Nonreciprocity in acoustic and elastic materials

Abstract

The law of reciprocity in acoustics and elastodynamics codifies a relation of symmetry between action and reaction in fluids and solids. In its simplest form, it states that the frequency-response functions between any two material points remain the same after swapping source and receiver, regardless of the presence of inhomogeneities and losses. As such, reciprocity has enabled numerous applications that make use of acoustic and elastic wave propagation. A recent change in paradigm has prompted us to see reciprocity under a new light: as an obstruction to the realization of wave-bearing media in which the source and receiver are not interchangeable. Such materials may enable the creation of devices such as acoustic one-way mirrors, isolators and topological insulators. Here, we review how reciprocity breaks down in materials with momentum bias, structured space-dependent and time-dependent constitutive properties, and constitutive nonlinearity, and report on recent advances in the modelling and fabrication of these materials, as well as on experiments demonstrating nonreciprocal acoustic and elastic wave propagation therein. The success of these efforts holds promise to enable robust, unidirectional acoustic and elastic wave-steering capabilities that exceed what is currently possible in conventional materials, metamaterials or phononic crystals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Acoustic reciprocity from fluid motion.
Fig. 2: Examples of activated media.
Fig. 3: Experimental demonstrations of nonreciprocity in dynamic media.
Fig. 4: Topological effects in dynamic media.
Fig. 5: Quantum Hall effect analogues in mechanics and acoustics.
Fig. 6: Overview of nonreciprocity in nonlinear media.

References

  1. 1.

    Bacot, V., Labousse, M., Eddi, A., Fink, M. & Fort, E. Time reversal and holography with spacetime transformations. Nat. Phys. 12, 972–977 (2016).

    CAS  Google Scholar 

  2. 2.

    Fink, M. et al. Time-reversed acoustics. Rep. Prog. Phys. 63, 1933–1995 (2000).

    Google Scholar 

  3. 3.

    Colton, D. & Haddar, H. An application of the reciprocity gap functional to inverse scattering theory. Inverse Probl. 21, 383–398 (2005).

    Google Scholar 

  4. 4.

    Bonnet, M. Boundary Integral Equation Methods for Solids and Fluids (Wiley, 1995).

  5. 5.

    Bonnet, M. & Constantinescu, A. Inverse problems in elasticity. Inverse Probl. 21, R1–R50 (2005).

    Google Scholar 

  6. 6.

    Andrieux, S., Ben Abda, A. & Bui, H. D. Reciprocity principle and crack identification. Inverse Probl. 15, 59–65 (1999).

    Google Scholar 

  7. 7.

    MacLean, W. R. Absolute measurement of sound without a primary standard. J. Acoust. Soc. Am. 12, 140–146 (1940).

    Google Scholar 

  8. 8.

    Ten Wolde, T. Reciprocity measurements in acoustical and mechano-acoustical systems. Review of theory and applications. Acta Acust. United Acust. 96, 1–13 (2010).

    Google Scholar 

  9. 9.

    Fahy, F. Some applications of the reciprocity principle in experimental vibroacoustics. Acoust. Phys. 49, 217–229 (2003).

    Google Scholar 

  10. 10.

    de Hoop, A. T. Time-domain reciprocity theorems for acoustic wave fields in fluids with relaxation. J. Acoust. Soc. Am. 84, 1877–1882 (1988).

    Google Scholar 

  11. 11.

    Howe, M. S. Acoustics of Fluid-Structure Interactions, Ch. 1 (Cambridge Univ. Press, 2010).

  12. 12.

    Maznev, A. A., Every, A. G. & Wright, O. B. Reciprocity in reflection and transmission: What is a ‘phonon diode’? Wave Motion 50, 776–784 (2013).

    Google Scholar 

  13. 13.

    Fleury, R., Sounas, D., Haberman, M. R. & Alù, A. Nonreciprocal acoustics. Acoust. Today 11, 14–21 (2015).

    Google Scholar 

  14. 14.

    Fleury, R., Haberman, M. R., Huang, G. & Norris, A. N. Introduction to the special issue on non-reciprocal and topological wave phenomena in acoustics. J. Acoust. Soc. Am. 146, 719–720 (2019).

    Google Scholar 

  15. 15.

    Fleury, R., Sounas, D., Sieck, C., Haberman, M. & Alù, A. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343, 516–519 (2014).

    CAS  Google Scholar 

  16. 16.

    Kittel, C. Interaction of spin waves and ultrasonic waves in ferromagnetic crystals. Phys. Rev. 110, 836–841 (1958).

    Google Scholar 

  17. 17.

    Kariyado, T. & Hatsugai, Y. Manipulation of Dirac cones in mechanical graphene. Sci. Rep. 5, 18107 (2015).

    CAS  Google Scholar 

  18. 18.

    Zangeneh-Nejad, F. & Fleury, R. Doppler-based acoustic gyrator. Appl. Sci. 8, 1083 (2018).

    Google Scholar 

  19. 19.

    Wiederhold, C. P., Sounas, D. L. & Alù, A. Nonreciprocal acoustic propagation and leaky-wave radiation in a waveguide with flow. J. Acoust. Soc. Am. 146, 802–809 (2019).

    Google Scholar 

  20. 20.

    Aaboud, M. et al. Probing the quantum interference between singly and doubly resonant top-quark production in pp collisions at \(\sqrt{s}=13{\rm{TeV}}\) with the ATLAS detector. Phys. Rev. Lett. 121, 152002 (2018).

    Google Scholar 

  21. 21.

    Guo, X., Lissek, H. & Fleury, R. Improving sound absorption through nonlinear active electroacoustic resonators. Phys. Rev. Appl. 13, 014018 (2020).

    CAS  Google Scholar 

  22. 22.

    Popa, B.-I. & Cummer, S. A. Non-reciprocal and highly nonlinear active acoustic metamaterials. Nat. Commun. 5, 3398 (2014).

    Google Scholar 

  23. 23.

    Rivet, E. et al. Constant-pressure sound waves in non-Hermitian disordered media. Nat. Phys. 14, 942–947 (2018).

    CAS  Google Scholar 

  24. 24.

    Koutserimpas, T. T., Rivet, E., Lissek, H. & Fleury, R. Active acoustic resonators with reconfigurable resonance frequency, absorption, and bandwidth. Phys. Rev. Appl. 12, 054064 (2019).

    CAS  Google Scholar 

  25. 25.

    Slater, J. C. Interaction of waves in crystals. Rev. Mod. Phys. 30, 197–222 (1958).

    CAS  Google Scholar 

  26. 26.

    Wang, D.-W. et al. Optical diode made from a moving photonic crystal. Phys. Rev. Lett. 110, 093901 (2013).

    Google Scholar 

  27. 27.

    Swinteck, N. et al. Bulk elastic waves with unidirectional backscattering-immune topological states in a time-dependent superlattice. J. Appl. Phys. 118, 063103 (2015).

    Google Scholar 

  28. 28.

    Trainiti, G. & Ruzzene, M. Non-reciprocal elastic wave propagation in spatiotemporal periodic structures. New J. Phys. 18, 083047 (2016).

    Google Scholar 

  29. 29.

    Hu, X., Hang, Z., Li, J., Zi, J. & Chan, C. Anomalous Doppler effects in phononic band gaps. Phys. Rev. E 73, 015602 (2006).

    Google Scholar 

  30. 30.

    Wang, Y. et al. Observation of non-reciprocal wave propagation in a dynamic phononic lattice. Phys. Rev. Lett. 121, 194301 (2018).

    CAS  Google Scholar 

  31. 31.

    Chen, Y. et al. Nonreciprocal wave propagation in a continuum-based metamaterial with space-time modulated resonators. Phys. Rev. Appl. 11, 064052 (2019).

    CAS  Google Scholar 

  32. 32.

    Nassar, H., Chen, H., Norris, A. N., Haberman, M. R. & Huang, G. L. Non-reciprocal wave propagation in modulated elastic metamaterials. Proc. R. Soc. A 473, 20170188 (2017).

    CAS  Google Scholar 

  33. 33.

    Nassar, H., Chen, H., Norris, A. N. & Huang, G. L. Non-reciprocal flexural wave propagation in a modulated metabeam. Extreme Mech. Lett. 15, 97–102 (2017).

    Google Scholar 

  34. 34.

    Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nat. Photonics 3, 91–94 (2009).

    CAS  Google Scholar 

  35. 35.

    Zanjani, M. B., Davoyan, A. R., Mahmoud, A. M., Engheta, N. & Lukes, J. R. One-way phonon isolation in acoustic waveguides. Appl. Phys. Lett. 104, 081905 (2014).

    Google Scholar 

  36. 36.

    Zanjani, M. B., Davoyan, A. R., Engheta, N. & Lukes, J. R. NEMS with broken T symmetry: Graphene based unidirectional acoustic transmission lines. Sci. Rep. 5, 9926 (2015).

    Google Scholar 

  37. 37.

    Chaunsali, R., Li, F. & Yang, J. Stress wave isolation by purely mechanical topological phononic crystals. Sci. Rep. 6, 30662 (2016).

    CAS  Google Scholar 

  38. 38.

    Croënne, C., Vasseur, J. O., Matar, O. B., Hladky-Hennion, A.-C. & Dubus, B. Non-reciprocal behavior of one-dimensional piezoelectric structures with space-time modulated electrical boundary conditions. J. Appl. Phys. 126, 145108 (2019).

    Google Scholar 

  39. 39.

    Marconi, J. et al. Experimental observation of nonreciprocal band gaps in a space-time-modulated beam using a shunted piezoelectric array. Phys. Rev. Appl. 13, 031001 (2020).

    CAS  Google Scholar 

  40. 40.

    Merkel, A., Willatzen, M. & Christensen, J. Dynamic nonreciprocity in loss-compensated piezophononic media. Phys. Rev. Appl. 9, 034033 (2018).

    CAS  Google Scholar 

  41. 41.

    Huang, J. & Zhou, X. A time-varying mass metamaterial for non-reciprocal wave propagation. Int. J. Solids Struct. 164, 25–36 (2019).

    Google Scholar 

  42. 42.

    Attarzadeh, M. A., Callanan, J. & Nouh, M. Experimental observation of nonreciprocal waves in a resonant metamaterial beam. Phys. Rev. Appl. 13, 021001 (2020).

    CAS  Google Scholar 

  43. 43.

    Torrent, D., Poncelet, O. & Batsale, J.-C. Nonreciprocal thermal material by spatiotemporal modulation. Phys. Rev. Lett. 120, 125501 (2018).

    CAS  Google Scholar 

  44. 44.

    Vila, J., Pal, R. K., Ruzzene, M. & Trainiti, G. A Bloch-based procedure for dispersion analysis of lattices with periodic time-varying properties. J. Sound. Vib. 406, 363–377 (2017).

    Google Scholar 

  45. 45.

    Wallen, S. P. & Haberman, M. R. Nonreciprocal wave phenomena in spring-mass chains with effective stiffness modulation induced by geometric nonlinearity. Phys. Rev. E 99, 013001 (2019).

    CAS  Google Scholar 

  46. 46.

    Goldsberry, B. M., Wallen, S. P. & Haberman, M. R. Non-reciprocal wave propagation in mechanically-modulated continuous elastic metamaterials. J. Acoust. Soc. Am. 146, 782–788 (2019).

    Google Scholar 

  47. 47.

    Nassar, H., Xu, X. C., Norris, A. N. & Huang, G. L. Modulated phononic crystals: Non-reciprocal wave propagation and Willis materials. J. Mech. Phys. Solids 101, 10–29 (2017).

    CAS  Google Scholar 

  48. 48.

    Nassar, H., Chen, H., Norris, A. & Huang, G. Quantization of band tilting in modulated phononic crystals. Phys. Rev. B 97, 014305 (2018).

    CAS  Google Scholar 

  49. 49.

    Attarzadeh, M. A. & Nouh, M. Elastic wave propagation in moving phononic crystals and correlations with stationary spatiotemporally modulated systems. AIP Adv. 8, 105302 (2018).

    Google Scholar 

  50. 50.

    Lurie, K. A. Low frequency longitudinal vibrations of an elastic bar made of a dynamic material and excited at one end. J. Math. Anal. Appl. 251, 364–375 (2000).

    Google Scholar 

  51. 51.

    Lurie, K. A. An Introduction to the Mathematical Theory of Dynamic Materials (Springer, 2007).

  52. 52.

    Willis, J. R. Variational principles for dynamic problems for inhomogeneous elastic media. Wave Motion 3, 1–11 (1981).

    Google Scholar 

  53. 53.

    Willis, J. R. in Continuum Micromechanics (ed. Suquet, P.) 265–290 (Springer, 1997).

  54. 54.

    Lurie, K. A. Effective properties of smart elastic laminates and the screening phenomenon. Int. J. Solids Struct. 34, 1633–1643 (1997).

    Google Scholar 

  55. 55.

    Quan, L., Sounas, D. L. & Alù, A. Nonreciprocal Willis coupling in zero-index moving media. Phys. Rev. Lett. 123, 064301 (2019).

    CAS  Google Scholar 

  56. 56.

    Cheng, D. K. & Kong, J.-A. Covariant descriptions of bianisotropic media. Proc. IEEE 56, 248–251 (1968).

    Google Scholar 

  57. 57.

    Kong, J.-A. Theorems of bianisotropic media. Proc. IEEE 60, 1036–1046 (1972).

    Google Scholar 

  58. 58.

    Sieck, C. F., Alù, A. & Haberman, M. R. Origins of Willis coupling and acoustic bianisotropy in acoustic metamaterials through source-driven homogenization. Phys. Rev. B 96, 104303 (2017).

    Google Scholar 

  59. 59.

    Muhlestein, M. B., Sieck, C. F., Wilson, P. S. & Haberman, M. R. Experimental evidence of Willis coupling in a one-dimensional effective material element. Nat. Commun. 8, 15625 (2017).

    CAS  Google Scholar 

  60. 60.

    Cullen, A. A travelling-wave parametric amplifier. Nature 181, 332 (1958).

    Google Scholar 

  61. 61.

    Hayrapetyan, A., Grigoryan, K., Petrosyan, R. & Fritzsche, S. Propagation of sound waves through a spatially homogeneous but smoothly time-dependent medium. Ann. Phys. 333, 47–65 (2013).

    CAS  Google Scholar 

  62. 62.

    Lurie, K. A. & Weekes, S. L. Wave propagation and energy exchange in a spatio-temporal material composite with rectangular microstructure. J. Math. Anal. Appl. 314, 286–310 (2006).

    Google Scholar 

  63. 63.

    Milton, G. W. & Mattei, O. Field patterns: a new mathematical object. Proc. R. Soc. A 473, 20160819 (2017).

    Google Scholar 

  64. 64.

    Torrent, D., Parnell, W. J. & Norris, A. N. Loss compensation in time-dependent elastic metamaterials. Phys. Rev. B 97, 014105 (2018).

    CAS  Google Scholar 

  65. 65.

    Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A 392, 45–57 (1984).

    Google Scholar 

  66. 66.

    Cheng, C. M. & Fung, P. C. W. The evolution operator technique in solving the Schrodinger equation, and its application to disentangling exponential operators and solving the problem of a mass-varying harmonic oscillator. J. Phys. A 21, 4115 (1988).

    Google Scholar 

  67. 67.

    Chen, H., Yao, L. Y., Nassar, H. & Huang, G. L. Mechanical quantum Hall effect in time-modulated elastic materials. Phys. Rev. Appl. 11, 044029 (2019).

    CAS  Google Scholar 

  68. 68.

    Hatsugai, Y. & Fukui, T. Bulk-edge correspondence in topological pumping. Phys. Rev. B 94, 041102 (2016).

    Google Scholar 

  69. 69.

    Huber, S. Topological mechanics. Nat. Phys. 12, 621–623 (2016).

    CAS  Google Scholar 

  70. 70.

    Khanikaev, A. B. & Shvets, G. Two-dimensional topological photonics. Nat. Photonics 11, 763–773 (2017).

    CAS  Google Scholar 

  71. 71.

    Lu, L., Joannopoulos, J. & Soljacic, M. Topological photonics. Nat. Photonics 8, 821–829 (2014).

    CAS  Google Scholar 

  72. 72.

    Ma, G., Xiao, M. & Chan, C. T. Topological phases in acoustic and mechanical systems. Nat. Rev. Phys. 1, 281–294 (2019).

    Google Scholar 

  73. 73.

    Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015 (1988).

    CAS  Google Scholar 

  74. 74.

    Zhang, Y., Tan, Y., Stormer, H. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    CAS  Google Scholar 

  75. 75.

    Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    CAS  Google Scholar 

  76. 76.

    Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    CAS  Google Scholar 

  77. 77.

    Bernevig, B., Hughes, T. & Zhang, S. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    CAS  Google Scholar 

  78. 78.

    Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    CAS  Google Scholar 

  79. 79.

    Brendel, C., Peano, V., Painter, O. & Marquardt, F. Snowflake phononic topological insulator at the nanoscale. Phys. Rev. B 97, 020102 (2018).

    CAS  Google Scholar 

  80. 80.

    Fleury, R., Khanikaev, A. B. & Alù, A. Floquet topological insulators for sound. Nat. Commun. 7, 11744 (2016).

    CAS  Google Scholar 

  81. 81.

    Deng, Y., Lu, M. & Jing, Y. A comparison study between acoustic topological states based on valley Hall and quantum spin Hall effects. J. Acoust. Soc. Am. 146, 721–728 (2019).

    CAS  Google Scholar 

  82. 82.

    Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013).

    CAS  Google Scholar 

  83. 83.

    Mousavi, S., Khanikaev, A. & Wang, Z. Topologically protected elastic waves in phononic metamaterials. Nat. Commun. 6, 8682 (2015).

    Google Scholar 

  84. 84.

    Pal, R., Schaeffer, M. & Ruzzene, M. Helical edge states and topological phase transitions in phononic systems using bi-layered lattices. J. Appl. Phys. 119, 084305 (2016).

    Google Scholar 

  85. 85.

    Huo, S.-y, Chen, J.-j, Feng, L.-y & Huang, H.-b Pseudospins and topological edge states for fundamental antisymmetric Lamb modes in snowflakelike phononic crystal slabs. J. Acoust. Soc. Am. 146, 729–735 (2019).

    CAS  Google Scholar 

  86. 86.

    Darabi, A. & Leamy, M. J. Reconfigurable topological insulator for elastic waves. J. Acoust. Soc. Am. 146, 773–781 (2019).

    CAS  Google Scholar 

  87. 87.

    Cha, J., Kim, K. W. & Daraio, C. Experimental realization of on-chip topological nanoelectromechanical metamaterials. Nature 564, 229–233 (2018).

    CAS  Google Scholar 

  88. 88.

    Peano, V., Brendel, C., Schmidt, M. & Marquardt, F. Topological phases of sound and light. Phys. Rev. X 5, 031011 (2015).

    Google Scholar 

  89. 89.

    Prodan, E. & Prodan, C. Topological phonon modes and their role in dynamic instability of microtubules. Phys. Rev. Lett. 103, 248101 (2009).

    Google Scholar 

  90. 90.

    Nash, L. M., Kleckner, D., Vitelli, V., Turner, A. M. & Irvine, W. T. Topological mechanics of gyroscopic metamaterials. Proc. Natl Acad. Sci. USA 112, 14495–14500 (2015).

    CAS  Google Scholar 

  91. 91.

    Zhou, X. M. & Zhao, Y. C. Unusual one-way edge state in acoustic gyroscopic continuum. Sci. China Phys. Mech. Astron. 62, 14612 (2019).

    Google Scholar 

  92. 92.

    Khanikaev, A. B., Fleury, R., Mousavi, S. H. & Alù, A. Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice. Nat. Commun. 6, 8260 (2015).

    CAS  Google Scholar 

  93. 93.

    Souslov, A., van Zuiden, B. C., Bartolo, D. & Vitelli, V. Topological sound in active-liquid metamaterials. Nat. Phys. 13, 1091–1094 (2017).

    CAS  Google Scholar 

  94. 94.

    Souslov, A., Dasbiswas, K., Fruchart, M., Vaikuntanathan, S. & Vitelli, V. Topological waves in fluids with odd viscosity. Phys. Rev. Lett. 122, 128001 (2019).

    CAS  Google Scholar 

  95. 95.

    Ding, Y. et al. Experimental demonstration of acoustic Chern insulators. Phys. Rev. Lett. 122, 014302 (2019).

    Google Scholar 

  96. 96.

    Yang, Z. et al. Topological acoustics. Phys. Rev. Lett. 114, 114301 (2015).

    Google Scholar 

  97. 97.

    Yves, S., Fleury, R., Lemoult, F., Fink, M. & Lerosey, G. Topological acoustic polaritons: robust sound manipulation at the subwavelength scale. New J. Phys. 19, 075003 (2017).

    Google Scholar 

  98. 98.

    Zhang, L., Ren, J., Wang, J. & Li, B. Topological nature of the phonon Hall effect. Phys. Rev. Lett. 105, 225901 (2010).

    Google Scholar 

  99. 99.

    Wang, P., Lu, L. & Bertoldi, K. Topological phononic crystals with one-way elastic edge waves. Phys. Rev. Lett. 115, 104302 (2015).

    Google Scholar 

  100. 100.

    Salerno, G., Ozawa, T., Price, H. & Carusotto, I. Floquet topological system based on frequency-modulated classical coupled harmonic oscillators. Phys. Rev. B 93, 085105 (2016).

    Google Scholar 

  101. 101.

    He, C. et al. Topological phononic states of underwater sound based on coupled ring resonators. Appl. Phys. Lett. 108, 031904 (2016).

    Google Scholar 

  102. 102.

    Chen, H., Nassar, H., Norris, A. N., Hu, G. K. & Huang, G. L. Elastic quantum spin Hall effect in kagome lattices. Phys. Rev. B 98, 094302 (2018).

    CAS  Google Scholar 

  103. 103.

    Süsstrunk, R. & Huber, S. Observation of phononic helical edge states in a mechanical topological insulator. Science 349, 47–50 (2015).

    Google Scholar 

  104. 104.

    Ningyuan, J., Owens, C., Sommer, A., Schuster, D. & Simon, J. Time-and site-resolved dynamics in a topological circuit. Phys. Rev. X 5, 021031 (2015).

    Google Scholar 

  105. 105.

    Foehr, A., Bilal, O. R., Huber, S. D. & Daraio, C. Spiral-based phononic plates: From wave beaming to topological insulators. Phys. Rev. Lett. 120, 205501 (2018).

    CAS  Google Scholar 

  106. 106.

    Miniaci, M., Pal, R., Morvan, B. & Ruzzene, M. Experimental observation of topologically protected helical edge modes in patterned elastic plates. Phys. Rev. X 8, 031074 (2018).

    CAS  Google Scholar 

  107. 107.

    He, C. et al. Acoustic topological insulator and robust one-way sound transport. Nat. Phys. 12, 1124–1129 (2016).

    CAS  Google Scholar 

  108. 108.

    Ni, X., Weiner, M., Alù, A. & Khanikaev, A. B. Observation of higher-order topological acoustic states protected by generalized chiral symmetry. Nat. Mater. 18, 113–120 (2019).

    CAS  Google Scholar 

  109. 109.

    Rycerz, A., Tworzydło, J. & Beenakker, C. Valley filter and valley valve in graphene. Nat. Phys. 3, 172–175 (2007).

    CAS  Google Scholar 

  110. 110.

    Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    Google Scholar 

  111. 111.

    Ma, T. & Shvets, G. All-Si valley-Hall photonic topological insulator. New J. Phys. 18, 025012 (2016).

    Google Scholar 

  112. 112.

    Chen, X.-D., Zhao, F.-L., Chen, M. & Dong, J.-W. Valley-contrasting physics in all-dielectric photonic crystals: Orbital angular momentum and topological propagation. Phys. Rev. B 96, 020202 (2017).

    Google Scholar 

  113. 113.

    Xiao, M. et al. Geometric phase and band inversion in periodic acoustic systems. Nat. Phys. 11, 240–244 (2015).

    CAS  Google Scholar 

  114. 114.

    Lu, J. et al. Observation of topological valley transport of sound in sonic crystals. Nat. Phys. 13, 369–374 (2017).

    CAS  Google Scholar 

  115. 115.

    Ye, L. et al. Observation of acoustic valley vortex states and valley-chirality locked beam splitting. Phys. Rev. B 95, 174106 (2017).

    Google Scholar 

  116. 116.

    Lu, J., Qiu, C., Ke, M. & Liu, Z. Valley vortex states in sonic crystals. Phys. Rev. Lett. 116, 093901 (2016).

    Google Scholar 

  117. 117.

    Pal, R. K. & Ruzzene, M. Edge waves in plates with resonators: an elastic analogue of the quantum valley Hall effect. New J. Phys. 19, 025001 (2017).

    Google Scholar 

  118. 118.

    Vila, J., Pal, R. K. & Ruzzene, M. Observation of topological valley modes in an elastic hexagonal lattice. Phys. Rev. B 96, 134307 (2017).

    Google Scholar 

  119. 119.

    Liu, T.-W. & Semperlotti, F. Experimental evidence of robust acoustic valley Hall edge states in a nonresonant topological elastic waveguide. Phys. Rev. Appl. 11, 014040 (2019).

    CAS  Google Scholar 

  120. 120.

    Chaunsali, R., Thakkar, A., Kim, E., Kevrekidis, P. & Yang, J. Demonstrating an in-situ topological band transition in cylindrical granular chains. Phys. Rev. Lett. 119, 024301 (2017).

    CAS  Google Scholar 

  121. 121.

    Chen, H., Nassar, H. & Huang, G. L. A study of topological effects in 1D and 2D mechanical lattices. J. Mech. Phys. Solids 117, 22–36 (2018).

    Google Scholar 

  122. 122.

    Makwana, M. P. & Craster, R. V. Geometrically navigating topological plate modes around gentle and sharp bends. Phys. Rev. B 98, 22184105 (2018).

    Google Scholar 

  123. 123.

    Lepri, S. & Casati, G. Asymmetric wave propagation in nonlinear systems. Phys. Rev. Lett. 106, 164101 (2011).

    Google Scholar 

  124. 124.

    Lepri, S. & Pikovsky, A. Nonreciprocal wave scattering on nonlinear string-coupled oscillators. Chaos 24, 043119 (2014).

    Google Scholar 

  125. 125.

    Cui, J.-G., Yang, T. & Chen, L.-Q. Frequency-preserved non-reciprocal acoustic propagation in a granular chain. Appl. Phys. Lett. 112, 181904 (2018).

    Google Scholar 

  126. 126.

    Yousefzadeh, B., Ramirez, B. & Daraio, C. Non-reciprocal dynamic response of a bilinear lattice in APS Meeting Abstracts (APS, 2019).

  127. 127.

    Coulais, C., Sounas, D. & Alù, A. Static non-reciprocity in mechanical metamaterials. Nature 542, 461–464 (2017).

    CAS  Google Scholar 

  128. 128.

    Wallen, S. P. et al. Static and dynamic non-reciprocity in bi-linear structures in Proc. Meetings on Acoustics 21ISNA Vol. 34 065002 (ASA, 2018).

  129. 129.

    Deng, B., Wang, P., He, Q., Tournat, V. & Bertoldi, K. Metamaterials with amplitude gaps for elastic solitons. Nat. Commun. 9, 3410 (2018).

    Google Scholar 

  130. 130.

    Devaux, T., Cebrecos, A., Richoux, O., Pagneux, V. & Tournat, V. Acoustic radiation pressure for nonreciprocal transmission and switch effects. Nat. Commun. 10, 3292 (2019).

    Google Scholar 

  131. 131.

    Shi, Y., Yu, Z. & Fan, S. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photonics 9, 388–392 (2015).

    CAS  Google Scholar 

  132. 132.

    Sounas, D. L., Soric, J. & Alù, A. Broadband passive isolators based on coupled nonlinear resonances. Nat. Electron. 1, 113–119 (2018).

    Google Scholar 

  133. 133.

    Sounas, D. L. & Alù, A. Nonreciprocity based on nonlinear resonances. IEEE Antennas Wirel. Propag. Lett. 17, 1958–1962 (2018).

    Google Scholar 

  134. 134.

    Nesterenko, V. F. Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. 24, 136–148 (1983).

    Google Scholar 

  135. 135.

    Cebrecos, A. et al. Asymmetric propagation using enhanced self-demodulation in a chirped phononic crystal. AIP Adv. 6, 121601 (2016).

    Google Scholar 

  136. 136.

    Harbola, U., Rosas, A., Esposito, M. & Lindenberg, K. Pulse propagation in tapered granular chains: An analytic study. Phys. Rev. E 80, 031303 (2009).

    Google Scholar 

  137. 137.

    Mojahed, A., Bunyan, J., Tawfick, S. & Vakakis, A. F. Tunable acoustic nonreciprocity in strongly nonlinear waveguides with asymmetry. Phys. Rev. Appl. 12, 034033 (2019).

    CAS  Google Scholar 

  138. 138.

    Moore, K. J. et al. Nonreciprocity in the dynamics of coupled oscillators with nonlinearity, asymmetry, and scale hierarchy. Phys. Rev. E 97, 012219 (2018).

    CAS  Google Scholar 

  139. 139.

    Kosevich, Y. A. Fluctuation subharmonic and multiharmonic phonon transmission and kapitza conductance between crystals with very different vibrational spectra. Phys. Rev. B 52, 1017 (1995).

    CAS  Google Scholar 

  140. 140.

    Nesterenko, V., Daraio, C., Herbold, E. & Jin, S. Anomalous wave reflection at the interface of two strongly nonlinear granular media. Phys. Rev. Lett. 95, 158702 (2005).

    CAS  Google Scholar 

  141. 141.

    Liang, B., Guo, X. S., Tu, J., Zhang, D. & Cheng, J. C. An acoustic rectifier. Nat. Mater. 9, 989–992 (2010).

    CAS  Google Scholar 

  142. 142.

    D’Ambroise, J., Kevrekidis, P. G. & Lepri, S. Asymmetric wave propagation through nonlinear PT-symmetric oligomers. J. Phys. A 45, 444012 (2012).

    Google Scholar 

  143. 143.

    Merkel, A., Tournat, V. & Gusev, V. Directional asymmetry of the nonlinear wave phenomena in a three-dimensional granular phononic crystal under gravity. Phys. Rev. E 90, 023206 (2014).

    CAS  Google Scholar 

  144. 144.

    Devaux, T., Tournat, V., Richoux, O. & Pagneux, V. Asymmetric acoustic propagation of wave packets via the self-demodulation effect. Phys. Rev. Lett. 115, 234301 (2015).

    Google Scholar 

  145. 145.

    Li, K. & Rizzo, P. Nonreciprocal propagation of solitary waves in granular chains with asymmetric potential barriers. J. Sound. Vib. 365, 15–21 (2016).

    Google Scholar 

  146. 146.

    Darabi, A. et al. Broadband passive nonlinear acoustic diode. Phys. Rev. B 99, 214305 (2019).

    CAS  Google Scholar 

  147. 147.

    Mojahed, A., Gendelman, O. V. & Vakakis, A. F. Breather arrest, localization, and acoustic non-reciprocity in dissipative nonlinear lattices. J. Acoust. Soc. Am. 146, 826–842 (2019).

    Google Scholar 

  148. 148.

    Gliozzi, A. S. et al. Proof of concept of a frequency-preserving and time-invariant metamaterial-based nonlinear acoustic diode. Sci. Rep. 9, 9560 (2019).

    CAS  Google Scholar 

  149. 149.

    Grinberg, I., Vakakis, A. F. & Gendelman, O. V. Acoustic diode: Wave non-reciprocity in nonlinearly coupled waveguides. Wave Motion 83, 49–66 (2018).

    Google Scholar 

  150. 150.

    Bunyan, J. & Tawfick, S. Exploiting structural instability to design architected materials having essentially nonlinear stiffness. Adv. Eng. Mater. 21, 1800791 (2019).

    Google Scholar 

  151. 151.

    Fu, C., Wang, B., Zhao, T. & Chen, C. Q. High efficiency and broadband acoustic diodes. Appl. Phys. Lett. 112, 051902 (2018).

    Google Scholar 

  152. 152.

    Blanchard, A., Sapsis, T. P. & Vakakis, A. F. Non-reciprocity in nonlinear elastodynamics. J. Sound. Vib. 412, 326–335 (2018).

    Google Scholar 

  153. 153.

    Liang, B., Yuan, B. & Cheng, J.-C. Acoustic diode: Rectification of acoustic energy flux in one-dimensional systems. Phys. Rev. Lett. 103, 104301 (2009).

    Google Scholar 

  154. 154.

    Kuznetsov, Y. A. Elements of Applied Bifurcation Theory Vol. 112 (Springer, 2013).

  155. 155.

    Di Bernardo, M. et al. Bifurcations in nonsmooth dynamical systems. SIAM Rev. 50, 629–701 (2008).

    Google Scholar 

  156. 156.

    Nadkarni, N., Arrieta, A. F., Chong, C., Kochmann, D. M. & Daraio, C. Unidirectional transition waves in bistable lattices. Phys. Rev. Lett. 116, 244501 (2016).

    Google Scholar 

  157. 157.

    Raney, J. R. et al. Stable propagation of mechanical signals in soft media using stored elastic energy. Proc. Natl Acad. Sci. USA 113, 9722–9727 (2016).

    CAS  Google Scholar 

  158. 158.

    Geniet, F. & Leon, J. Energy transmission in the forbidden band gap of a nonlinear chain. Phys. Rev. Lett. 89, 134102 (2002).

    CAS  Google Scholar 

  159. 159.

    Maniadis, P., Kopidakis, G. & Aubry, S. Energy dissipation threshold and self-induced transparency in systems with discrete breathers. Physica D 216, 121–135 (2006).

    Google Scholar 

  160. 160.

    Yousefzadeh, B. & Phani, A. S. Energy transmission in finite dissipative nonlinear periodic structures from excitation within a stop band. J. Sound. Vib. 354, 180–195 (2015).

    Google Scholar 

  161. 161.

    Boechler, N., Theocharis, G. & Daraio, C. Bifurcation-based acoustic switching and rectification. Nat. Mater. 10, 665–668 (2011).

    CAS  Google Scholar 

  162. 162.

    Yousefzadeh, B. & Phani, A. S. Supratransmission in a disordered nonlinear periodic structure. J. Sound. Vib. 380, 242–266 (2016).

    Google Scholar 

  163. 163.

    Lu, Z. & Norris, A. N. Non-reciprocal wave transmission in a bilinear spring-mass system. J. Vib. Acoust. 142, 021006 (2020).

    Google Scholar 

  164. 164.

    Yousefzadeh, B., Wang, Y. & Daraio, C. Asymmetric wave propagation in a modulated magnetic lattice in APS Meeting Abstracts (APS, 2018).

  165. 165.

    Dobrykh, D., Yulin, A., Slobozhanyuk, A., Poddubny, A. & Kivshar, Y. S. Nonlinear control of electromagnetic topological edge states. Phys. Rev. Lett. 121, 163901 (2018).

    CAS  Google Scholar 

  166. 166.

    Pal, R. K., Vila, J., Leamy, M. & Ruzzene, M. Amplitude-dependent topological edge states in nonlinear phononic lattices. Phys. Rev. E 97, 032209 (2018).

    CAS  Google Scholar 

  167. 167.

    Konarski, S. G., Haberman, M. R. & Hamilton, M. F. Frequency-dependent behavior of media containing pre-strained nonlinear inclusions: Application to nonlinear acoustic metamaterials. J. Acoust. Soc. Am. 144, 3022–3035 (2018).

    CAS  Google Scholar 

  168. 168.

    Trainiti, G. et al. Time-periodic stiffness modulation in elastic metamaterials for selective wave filtering: Theory and experiment. Phys. Rev. Lett. 122, 124301 (2019).

    CAS  Google Scholar 

  169. 169.

    Shen, C., Zhu, X., Li, J. & Cummer, S. A. Nonreciprocal acoustic transmission in space-time modulated coupled resonators. Phys. Rev. B 100, 054302 (2019).

    CAS  Google Scholar 

  170. 170.

    Bartolo, D. & Carpentier, D. Topological elasticity of nonorientable ribbons. Phys. Rev. X 9, 041058 (2019).

    CAS  Google Scholar 

  171. 171.

    Sounas, D. L. & Alù, A. Fundamental bounds on the operation of Fano nonlinear isolators. Phys. Rev. B 97, 115431 (2018).

    CAS  Google Scholar 

  172. 172.

    Li, Z.-N., Wang, Y.-Z. & Wang, Y.-S. Tunable nonreciprocal transmission in nonlinear elastic wave metamaterial by initial stresses. Int. J. Solids Struct. 182–183, 218–235 (2020).

    Google Scholar 

  173. 173.

    Kac, M. Can one hear the shape of a drum? Am. Math. Mon. 73, 1–23 (1966).

    Google Scholar 

  174. 174.

    Kochmann, D. M. & Bertoldi, K. Exploiting microstructural instabilities in solids and structures: From metamaterials to structural transitions. Appl. Mech. Rev. 69, 0505801 (2017).

    Google Scholar 

  175. 175.

    Lagrange, J.-L. Du Mouvement des Fluides Compressibles et Élastiques Vol. 2 of Cambridge Library Collection - Mathematics, 337–354 (Cambridge Univ. Press, 2009).

  176. 176.

    Lamb, H. On reciprocal theorems in dynamics. Proc. Lond. Math. Soc. 1, 144–151 (1887).

    Google Scholar 

  177. 177.

    von Helmholtz, H. L. F. Theorie der Luftschwingungen in Röhren mit offenen Enden. Crelle’s J. 57, 1–72 (1860).

    Google Scholar 

  178. 178.

    Clebsch, A. Théorie de l’Élasticité des Corps Solides (Dunod, 1883).

  179. 179.

    Maxwell, J. C. L. On the calculation of the equilibrium and stiffness of frames. Philos. Mag. 27, 294–299 (1864).

    Google Scholar 

  180. 180.

    Betti, E. Teoria della elasticita. Il Nuovo Cimento (1869-1876) 7, 158–180 (1872).

    Google Scholar 

  181. 181.

    Rayleigh, L. Some general theorems relating to vibrations. Proc. Lond. Math. Soc. s1-4, 357–368 (1873).

    Google Scholar 

  182. 182.

    de Hoop, A. Handbook of Radiation and Scattering of Waves: Acoustic Waves in Fluids, Elastic Waves in Solids, Electromagnetic Waves Ch. 7 (Academic, 1995).

  183. 183.

    Achenbach, J. D. Reciprocity in Elastodynamics (Cambridge Univ. Press, 2003).

  184. 184.

    Payton, R. G. An application of the dynamic Betti-Rayleigh reciprocal theorem to moving-point loads in elastic media. Q. Appl. Math. 21, 299–313 (1964).

    Google Scholar 

  185. 185.

    Muhlestein, M. B., Sieck, C. F., Alù, A. & Haberman, M. R. Reciprocity, passivity and causality in Willis materials. Proc. R. Soc. A 472, 20160604 (2016).

    Google Scholar 

  186. 186.

    Godin, O. A. Reciprocity and energy theorems for waves in a compressible inhomogeneous moving fluid. Wave Motion 25, 143–167 (1997).

    Google Scholar 

  187. 187.

    Onsager, L. Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931).

    CAS  Google Scholar 

  188. 188.

    Casimir, H. B. G. On Onsager’s principle of microscopic reversibility. Rev. Mod. Phys. 17, 343–350 (1945).

    Google Scholar 

  189. 189.

    Banerjee, D., Souslov, A., Abanov, A. G. & Vitelli, V. Odd viscosity in chiral active fluids. Nat. Commun. 8, 1573 (2017).

    Google Scholar 

  190. 190.

    Faust, D. & Lakes, R. S. Reciprocity failure in piezoelectric polymer composite. Phys. Scr. 90, 085807 (2015).

    Google Scholar 

  191. 191.

    Zhai, Y., Kwon, H.-S. & Popa, B.-I. Active Willis metamaterials for ultracompact nonreciprocal linear acoustic devices. Phys. Rev. B 99, 220301 (2019).

    CAS  Google Scholar 

  192. 192.

    Su, X. & Norris, A. N. Focusing, refraction, and asymmetric transmission of elastic waves in solid metamaterials with aligned parallel gaps. J. Acoust. Soc. Am. 139, 3386–3394 (2016).

    Google Scholar 

  193. 193.

    Hwan Oh,J., Woong Kim, H., Sik Ma,P., Min Seung, H. & Young Kim, Y. Inverted bi-prism phononic crystals for one-sided elastic wave transmission applications. Appl. Phys. Lett. 100, 213503 (2012).

    Google Scholar 

  194. 194.

    Colombi, A., Colquitt, D., Roux, P., Guenneau, S. & Craster, R. V. A seismic metamaterial: The resonant metawedge. Sci. Rep. 6, 27717 (2016).

    CAS  Google Scholar 

  195. 195.

    Li, X.-F. et al. Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode. Phys. Rev. Lett. 106, 084301 (2011).

    Google Scholar 

  196. 196.

    Shen, C., Xie, Y., Li, J., Cummer, S. A. & Jing, Y. Asymmetric acoustic transmission through near-zero-index and gradient-index metasurfaces. Appl. Phys. Lett. 108, 223502 (2016).

    Google Scholar 

  197. 197.

    Cremer, L., Heckl, M. & Petersson, B. A. T. Structure-Borne Sound: Structural Vibrations and Sound Radiation at Audio Frequencies Ch. 2 (Springer, 2005).

  198. 198.

    Shorter, P. J. & Langley, R. S. On the reciprocity relationship between direct field radiation and diffuse reverberant loading. J. Acoust. Soc. Am. 117, 85–95 (2005).

    CAS  Google Scholar 

  199. 199.

    Rayleigh, L. On the application of the principle of reciprocity to acoustics. Proc. R. Soc. Lond. 25, 118–122 (1876).

    Google Scholar 

  200. 200.

    Morse, P. M. & Ingard, K. U. Theoretical Acoustics Ch. 11 (McGraw-Hill, 1968).

  201. 201.

    Newland, D. E. Mechanical Vibration Analysis and Computation Ch. 11 (Courier Corporation, 2013).

  202. 202.

    Yousefzadeh, B. & Daraio, C. in Proc. 26th Int. Congress Sound and Vibration (IIAV, 2019).

  203. 203.

    Tellegen, B. D. The gyrator, a new electric network element. Philips Res. Rep. 3, 81–101 (1948).

    Google Scholar 

Download references

Acknowledgements

A.N.N., G.H. and M.R.H. acknowledge support from NSF EFRI award no. 1641078. M.R.H. acknowledges support from ONR YIP award no. N00014-18-1-2335. C.D. acknowledges support from NSF EFRI award no. 1741565. A.A. acknowledges support from NSF EFRI award no. 1641069, the DARPA Nascent program and AFOSR MURI award no. FA9550-18-1-0379. R.F. acknowledges support from the Swiss National Science Foundation under SNSF grant no. 172487 and the SNSF Eccellenza award no. 181232.

Author information

Affiliations

Authors

Contributions

H.N., B.Y., M.R. and R.F. provided initial drafts of portions of the manuscript. All authors subsequently integrated, reviewed and revised the full manuscript. M.R.H. and G.H. coordinated manuscript writing and organization.

Corresponding authors

Correspondence to Guoliang Huang or Michael R. Haberman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nassar, H., Yousefzadeh, B., Fleury, R. et al. Nonreciprocity in acoustic and elastic materials. Nat Rev Mater 5, 667–685 (2020). https://doi.org/10.1038/s41578-020-0206-0

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing