

  67. McKay, W. F., Peckham, S. M. & Badura, J. M. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE® Bone Graft). Int. Orthop. 31, 729–734 (2007).

    Google Scholar 

  68. Zhang, Q. et al. Improvement in the delivery system of bone morphogenetic protein-2: a new approach to promote bone formation. Biomed. Mater. 7, 045002 (2012).

    Google Scholar 

  69. Carragee, E. J., Hurwitz, E. L. & Weiner, B. K. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 11, 471–491 (2011).

    Google Scholar 

  70. Lad, S. P., Nathan, J. K. & Boakye, M. Trends in the use of bone morphogenetic protein as a substitute to autologous iliac crest bone grafting for spinal fusion procedures in the United States. Spine 36, E274–E281 (2011).

    Google Scholar 

  71. Shields, L. B. et al. Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine 31, 542–547 (2006).

    Google Scholar 

  72. Zhang, J. et al. Ionic colloidal molding as a biomimetic scaffolding strategy for uniform bone tissue regeneration. Adv. Mater. 29, 1605546 (2017).

    Google Scholar 

  73. Cross, L. M., Carrow, J. K., Ding, X., Singh, K. A. & Gaharwar, A. K. Sustained and prolonged delivery of protein therapeutics from two-dimensional nanosilicates. ACS Appl. Mater. Interfaces 11, 6741–6750 (2019).

    CAS  Google Scholar 

  74. Anjum, F. et al. Enzyme responsive GAG-based natural-synthetic hybrid hydrogel for tunable growth factor delivery and stem cell differentiation. Biomaterials 87, 104–117 (2016).

    CAS  Google Scholar 

  75. Gibbs, D. M. R. et al. Bone induction at physiological doses of BMP through localization by clay nanoparticle gels. Biomaterials 99, 16–23 (2016).

    CAS  Google Scholar 

  76. Gaharwar, A. K. et al. 2D nanoclay for biomedical applications: Regenerative medicine, therapeutic delivery, and additive manufacturing. Adv. Mater. 31, 1900332 (2019).

    Google Scholar 

  77. Waters, R. et al. Stem cell secretome-rich nanoclay hydrogel: a dual action therapy for cardiovascular regeneration. Nanoscale 8, 7371–7376 (2016).

    CAS  Google Scholar 

  78. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007).

    CAS  Google Scholar 

  79. Chou, L. Y., Ming, K. & Chan, W. C. Strategies for the intracellular delivery of nanoparticles. Chem. Soc. Rev. 40, 233–245 (2011).

    CAS  Google Scholar 

  80. Yu, M., Wu, J., Shi, J. & Farokhzad, O. C. Nanotechnology for protein delivery: overview and perspectives. J. Control. Release 240, 24–37 (2016).

    CAS  Google Scholar 

  81. Biswas, A., Liu, Y., Liu, T., Fan, G. & Tang, Y. Polyethylene glycol-based protein nanocapsules for functional delivery of a differentiation transcription factor. Biomaterials 33, 5459–5467 (2012).

    CAS  Google Scholar 

  82. Lee, K. et al. In vivo delivery of transcription factors with multifunctional oligonucleotides. Nat. Mater. 14, 701–706 (2015).

    CAS  Google Scholar 

  83. Patel, S. et al. NanoScript: a nanoparticle-based artificial transcription factor for effective gene regulation. ACS Nano 8, 8959–8967 (2014).

    CAS  Google Scholar 

  84. Patel, S., Yin, P. T., Sugiyama, H. & Lee, K.-B. Inducing stem cell myogenesis using NanoScript. ACS Nano 9, 6909–6917 (2015).

    CAS  Google Scholar 

  85. Li, Y. et al. The promotion of bone regeneration through positive regulation of angiogenic–osteogenic coupling using microRNA-26a. Biomaterials 34, 5048–5058 (2013).

    CAS  Google Scholar 

  86. Nguyen, L. H. et al. Three-dimensional aligned nanofibers-hydrogel scaffold for controlled non-viral drug/gene delivery to direct axon regeneration in spinal cord injury treatment. Sci. Rep. 7, 42212 (2017).

    CAS  Google Scholar 

  87. Manaka, T. et al. Local delivery of siRNA using a biodegradable polymer application to enhance BMP-induced bone formation. Biomaterials 32, 9642–9648 (2011).

    CAS  Google Scholar 

  88. Nguyen, M. K. et al. RNA interfering molecule delivery from in situ forming biodegradable hydrogels for enhancement of bone formation in rat calvarial bone defects. Acta Biomater. 75, 105–114 (2018).

    CAS  Google Scholar 

  89. Granot-Matok, Y., Kon, E., Dammes, N., Mechtinger, G. & Peer, D. Therapeutic mRNA delivery to leukocytes. J. Control. Release 305, 165–175 (2019).

    CAS  Google Scholar 

  90. Miao, L. et al. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nat. Biotechnol. 37, 1174–1185 (2019).

    CAS  Google Scholar 

  91. Warren, L. & Lin, C. mRNA-based genetic reprogramming. Mol. Ther. 27, 729–734 (2019).

    CAS  Google Scholar 

  92. Devoldere, J. et al. Non-viral delivery of chemically modified mRNA to the retina: Subretinal versus intravitreal administration. J. Control. Release 307, 315–330 (2019).

    CAS  Google Scholar 

  93. Paunovska, K. et al. Nanoparticles containing oxidized cholesterol deliver mRNA to the liver microenvironment at clinically relevant doses. Adv. Mater. 31, 1807748 (2019).

    Google Scholar 

  94. Jinek, M. et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    CAS  Google Scholar 

  95. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    CAS  Google Scholar 

  96. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    CAS  Google Scholar 

  97. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    CAS  Google Scholar 

  98. Yin, H. et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 34, 328–333 (2016).

    CAS  Google Scholar 

  99. Lee, K. et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat. Biomed. Eng. 1, 889–901 (2017).

    CAS  Google Scholar 

  100. Finn, J. D. et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 22, 2227–2235 (2018).

    CAS  Google Scholar 

  101. Lin, Y. et al. Exosome–liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs. Adv. Sci. 5, 1700611 (2018).

    Google Scholar 

  102. Wang, P. et al. Thermo-triggered release of CRISPR-Cas9 system by lipid-encapsulated gold nanoparticles for tumor therapy. Angew. Chem. Inter. Ed. 57, 1491–1496 (2018).

    CAS  Google Scholar 

  103. Luo, Y.-L. et al. Macrophage-specific in vivo gene editing using cationic lipid-assisted polymeric nanoparticles. ACS Nano 12, 994–1005 (2018).

    CAS  Google Scholar 

  104. Chin, J. S. et al. Scaffold-mediated non-viral delivery platform for CRISPR/Cas9-based genome editing. Acta Biomater. 90, 60–70 (2019).

    CAS  Google Scholar 

  105. Choi, B. et al. Stiffness of hydrogels regulates cellular reprogramming efficiency through mesenchymal-to-epithelial transition and stemness markers. Macromol. Biosci. 16, 199–206 (2016).

    CAS  Google Scholar 

  106. Downing, T. L. et al. Biophysical regulation of epigenetic state and cell reprogramming. Nat. Mater. 12, 1154–1162 (2013).

    CAS  Google Scholar 

  107. Morez, C. et al. Enhanced efficiency of genetic programming toward cardiomyocyte creation through topographical cues. Biomaterials 70, 94–104 (2015).

    CAS  Google Scholar 

  108. Kingham, E., White, K., Gadegaard, N., Dalby, M. J. & Oreffo, R. O. Nanotopographical cues augment mesenchymal differentiation of human embryonic stem cells. Small 9, 2140–2151 (2013).

    CAS  Google Scholar 

  109. Schellenberg, A. et al. Matrix elasticity, replicative senescence and DNA methylation patterns of mesenchymal stem cells. Biomaterials 35, 6351–6358 (2014).

    CAS  Google Scholar 

  110. Ha, S.-W., Jang, H. L., Nam, K. T. & Beck, G. R. Jr. Nano-hydroxyapatite modulates osteoblast lineage commitment by stimulation of DNA methylation and regulation of gene expression. Biomaterials 65, 32–42 (2015).

    CAS  Google Scholar 

  111. Ahuja, N., Sharma, A. R. & Baylin, S. B. Epigenetic therapeutics: a new weapon in the war against cancer. Ann. Rev. Med. 67, 73–89 (2016).

    CAS  Google Scholar 

  112. Jones, P. A., Issa, J.-P. J. & Baylin, S. Targeting the cancer epigenome for therapy. Nat. Rev. Genet. 17, 630–641 (2016).

    CAS  Google Scholar 

  113. Dhaliwal, A., Pelka, S., Gray, D. S. & Moghe, P. V. Engineering lineage potency and plasticity of stem cells using epigenetic molecules. Sci. Rep. 8, 16289 (2018).

    Google Scholar 

  114. Zhang, C. et al. An epigenetic bioactive composite scaffold with well-aligned nanofibers for functional tendon tissue engineering. Acta Biomater. 66, 141–156 (2018).

    CAS  Google Scholar 

  115. Mosiewicz, K. A. et al. In situ cell manipulation through enzymatic hydrogel photopatterning. Nat. Mater. 12, 1072–1078 (2013).

    CAS  Google Scholar 

  116. Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016).

    CAS  Google Scholar 

  117. Huebsch, N. et al. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat. Mater. 14, 1269–1277 (2015).

    CAS  Google Scholar 

  118. Shadish, J. A., Benuska, G. M. & DeForest, C. A. Bioactive site-specifically modified proteins for 4D patterning of gel biomaterials. Nat. Mater. 18, 1005–1014 (2019).

    CAS  Google Scholar 

  119. Prausnitz, M. R. & Langer, R. Transdermal drug delivery. Nat. Biotechnol. 26, 1261–1268 (2008).

    CAS  Google Scholar 

  120. Ye, Y., Yu, J., Wen, D., Kahkoska, A. R. & Gu, Z. Polymeric microneedles for transdermal protein delivery. Adv. Drug Deliv. Rev. 127, 106–118 (2018).

    CAS  Google Scholar 

  121. Yang, G. et al. A therapeutic microneedle patch made from hair-derived keratin for promoting hair regrowth. ACS Nano 13, 4354–4360 (2019).

    CAS  Google Scholar 

  122. Tang, J. et al. Cardiac cell–integrated microneedle patch for treating myocardial infarction. Sci. Adv. 4, eaat9365 (2018).

    CAS  Google Scholar 

  123. Dimatteo, R., Darling, N. J. & Segura, T. In situ forming injectable hydrogels for drug delivery and wound repair. Adv. Drug Deliv. Rev. 127, 167–184 (2018).

    CAS  Google Scholar 

  124. Appel, E. A. et al. Self-assembled hydrogels utilizing polymer–nanoparticle interactions. Nat. Commun. 6, 6295 (2015).

    CAS  Google Scholar 

  125. Loebel, C., Rodell, C. B., Chen, M. H. & Burdick, J. A. Shear-thinning and self-healing hydrogels as injectable therapeutics and for 3D-printing. Nat. Protoc. 12, 1521–1541 (2017).

    CAS  Google Scholar 

  126. Gaharwar, A. K. et al. Shear-thinning nanocomposite hydrogels for the treatment of hemorrhage. ACS Nano 8, 9833–9842 (2014).

    CAS  Google Scholar 

  127. Lokhande, G. et al. Nanoengineered injectable hydrogels for wound healing application. Acta Biomater. 70, 35–47 (2018).

    CAS  Google Scholar 

  128. Evans, H. J. & Sorger, G. J. Role of mineral elements with emphasis on the univalent cations. Ann. Rev. Plant Physiol. 17, 47–76 (1966).

    CAS  Google Scholar 

  129. Murphy, W. L., McDevitt, T. C. & Engler, A. J. Materials as stem cell regulators. Nat. Mater. 13, 547–557 (2014).

    CAS  Google Scholar 

  130. Xavier, J. R. et al. Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano 9, 3109–3118 (2015).

    CAS  Google Scholar 

  131. Brokesh, A. M. & Gaharwar, A. K. Inorganic biomaterials for regenerative medicine. ACS Appl. Mater. Interfaces 12, 5319–5344 (2020).

    CAS  Google Scholar 

  132. Hoppe, A., Guldal, N. S. & Boccaccini, A. R. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32, 2757–2774 (2011).

    CAS  Google Scholar 

  133. Parker, K. K. & Ingber, D. E. Extracellular matrix, mechanotransduction and structural hierarchies in heart tissue engineering. Phil. Trans. R. Soc. B 362, 1267–1279 (2007).

    CAS  Google Scholar 

  134. Chen, W. et al. Nanotopography influences adhesion, spreading, and self-renewal of human embryonic stem cells. ACS Nano 6, 4094–4103 (2012).

    CAS  Google Scholar 

  135. Melchels, F. P. et al. Additive manufacturing of tissues and organs. Prog. Polym. Sci. 37, 1079–1104 (2012).

    CAS  Google Scholar 

  136. Do, A. V., Khorsand, B., Geary, S. M. & Salem, A. K. 3D printing of scaffolds for tissue regeneration applications. Adv. Healthc. Mater. 4, 1742–1762 (2015).

    CAS  Google Scholar 

  137. Chimene, D., Lennox, K. K., Kaunas, R. R. & Gaharwar, A. K. Advanced bioinks for 3D printing: a materials science perspective. Ann. Biomed. Eng. 44, 2090–2102 (2016).

    Google Scholar 

  138. Chimene, D., Kaunas, R. & Gaharwar, A. K. Hydrogel bioink reinforcement for additive manufacturing: A focused review of emerging strategies. Adv. Mater. 32, 1902026 (2020).

    CAS  Google Scholar 

  139. Liu, W. et al. Rapid continuous multimaterial extrusion bioprinting. Adv. Mater. 29, 1604630 (2017).

    Google Scholar 

  140. Miri, A. K. et al. Microfluidics-enabled multimaterial maskless stereolithographic bioprinting. Adv. Mater. 30, 1800242 (2018).

    Google Scholar 

  141. Lee, A. et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 365, 482–487 (2019).

    CAS  Google Scholar 

  142. Hinton, T. J. et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 1, e1500758 (2015).

    Google Scholar 

  143. Ouyang, L., Highley, C. B., Sun, W. & Burdick, J. A. A generalizable strategy for the 3D bioprinting of hydrogels from nonviscous photo-crosslinkable inks. Adv. Mater. 29, 1604983 (2017).

    Google Scholar 

  144. Chimene, D. et al. Nanoengineered ionic-covalent entanglement (NICE) bioinks for 3D bioprinting. ACS Appl. Mater. Interfaces 10, 9957–9968 (2018).

    CAS  Google Scholar 

  145. Wilson, S. A., Cross, L. M., Peak, C. W. & Gaharwar, A. K. Shear-thinning and thermo-reversible nanoengineered inks for 3D bioprinting. ACS Appl. Mater. Interfaces 9, 43449–43458 (2017).

    CAS  Google Scholar 

  146. Carrow, J. K. et al. Widespread changes in transcriptome profile of human mesenchymal stem cells induced by two-dimensional nanosilicates. Proc. Natl Acad. Sci. USA 115, E3905–E3913 (2018).

    CAS  Google Scholar 

  147. Camp, J. G., Wollny, D. & Treutlein, B. Single-cell genomics to guide human stem cell and tissue engineering. Nat. Methods 15, 661–667 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge financial support from the National Institutes of Health (NIH) (DP2 EB026265 to A.K.G. and HL140951, EB021857, AR073135, AR066193 and HL140618 to A.K.) and the National Science Foundation (CBET 1705852 to A.K.G.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to conceiving, reviewing, writing and revising the manuscript.

Corresponding author

Correspondence to Ali Khademhosseini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaharwar, A.K., Singh, I. & Khademhosseini, A. Engineered biomaterials for in situ tissue regeneration. Nat Rev Mater 5, 686–705 (2020). https://doi.org/10.1038/s41578-020-0209-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-020-0209-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing