Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Self-healing polymers

Abstract

Self-healing is the capability of a material to recover from physical damage. Both physical and chemical approaches have been used to construct self-healing polymers. These include diffusion and flow, shape-memory effects, heterogeneous self-healing systems, covalent-bond reformation and reshuffling, dynamics of supramolecular chemistry or combinations thereof. In this Review, we discuss the similarities and differences between approaches to achieve self-healing in synthetic polymers, where possible placing this discussion in the context of biological systems. In particular, we highlight the role of thermal transitions, network heterogeneities, localized chemical reactions enabling the reconstruction of damage and physical reshuffling. We also discuss energetic and length-scale considerations, as well as scientific and technological challenges and opportunities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Self-healing mechanisms.
Fig. 2: Self-healing through van der Waals forces or the shape-memory effect.
Fig. 3: Reformation of covalent bonds.
Fig. 4: Reversible reactions enabling reformation of covalent bonds.
Fig. 5: The dynamic reformation of covalent bonds.
Fig. 6: Examples of hydrogen bonding in self-healing polymers.
Fig. 7: Self-healing using metal–ligand coordination chemistry.
Fig. 8: Host–guest chemistry in self-healing systems.
Fig. 9: Examples of ionic interactions applied in self-healing.
Fig. 10: Vitrimer systems.
Fig. 11: Energy considerations of self-healing.

Similar content being viewed by others

References

  1. Diegelmann, R. F. & Evans, M. C. Wound healing: an overview of acute, fibrotic and delayed healing. Front. Biosci. 9, 283–289 (2004).

    CAS  Google Scholar 

  2. Han, R. & Campbell, K. P. Dysferlin and muscle membrane repair. Curr. Opin. Cell Biol. 19, 409–416 (2007).

    CAS  Google Scholar 

  3. París, R., Lamattina, L. & Casalongué, C. A. Nitric oxide promotes the wound-healing response of potato leaflets. Plant Physiol. Biochem. 45, 80–86 (2007).

    Google Scholar 

  4. Biggs, A. Suberized boundary zones and the chronology of wound response in tree bark. Phytopathology 75, 1191–1195 (1985).

    Google Scholar 

  5. Wool, R. P. & O’Connor, K. M. A theory crack healing in polymers. J. Appl. Phys. 52, 5953–5963 (1981).

    CAS  Google Scholar 

  6. Yang, Y., Davydovich, D., Hornat, C. C., Liu, X. & Urban, M. W. Leaf-inspired self-healing polymers. Chem 4, 1928–1936 (2018).

    CAS  Google Scholar 

  7. Chen, Y., Kushner, A. M., Williams, G. A. & Guan, Z. Multiphase design of autonomic self-healing thermoplastic elastomers. Nat. Chem. 4, 467–472 (2012).

    CAS  Google Scholar 

  8. Nji, J. & Li, G. A biomimic shape memory polymer based self-healing particulate composite. Polymer 51, 6021–6029 (2010).

    CAS  Google Scholar 

  9. Corten, C. C. & Urban, M. W. Repairing polymers using oscillating magnetic field. Adv. Mater. 21, 5011–5015 (2009).

    CAS  Google Scholar 

  10. Yang, Y. & Urban, M. W. Self-repairable polyurethane networks by atmospheric carbon dioxide and water. Angew. Chem. Int. Ed. 53, 12142–12147 (2014).

    CAS  Google Scholar 

  11. Ying, H., Zhang, Y. & Cheng, J. Dynamic urea bond for the design of reversible and self-healing polymers. Nat. Commun. 5, 3218 (2014).

    Google Scholar 

  12. Chen, X. et al. A thermally re-mendable cross-linked polymeric material. Science 295, 1698–1702 (2002).

    CAS  Google Scholar 

  13. Ghosh, B. & Urban, M. W. Self-repairing oxetane-substituted chitosan polyurethane networks. Science 323, 1458–1460 (2009).

    CAS  Google Scholar 

  14. Imato, K. et al. Self-healing of chemical gels cross-linked by diarylbibenzofuranone-based trigger-free dynamic covalent bonds at room temperature. Angew. Chem. Int. Ed. 51, 1138–1142 (2012).

    CAS  Google Scholar 

  15. Cordier, P., Tournilhac, F., Soulié-Ziakovic, C. & Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008).

    CAS  Google Scholar 

  16. Burnworth, M. et al. Optically healable supramolecular polymers. Nature 472, 334–337 (2011).

    CAS  Google Scholar 

  17. Nakahata, M., Takashima, Y., Yamaguchi, H. & Harada, A. Redox-responsive self-healing materials formed from host–guest polymers. Nat. Commun. 2, 511 (2011).

    Google Scholar 

  18. Urban, M. W. et al. Key-and-lock commodity self-healing copolymers. Science 362, 220–225 (2018).

    CAS  Google Scholar 

  19. White, S. R. et al. Autonomic healing of polymer composites. Nature 409, 794–797 (2001).

    CAS  Google Scholar 

  20. Kessler, M. R., Sottos, N. R. & White, S. R. Self-healing structural composite materials. Compos. Part A Appl. Sci. Manuf. 34, 743–753 (2003).

    Google Scholar 

  21. Wool, R. P. Self-healing materials: a review. Soft Matter 4, 400–418 (2008).

    CAS  Google Scholar 

  22. Yang, Y. & Urban, M. W. Self-healing polymeric materials. Chem. Soc. Rev. 42, 7446–7467 (2013).

    CAS  Google Scholar 

  23. Prager, S. & Tirrell, M. The healing process at polymer–polymer interfaces. J. Chem. Phys. 75, 5194–5198 (1981).

    CAS  Google Scholar 

  24. Voyutskii, S. S. Autohesion and Adhesion of High Polymers (Interscience Publishers, 1963).

  25. Grinsted, R. A., Clark, L. & Koenig, J. L. Study of cyclic sorption-desorption into poly(methyl methacrylate) rods using NMR imaging. Macromolecules 25, 1235–1241 (1992).

    CAS  Google Scholar 

  26. Kim, K. D., Sperling, L. H., Klein, A. & Hammouda, B. Reptation time, temperature, and cosurfactant effects on the molecular interdiffusion rate during polystyrene latex film formation. Macromolecules 27, 6841–6850 (1994).

    CAS  Google Scholar 

  27. Wool, R. P. Polymer Interfaces: Structure and Strength (Hanser Publishers, 1995).

  28. Sperling, L. H. in Introduction to Physical Polymer Science Ch. 4.4 (John Wiley & Sons, 2005).

  29. Welp, K. A. et al. Direct observation of polymer dynamics: mobility comparison between central and end section chain segments. Macromolecules 32, 5127–5138 (1999).

    CAS  Google Scholar 

  30. Ellison, C. J. & Torkelson, J. M. The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat. Mater. 2, 695–700 (2003).

    CAS  Google Scholar 

  31. Bodiguel, H. & Fretigny, C. Reduced viscosity in thin polymer films. Phys. Rev. Lett. 97, 266105 (2006).

    Google Scholar 

  32. Fakhraai, Z. & Forrest, J. A. Measuring the surface dynamics of glassy polymers. Science 319, 600–604 (2008).

    CAS  Google Scholar 

  33. Ghosh, B., Chellappan, K. V. & Urban, M. W. Self-healing inside a scratch of oxetane-substituted chitosan-polyurethane (OXE-CHI-PUR) networks. J. Mater. Chem. 21, 14473–14486 (2011).

    CAS  Google Scholar 

  34. de Gennes, P.-G. Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 55, 572–579 (1971).

    Google Scholar 

  35. Klein, J. Evidence for reptation in an entangled polymer melt. Nature 271, 143–145 (1978).

    CAS  Google Scholar 

  36. Roland, C. M. & Ngai, K. L. Segmental relaxation and the correlation of time and temperature dependencies in poly(vinyl methyl ether)/polystyrene mixtures. Macromolecules 25, 363–367 (1992).

    CAS  Google Scholar 

  37. Kim, Y. H. & Wool, R. P. A theory of healing at a polymer-polymer interface. Macromolecules 16, 1115–1120 (1983).

    CAS  Google Scholar 

  38. Lin, C., Lee, S. & Liu, K. Methanol-induced crack healing in poly(methyl methacrylate). Polym. Eng. Sci. 30, 1399–1406 (1990).

    CAS  Google Scholar 

  39. Jud, K., Kausch, H. H. & Williams, J. G. Fracture mechanics studies of crack healing and welding of polymers. J. Mater. Sci. 16, 204–210 (1981).

    CAS  Google Scholar 

  40. Autumn, K. et al. Evidence for van der Waals adhesion in gecko setae. Proc. Natl Acad. Sci. USA 99, 12252–12256 (2002).

    CAS  Google Scholar 

  41. Buckingham, A., Fowler, P. & Hutson, J. M. Theoretical studies of van der Waals molecules and intermolecular forces. Chem. Rev. 88, 963–988 (1988).

    CAS  Google Scholar 

  42. Brunauer, S., Deming, L. S., Deming, W. E. & Teller, E. On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 62, 1723–1732 (1940).

    CAS  Google Scholar 

  43. Dzyaloshinskii, I. E., Lifshitz, E. M., Pitaevskii, L. P. & Priestley, M. G. in Perspectives in Theoretical Physics (ed. Pitaevskii, L. P., translated from Russian by Sykes, J. B. & ter Haar, D.) 443–492 (Elsevier, 1992).

  44. Sun, H. COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 102, 7338–7364 (1998).

    CAS  Google Scholar 

  45. Bharadwaj, R. K., Berry, R. J. & Farmer, B. L. Molecular dynamics simulation study of norbornene–POSS polymers. Polymer 41, 7209–7221 (2000).

    CAS  Google Scholar 

  46. Prathab, B., Subramanian, V. & Aminabhavi, T. Molecular dynamics simulations to investigate polymer–polymer and polymer–metal oxide interactions. Polymer 48, 409–416 (2007).

    CAS  Google Scholar 

  47. Speck, O., Schlechtendahl, M., Borm, F., Kampowski, T. & Speck, T. Humidity-dependent wound sealing in succulent leaves of Delosperma cooperi–An adaptation to seasonal drought stress. Beilstein J. Nanotechnol. 9, 175–186 (2018).

    CAS  Google Scholar 

  48. Vernon, L. B. & Vernon, H. M. Process of manufacturing articles of thermoplastic synthetic resins. US Patent 2234993 (1941).

  49. Rainer, W. C., Redding, E. M., Hitov, J. J., Sloan, A. W. & Stewart, W. D. Heat-shrinkable polyethylene. US Patent 3144398 (1964).

  50. Perrone, R. J. Silicone-rubber, polyethylene composition; heat shrinkable articles made therefrom and process therefor. US Patent 3326869 (1967).

  51. Cussler, E. L. Diffusion: Mass Transfer in Fluid Systems 3rd edn Ch. 5 (Cambridge Univ. Press, 2009).

  52. Habault, D., Zhang, H. & Zhao, Y. Light-triggered self-healing and shape-memory polymers. Chem. Soc. Rev. 42, 7244–7256 (2013).

    CAS  Google Scholar 

  53. Kirkby, E. L. et al. Embedded shape-memory alloy wires for improved performance of self-healing polymers. Adv. Funct. Mater. 18, 2253–2260 (2008).

    CAS  Google Scholar 

  54. Li, G. & Shojaei, A. A viscoplastic theory of shape memory polymer fibres with application to self-healing materials. Proc. R. Soc. A 468, 2319–2346 (2012).

    CAS  Google Scholar 

  55. Mohr, R. et al. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc. Natl Acad. Sci. USA 103, 3540–3545 (2006).

    CAS  Google Scholar 

  56. Huang, W. M., Yang, B., An, L., Li, C. & Chan, Y. S. Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism. Appl. Phys. Lett. 86, 114105 (2005).

    Google Scholar 

  57. Lendlein, A., Jiang, H., Jünger, O. & Langer, R. Light-induced shape-memory polymers. Nature 434, 879–882 (2005).

    CAS  Google Scholar 

  58. Hornat, C. C., Yang, Y. & Urban, M. W. Quantitative predictions of shape-memory effects in polymers. Adv. Mater. 29, 1603334 (2017).

    Google Scholar 

  59. Wang, H. B. et al. Synthesis of self-healing polymers by scandium-catalyzed copolymerization of ethylene and anisylpropylenes. J. Am. Chem. Soc. 141, 3249–3257 (2019).

    CAS  Google Scholar 

  60. Hornat, C. C. & Urban, M. W. Shape memory effects in self-healing polymers. Prog. Polym. Sci. 102, 101208 (2020).

    CAS  Google Scholar 

  61. Hornat, C. C. & Urban, M. W. Entropy and interfacial energy driven self-healable polymers. Nat. Commun. 11, 1028 (2020).

    CAS  Google Scholar 

  62. Murphy, E. B. & Wudl, F. The world of smart healable materials. Prog. Polym. Sci. 35, 223–251 (2010).

    CAS  Google Scholar 

  63. Yang, Y., Ding, X. & Urban, M. W. Chemical and physical aspects of self-healing materials. Prog. Polym. Sci. 49–50, 34–59 (2015).

    Google Scholar 

  64. Lee, M. W., Yoon, S. S. & Yarin, A. L. Solution-blown core–shell self-healing nano- and microfibers. ACS Appl. Mater. Interfaces 8, 4955–4962 (2016).

    CAS  Google Scholar 

  65. Pu, W. et al. Realizing crack diagnosing and self-healing by electricity with a dynamic crosslinked flexible polyurethane composite. Adv. Sci. 5, 1800101 (2018).

    Google Scholar 

  66. Yang, Y. et al. Carbon nanotube–vitrimer composite for facile and efficient photo-welding of epoxy. Chem. Sci. 5, 3486–3492 (2014).

    CAS  Google Scholar 

  67. Chen, Y. & Guan, Z. Multivalent hydrogen bonding block copolymers self-assemble into strong and tough self-healing materials. Chem. Commun. 50, 10868–10870 (2014).

    CAS  Google Scholar 

  68. Sato, K. et al. Phase-separation-induced anomalous stiffening, toughening, and self-healing of polyacrylamide gels. Adv. Mater. 27, 6990–6998 (2015).

    CAS  Google Scholar 

  69. Chen, S., Mahmood, N., Beiner, M. & Binder, W. H. Self-healing materials from V- and H-shaped supramolecular architectures. Angew. Chem. Int. Ed. 54, 10188–10192 (2015).

    CAS  Google Scholar 

  70. Cao, J. et al. Multiple hydrogen bonding enables the self-healing of sensors for human–machine interactions. Angew. Chem. Int. Ed. 56, 8795–8800 (2017).

    CAS  Google Scholar 

  71. Yan, X. et al. Quadruple H-bonding cross-linked supramolecular polymeric materials as substrates for stretchable, antitearing, and self-healable thin film electrodes. J. Am. Chem. Soc. 140, 5280–5289 (2018).

    CAS  Google Scholar 

  72. Ghosh, B., Chellappan, K. V. & Urban, M. W. UV-initiated self-healing of oxolane–chitosan–polyurethane (OXO–CHI–PUR) networks. J. Mater. Chem. 22, 16104–16113 (2012).

    CAS  Google Scholar 

  73. Korth, H. G. Carbon radicals of low reactivity against oxygen: radically different antioxidants. Angew. Chem. Int. Ed. 46, 5274–5276 (2007).

    CAS  Google Scholar 

  74. Takeda, K., Unno, H. & Zhang, M. Polymer reaction in polycarbonate with Na2CO3. J. Appl. Polym. Sci. 93, 920–926 (2004).

    CAS  Google Scholar 

  75. Stevens, M. P. & Jenkins, A. D. Crosslinking of polystyrene via pendant maleimide groups. J. Polym. Sci. Polym. Chem. Ed. 17, 3675–3685 (1979).

    CAS  Google Scholar 

  76. Liu, Y. L. & Chen, Y. W. Thermally reversible cross-linked polyamides with high toughness and self-repairing ability from maleimide- and furan-functionalized aromatic polyamides. Macromol. Chem. Phys. 208, 224–232 (2007).

    CAS  Google Scholar 

  77. Imato, K. et al. Dynamic covalent diarylbibenzofuranone-modified nanocellulose: Mechanochromic behaviour and application in self-healing polymer composites. Polym. Chem. 8, 2115–2122 (2017).

    CAS  Google Scholar 

  78. Telitel, S. et al. Introduction of self-healing properties into covalent polymer networks via the photodissociation of alkoxyamine junctions. Polym. Chem. 5, 921–930 (2014).

    CAS  Google Scholar 

  79. An, Q. et al. Recycling and self-healing of dynamic covalent polymer networks with a precisely tuneable crosslinking degree. Polym. Chem. 10, 672–678 (2019).

    CAS  Google Scholar 

  80. Raines, C. A. The Calvin cycle revisited. Photosynth. Res. 75, 1–10 (2003).

    CAS  Google Scholar 

  81. Bai, N., Saito, K. & Simon, G. P. Synthesis of a diamine cross-linker containing Diels–Alder adducts to produce self-healing thermosetting epoxy polymer from a widely used epoxy monomer. Polym. Chem. 4, 724–730 (2013).

    CAS  Google Scholar 

  82. Peterson, A. M., Jensen, R. E. & Palmese, G. R. Reversibly cross-linked polymer gels as healing agents for epoxy–amine thermosets. ACS Appl. Mater. Interfaces 1, 992–995 (2009).

    CAS  Google Scholar 

  83. Tian, Q., Yuan, Y. C., Rong, M. Z. & Zhang, M. Q. A thermally remendable epoxy resin. J. Mater. Chem. 19, 1289–1296 (2009).

    CAS  Google Scholar 

  84. Chen, X., Wudl, F., Mal, A. K., Shen, H. & Nutt, S. R. New thermally remendable highly cross-linked polymeric materials. Macromolecules 36, 1802–1807 (2003).

    CAS  Google Scholar 

  85. Billiet, S., Van Camp, W., Hillewaere, X. K. D., Rahier, H. & Du Prez, F. E. Development of optimized autonomous self-healing systems for epoxy materials based on maleimide chemistry. Polymer 53, 2320–2326 (2012).

    CAS  Google Scholar 

  86. Heo, Y. & Sodano, H. A. Self-healing polyurethanes with shape recovery. Adv. Funct. Mater. 24, 5261–5268 (2014).

    CAS  Google Scholar 

  87. Du, P. et al. Synthesis and characterization of linear self-healing polyurethane based on thermally reversible Diels–Alder reaction. RSC Adv. 3, 15475–15482 (2013).

    CAS  Google Scholar 

  88. Syrett, J. A., Mantovani, G., Barton, W. R., Price, D. & Haddleton, D. M. Self-healing polymers prepared via living radical polymerisation. Polym. Chem. 1, 102–106 (2010).

    CAS  Google Scholar 

  89. Yoshie, N., Saito, S. & Oya, N. A thermally-stable self-mending polymer networked by Diels–Alder cycloaddition. Polymer 52, 6074–6079 (2011).

    CAS  Google Scholar 

  90. Sugane, K., Yoshioka, Y., Shimasaki, T., Teramoto, N. & Shibata, M. Self-healing 8-armed star-shaped ε-caprolactone oligomers dually crosslinked by the Diels-Alder and urethanization reactions. Polymer 144, 92–102 (2018).

    CAS  Google Scholar 

  91. Raquez, J. M. et al. Design of cross-linked semicrystalline poly (ε-caprolactone)-based networks with one-way and two-way shape-memory properties through Diels–Alder reactions. Chem. Eur. J. 17, 10135–10143 (2011).

    CAS  Google Scholar 

  92. Sedaghat-Herati, R., Chacon, A., Hansen, M. E. & Yalaoui, S. New poly(oxyethylene) derivatives from Diels–Alder reactions of 3-[methoxypoly(oxyethylene)]methylene furan. Macromol. Chem. Phys. 206, 1981–1987 (2005).

    CAS  Google Scholar 

  93. Watanabe, M. & Yoshie, N. Synthesis and properties of readily recyclable polymers from bisfuranic terminated poly(ethylene adipate) and multi-maleimide linkers. Polymer 47, 4946–4952 (2006).

    CAS  Google Scholar 

  94. Yamashiro, M., Inoue, K. & Iji, M. Recyclable shape-memory and mechanical strength of poly(lactic acid) compounds cross-linked by thermo-reversible Diels-Alder reaction. Polym. J. 40, 657–662 (2008).

    CAS  Google Scholar 

  95. Kavitha, A. A. & Singha, N. K. “Click chemistry” in tailor-made polymethacrylates bearing reactive furfuryl functionality: a new class of self-healing polymeric material. ACS Appl. Mater. Interfaces 1, 1427–1436 (2009).

    CAS  Google Scholar 

  96. Kavitha, A. A. & Singha, N. K. Smart “all acrylate” ABA triblock copolymer bearing reactive functionality via atom transfer radical polymerization (ATRP): demonstration of a “click reaction” in thermoreversible property. Macromolecules 43, 3193–3205 (2010).

    CAS  Google Scholar 

  97. Chung, C.-M., Roh, Y.-S., Cho, S.-Y. & Kim, J.-G. Crack healing in polymeric materials via photochemical [2+2] cycloaddition. Chem. Mater. 16, 3982–3984 (2004).

    CAS  Google Scholar 

  98. Egerton, P. L. et al. Photocycloaddition in liquid ethyl cinnamate and in ethyl cinnamate glasses. The photoreaction as a probe into the micromorphology of the solid. J. Am. Chem. Soc. 103, 3859–3863 (1981).

    CAS  Google Scholar 

  99. Guimard, N. K. et al. Harnessing entropy to direct the bonding/debonding of polymer systems based on reversible chemistry. Chem. Sci. 4, 2752–2759 (2013).

    CAS  Google Scholar 

  100. Oehlenschlaeger, K. K. et al. Fast and catalyst-free hetero-Diels–Alder chemistry for on demand cyclable bonding/debonding materials. Polym. Chem. 4, 4348–4355 (2013).

    CAS  Google Scholar 

  101. Oehlenschlaeger, K. K. et al. Adaptable hetero Diels–Alder networks for fast self-healing under mild conditions. Adv. Mater. 26, 3561–3566 (2014).

    CAS  Google Scholar 

  102. Stocking, E. M. & Williams, R. M. Chemistry and biology of biosynthetic Diels–Alder reactions. Angew. Chem. Int. Ed. 42, 3078–3115 (2003).

    CAS  Google Scholar 

  103. Hoyle, C. E., Lee, T. Y. & Roper, T. Thiol–enes: chemistry of the past with promise for the future. J. Polym. Sci. Part A Polym. Chem. 42, 5301–5338 (2004).

    CAS  Google Scholar 

  104. Kade, M. J., Burke, D. J. & Hawker, C. J. The power of thiol-ene chemistry. J. Polym. Sci. Part A Polym. Chem. 48, 743–750 (2010).

    CAS  Google Scholar 

  105. Nicolay, R., Kamada, J., Van Wassen, A. & Matyjaszewski, K. Responsive gels based on a dynamic covalent trithiocarbonate cross-linker. Macromolecules 43, 4355–4361 (2010).

    CAS  Google Scholar 

  106. Kamada, J. et al. Redox responsive behavior of thiol/disulfide-functionalized star polymers synthesized via atom transfer radical polymerization. Macromolecules 43, 4133–4139 (2010).

    CAS  Google Scholar 

  107. Yoon, J. A. et al. Self-healing polymer films based on thiol–disulfide exchange reactions and self-healing kinetics measured using atomic force microscopy. Macromolecules 45, 142–149 (2011).

    Google Scholar 

  108. Kuhl, N. et al. Acylhydrazones as reversible covalent crosslinkers for self-healing polymers. Adv. Funct. Mater. 25, 3295–3301 (2015).

    CAS  Google Scholar 

  109. Barcan, G. A., Zhang, X. Y. & Waymouth, R. M. Structurally dynamic hydrogels derived from 1,2-dithiolanes. J. Am. Chem. Soc. 137, 5650–5653 (2015).

    CAS  Google Scholar 

  110. Rekondo, A. et al. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater. Horiz. 1, 237–240 (2014).

    CAS  Google Scholar 

  111. Xu, Y. & Chen, D. A novel self-healing polyurethane based on disulfide bonds. Macromol. Chem. Phys. 217, 1191–1196 (2016).

    CAS  Google Scholar 

  112. Canadell, J., Goossens, H. & Klumperman, B. Self-healing materials based on disulfide links. Macromolecules 44, 2536–2541 (2011).

    CAS  Google Scholar 

  113. Ji, S., Cao, W., Yu, Y. & Xu, H. Visible-light-induced self-healing diselenide-containing polyurethane elastomer. Adv. Mater. 27, 7740–7745 (2015).

    CAS  Google Scholar 

  114. An, X. et al. Aromatic diselenide crosslinkers to enhance the reprocessability and self-healing of polyurethane thermosets. Polym. Chem. 8, 3641–3646 (2017).

    CAS  Google Scholar 

  115. Kuhl, N. et al. Self-healing polymer networks based on reversible Michael addition reactions. Macromol. Chem. Phys. 217, 2541–2550 (2016).

    CAS  Google Scholar 

  116. Kantor, S. W., Grubb, W. T. & Osthoff, R. C. The mechanism of the acid- and base-catalyzed equilibration of siloxanes. J. Am. Chem. Soc. 76, 5190–5197 (1954).

    CAS  Google Scholar 

  117. Zheng, P. & McCarthy, T. J. A surprise from 1954: siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism. J. Am. Chem. Soc. 134, 2024–2027 (2012).

    CAS  Google Scholar 

  118. Wang, C. et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 5, 1042–1048 (2013).

    CAS  Google Scholar 

  119. Xu, Z. et al. Silicon microparticle anodes with self-healing multiple network binder. Joule 2, 950–961 (2018).

    CAS  Google Scholar 

  120. Brochu, A. B. W., Craig, S. L. & Reichert, W. M. Self-healing biomaterials. J. Biomed. Mater. Res. Part A 96, 492–506 (2011).

    Google Scholar 

  121. Madsen, F. B., Yu, L. & Skov, A. L. Self-healing, high-permittivity silicone dielectric elastomer. ACS Macro Lett. 5, 1196–1200 (2016).

    CAS  Google Scholar 

  122. Martín, R. et al. Room temperature self-healing power of silicone elastomers having silver nanoparticles as crosslinkers. Chem. Commun. 48, 8255–8257 (2012).

    Google Scholar 

  123. Jin, B., Liu, M., Zhang, Q., Zhan, X. & Chen, F. Silicone oil swelling slippery surfaces based on mussel-inspired magnetic nanoparticles with multiple self-healing mechanisms. Langmuir 33, 10340–10350 (2017).

    CAS  Google Scholar 

  124. Ogliani, E., Yu, L., Javakhishvili, I. & Skov, A. L. A thermo-reversible silicone elastomer with remotely controlled self-healing. RSC Adv. 8, 8285–8291 (2018).

    CAS  Google Scholar 

  125. Ramachandran, D., Liu, F. & Urban, M. W. Self-repairable copolymers that change color. RSC Adv. 2, 135–143 (2012).

    CAS  Google Scholar 

  126. Zhao, X. et al. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 122, 34–47 (2017).

    CAS  Google Scholar 

  127. Tseng, T. C. et al. An injectable, self-healing hydrogel to repair the central nervous system. Adv. Mater. 27, 3518–3524 (2015).

    CAS  Google Scholar 

  128. Yu, F., Cao, X. D., Du, J., Wang, G. & Chen, X. F. Multifunctional hydrogel with good structure integrity, self-healing, and tissue-adhesive property formed by combining Diels–Alder click reaction and acylhydrazone bond. ACS Appl. Mater. Interfaces 7, 24023–24031 (2015).

    CAS  Google Scholar 

  129. Qu, J. et al. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials 183, 185–199 (2018).

    CAS  Google Scholar 

  130. Ono, T., Nobori, T. & Lehn, J.-M. Dynamic polymer blends — component recombination between neat dynamic covalent polymers at room temperature. Chem. Commun. 1522-1524 (2005).

  131. Mukherjee, S., Hill, M. R. & Sumerlin, B. S. Self-healing hydrogels containing reversible oxime crosslinks. Soft Matter 11, 6152–6161 (2015).

    CAS  Google Scholar 

  132. Liu, W.-X. et al. Oxime-based and catalyst-free dynamic covalent polyurethanes. J. Am. Chem. Soc. 139, 8678–8684 (2017).

    CAS  Google Scholar 

  133. Niu, W., Smith, M. D. & Lavigne, J. J. Self-assembling poly(dioxaborole)s as blue-emissive materials. J. Am. Chem. Soc. 128, 16466–16467 (2006).

    CAS  Google Scholar 

  134. De, P., Gondi, S. R., Roy, D. & Sumerlin, B. S. Boronic acid-terminated polymers: synthesis by RAFT and subsequent supramolecular and dynamic covalent self-assembly. Macromolecules 42, 5614–5621 (2009).

    CAS  Google Scholar 

  135. Cash, J. J., Kubo, T., Bapat, A. P. & Sumerlin, B. S. Room-temperature self-healing polymers based on dynamic-covalent boronic esters. Macromolecules 48, 2098–2106 (2015).

    CAS  Google Scholar 

  136. Guo, R. et al. Facile access to multisensitive and self-healing hydrogels with reversible and dynamic boronic ester and disulfide linkages. Biomacromolecules 18, 1356–1364 (2017).

    CAS  Google Scholar 

  137. Cromwell, O. R., Chung, J. & Guan, Z. Malleable and self-healing covalent polymer networks through tunable dynamic boronic ester bonds. J. Am. Chem. Soc. 137, 6492–6495 (2015).

    CAS  Google Scholar 

  138. Deng, C. C., Brooks, W. L. A., Abboud, K. A. & Sumerlin, B. S. Boronic acid-based hydrogels undergo self-healing at neutral and acidic pH. ACS Macro Lett. 4, 220–224 (2015).

    CAS  Google Scholar 

  139. Smithmyer, M. E. et al. Self-healing boronic acid-based hydrogels for 3D co-cultures. ACS Macro Lett. 7, 1105–1110 (2018).

    CAS  Google Scholar 

  140. Yuan, C., Rong, M. Z., Zhang, M. Q., Zhang, Z. P. & Yuan, Y. C. Self-healing of polymers via synchronous covalent bond fission/radical recombination. Chem. Mater. 23, 5076–5081 (2011).

    CAS  Google Scholar 

  141. Amamoto, Y., Kamada, J., Otsuka, H., Takahara, A. & Matyjaszewski, K. Repeatable photoinduced self-healing of covalently cross-linked polymers through reshuffling of trithiocarbonate units. Angew. Chem. Int. Ed. 50, 1660–1663 (2011).

    CAS  Google Scholar 

  142. Nakahata, M., Mori, S., Takashima, Y., Yamaguchi, H. & Harada, A. Self-healing materials formed by cross-linked polyrotaxanes with reversible bonds. Chem 1, 766–775 (2016).

    CAS  Google Scholar 

  143. Gong, J. P. Why are double network hydrogels so tough? Soft Matter 6, 2583–2590 (2010).

    CAS  Google Scholar 

  144. Jia, H. et al. Unconventional tough double-network hydrogels with rapid mechanical recovery, self-healing, and self-gluing properties. ACS Appl. Mater. Interfaces 8, 31339–31347 (2016).

    CAS  Google Scholar 

  145. Webber, M. J., Appel, E. A., Meijer, E. & Langer, R. Supramolecular biomaterials. Nat. Mater. 15, 13–26 (2016).

    CAS  Google Scholar 

  146. Herbst, F., Döhler, D., Michael, P. & Binder, W. H. Self-healing polymers via supramolecular forces. Macromol. Rapid Commun. 34, 203–220 (2013).

    CAS  Google Scholar 

  147. Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 7017–7036 (1967).

    CAS  Google Scholar 

  148. Kyba, E. P., Siegel, M. G., Sousa, L. R., Sogah, G. D. & Cram, D. J. Chiral, hinged, and functionalized multiheteromacrocycles. J. Am. Chem. Soc. 95, 2691–2692 (1973).

    CAS  Google Scholar 

  149. Brunsveld, L., Folmer, B., Meijer, E. W. & Sijbesma, R. Supramolecular polymers. Chem. Rev. 101, 4071–4098 (2001).

    CAS  Google Scholar 

  150. Fyfe, M. C. & Stoddart, J. F. Synthetic supramolecular chemistry. Acc. Chem. Res. 30, 393–401 (1997).

    CAS  Google Scholar 

  151. Herbst, F., Seiffert, S. & Binder, W. H. Dynamic supramolecular poly(isobutylene)s for self-healing materials. Polym. Chem. 3, 3084–3092 (2012).

    CAS  Google Scholar 

  152. Sijbesma, R. P. et al. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278, 1601–1604 (1997).

    CAS  Google Scholar 

  153. Aida, T., Meijer, E. & Stupp, S. Functional supramolecular polymers. Science 335, 813–817 (2012).

    CAS  Google Scholar 

  154. Hirschberg, J. K. et al. Supramolecular polymers from linear telechelic siloxanes with quadruple-hydrogen-bonded units. Macromolecules 32, 2696–2705 (1999).

    Google Scholar 

  155. Folmer, B. J. B., Sijbesma, R. P., Versteegen, R. M., van der Rijt, J. A. J. & Meijer, E. W. Supramolecular polymer materials: Chain extension of telechelic polymers using a reactive hydrogen-bonding synthon. Adv. Mater. 12, 874–878 (2000).

    CAS  Google Scholar 

  156. Bosman, A. W., Sijbesma, R. P. & Meijer, E. W. Supramolecular polymers at work. Mater. Today 7, 34–39 (2004).

    CAS  Google Scholar 

  157. Yanagisawa, Y., Nan, Y. L., Okuro, K. & Aida, T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 359, 72–76 (2018).

    CAS  Google Scholar 

  158. Wu, Q. et al. A robust, highly stretchable supramolecular polymer conductive hydrogel with self-healability and thermo-processability. Sci. Rep. 7, 41566 (2017).

    Google Scholar 

  159. Li, C. et al. A writable polypeptide–DNA hydrogel with rationally designed multi-modification sites. Small 11, 1138–1143 (2015).

    CAS  Google Scholar 

  160. Neal, J. A., Mozhdehi, D. & Guan, Z. Enhancing mechanical performance of a covalent self-healing material by sacrificial noncovalent bonds. J. Am. Chem. Soc. 137, 4846–4850 (2015).

    CAS  Google Scholar 

  161. Feldman, K. E. et al. Polymers with multiple hydrogen-bonded end groups and their blends. Macromolecules 41, 4694–4700 (2008).

    CAS  Google Scholar 

  162. Kang, J. H. et al. Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater. 30, 1706846 (2018).

    Google Scholar 

  163. Phadke, A. et al. Rapid self-healing hydrogels. Proc. Natl Acad. Sci. USA 109, 4383–4388 (2012).

    CAS  Google Scholar 

  164. Jeon, I., Cui, J. X., Illeperuma, W. R. K., Aizenberg, J. & Vlassak, J. J. Extremely stretchable and fast self-healing hydrogels. Adv. Mater. 28, 4678–4683 (2016).

    CAS  Google Scholar 

  165. Willocq, B. et al. Mechanistic insights on spontaneous moisture-driven healing of urea-based polyurethanes. ACS Appl. Mater. Interfaces 11, 46176–46182 (2019).

    CAS  Google Scholar 

  166. Heller, M. & Schubert, U. S. Polystyrene with pendant mixed functional ruthenium(II)-terpyridine complexes. Macromol. Rapid Commun. 23, 411–415 (2002).

    CAS  Google Scholar 

  167. Bode, S. et al. Self-healing polymer coatings based on crosslinked metallosupramolecular copolymers. Adv. Mater. 25, 1634–1638 (2013).

    CAS  Google Scholar 

  168. Williams, K. A., Boydston, A. J. & Bielawski, C. W. Towards electrically conductive, self-healing materials. J. R. Soc. Interface 4, 359–362 (2007).

    CAS  Google Scholar 

  169. Wang, Z. & Urban, M. W. Facile UV-healable polyethylenimine–copper (C2H5N–Cu) supramolecular polymer networks. Polym. Chem. 4, 4897–4901 (2013).

    CAS  Google Scholar 

  170. Wang, Z. H., Yang, Y., Burtovyy, R., Luzinov, I. & Urban, M. W. UV-induced self-repairing polydimethylsiloxane–polyurethane (PDMS–PUR) and polyethylene glycol–polyurethane (PEG–PUR) Cu-catalyzed networks. J. Mater. Chem. A 2, 15527–15534 (2014).

    CAS  Google Scholar 

  171. Rao, Y. L. et al. Stretchable self-healing polymeric dielectrics cross-linked through metal–ligand coordination. J. Am. Chem. Soc. 138, 6020–6027 (2016).

    CAS  Google Scholar 

  172. Ceylan, H. et al. Mussel inspired dynamic cross-linking of self-healing peptide nanofiber network. Adv. Funct. Mater. 23, 2081–2090 (2013).

    CAS  Google Scholar 

  173. Zeng, H., Hwang, D. S., Israelachvili, J. N. & Waite, J. H. Strong reversible Fe3+-mediated bridging between dopa-containing protein films in water. Proc. Natl Acad. Sci. USA 107, 12850–12853 (2010).

    CAS  Google Scholar 

  174. Weng, G. S., Thanneeru, S. & He, J. Dynamic coordination of Eu–iminodiacetate to control fluorochromic response of polymer hydrogels to multistimuli. Adv. Mater. 30, 1706526 (2018).

    Google Scholar 

  175. Liu, S. L., Oderinde, O., Hussain, I., Yao, F. & Fu, G. D. Dual ionic cross-linked double network hydrogel with self-healing, conductive, and force sensitive properties. Polymer 144, 111–120 (2018).

    CAS  Google Scholar 

  176. Luo, F. et al. Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels. Adv. Mater. 27, 2722–2727 (2015).

    CAS  Google Scholar 

  177. Zhong, M., Liu, Y. T. & Xie, X. M. Self-healable, super tough graphene oxide–poly(acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions. J. Mater. Chem. B 3, 4001–4008 (2015).

    CAS  Google Scholar 

  178. Darabi, M. A. et al. Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability. Adv. Mater. 29, 1700533 (2017).

    Google Scholar 

  179. He, L., Fullenkamp, D. E., Rivera, J. G. & Messersmith, P. B. pH responsive self-healing hydrogels formed by boronate–catechol complexation. Chem. Commun. 47, 7497–7499 (2011).

    CAS  Google Scholar 

  180. Ahn, B. K., Lee, D. W., Israelachvili, J. N. & Waite, J. H. Surface-initiated self-healing of polymers in aqueous media. Nat. Mater. 13, 867–872 (2014).

    CAS  Google Scholar 

  181. Li, C.-H. et al. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 8, 618–624 (2016).

    CAS  Google Scholar 

  182. Li, Z. Q., Wang, G. N., Wang, Y. G. & Li, H. R. Reversible phase transition of robust luminescent hybrid hydrogels. Angew. Chem. Int. Ed. 57, 2194–2198 (2018).

    CAS  Google Scholar 

  183. Rodell, C. B., Dusaj, N. N., Highley, C. B. & Burdick, J. A. Injectable and cytocompatible tough double-network hydrogels through tandem supramolecular and covalent crosslinking. Adv. Mater. 28, 8419–8424 (2016).

    CAS  Google Scholar 

  184. Loebel, C., Rodell, C. B., Chen, M. H. & Burdick, J. A. Shear-thinning and self-healing hydrogels as injectable therapeutics and for 3D-printing. Nat. Protoc. 12, 1521–1541 (2017).

    CAS  Google Scholar 

  185. Chen, H., Ma, X., Wu, S. F. & Tian, H. A rapidly self-healing supramolecular polymer hydrogel with photostimulated room-temperature phosphorescence responsiveness. Angew. Chem. Int. Ed. 53, 14149–14152 (2014).

    CAS  Google Scholar 

  186. Nakahata, M., Takashima, Y. & Harada, A. Highly flexible, tough, and self-healing supramolecular polymeric materials using host–guest interaction. Macromol. Rapid Commun. 37, 86–92 (2016).

    CAS  Google Scholar 

  187. Burdick, J. A. & Prestwich, G. D. Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 23, H41–H56 (2011).

    CAS  Google Scholar 

  188. Highley, C. B., Rodell, C. B. & Burdick, J. A. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv. Mater. 27, 5075–5079 (2015).

    CAS  Google Scholar 

  189. Janeček, E. R. et al. Hybrid supramolecular and colloidal hydrogels that bridge multiple length scales. Angew. Chem. Int. Ed. 54, 5383–5388 (2015).

    Google Scholar 

  190. Matson, J. B. & Stupp, S. I. Self-assembling peptide scaffolds for regenerative medicine. Chem. Commun. 48, 26–33 (2012).

    CAS  Google Scholar 

  191. Webber, M. J., Kessler, J. & Stupp, S. I. Emerging peptide nanomedicine to regenerate tissues and organs. J. Intern. Med. 267, 71–88 (2010).

    CAS  Google Scholar 

  192. Liu, J. et al. Tough supramolecular polymer networks with extreme stretchability and fast room-temperature self-healing. Adv. Mater. 29, 1605325 (2017).

    Google Scholar 

  193. Eisenberg, A. (ed.) Ions in Polymers (American Chemical Society, 1980).

  194. Kalista, S. J. Jr & Ward, T. C. Thermal characteristics of the self-healing response in poly(ethylene-co-methacrylic acid) copolymers. J. R. Soc. Interface 4, 405–411 (2007).

    CAS  Google Scholar 

  195. Kalista, S. J. Jr, Ward, T. C. & Oyetunji, Z. Self-healing of poly(ethylene-co-methacrylic acid) copolymers following projectile puncture. Mech. Adv. Mater. Struct. 14, 391–397 (2007).

    CAS  Google Scholar 

  196. Huang, Y., Lawrence, P. G. & Lapitsky, Y. Self-assembly of stiff, adhesive and self-healing gels from common polyelectrolytes. Langmuir 30, 7771–7777 (2014).

    CAS  Google Scholar 

  197. Reisch, A. et al. On the benefits of rubbing salt in the cut: Self-healing of saloplastic PAA/PAH compact polyelectrolyte complexes. Adv. Mater. 26, 2547–2551 (2014).

    CAS  Google Scholar 

  198. Bin Ihsan, A. et al. Self-healing behaviors of tough polyampholyte hydrogels. Macromolecules 49, 4245–4252 (2016).

    Google Scholar 

  199. Lopez-Perez, P. M. et al. Self-healing hydrogels formed by complexation between calcium ions and bisphosphonate-functionalized star-shaped polymers. Macromolecules 50, 8698–8706 (2017).

    CAS  Google Scholar 

  200. Cao, Y. et al. A transparent, self-healing, highly stretchable ionic conductor. Adv. Mater. 29, 1605099 (2017).

    Google Scholar 

  201. Das, A. et al. Ionic modification turns commercial rubber into a self-healing material. ACS Appl. Mater. Interfaces 7, 20623–20630 (2015).

    CAS  Google Scholar 

  202. Mei, J.-F. et al. A highly stretchable and autonomous self-healing polymer based on combination of Pt···Pt and π–π interactions. Macromol. Rapid Commun. 37, 1667–1675 (2016).

    CAS  Google Scholar 

  203. Vaiyapuri, R., Greenland, B. W., Colquhoun, H. M., Elliott, J. M. & Hayes, W. Molecular recognition between functionalized gold nanoparticles and healable, supramolecular polymer blends-a route to property enhancement. Polym. Chem. 4, 4902–4909 (2013).

    CAS  Google Scholar 

  204. Burattini, S. et al. A supramolecular polymer based on tweezer-type π–π stacking interactions: molecular design for healability and enhanced toughness. Chem. Mater. 23, 6–8 (2011).

    CAS  Google Scholar 

  205. Qin, J. et al. Tuning self-healing properties of stiff, ion-conductive polymers. J. Mater. Chem. A 7, 6773–6783 (2019).

    CAS  Google Scholar 

  206. Hentschel, J., Kushner, A. M., Ziller, J. & Guan, Z. Self-healing supramolecular block copolymers. Angew. Chem. Int. Ed. 51, 10561–10565 (2012).

    CAS  Google Scholar 

  207. Montarnal, D., Capelot, M., Tournilhac, F. & Leibler, L. Silica-like malleable materials from permanent organic networks. Science 334, 965–968 (2011).

    CAS  Google Scholar 

  208. Denissen, W. et al. Vinylogous urethane vitrimers. Adv. Funct. Mater. 25, 2451–2457 (2015).

    CAS  Google Scholar 

  209. Denissen, W. et al. Chemical control of the viscoelastic properties of vinylogous urethane vitrimers. Nat. Commun. 8, 14857 (2017).

    CAS  Google Scholar 

  210. Demongeot, A., Mougnier, S. J., Okada, S., Soulié-Ziakovic, C. & Tournilhac, F. Coordination and catalysis of Zn2+ in epoxy-based vitrimers. Polym. Chem. 7, 4486–4493 (2016).

    CAS  Google Scholar 

  211. Fortman, D. J., Brutman, J. P., Cramer, C. J., Hillmyer, M. A. & Dichtel, W. R. Mechanically activated, catalyst-free polyhydroxyurethane vitrimers. J. Am. Chem. Soc. 137, 14019–14022 (2015).

    CAS  Google Scholar 

  212. Snyder, R. L., Fortman, D. J., De Hoe, G. X., Hillmyer, M. A. & Dichtel, W. R. Reprocessable acid-degradable polycarbonate vitrimers. Macromolecules 51, 389–397 (2018).

    CAS  Google Scholar 

  213. Röttger, M. et al. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science 356, 62–65 (2017).

    Google Scholar 

  214. Chen, Q. et al. Durable liquid-crystalline vitrimer actuators. Chem. Sci. 10, 3025–3030 (2019).

    CAS  Google Scholar 

  215. Chen, Q. et al. Multi-stimuli responsive and multi-functional oligoaniline-modified vitrimers. Chem. Sci. 8, 724–733 (2017).

    CAS  Google Scholar 

  216. Yang, Y., Pei, Z., Li, Z., Wei, Y. & Ji, Y. Making and remaking dynamic 3D structures by shining light on flat liquid crystalline vitrimer films without a mold. J. Am. Chem. Soc. 138, 2118–2121 (2016).

    CAS  Google Scholar 

  217. Denissen, W., Winne, J. M. & Du Prez, F. E. Vitrimers: permanent organic networks with glass-like fluidity. Chem. Sci. 7, 30–38 (2016).

    CAS  Google Scholar 

  218. Yang, Y. & Urban, M. W. in Healable Polymer Systems (eds Hayes, W. & Greenland, B. W.) 126–148 (Royal Society of Chemistry, 2013).

  219. Flory, P.-J. Statistical thermodynamics of semi-flexible chain molecules. Proc. R. Soc. A 234, 60–73 (1956).

    CAS  Google Scholar 

  220. Adamson, A. W. & Gast, A. P. Physical chemistry of surfaces Vol. 15 (Interscience, 1967).

  221. Hornat, C. C. et al. Quantitative predictions of maximum strain storage in shape memory polymers (SMP). Polymer 186, 122006 (2020).

    CAS  Google Scholar 

  222. Rodriguez, E. D., Luo, X. & Mather, P. T. Linear/network poly(ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH). ACS Appl. Mater. Interfaces 3, 152–161 (2011).

    CAS  Google Scholar 

  223. Liu, F., Jarrett, W. L. & Urban, M. W. Glass (Tg) and stimuli-responsive (TSR) transitions in random copolymers. Macromolecules 43, 5330–5337 (2010).

    CAS  Google Scholar 

  224. Liu, F., Jarrett, W. L. & Urban, M. W. Synergistic temperature and pH effects on glass (Tg) and stimuli-responsive (TSR) transitions in poly(N-acryloyl-N′-propylpiperazine-co-2-ethoxyethyl methacrylate) copolymers. Polym. Chem. 2, 963–969 (2011).

    CAS  Google Scholar 

  225. Priestley, R. D., Ellison, C. J., Broadbelt, L. J. & Torkelson, J. M. Structural relaxation of polymer glasses at surfaces, interfaces, and in between. Science 309, 456–459 (2005).

    CAS  Google Scholar 

  226. O’Connell, P. A. & McKenna, G. B. Rheological measurements of the thermoviscoelastic response of ultrathin polymer films. Science 307, 1760–1763 (2005).

    Google Scholar 

  227. Rabinowitz, J. D. & White, E. Autophagy and metabolism. Science 330, 1344–1348 (2010).

    CAS  Google Scholar 

  228. Otts, D. B., Zhang, P. & Urban, M. W. High fidelity surface chemical imaging at 1000 nm levels: internal reflection IR imaging (IRIRI) approach. Langmuir 18, 6473–6477 (2002).

    CAS  Google Scholar 

  229. Urban, M. W. Vibrational Spectroscopy of Molecules and Macromolecules on Surfaces (Wiley, 1993).

  230. Hinderberger, D. in EPR Spectroscopy: Applications in Chemistry and Biology (eds. Drescher, M. & Jeschke, G.) 67–89 (Springer, 2011).

  231. Schmidt-Rohr, K. & Spiess, H. W. Multidimensional Solid-State NMR and Polymers Chs 3–5 (Academic, 2012).

  232. Bovey, F. A. & Mirau, P. A. NMR of Polymers (Academic, 1996).

  233. Blanc, F. et al. Dynamic nuclear polarization NMR spectroscopy allows high-throughput characterization of microporous organic polymers. J. Am. Chem. Soc. 135, 15290–15293 (2013).

    CAS  Google Scholar 

  234. Casabianca, L. B., Shames, A. I., Panich, A. M., Shenderova, O. & Frydman, L. Factors affecting DNP NMR in polycrystalline diamond samples. J. Phys. Chem. C 115, 19041–19048 (2011).

    CAS  Google Scholar 

  235. Cassidy, M. C., Ramanathan, C., Cory, D. G., Ager, J. W. & Marcus, C. M. Radical-free dynamic nuclear polarization using electronic defects in silicon. Phys. Rev. B 87, 161306 (2013).

    Google Scholar 

  236. Verberg, R., Dale, A. T., Kumar, P., Alexeev, A. & Balazs, A. C. Healing substrates with mobile, particle-filled microcapsules: designing a ‘repair and go’ system. J. R. Soc. Interface 4, 349–357 (2006).

    Google Scholar 

  237. Ponnusami, S. A., Krishnasamy, J., Turteltaub, S. & van der Zwaag, S. A cohesive-zone crack healing model for self-healing materials. Int. J. Solids Struct. 134, 249–263 (2018).

    Google Scholar 

  238. Tiwary, P. & Parrinello, M. From metadynamics to dynamics. Phys. Rev. Lett. 111, 230602 (2013).

    Google Scholar 

  239. Valsson, O., Tiwary, P. & Parrinello, M. Enhancing important fluctuations: rare events and metadynamics from a conceptual viewpoint. Annu. Rev. Phys. Chem. 67, 159–184 (2016).

    CAS  Google Scholar 

  240. Bochicchio, D. & Pavan, G. M. Molecular modelling of supramolecular polymers. Adv. Phys. X 3, 1436408 (2018).

    Google Scholar 

  241. Lu, C. & Urban, M. W. Stimuli-responsive polymer nano-science: shape anisotropy, responsiveness, applications. Prog. Polym. Sci. 78, 24–46 (2018).

    CAS  Google Scholar 

  242. Liu, F. & Urban, M. W. New thermal transitions in stimuli-responsive copolymer films. Macromolecules 42, 2161–2167 (2009).

    CAS  Google Scholar 

  243. Jud, K. & Kausch, H. H. Load transfer through chain molecules after interpenetration at interfaces. Polym. Bull. 1, 697–707 (1979).

    CAS  Google Scholar 

  244. Gross, M. & Jaenicke, R. Proteins under pressure: the influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. Eur. J. Biochem. 221, 617–630 (1994).

    CAS  Google Scholar 

  245. Hummer, G., Garde, S., García, A. E., Paulaitis, M. E. & Pratt, L. R. The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins. Proc. Natl Acad. Sci. USA 95, 1552–1555 (1998).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation under awards DMR 1744306 and partial OIA-1655740. The J.E. Sirrine Foundation Endowment at Clemson University is also acknowledged for partial support of this work.

Author information

Authors and Affiliations

Authors

Contributions

S.W. wrote and edited the article. M.W.U. conceptualized, wrote and edited the article.

Corresponding author

Correspondence to Marek W. Urban.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Urban, M.W. Self-healing polymers. Nat Rev Mater 5, 562–583 (2020). https://doi.org/10.1038/s41578-020-0202-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-020-0202-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing