Abstract
Self-healing is the capability of a material to recover from physical damage. Both physical and chemical approaches have been used to construct self-healing polymers. These include diffusion and flow, shape-memory effects, heterogeneous self-healing systems, covalent-bond reformation and reshuffling, dynamics of supramolecular chemistry or combinations thereof. In this Review, we discuss the similarities and differences between approaches to achieve self-healing in synthetic polymers, where possible placing this discussion in the context of biological systems. In particular, we highlight the role of thermal transitions, network heterogeneities, localized chemical reactions enabling the reconstruction of damage and physical reshuffling. We also discuss energetic and length-scale considerations, as well as scientific and technological challenges and opportunities.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Diegelmann, R. F. & Evans, M. C. Wound healing: an overview of acute, fibrotic and delayed healing. Front. Biosci. 9, 283–289 (2004).
Han, R. & Campbell, K. P. Dysferlin and muscle membrane repair. Curr. Opin. Cell Biol. 19, 409–416 (2007).
París, R., Lamattina, L. & Casalongué, C. A. Nitric oxide promotes the wound-healing response of potato leaflets. Plant Physiol. Biochem. 45, 80–86 (2007).
Biggs, A. Suberized boundary zones and the chronology of wound response in tree bark. Phytopathology 75, 1191–1195 (1985).
Wool, R. P. & O’Connor, K. M. A theory crack healing in polymers. J. Appl. Phys. 52, 5953–5963 (1981).
Yang, Y., Davydovich, D., Hornat, C. C., Liu, X. & Urban, M. W. Leaf-inspired self-healing polymers. Chem 4, 1928–1936 (2018).
Chen, Y., Kushner, A. M., Williams, G. A. & Guan, Z. Multiphase design of autonomic self-healing thermoplastic elastomers. Nat. Chem. 4, 467–472 (2012).
Nji, J. & Li, G. A biomimic shape memory polymer based self-healing particulate composite. Polymer 51, 6021–6029 (2010).
Corten, C. C. & Urban, M. W. Repairing polymers using oscillating magnetic field. Adv. Mater. 21, 5011–5015 (2009).
Yang, Y. & Urban, M. W. Self-repairable polyurethane networks by atmospheric carbon dioxide and water. Angew. Chem. Int. Ed. 53, 12142–12147 (2014).
Ying, H., Zhang, Y. & Cheng, J. Dynamic urea bond for the design of reversible and self-healing polymers. Nat. Commun. 5, 3218 (2014).
Chen, X. et al. A thermally re-mendable cross-linked polymeric material. Science 295, 1698–1702 (2002).
Ghosh, B. & Urban, M. W. Self-repairing oxetane-substituted chitosan polyurethane networks. Science 323, 1458–1460 (2009).
Imato, K. et al. Self-healing of chemical gels cross-linked by diarylbibenzofuranone-based trigger-free dynamic covalent bonds at room temperature. Angew. Chem. Int. Ed. 51, 1138–1142 (2012).
Cordier, P., Tournilhac, F., Soulié-Ziakovic, C. & Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008).
Burnworth, M. et al. Optically healable supramolecular polymers. Nature 472, 334–337 (2011).
Nakahata, M., Takashima, Y., Yamaguchi, H. & Harada, A. Redox-responsive self-healing materials formed from host–guest polymers. Nat. Commun. 2, 511 (2011).
Urban, M. W. et al. Key-and-lock commodity self-healing copolymers. Science 362, 220–225 (2018).
White, S. R. et al. Autonomic healing of polymer composites. Nature 409, 794–797 (2001).
Kessler, M. R., Sottos, N. R. & White, S. R. Self-healing structural composite materials. Compos. Part A Appl. Sci. Manuf. 34, 743–753 (2003).
Wool, R. P. Self-healing materials: a review. Soft Matter 4, 400–418 (2008).
Yang, Y. & Urban, M. W. Self-healing polymeric materials. Chem. Soc. Rev. 42, 7446–7467 (2013).
Prager, S. & Tirrell, M. The healing process at polymer–polymer interfaces. J. Chem. Phys. 75, 5194–5198 (1981).
Voyutskii, S. S. Autohesion and Adhesion of High Polymers (Interscience Publishers, 1963).
Grinsted, R. A., Clark, L. & Koenig, J. L. Study of cyclic sorption-desorption into poly(methyl methacrylate) rods using NMR imaging. Macromolecules 25, 1235–1241 (1992).
Kim, K. D., Sperling, L. H., Klein, A. & Hammouda, B. Reptation time, temperature, and cosurfactant effects on the molecular interdiffusion rate during polystyrene latex film formation. Macromolecules 27, 6841–6850 (1994).
Wool, R. P. Polymer Interfaces: Structure and Strength (Hanser Publishers, 1995).
Sperling, L. H. in Introduction to Physical Polymer Science Ch. 4.4 (John Wiley & Sons, 2005).
Welp, K. A. et al. Direct observation of polymer dynamics: mobility comparison between central and end section chain segments. Macromolecules 32, 5127–5138 (1999).
Ellison, C. J. & Torkelson, J. M. The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat. Mater. 2, 695–700 (2003).
Bodiguel, H. & Fretigny, C. Reduced viscosity in thin polymer films. Phys. Rev. Lett. 97, 266105 (2006).
Fakhraai, Z. & Forrest, J. A. Measuring the surface dynamics of glassy polymers. Science 319, 600–604 (2008).
Ghosh, B., Chellappan, K. V. & Urban, M. W. Self-healing inside a scratch of oxetane-substituted chitosan-polyurethane (OXE-CHI-PUR) networks. J. Mater. Chem. 21, 14473–14486 (2011).
de Gennes, P.-G. Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 55, 572–579 (1971).
Klein, J. Evidence for reptation in an entangled polymer melt. Nature 271, 143–145 (1978).
Roland, C. M. & Ngai, K. L. Segmental relaxation and the correlation of time and temperature dependencies in poly(vinyl methyl ether)/polystyrene mixtures. Macromolecules 25, 363–367 (1992).
Kim, Y. H. & Wool, R. P. A theory of healing at a polymer-polymer interface. Macromolecules 16, 1115–1120 (1983).
Lin, C., Lee, S. & Liu, K. Methanol-induced crack healing in poly(methyl methacrylate). Polym. Eng. Sci. 30, 1399–1406 (1990).
Jud, K., Kausch, H. H. & Williams, J. G. Fracture mechanics studies of crack healing and welding of polymers. J. Mater. Sci. 16, 204–210 (1981).
Autumn, K. et al. Evidence for van der Waals adhesion in gecko setae. Proc. Natl Acad. Sci. USA 99, 12252–12256 (2002).
Buckingham, A., Fowler, P. & Hutson, J. M. Theoretical studies of van der Waals molecules and intermolecular forces. Chem. Rev. 88, 963–988 (1988).
Brunauer, S., Deming, L. S., Deming, W. E. & Teller, E. On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 62, 1723–1732 (1940).
Dzyaloshinskii, I. E., Lifshitz, E. M., Pitaevskii, L. P. & Priestley, M. G. in Perspectives in Theoretical Physics (ed. Pitaevskii, L. P., translated from Russian by Sykes, J. B. & ter Haar, D.) 443–492 (Elsevier, 1992).
Sun, H. COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 102, 7338–7364 (1998).
Bharadwaj, R. K., Berry, R. J. & Farmer, B. L. Molecular dynamics simulation study of norbornene–POSS polymers. Polymer 41, 7209–7221 (2000).
Prathab, B., Subramanian, V. & Aminabhavi, T. Molecular dynamics simulations to investigate polymer–polymer and polymer–metal oxide interactions. Polymer 48, 409–416 (2007).
Speck, O., Schlechtendahl, M., Borm, F., Kampowski, T. & Speck, T. Humidity-dependent wound sealing in succulent leaves of Delosperma cooperi–An adaptation to seasonal drought stress. Beilstein J. Nanotechnol. 9, 175–186 (2018).
Vernon, L. B. & Vernon, H. M. Process of manufacturing articles of thermoplastic synthetic resins. US Patent 2234993 (1941).
Rainer, W. C., Redding, E. M., Hitov, J. J., Sloan, A. W. & Stewart, W. D. Heat-shrinkable polyethylene. US Patent 3144398 (1964).
Perrone, R. J. Silicone-rubber, polyethylene composition; heat shrinkable articles made therefrom and process therefor. US Patent 3326869 (1967).
Cussler, E. L. Diffusion: Mass Transfer in Fluid Systems 3rd edn Ch. 5 (Cambridge Univ. Press, 2009).
Habault, D., Zhang, H. & Zhao, Y. Light-triggered self-healing and shape-memory polymers. Chem. Soc. Rev. 42, 7244–7256 (2013).
Kirkby, E. L. et al. Embedded shape-memory alloy wires for improved performance of self-healing polymers. Adv. Funct. Mater. 18, 2253–2260 (2008).
Li, G. & Shojaei, A. A viscoplastic theory of shape memory polymer fibres with application to self-healing materials. Proc. R. Soc. A 468, 2319–2346 (2012).
Mohr, R. et al. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc. Natl Acad. Sci. USA 103, 3540–3545 (2006).
Huang, W. M., Yang, B., An, L., Li, C. & Chan, Y. S. Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism. Appl. Phys. Lett. 86, 114105 (2005).
Lendlein, A., Jiang, H., Jünger, O. & Langer, R. Light-induced shape-memory polymers. Nature 434, 879–882 (2005).
Hornat, C. C., Yang, Y. & Urban, M. W. Quantitative predictions of shape-memory effects in polymers. Adv. Mater. 29, 1603334 (2017).
Wang, H. B. et al. Synthesis of self-healing polymers by scandium-catalyzed copolymerization of ethylene and anisylpropylenes. J. Am. Chem. Soc. 141, 3249–3257 (2019).
Hornat, C. C. & Urban, M. W. Shape memory effects in self-healing polymers. Prog. Polym. Sci. 102, 101208 (2020).
Hornat, C. C. & Urban, M. W. Entropy and interfacial energy driven self-healable polymers. Nat. Commun. 11, 1028 (2020).
Murphy, E. B. & Wudl, F. The world of smart healable materials. Prog. Polym. Sci. 35, 223–251 (2010).
Yang, Y., Ding, X. & Urban, M. W. Chemical and physical aspects of self-healing materials. Prog. Polym. Sci. 49–50, 34–59 (2015).
Lee, M. W., Yoon, S. S. & Yarin, A. L. Solution-blown core–shell self-healing nano- and microfibers. ACS Appl. Mater. Interfaces 8, 4955–4962 (2016).
Pu, W. et al. Realizing crack diagnosing and self-healing by electricity with a dynamic crosslinked flexible polyurethane composite. Adv. Sci. 5, 1800101 (2018).
Yang, Y. et al. Carbon nanotube–vitrimer composite for facile and efficient photo-welding of epoxy. Chem. Sci. 5, 3486–3492 (2014).
Chen, Y. & Guan, Z. Multivalent hydrogen bonding block copolymers self-assemble into strong and tough self-healing materials. Chem. Commun. 50, 10868–10870 (2014).
Sato, K. et al. Phase-separation-induced anomalous stiffening, toughening, and self-healing of polyacrylamide gels. Adv. Mater. 27, 6990–6998 (2015).
Chen, S., Mahmood, N., Beiner, M. & Binder, W. H. Self-healing materials from V- and H-shaped supramolecular architectures. Angew. Chem. Int. Ed. 54, 10188–10192 (2015).
Cao, J. et al. Multiple hydrogen bonding enables the self-healing of sensors for human–machine interactions. Angew. Chem. Int. Ed. 56, 8795–8800 (2017).
Yan, X. et al. Quadruple H-bonding cross-linked supramolecular polymeric materials as substrates for stretchable, antitearing, and self-healable thin film electrodes. J. Am. Chem. Soc. 140, 5280–5289 (2018).
Ghosh, B., Chellappan, K. V. & Urban, M. W. UV-initiated self-healing of oxolane–chitosan–polyurethane (OXO–CHI–PUR) networks. J. Mater. Chem. 22, 16104–16113 (2012).
Korth, H. G. Carbon radicals of low reactivity against oxygen: radically different antioxidants. Angew. Chem. Int. Ed. 46, 5274–5276 (2007).
Takeda, K., Unno, H. & Zhang, M. Polymer reaction in polycarbonate with Na2CO3. J. Appl. Polym. Sci. 93, 920–926 (2004).
Stevens, M. P. & Jenkins, A. D. Crosslinking of polystyrene via pendant maleimide groups. J. Polym. Sci. Polym. Chem. Ed. 17, 3675–3685 (1979).
Liu, Y. L. & Chen, Y. W. Thermally reversible cross-linked polyamides with high toughness and self-repairing ability from maleimide- and furan-functionalized aromatic polyamides. Macromol. Chem. Phys. 208, 224–232 (2007).
Imato, K. et al. Dynamic covalent diarylbibenzofuranone-modified nanocellulose: Mechanochromic behaviour and application in self-healing polymer composites. Polym. Chem. 8, 2115–2122 (2017).
Telitel, S. et al. Introduction of self-healing properties into covalent polymer networks via the photodissociation of alkoxyamine junctions. Polym. Chem. 5, 921–930 (2014).
An, Q. et al. Recycling and self-healing of dynamic covalent polymer networks with a precisely tuneable crosslinking degree. Polym. Chem. 10, 672–678 (2019).
Raines, C. A. The Calvin cycle revisited. Photosynth. Res. 75, 1–10 (2003).
Bai, N., Saito, K. & Simon, G. P. Synthesis of a diamine cross-linker containing Diels–Alder adducts to produce self-healing thermosetting epoxy polymer from a widely used epoxy monomer. Polym. Chem. 4, 724–730 (2013).
Peterson, A. M., Jensen, R. E. & Palmese, G. R. Reversibly cross-linked polymer gels as healing agents for epoxy–amine thermosets. ACS Appl. Mater. Interfaces 1, 992–995 (2009).
Tian, Q., Yuan, Y. C., Rong, M. Z. & Zhang, M. Q. A thermally remendable epoxy resin. J. Mater. Chem. 19, 1289–1296 (2009).
Chen, X., Wudl, F., Mal, A. K., Shen, H. & Nutt, S. R. New thermally remendable highly cross-linked polymeric materials. Macromolecules 36, 1802–1807 (2003).
Billiet, S., Van Camp, W., Hillewaere, X. K. D., Rahier, H. & Du Prez, F. E. Development of optimized autonomous self-healing systems for epoxy materials based on maleimide chemistry. Polymer 53, 2320–2326 (2012).
Heo, Y. & Sodano, H. A. Self-healing polyurethanes with shape recovery. Adv. Funct. Mater. 24, 5261–5268 (2014).
Du, P. et al. Synthesis and characterization of linear self-healing polyurethane based on thermally reversible Diels–Alder reaction. RSC Adv. 3, 15475–15482 (2013).
Syrett, J. A., Mantovani, G., Barton, W. R., Price, D. & Haddleton, D. M. Self-healing polymers prepared via living radical polymerisation. Polym. Chem. 1, 102–106 (2010).
Yoshie, N., Saito, S. & Oya, N. A thermally-stable self-mending polymer networked by Diels–Alder cycloaddition. Polymer 52, 6074–6079 (2011).
Sugane, K., Yoshioka, Y., Shimasaki, T., Teramoto, N. & Shibata, M. Self-healing 8-armed star-shaped ε-caprolactone oligomers dually crosslinked by the Diels-Alder and urethanization reactions. Polymer 144, 92–102 (2018).
Raquez, J. M. et al. Design of cross-linked semicrystalline poly (ε-caprolactone)-based networks with one-way and two-way shape-memory properties through Diels–Alder reactions. Chem. Eur. J. 17, 10135–10143 (2011).
Sedaghat-Herati, R., Chacon, A., Hansen, M. E. & Yalaoui, S. New poly(oxyethylene) derivatives from Diels–Alder reactions of 3-[methoxypoly(oxyethylene)]methylene furan. Macromol. Chem. Phys. 206, 1981–1987 (2005).
Watanabe, M. & Yoshie, N. Synthesis and properties of readily recyclable polymers from bisfuranic terminated poly(ethylene adipate) and multi-maleimide linkers. Polymer 47, 4946–4952 (2006).
Yamashiro, M., Inoue, K. & Iji, M. Recyclable shape-memory and mechanical strength of poly(lactic acid) compounds cross-linked by thermo-reversible Diels-Alder reaction. Polym. J. 40, 657–662 (2008).
Kavitha, A. A. & Singha, N. K. “Click chemistry” in tailor-made polymethacrylates bearing reactive furfuryl functionality: a new class of self-healing polymeric material. ACS Appl. Mater. Interfaces 1, 1427–1436 (2009).
Kavitha, A. A. & Singha, N. K. Smart “all acrylate” ABA triblock copolymer bearing reactive functionality via atom transfer radical polymerization (ATRP): demonstration of a “click reaction” in thermoreversible property. Macromolecules 43, 3193–3205 (2010).
Chung, C.-M., Roh, Y.-S., Cho, S.-Y. & Kim, J.-G. Crack healing in polymeric materials via photochemical [2+2] cycloaddition. Chem. Mater. 16, 3982–3984 (2004).
Egerton, P. L. et al. Photocycloaddition in liquid ethyl cinnamate and in ethyl cinnamate glasses. The photoreaction as a probe into the micromorphology of the solid. J. Am. Chem. Soc. 103, 3859–3863 (1981).
Guimard, N. K. et al. Harnessing entropy to direct the bonding/debonding of polymer systems based on reversible chemistry. Chem. Sci. 4, 2752–2759 (2013).
Oehlenschlaeger, K. K. et al. Fast and catalyst-free hetero-Diels–Alder chemistry for on demand cyclable bonding/debonding materials. Polym. Chem. 4, 4348–4355 (2013).
Oehlenschlaeger, K. K. et al. Adaptable hetero Diels–Alder networks for fast self-healing under mild conditions. Adv. Mater. 26, 3561–3566 (2014).
Stocking, E. M. & Williams, R. M. Chemistry and biology of biosynthetic Diels–Alder reactions. Angew. Chem. Int. Ed. 42, 3078–3115 (2003).
Hoyle, C. E., Lee, T. Y. & Roper, T. Thiol–enes: chemistry of the past with promise for the future. J. Polym. Sci. Part A Polym. Chem. 42, 5301–5338 (2004).
Kade, M. J., Burke, D. J. & Hawker, C. J. The power of thiol-ene chemistry. J. Polym. Sci. Part A Polym. Chem. 48, 743–750 (2010).
Nicolay, R., Kamada, J., Van Wassen, A. & Matyjaszewski, K. Responsive gels based on a dynamic covalent trithiocarbonate cross-linker. Macromolecules 43, 4355–4361 (2010).
Kamada, J. et al. Redox responsive behavior of thiol/disulfide-functionalized star polymers synthesized via atom transfer radical polymerization. Macromolecules 43, 4133–4139 (2010).
Yoon, J. A. et al. Self-healing polymer films based on thiol–disulfide exchange reactions and self-healing kinetics measured using atomic force microscopy. Macromolecules 45, 142–149 (2011).
Kuhl, N. et al. Acylhydrazones as reversible covalent crosslinkers for self-healing polymers. Adv. Funct. Mater. 25, 3295–3301 (2015).
Barcan, G. A., Zhang, X. Y. & Waymouth, R. M. Structurally dynamic hydrogels derived from 1,2-dithiolanes. J. Am. Chem. Soc. 137, 5650–5653 (2015).
Rekondo, A. et al. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater. Horiz. 1, 237–240 (2014).
Xu, Y. & Chen, D. A novel self-healing polyurethane based on disulfide bonds. Macromol. Chem. Phys. 217, 1191–1196 (2016).
Canadell, J., Goossens, H. & Klumperman, B. Self-healing materials based on disulfide links. Macromolecules 44, 2536–2541 (2011).
Ji, S., Cao, W., Yu, Y. & Xu, H. Visible-light-induced self-healing diselenide-containing polyurethane elastomer. Adv. Mater. 27, 7740–7745 (2015).
An, X. et al. Aromatic diselenide crosslinkers to enhance the reprocessability and self-healing of polyurethane thermosets. Polym. Chem. 8, 3641–3646 (2017).
Kuhl, N. et al. Self-healing polymer networks based on reversible Michael addition reactions. Macromol. Chem. Phys. 217, 2541–2550 (2016).
Kantor, S. W., Grubb, W. T. & Osthoff, R. C. The mechanism of the acid- and base-catalyzed equilibration of siloxanes. J. Am. Chem. Soc. 76, 5190–5197 (1954).
Zheng, P. & McCarthy, T. J. A surprise from 1954: siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism. J. Am. Chem. Soc. 134, 2024–2027 (2012).
Wang, C. et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 5, 1042–1048 (2013).
Xu, Z. et al. Silicon microparticle anodes with self-healing multiple network binder. Joule 2, 950–961 (2018).
Brochu, A. B. W., Craig, S. L. & Reichert, W. M. Self-healing biomaterials. J. Biomed. Mater. Res. Part A 96, 492–506 (2011).
Madsen, F. B., Yu, L. & Skov, A. L. Self-healing, high-permittivity silicone dielectric elastomer. ACS Macro Lett. 5, 1196–1200 (2016).
Martín, R. et al. Room temperature self-healing power of silicone elastomers having silver nanoparticles as crosslinkers. Chem. Commun. 48, 8255–8257 (2012).
Jin, B., Liu, M., Zhang, Q., Zhan, X. & Chen, F. Silicone oil swelling slippery surfaces based on mussel-inspired magnetic nanoparticles with multiple self-healing mechanisms. Langmuir 33, 10340–10350 (2017).
Ogliani, E., Yu, L., Javakhishvili, I. & Skov, A. L. A thermo-reversible silicone elastomer with remotely controlled self-healing. RSC Adv. 8, 8285–8291 (2018).
Ramachandran, D., Liu, F. & Urban, M. W. Self-repairable copolymers that change color. RSC Adv. 2, 135–143 (2012).
Zhao, X. et al. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 122, 34–47 (2017).
Tseng, T. C. et al. An injectable, self-healing hydrogel to repair the central nervous system. Adv. Mater. 27, 3518–3524 (2015).
Yu, F., Cao, X. D., Du, J., Wang, G. & Chen, X. F. Multifunctional hydrogel with good structure integrity, self-healing, and tissue-adhesive property formed by combining Diels–Alder click reaction and acylhydrazone bond. ACS Appl. Mater. Interfaces 7, 24023–24031 (2015).
Qu, J. et al. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials 183, 185–199 (2018).
Ono, T., Nobori, T. & Lehn, J.-M. Dynamic polymer blends — component recombination between neat dynamic covalent polymers at room temperature. Chem. Commun. 1522-1524 (2005).
Mukherjee, S., Hill, M. R. & Sumerlin, B. S. Self-healing hydrogels containing reversible oxime crosslinks. Soft Matter 11, 6152–6161 (2015).
Liu, W.-X. et al. Oxime-based and catalyst-free dynamic covalent polyurethanes. J. Am. Chem. Soc. 139, 8678–8684 (2017).
Niu, W., Smith, M. D. & Lavigne, J. J. Self-assembling poly(dioxaborole)s as blue-emissive materials. J. Am. Chem. Soc. 128, 16466–16467 (2006).
De, P., Gondi, S. R., Roy, D. & Sumerlin, B. S. Boronic acid-terminated polymers: synthesis by RAFT and subsequent supramolecular and dynamic covalent self-assembly. Macromolecules 42, 5614–5621 (2009).
Cash, J. J., Kubo, T., Bapat, A. P. & Sumerlin, B. S. Room-temperature self-healing polymers based on dynamic-covalent boronic esters. Macromolecules 48, 2098–2106 (2015).
Guo, R. et al. Facile access to multisensitive and self-healing hydrogels with reversible and dynamic boronic ester and disulfide linkages. Biomacromolecules 18, 1356–1364 (2017).
Cromwell, O. R., Chung, J. & Guan, Z. Malleable and self-healing covalent polymer networks through tunable dynamic boronic ester bonds. J. Am. Chem. Soc. 137, 6492–6495 (2015).
Deng, C. C., Brooks, W. L. A., Abboud, K. A. & Sumerlin, B. S. Boronic acid-based hydrogels undergo self-healing at neutral and acidic pH. ACS Macro Lett. 4, 220–224 (2015).
Smithmyer, M. E. et al. Self-healing boronic acid-based hydrogels for 3D co-cultures. ACS Macro Lett. 7, 1105–1110 (2018).
Yuan, C., Rong, M. Z., Zhang, M. Q., Zhang, Z. P. & Yuan, Y. C. Self-healing of polymers via synchronous covalent bond fission/radical recombination. Chem. Mater. 23, 5076–5081 (2011).
Amamoto, Y., Kamada, J., Otsuka, H., Takahara, A. & Matyjaszewski, K. Repeatable photoinduced self-healing of covalently cross-linked polymers through reshuffling of trithiocarbonate units. Angew. Chem. Int. Ed. 50, 1660–1663 (2011).
Nakahata, M., Mori, S., Takashima, Y., Yamaguchi, H. & Harada, A. Self-healing materials formed by cross-linked polyrotaxanes with reversible bonds. Chem 1, 766–775 (2016).
Gong, J. P. Why are double network hydrogels so tough? Soft Matter 6, 2583–2590 (2010).
Jia, H. et al. Unconventional tough double-network hydrogels with rapid mechanical recovery, self-healing, and self-gluing properties. ACS Appl. Mater. Interfaces 8, 31339–31347 (2016).
Webber, M. J., Appel, E. A., Meijer, E. & Langer, R. Supramolecular biomaterials. Nat. Mater. 15, 13–26 (2016).
Herbst, F., Döhler, D., Michael, P. & Binder, W. H. Self-healing polymers via supramolecular forces. Macromol. Rapid Commun. 34, 203–220 (2013).
Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 7017–7036 (1967).
Kyba, E. P., Siegel, M. G., Sousa, L. R., Sogah, G. D. & Cram, D. J. Chiral, hinged, and functionalized multiheteromacrocycles. J. Am. Chem. Soc. 95, 2691–2692 (1973).
Brunsveld, L., Folmer, B., Meijer, E. W. & Sijbesma, R. Supramolecular polymers. Chem. Rev. 101, 4071–4098 (2001).
Fyfe, M. C. & Stoddart, J. F. Synthetic supramolecular chemistry. Acc. Chem. Res. 30, 393–401 (1997).
Herbst, F., Seiffert, S. & Binder, W. H. Dynamic supramolecular poly(isobutylene)s for self-healing materials. Polym. Chem. 3, 3084–3092 (2012).
Sijbesma, R. P. et al. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278, 1601–1604 (1997).
Aida, T., Meijer, E. & Stupp, S. Functional supramolecular polymers. Science 335, 813–817 (2012).
Hirschberg, J. K. et al. Supramolecular polymers from linear telechelic siloxanes with quadruple-hydrogen-bonded units. Macromolecules 32, 2696–2705 (1999).
Folmer, B. J. B., Sijbesma, R. P., Versteegen, R. M., van der Rijt, J. A. J. & Meijer, E. W. Supramolecular polymer materials: Chain extension of telechelic polymers using a reactive hydrogen-bonding synthon. Adv. Mater. 12, 874–878 (2000).
Bosman, A. W., Sijbesma, R. P. & Meijer, E. W. Supramolecular polymers at work. Mater. Today 7, 34–39 (2004).
Yanagisawa, Y., Nan, Y. L., Okuro, K. & Aida, T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 359, 72–76 (2018).
Wu, Q. et al. A robust, highly stretchable supramolecular polymer conductive hydrogel with self-healability and thermo-processability. Sci. Rep. 7, 41566 (2017).
Li, C. et al. A writable polypeptide–DNA hydrogel with rationally designed multi-modification sites. Small 11, 1138–1143 (2015).
Neal, J. A., Mozhdehi, D. & Guan, Z. Enhancing mechanical performance of a covalent self-healing material by sacrificial noncovalent bonds. J. Am. Chem. Soc. 137, 4846–4850 (2015).
Feldman, K. E. et al. Polymers with multiple hydrogen-bonded end groups and their blends. Macromolecules 41, 4694–4700 (2008).
Kang, J. H. et al. Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater. 30, 1706846 (2018).
Phadke, A. et al. Rapid self-healing hydrogels. Proc. Natl Acad. Sci. USA 109, 4383–4388 (2012).
Jeon, I., Cui, J. X., Illeperuma, W. R. K., Aizenberg, J. & Vlassak, J. J. Extremely stretchable and fast self-healing hydrogels. Adv. Mater. 28, 4678–4683 (2016).
Willocq, B. et al. Mechanistic insights on spontaneous moisture-driven healing of urea-based polyurethanes. ACS Appl. Mater. Interfaces 11, 46176–46182 (2019).
Heller, M. & Schubert, U. S. Polystyrene with pendant mixed functional ruthenium(II)-terpyridine complexes. Macromol. Rapid Commun. 23, 411–415 (2002).
Bode, S. et al. Self-healing polymer coatings based on crosslinked metallosupramolecular copolymers. Adv. Mater. 25, 1634–1638 (2013).
Williams, K. A., Boydston, A. J. & Bielawski, C. W. Towards electrically conductive, self-healing materials. J. R. Soc. Interface 4, 359–362 (2007).
Wang, Z. & Urban, M. W. Facile UV-healable polyethylenimine–copper (C2H5N–Cu) supramolecular polymer networks. Polym. Chem. 4, 4897–4901 (2013).
Wang, Z. H., Yang, Y., Burtovyy, R., Luzinov, I. & Urban, M. W. UV-induced self-repairing polydimethylsiloxane–polyurethane (PDMS–PUR) and polyethylene glycol–polyurethane (PEG–PUR) Cu-catalyzed networks. J. Mater. Chem. A 2, 15527–15534 (2014).
Rao, Y. L. et al. Stretchable self-healing polymeric dielectrics cross-linked through metal–ligand coordination. J. Am. Chem. Soc. 138, 6020–6027 (2016).
Ceylan, H. et al. Mussel inspired dynamic cross-linking of self-healing peptide nanofiber network. Adv. Funct. Mater. 23, 2081–2090 (2013).
Zeng, H., Hwang, D. S., Israelachvili, J. N. & Waite, J. H. Strong reversible Fe3+-mediated bridging between dopa-containing protein films in water. Proc. Natl Acad. Sci. USA 107, 12850–12853 (2010).
Weng, G. S., Thanneeru, S. & He, J. Dynamic coordination of Eu–iminodiacetate to control fluorochromic response of polymer hydrogels to multistimuli. Adv. Mater. 30, 1706526 (2018).
Liu, S. L., Oderinde, O., Hussain, I., Yao, F. & Fu, G. D. Dual ionic cross-linked double network hydrogel with self-healing, conductive, and force sensitive properties. Polymer 144, 111–120 (2018).
Luo, F. et al. Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels. Adv. Mater. 27, 2722–2727 (2015).
Zhong, M., Liu, Y. T. & Xie, X. M. Self-healable, super tough graphene oxide–poly(acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions. J. Mater. Chem. B 3, 4001–4008 (2015).
Darabi, M. A. et al. Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability. Adv. Mater. 29, 1700533 (2017).
He, L., Fullenkamp, D. E., Rivera, J. G. & Messersmith, P. B. pH responsive self-healing hydrogels formed by boronate–catechol complexation. Chem. Commun. 47, 7497–7499 (2011).
Ahn, B. K., Lee, D. W., Israelachvili, J. N. & Waite, J. H. Surface-initiated self-healing of polymers in aqueous media. Nat. Mater. 13, 867–872 (2014).
Li, C.-H. et al. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 8, 618–624 (2016).
Li, Z. Q., Wang, G. N., Wang, Y. G. & Li, H. R. Reversible phase transition of robust luminescent hybrid hydrogels. Angew. Chem. Int. Ed. 57, 2194–2198 (2018).
Rodell, C. B., Dusaj, N. N., Highley, C. B. & Burdick, J. A. Injectable and cytocompatible tough double-network hydrogels through tandem supramolecular and covalent crosslinking. Adv. Mater. 28, 8419–8424 (2016).
Loebel, C., Rodell, C. B., Chen, M. H. & Burdick, J. A. Shear-thinning and self-healing hydrogels as injectable therapeutics and for 3D-printing. Nat. Protoc. 12, 1521–1541 (2017).
Chen, H., Ma, X., Wu, S. F. & Tian, H. A rapidly self-healing supramolecular polymer hydrogel with photostimulated room-temperature phosphorescence responsiveness. Angew. Chem. Int. Ed. 53, 14149–14152 (2014).
Nakahata, M., Takashima, Y. & Harada, A. Highly flexible, tough, and self-healing supramolecular polymeric materials using host–guest interaction. Macromol. Rapid Commun. 37, 86–92 (2016).
Burdick, J. A. & Prestwich, G. D. Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 23, H41–H56 (2011).
Highley, C. B., Rodell, C. B. & Burdick, J. A. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv. Mater. 27, 5075–5079 (2015).
Janeček, E. R. et al. Hybrid supramolecular and colloidal hydrogels that bridge multiple length scales. Angew. Chem. Int. Ed. 54, 5383–5388 (2015).
Matson, J. B. & Stupp, S. I. Self-assembling peptide scaffolds for regenerative medicine. Chem. Commun. 48, 26–33 (2012).
Webber, M. J., Kessler, J. & Stupp, S. I. Emerging peptide nanomedicine to regenerate tissues and organs. J. Intern. Med. 267, 71–88 (2010).
Liu, J. et al. Tough supramolecular polymer networks with extreme stretchability and fast room-temperature self-healing. Adv. Mater. 29, 1605325 (2017).
Eisenberg, A. (ed.) Ions in Polymers (American Chemical Society, 1980).
Kalista, S. J. Jr & Ward, T. C. Thermal characteristics of the self-healing response in poly(ethylene-co-methacrylic acid) copolymers. J. R. Soc. Interface 4, 405–411 (2007).
Kalista, S. J. Jr, Ward, T. C. & Oyetunji, Z. Self-healing of poly(ethylene-co-methacrylic acid) copolymers following projectile puncture. Mech. Adv. Mater. Struct. 14, 391–397 (2007).
Huang, Y., Lawrence, P. G. & Lapitsky, Y. Self-assembly of stiff, adhesive and self-healing gels from common polyelectrolytes. Langmuir 30, 7771–7777 (2014).
Reisch, A. et al. On the benefits of rubbing salt in the cut: Self-healing of saloplastic PAA/PAH compact polyelectrolyte complexes. Adv. Mater. 26, 2547–2551 (2014).
Bin Ihsan, A. et al. Self-healing behaviors of tough polyampholyte hydrogels. Macromolecules 49, 4245–4252 (2016).
Lopez-Perez, P. M. et al. Self-healing hydrogels formed by complexation between calcium ions and bisphosphonate-functionalized star-shaped polymers. Macromolecules 50, 8698–8706 (2017).
Cao, Y. et al. A transparent, self-healing, highly stretchable ionic conductor. Adv. Mater. 29, 1605099 (2017).
Das, A. et al. Ionic modification turns commercial rubber into a self-healing material. ACS Appl. Mater. Interfaces 7, 20623–20630 (2015).
Mei, J.-F. et al. A highly stretchable and autonomous self-healing polymer based on combination of Pt···Pt and π–π interactions. Macromol. Rapid Commun. 37, 1667–1675 (2016).
Vaiyapuri, R., Greenland, B. W., Colquhoun, H. M., Elliott, J. M. & Hayes, W. Molecular recognition between functionalized gold nanoparticles and healable, supramolecular polymer blends-a route to property enhancement. Polym. Chem. 4, 4902–4909 (2013).
Burattini, S. et al. A supramolecular polymer based on tweezer-type π–π stacking interactions: molecular design for healability and enhanced toughness. Chem. Mater. 23, 6–8 (2011).
Qin, J. et al. Tuning self-healing properties of stiff, ion-conductive polymers. J. Mater. Chem. A 7, 6773–6783 (2019).
Hentschel, J., Kushner, A. M., Ziller, J. & Guan, Z. Self-healing supramolecular block copolymers. Angew. Chem. Int. Ed. 51, 10561–10565 (2012).
Montarnal, D., Capelot, M., Tournilhac, F. & Leibler, L. Silica-like malleable materials from permanent organic networks. Science 334, 965–968 (2011).
Denissen, W. et al. Vinylogous urethane vitrimers. Adv. Funct. Mater. 25, 2451–2457 (2015).
Denissen, W. et al. Chemical control of the viscoelastic properties of vinylogous urethane vitrimers. Nat. Commun. 8, 14857 (2017).
Demongeot, A., Mougnier, S. J., Okada, S., Soulié-Ziakovic, C. & Tournilhac, F. Coordination and catalysis of Zn2+ in epoxy-based vitrimers. Polym. Chem. 7, 4486–4493 (2016).
Fortman, D. J., Brutman, J. P., Cramer, C. J., Hillmyer, M. A. & Dichtel, W. R. Mechanically activated, catalyst-free polyhydroxyurethane vitrimers. J. Am. Chem. Soc. 137, 14019–14022 (2015).
Snyder, R. L., Fortman, D. J., De Hoe, G. X., Hillmyer, M. A. & Dichtel, W. R. Reprocessable acid-degradable polycarbonate vitrimers. Macromolecules 51, 389–397 (2018).
Röttger, M. et al. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science 356, 62–65 (2017).
Chen, Q. et al. Durable liquid-crystalline vitrimer actuators. Chem. Sci. 10, 3025–3030 (2019).
Chen, Q. et al. Multi-stimuli responsive and multi-functional oligoaniline-modified vitrimers. Chem. Sci. 8, 724–733 (2017).
Yang, Y., Pei, Z., Li, Z., Wei, Y. & Ji, Y. Making and remaking dynamic 3D structures by shining light on flat liquid crystalline vitrimer films without a mold. J. Am. Chem. Soc. 138, 2118–2121 (2016).
Denissen, W., Winne, J. M. & Du Prez, F. E. Vitrimers: permanent organic networks with glass-like fluidity. Chem. Sci. 7, 30–38 (2016).
Yang, Y. & Urban, M. W. in Healable Polymer Systems (eds Hayes, W. & Greenland, B. W.) 126–148 (Royal Society of Chemistry, 2013).
Flory, P.-J. Statistical thermodynamics of semi-flexible chain molecules. Proc. R. Soc. A 234, 60–73 (1956).
Adamson, A. W. & Gast, A. P. Physical chemistry of surfaces Vol. 15 (Interscience, 1967).
Hornat, C. C. et al. Quantitative predictions of maximum strain storage in shape memory polymers (SMP). Polymer 186, 122006 (2020).
Rodriguez, E. D., Luo, X. & Mather, P. T. Linear/network poly(ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH). ACS Appl. Mater. Interfaces 3, 152–161 (2011).
Liu, F., Jarrett, W. L. & Urban, M. W. Glass (Tg) and stimuli-responsive (TSR) transitions in random copolymers. Macromolecules 43, 5330–5337 (2010).
Liu, F., Jarrett, W. L. & Urban, M. W. Synergistic temperature and pH effects on glass (Tg) and stimuli-responsive (TSR) transitions in poly(N-acryloyl-N′-propylpiperazine-co-2-ethoxyethyl methacrylate) copolymers. Polym. Chem. 2, 963–969 (2011).
Priestley, R. D., Ellison, C. J., Broadbelt, L. J. & Torkelson, J. M. Structural relaxation of polymer glasses at surfaces, interfaces, and in between. Science 309, 456–459 (2005).
O’Connell, P. A. & McKenna, G. B. Rheological measurements of the thermoviscoelastic response of ultrathin polymer films. Science 307, 1760–1763 (2005).
Rabinowitz, J. D. & White, E. Autophagy and metabolism. Science 330, 1344–1348 (2010).
Otts, D. B., Zhang, P. & Urban, M. W. High fidelity surface chemical imaging at 1000 nm levels: internal reflection IR imaging (IRIRI) approach. Langmuir 18, 6473–6477 (2002).
Urban, M. W. Vibrational Spectroscopy of Molecules and Macromolecules on Surfaces (Wiley, 1993).
Hinderberger, D. in EPR Spectroscopy: Applications in Chemistry and Biology (eds. Drescher, M. & Jeschke, G.) 67–89 (Springer, 2011).
Schmidt-Rohr, K. & Spiess, H. W. Multidimensional Solid-State NMR and Polymers Chs 3–5 (Academic, 2012).
Bovey, F. A. & Mirau, P. A. NMR of Polymers (Academic, 1996).
Blanc, F. et al. Dynamic nuclear polarization NMR spectroscopy allows high-throughput characterization of microporous organic polymers. J. Am. Chem. Soc. 135, 15290–15293 (2013).
Casabianca, L. B., Shames, A. I., Panich, A. M., Shenderova, O. & Frydman, L. Factors affecting DNP NMR in polycrystalline diamond samples. J. Phys. Chem. C 115, 19041–19048 (2011).
Cassidy, M. C., Ramanathan, C., Cory, D. G., Ager, J. W. & Marcus, C. M. Radical-free dynamic nuclear polarization using electronic defects in silicon. Phys. Rev. B 87, 161306 (2013).
Verberg, R., Dale, A. T., Kumar, P., Alexeev, A. & Balazs, A. C. Healing substrates with mobile, particle-filled microcapsules: designing a ‘repair and go’ system. J. R. Soc. Interface 4, 349–357 (2006).
Ponnusami, S. A., Krishnasamy, J., Turteltaub, S. & van der Zwaag, S. A cohesive-zone crack healing model for self-healing materials. Int. J. Solids Struct. 134, 249–263 (2018).
Tiwary, P. & Parrinello, M. From metadynamics to dynamics. Phys. Rev. Lett. 111, 230602 (2013).
Valsson, O., Tiwary, P. & Parrinello, M. Enhancing important fluctuations: rare events and metadynamics from a conceptual viewpoint. Annu. Rev. Phys. Chem. 67, 159–184 (2016).
Bochicchio, D. & Pavan, G. M. Molecular modelling of supramolecular polymers. Adv. Phys. X 3, 1436408 (2018).
Lu, C. & Urban, M. W. Stimuli-responsive polymer nano-science: shape anisotropy, responsiveness, applications. Prog. Polym. Sci. 78, 24–46 (2018).
Liu, F. & Urban, M. W. New thermal transitions in stimuli-responsive copolymer films. Macromolecules 42, 2161–2167 (2009).
Jud, K. & Kausch, H. H. Load transfer through chain molecules after interpenetration at interfaces. Polym. Bull. 1, 697–707 (1979).
Gross, M. & Jaenicke, R. Proteins under pressure: the influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. Eur. J. Biochem. 221, 617–630 (1994).
Hummer, G., Garde, S., García, A. E., Paulaitis, M. E. & Pratt, L. R. The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins. Proc. Natl Acad. Sci. USA 95, 1552–1555 (1998).
Acknowledgements
This work was supported by the National Science Foundation under awards DMR 1744306 and partial OIA-1655740. The J.E. Sirrine Foundation Endowment at Clemson University is also acknowledged for partial support of this work.
Author information
Authors and Affiliations
Contributions
S.W. wrote and edited the article. M.W.U. conceptualized, wrote and edited the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wang, S., Urban, M.W. Self-healing polymers. Nat Rev Mater 5, 562–583 (2020). https://doi.org/10.1038/s41578-020-0202-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41578-020-0202-4
This article is cited by
-
Flavor-switchable scaffold for cultured meat with enhanced aromatic properties
Nature Communications (2024)
-
Design principles for strong and tough hydrogels
Nature Reviews Materials (2024)
-
Closed-loop recycling of sulfur-rich polymers with tunable properties spanning thermoplastics, elastomers, and vitrimers
Nature Communications (2024)
-
Autonomous self-healing supramolecular polymer transistors for skin electronics
Nature Communications (2024)
-
Viscoelastic behaviors for optimizing self-healing of gels with host–guest inclusion complexes
Polymer Journal (2024)