Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Theoretical insights into the surface physics and chemistry of redox-active oxides

An Author Correction to this article was published on 15 June 2020

This article has been updated

Abstract

Redox-active oxides find use in many applications, including catalysts, photovoltaic devices, self-cleaning glasses, chemical sensors and electronic components. Their utility derives from their unique ability to access multiple metal-charge states within a finite energy window. However, this property also confounds our ability to study reducible oxides, because it leads to structural, compositional and electronic complexities that elude simplistic models of materials structure and function. Oxygen vacancies play a critical role in shaping the functional properties of such oxides; most notably, they lead to mobile-charge imbalances that impact surface processes at substantial distances from the originating defect. Atomistic simulations are inherently equipped to illuminate these phenomena at a fundamental level; however, reducible oxides pose great challenges, owing to the high level of electron correlation needed to correctly describe them. Understanding how defects form, couple, propagate, agglomerate or repel each other and influence the surface properties of reducible oxides is only now coming into the grasp of modern theory and simulation capabilities. This knowledge is also key to discovering and controlling emergent materials properties with tunable multifunctionalities at the nanometre scale and beyond.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Defects in TiO2.
Fig. 2: Polaronic states created by a surface oxygen vacancy on rutile TiO2 (110) and anatase TiO2 (101).
Fig. 3: Surface structure and typical defects on rutile TiO2 (110).
Fig. 4: Dependence of the reaction barriers at metal catalysts on the availability of charge carriers at the surface of redox-active oxides.
Fig. 5: Surface acid/base properties are important for understanding the reactive dissociation of molecules on redox-active oxide surfaces.
Fig. 6: Simulation of polaron mobility to and from a hydroxylated anatase TiO2 (101) surface in contact with liquid water.

Similar content being viewed by others

Change history

References

  1. Huang, S. Y., Kavan, L., Exnar, I. & Grätzel, M. Rocking chair lithium battery based on nanocrystalline TiO2 (anatase). J. Electrochem. Soc. 142, L142–L144 (1995).

    CAS  Google Scholar 

  2. Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M. & van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005).

    Google Scholar 

  3. Comini, E. & Sberveglieri, G. Metal oxide nanowires as chemical sensors. Mater. Today 13, 36–44 (2010).

    CAS  Google Scholar 

  4. Ruiz Puigdollers, A., Schlexer, P., Tosoni, S. & Pacchioni, G. Increasing oxide reducibility: the role of metal/oxide interfaces in the formation of oxygen vacancies. ACS Catal. 7, 6493–6513 (2017).

    CAS  Google Scholar 

  5. Ganduglia-Pirovano, M. V., Hofmann, A. & Sauer, J. Oxygen vacancies in transition metal and rare earth oxides: current state of understanding and remaining challenges. Surf. Sci. Rep. 62, 219–270 (2007).

    CAS  Google Scholar 

  6. Di Valentin, C. & Selloni, A. Bulk and surface polarons in photoexcited anatase TiO2. J. Phys. Chem. Lett. 2, 2223–2228 (2011).

    Google Scholar 

  7. Deskins, N. A., Rousseau, R. & Dupuis, M. Correction to “Localized electronic states from surface hydroxyls and polarons in TiO2(110)”, “Defining the role of excess electrons in the surface chemistry of TiO2”, and “Distribution of Ti3+ surface sites in reduced TiO2”. J. Phys. Chem. C 118, 13326–13327 (2014).

    Google Scholar 

  8. Chrétien, S. & Metiu, H. Electronic structure of partially reduced rutile TiO2(110) surface: where are the unpaired electrons located? J. Phys. Chem. C 115, 4696–4705 (2011).

    Google Scholar 

  9. Wang, F., Di Valentin, C. & Pacchioni, G. Semiconductor-to-metal transition in WO3−x: nature of the oxygen vacancy. Phys. Rev. B Condens. Matter 84, 073103 (2011).

    Google Scholar 

  10. Goodenough, J. B. Metallic oxides. Prog. Solid State Chem. 5, 145–399 (1971).

    CAS  Google Scholar 

  11. Migas, D. B., Shaposhnikov, V. L. & Borisenko, V. E. Tungsten oxides. II. The metallic nature of Magnéli phases. J. Appl. Phys. 108, 093714 (2010).

    Google Scholar 

  12. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    CAS  Google Scholar 

  13. Linsebigler, A. L., Lu, G. & Yates, J. T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995).

    CAS  Google Scholar 

  14. Chen, X., Li, C., Grätzel, M., Kostecki, R. & Mao, S. S. Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 41, 7909–7937 (2012).

    CAS  Google Scholar 

  15. Ao, C. & Lee, S. Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner. Chem. Eng. Sci. 60, 103–109 (2005).

    CAS  Google Scholar 

  16. Adams, C., Wang, Y., Loftin, K. & Meyer, M. Removal of antibiotics from surface and distilled water in conventional water treatment processes. J. Environ. Eng. 128, 253–260 (2002).

    CAS  Google Scholar 

  17. Paz, Y., Luo, Z., Rabenberg, L. & Heller, A. Photooxidative self-cleaning transparent titanium dioxide films on glass. J. Mater. Res. 10, 2842–2848 (1995).

    CAS  Google Scholar 

  18. Darouiche, R. O. Treatment of infections associated with surgical implants. N. Engl. J. Med. 350, 1422–1429 (2004).

    CAS  Google Scholar 

  19. Rajh, T., Dimitrijevic, N. M., Bissonnette, M., Koritarov, T. & Konda, V. Titanium dioxide in the service of the biomedical revolution. Chem. Rev. 114, 10177–10216 (2014).

    CAS  Google Scholar 

  20. Tang, H., Prasad, K., Sanjinés, R. & Lévy, F. TiO2 anatase thin films as gas sensors. Sens. Actuators B Chem 26, 71–75 (1995).

    CAS  Google Scholar 

  21. De Angelis, F., Di Valentin, C., Fantacci, S., Vittadini, A. & Selloni, A. Theoretical studies on anatase and less common TiO2 phases: bulk, surfaces, and nanomaterials. Chem. Rev. 114, 9708–9753 (2014).

    Google Scholar 

  22. Lun Pang, C., Lindsay, R. & Thornton, G. Chemical reactions on rutile TiO2(110). Chem. Soc. Rev. 37, 2328–2353 (2008).

    Google Scholar 

  23. Thomas, A. G. & Syres, K. L. Adsorption of organic molecules on rutile TiO2 and anatase TiO2 single crystal surfaces. Chem. Soc. Rev. 41, 4207–4217 (2012).

    CAS  Google Scholar 

  24. Thompson, T. L. & Yates, J. T. Surface science studies of the photoactivation of TiO2 new photochemical processes. Chem. Rev. 106, 4428–4453 (2006).

    CAS  Google Scholar 

  25. Vittadini, A., Casarin, M. & Selloni, A. Chemistry of and on TiO2-anatase surfaces by DFT calculations: a partial review. Theor. Chem. Acc. 117, 663–671 (2007).

    CAS  Google Scholar 

  26. Wang, Y.-G., Yoon, Y., Glezakou, V.-A., Li, J. & Rousseau, R. The role of reducible oxide–metal cluster charge transfer in catalytic processes: new insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics. J. Am. Chem. Soc. 135, 10673–10683 (2013).

    CAS  Google Scholar 

  27. Reticcioli, M., Diebold, U., Kresse, G. & Franchini, C. in Handbook of Materials Modeling: Applications: Current and Emerging Materials (eds Andreoni, W. & Yip, S.) 1–39 (Springer, 2019).

  28. Grimme, S. Density functional theory with London dispersion corrections. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1, 211–228 (2011).

    CAS  Google Scholar 

  29. Cococcioni, M. & de Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B Condens. Matter 71, 035105 (2005).

    Google Scholar 

  30. Aryasetiawan, F., Karlsson, K., Jepsen, O. & Schönberger, U. Calculations of Hubbard U from first-principles. Phys. Rev. B Condens. Matter 74, 125106 (2006).

    Google Scholar 

  31. Mori-Sánchez, P., Cohen, A. J. & Yang, W. Many-electron self-interaction error in approximate density functionals. J. Chem. Phys. 125, 201102 (2006).

    Google Scholar 

  32. Skone, J. H., Govoni, M. & Galli, G. Self-consistent hybrid functional for condensed systems. Phys. Rev. B Condens. Matter 89, 195112 (2014).

    Google Scholar 

  33. Chen, W., Miceli, G., Rignanese, G.-M. & Pasquarello, A. Nonempirical dielectric-dependent hybrid functional with range separation for semiconductors and insulators. Phys. Rev. Mater. 2, 073803 (2018).

    CAS  Google Scholar 

  34. Cui, Z.-H., Wang, Y.-C., Zhang, M.-Y., Xu, X. & Jiang, H. Doubly screened hybrid functional: an accurate first-principles approach for both narrow- and wide-gap semiconductors. J. Phys. Chem. Lett. 9, 2338–2345 (2018).

    CAS  Google Scholar 

  35. Kubas, A. et al. Surface adsorption energetics studied with “gold standard” wave-function-based ab initio methods: small-molecule binding to TiO2(110). J. Phys. Chem. Lett. 7, 4207–4212 (2016).

    CAS  Google Scholar 

  36. Berger, D. et al. Embedded-cluster calculations in a numeric atomic orbital density-functional theory framework. J. Chem. Phys. 141, 024105 (2014).

    Google Scholar 

  37. Lechermann, F., Heckel, W., Kristanovski, O. & Müller, S. Oxygen-vacancy driven electron localization and itinerancy in rutile-based TiO2. Phys. Rev. B Condens. Matter 95, 195159 (2017).

    Google Scholar 

  38. Chiodo, L. et al. Self-energy and excitonic effects in the electronic and optical properties of TiO2 crystalline phases. Phys. Rev. B Condens. Matter 82, 045207 (2010).

    Google Scholar 

  39. Kang, W. & Hybertsen, M. S. Quasiparticle and optical properties of rutile and anatase TiO2. Phys. Rev. B Condens. Matter 82, 085203 (2010).

    Google Scholar 

  40. Baldini, E. et al. Strongly bound excitons in anatase TiO2 single crystals and nanoparticles. Nat. Commun. 8, 13 (2017).

    CAS  Google Scholar 

  41. Atambo, M. O. et al. Electronic and optical properties of doped TiO2 by many-body perturbation theory. Phys. Rev. Mater. 3, 045401 (2019).

    CAS  Google Scholar 

  42. Malashevich, A., Jain, M. & Louie, S. G. First-principles DFT+GW study of oxygen vacancies in rutile TiO2. Phys. Rev. B Condens. Matter 89, 075205 (2014).

    Google Scholar 

  43. Pham, T. A., Ping, Y. & Galli, G. Modelling heterogeneous interfaces for solar water splitting. Nat. Mater. 16, 401–408 (2017).

    CAS  Google Scholar 

  44. Guo, Z., Ambrosio, F., Chen, W., Gono, P. & Pasquarello, A. Alignment of redox levels at semiconductor–water interfaces. Chem. Mater. 30, 94–111 (2018).

    Google Scholar 

  45. Kharche, N., Muckerman, J. T. & Hybertsen, M. S. First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces. Phys. Rev. Lett. 113, 176802 (2014).

    Google Scholar 

  46. Zhang, J., Glezakou, V.-A., Rousseau, R. & Nguyen, M.-T. NWPEsSe: an adaptive-learning global optimization algorithm for nanosized cluster systems. J. Comp. Theor. Chem. https://doi.org/10.1021/acs.jctc.9b01107 (2020).

  47. Vilhelmsen, L. B. & Hammer, B. A genetic algorithm for first principles global structure optimization of supported nano structures. J. Chem. Phys. 141, 044711 (2014).

    Google Scholar 

  48. Wales, D. J. & Doye, J. P. K. Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101, 5111–5116 (1997).

    CAS  Google Scholar 

  49. Zhai, H. & Alexandrova, A. N. Ensemble-average representation of Pt clusters in conditions of catalysis accessed through GPU accelerated deep neural network fitting global optimization. J. Chem. Theory Comput. 12, 6213–6226 (2016).

    CAS  Google Scholar 

  50. Gerosa, M., Gygi, F., Govoni, M. & Galli, G. The role of defects and excess surface charges at finite temperature for optimizing oxide photoabsorbers. Nat. Mater. 17, 1122–1127 (2018).

    CAS  Google Scholar 

  51. Kowalski, P. M., Camellone, M. F., Nair, N. N., Meyer, B. & Marx, D. Charge localization dynamics induced by oxygen vacancies on the TiO2(110) surface. Phys. Rev. Lett. 105, 146405 (2010).

    Google Scholar 

  52. Setvin, M. et al. Direct view at excess electrons in TiO2 rutile and anatase. Phys. Rev. Lett. 113, 086402 (2014).

    CAS  Google Scholar 

  53. Selcuk, S. & Selloni, A. Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces. Nat. Mater. 15, 1107–1112 (2016).

    CAS  Google Scholar 

  54. Mandal, S. & Nair, N. N. Speeding-up ab initio molecular dynamics with hybrid functionals using adaptively compressed exchange operator based multiple timestepping. J. Chem. Phys. 151, 151102 (2019).

    Google Scholar 

  55. Senftle, T. P. et al. The ReaxFF reactive force-field: development, applications and future directions. npj Comput. Mater. 2, 15011 (2016).

    CAS  Google Scholar 

  56. Koparde, V. N. & Cummings, P. T. Molecular dynamics simulation of titanium dioxide nanoparticle sintering. J. Phys. Chem. B 109, 24280–24287 (2005).

    CAS  Google Scholar 

  57. Ogata, S. et al. Variable-charge interatomic potentials for molecular-dynamics simulations of TiO2. J. Appl. Phys. 86, 3036–3041 (1999).

    CAS  Google Scholar 

  58. Houska, J., Mraz, S. & Schneider, J. M. Experimental and molecular dynamics study of the growth of crystalline TiO2. J. Appl. Phys. 112, 073527 (2012).

    Google Scholar 

  59. Selcuk, S., Zhao, X. & Selloni, A. Structural evolution of titanium dioxide during reduction in high-pressure hydrogen. Nat. Mater. 17, 923–928 (2018).

    CAS  Google Scholar 

  60. McDaniel, J. G. & Schmidt, J. R. Next-generation force fields from symmetry-adapted perturbation theory. Annu. Rev. Phys. 67, 467–488 (2016).

    CAS  Google Scholar 

  61. Guareschi, R. et al. Introducing QMC/MMpol: quantum Monte Carlo in polarizable force fields for excited states. J. Chem. Theory Comput. 12, 1674–1683 (2016).

    CAS  Google Scholar 

  62. Yao, K., Herr, J. E., Toth, D. W., Mckintyre, R. & Parkhill, J. The TensorMol-0.1 model chemistry: a neural network augmented with long-range physics. Chem. Sci. 9, 2261–2269 (2018).

    CAS  Google Scholar 

  63. Behler, J. First principles neural network potentials for reactive simulations of large molecular and condensed systems. Angew. Chem. Int. Ed. 56, 12828–12840 (2017).

    CAS  Google Scholar 

  64. Zhang, L., Han, J., Wang, H., Car, R. & Weinan, E. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 120, 143001 (2018).

    CAS  Google Scholar 

  65. Chmiela, S., Sauceda, H. E., Müller, K.-R. & Tkatchenko, A. Towards exact molecular dynamics simulations with machine-learned force fields. Nat. Commun. 9, 3887 (2018).

    Google Scholar 

  66. Pacchioni, G. & Freund, H. Electron transfer at oxide surfaces. The MgO paradigm: from defects to ultrathin films. Chem. Rev. 113, 4035–4072 (2013).

    CAS  Google Scholar 

  67. Pacchioni, G. & Freund, H.-J. Controlling the charge state of supported nanoparticles in catalysis: lessons from model systems. Chem. Soc. Rev. 47, 8474–8502 (2018).

    CAS  Google Scholar 

  68. Polo-Garzon, F., Bao, Z., Zhang, X., Huang, W. & Wu, Z. Surface reconstructions of metal oxides and the consequences on catalytic chemistry. ACS Catal. 9, 5692–5707 (2019).

    CAS  Google Scholar 

  69. Di Valentin, C., Pacchioni, G. & Selloni, A. Electronic structure of defect states in hydroxylated and reduced rutile TiO2(110) surfaces. Phys. Rev. Lett. 97, 166803 (2006).

    Google Scholar 

  70. Tuller, H. L. & Bishop, S. R. Point defects in oxides: tailoring materials through defect engineering. Annu. Rev. Mater. Res. 41, 369–398 (2011).

    CAS  Google Scholar 

  71. Kalinin, S. V. & Spaldin, N. A. Functional ion defects in transition metal oxides. Science 341, 858–859 (2013).

    CAS  Google Scholar 

  72. Helali, Z., Jedidi, A., Syzgantseva, O. A., Calatayud, M. & Minot, C. Scaling reducibility of metal oxides. Theor. Chem. Acc. 136, 100 (2017).

    Google Scholar 

  73. Wendt, S. et al. The role of interstitial sites in the Ti3d defect state in the band gap of titania. Science 320, 1755–1759 (2008).

    CAS  Google Scholar 

  74. Sarkar, A. & Khan, G. G. The formation and detection techniques of oxygen vacancies in titanium oxide-based nanostructures. Nanoscale 11, 3414–3444 (2019).

    CAS  Google Scholar 

  75. Yoon, Y., Wang, Y.-G., Rousseau, R. & Glezakou, V.-A. Impact of nonadiabatic charge transfer on the rate of redox chemistry of carbon oxides on rutile TiO2(110) surface. ACS Catal. 5, 1764–1771 (2015).

    CAS  Google Scholar 

  76. Charlton, G. et al. Relaxation of TiO2(110)-(1×1) using surface X-ray diffraction. Phys. Rev. Lett. 78, 495–498 (1997).

    CAS  Google Scholar 

  77. Hird, B. & Armstrong, R. A. Surface relaxation of rutile TiO2 (110)-(1×1) from ion shadowing/blocking measurements. Surf. Sci. 420, L131–L137 (1999).

    CAS  Google Scholar 

  78. Asari, E. et al. TiO2(110)−p(1×1) surface structure analyzed by impact-collision ion-scattering spectroscopy. Phys. Rev. B Condens. Matter 61, 5679–5682 (2000).

    CAS  Google Scholar 

  79. Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003).

    CAS  Google Scholar 

  80. Lindsay, R. et al. Revisiting the surface structure of TiO2(110): a quantitative low-energy electron diffraction study. Phys. Rev. Lett. 94, 246102 (2005).

    Google Scholar 

  81. Parkinson, G. S. et al. Medium-energy ion-scattering study of the structure of clean TiO2(110)−(1×1). Phys. Rev. B Condens. Matter 73, 245409 (2006).

    Google Scholar 

  82. Kröger, E. A. et al. Photoelectron diffraction investigation of the structure of the clean TiO2(110)(1×1) surface. Phys. Rev. B Condens. Matter 75, 195413 (2007).

    Google Scholar 

  83. Cabailh, G. et al. Geometric structure of TiO2(110)(1×1): achieving experimental consensus. Phys. Rev. B Condens. Matter 75, 241403 (2007).

    Google Scholar 

  84. Di Valentin, C., Pacchioni, G. & Selloni, A. Reduced and N-type doped TiO2: nature of Ti3+ species. J. Phys. Chem. C 113, 20543–20552 (2009).

    Google Scholar 

  85. Gerosa, M. et al. Defect calculations in semiconductors through a dielectric-dependent hybrid DFT functional: the case of oxygen vacancies in metal oxides. J. Chem. Phys. 143, 134702 (2015).

    Google Scholar 

  86. de Aquino Barbosa, M., da Silva Lopes Fabris, G., Ferrer, M. M., de Azevedo, D. H. M. & Sambrano, J. R. Computational simulations of morphological transformations by surface structures: the case of rutile TiO2 phase. Mater. Res. 20, 920–925 (2017).

    Google Scholar 

  87. Diebold, U., Anderson, J. F., Ng, K.-O. & Vanderbilt, D. Evidence for the tunneling site on transition-metal oxides: TiO2(110). Phys. Rev. Lett. 77, 1322–1325 (1996).

    CAS  Google Scholar 

  88. Landau, L. D. Über die bewegung der elektronen in kristallgitter. Phys. Z. Sowjetunion 3, 644–645 (1933).

    Google Scholar 

  89. Fröhlich, H. Electrons in lattice fields. Adv. Phys. 3, 325–361 (1954).

    Google Scholar 

  90. Reticcioli, M., Setvin, M., Schmid, M., Diebold, U. & Franchini, C. Formation and dynamics of small polarons on the rutile TiO2 (110) surface. Phys. Rev. B Condens. Matter 98, 045306 (2018).

    CAS  Google Scholar 

  91. Van de Walle, C. G. Polarons get the full treatment. Physics 12, 68 (2019).

    Google Scholar 

  92. Watanabe, M. & Hayashi, T. Time-resolved study of self-trapped exciton luminescence in anatase TiO2 under two-photon excitation. J. Lumin. 112, 88–91 (2005).

    CAS  Google Scholar 

  93. Deák, P., Aradi, B. & Frauenheim, T. Polaronic effects in TiO2 calculated by the HSE06 hybrid functional: dopant passivation by carrier self-trapping. Phys. Rev. B Condens. Matter 83, 155207 (2011).

    Google Scholar 

  94. Osorio-Guillén, J., Lany, S. & Zunger, A. Atomic control of conductivity versus ferromagnetism in wide-gap oxides via selective doping: V, Nb, Ta in anatase TiO2. Phys. Rev. Lett. 100, 036601 (2008).

    Google Scholar 

  95. Morgan, B. J., Scanlon, D. O. & Watson, G. W. Small polarons in Nb- and Ta-doped rutile and anatase TiO2. J. Mater. Chem. 19, 5175–5178 (2009).

    CAS  Google Scholar 

  96. Long, R. & English, N. J. New insights into the band-gap narrowing of (N, P)-codoped TiO2 from hybrid density functional theory calculations. ChemPhysChem 12, 2604–2608 (2011).

    CAS  Google Scholar 

  97. Hitosugi, T. et al. Electronic band structure of transparent conductor: Nb-doped anatase TiO2. Appl. Phys. Express 1, 111203 (2008).

    Google Scholar 

  98. Finazzi, E., Di Valentin, C. & Pacchioni, G. Nature of Ti interstitials in reduced bulk anatase and rutile TiO2. J. Phys. Chem. C 113, 3382–3385 (2009).

    CAS  Google Scholar 

  99. Cao, Y. et al. Scenarios of polaron-involved molecular adsorption on reduced TiO2(110) surfaces. Sci. Rep. 7, 6148 (2017).

    Google Scholar 

  100. Reticcioli, M. et al. Interplay between adsorbates and polarons: CO on rutile TiO2(110). Phys. Rev. Lett. 122, 016805 (2019).

    CAS  Google Scholar 

  101. Morgan, B. J. & Watson, G. W. Polaronic trapping of electrons and holes by native defects in anatase TiO2. Phys. Rev. B Condens. Matter 80, 233102 (2009).

    Google Scholar 

  102. Forro, L. et al. High mobility n-type charge carriers in large single crystals of anatase (TiO2). J. Appl. Phys. 75, 633–635 (1994).

    CAS  Google Scholar 

  103. Dohnálek, Z., Lyubinetsky, I. & Rousseau, R. Thermally-driven processes on rutile TiO2(110)-(1×1): a direct view at the atomic scale. Prog. Surf. Sci. 85, 161–205 (2010).

    Google Scholar 

  104. Tuller, H. L. & Nowick, A. S. Small polaron electron transport in reduced CeO2 single crystals. J. Phys. Chem. Solids 38, 859–867 (1977).

    CAS  Google Scholar 

  105. Ihle, D. & Lorenz, B. Small-polaron conduction and short-range order in Fe3O4. J. Phys. C Solid State Phys. 19, 5239–5251 (1986).

    CAS  Google Scholar 

  106. Banerjee, A., Pal, S. & Chaudhuri, B. K. Nature of small-polaron hopping conduction and the effect of Cr doping on the transport properties of rare-earth manganite La0.5Pb0.5Mn1−xCrxO3. J. Chem. Phys. 115, 1550–1558 (2001).

    CAS  Google Scholar 

  107. Liao, P. & Carter, E. A. New concepts and modeling strategies to design and evaluate photo-electro-catalysts based on transition metal oxides. Chem. Soc. Rev. 42, 2401–2422 (2013).

    CAS  Google Scholar 

  108. Rettie, A. J. E., Chemelewski, W. D., Emin, D. & Mullins, C. B. Unravelling small-polaron transport in metal oxide photoelectrodes. J. Phys. Chem. Lett. 7, 471–479 (2016).

    CAS  Google Scholar 

  109. Deskins, N. A. & Dupuis, M. Electron transport via polaron hopping in bulk TiO2: a density functional theory characterization. Phys. Rev. B Condens. Matter 75, 195212 (2007).

    Google Scholar 

  110. Janisch, R., Gopal, P. & Spaldin, N. A. Transition metal-doped TiO2 and ZnO — present status of the field. J. Phys. Condens. Matter 17, R657–R689 (2005).

    CAS  Google Scholar 

  111. Krüger, P. et al. Defect states at the TiO2(110) surface probed by resonant photoelectron diffraction. Phys. Rev. Lett. 100, 055501 (2008).

    Google Scholar 

  112. Yu, J., Sushko, M. L., Kerisit, S., Rosso, K. M. & Liu, J. Kinetic Monte Carlo study of ambipolar lithium ion and electron–polaron diffusion into nanostructured TiO2. J. Phys. Chem. Lett. 3, 2076–2081 (2012).

    CAS  Google Scholar 

  113. Yoon, Y. et al. Anticorrelation between surface and subsurface point defects and the impact on the redox chemistry of TiO2(110). ChemPhysChem 16, 313–321 (2015).

    CAS  Google Scholar 

  114. Papageorgiou, A. C. et al. Electron traps and their effect on the surface chemistry of TiO2(110). Proc. Natl Acad. Sci. USA 107, 2391–2396 (2010).

    Google Scholar 

  115. Reticcioli, M. et al. Polaron-driven surface reconstructions. Phys. Rev. X 7, 031053 (2017).

    Google Scholar 

  116. Naldoni, A. et al. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 134, 7600–7603 (2012).

    CAS  Google Scholar 

  117. Glezakou, V.-A. & Rousseau, R. Shedding light on black titania. Nat. Mater. 17, 856–857 (2018).

    CAS  Google Scholar 

  118. Setvín, M. et al. Reaction of O2 with subsurface oxygen vacancies on TiO2 anatase (101). Science 341, 988–991 (2013).

    Google Scholar 

  119. Nam, Y., Lim, J. H., Ko, K. C. & Lee, J. Y. Photocatalytic activity of TiO2 nanoparticles: a theoretical aspect. J. Mater. Chem. A 7, 13833–13859 (2019).

    CAS  Google Scholar 

  120. Paun, C. et al. Polyhedral CeO2 nanoparticles: size-dependent geometrical and electronic structure. J. Phys. Chem. C 116, 7312–7317 (2012).

    CAS  Google Scholar 

  121. Wang, T., Jelic, J., Rosenthal, D. & Reuter, K. Exploring pretreatment–morphology relationships: ab initio Wulff construction for RuO2 nanoparticles under oxidising conditions. ChemCatChem 5, 3398–3403 (2013).

    CAS  Google Scholar 

  122. Barnard, A. S., Zapol, P. & Curtiss, L. A. Modeling the morphology and phase stability of TiO2 nanocrystals in water. J. Chem. Theory Comput. 1, 107–116 (2005).

    CAS  Google Scholar 

  123. Barnard, A. S. & Curtiss, L. A. Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Lett. 5, 1261–1266 (2005).

    CAS  Google Scholar 

  124. Barnard, A. S., Erdin, S., Lin, Y., Zapol, P. & Halley, J. W. Modeling the structure and electronic properties of TiO2 nanoparticles. Phys. Rev. B Condens. Matter 73, 205405 (2006).

    Google Scholar 

  125. Fazio, G., Selli, D., Ferraro, L., Seifert, G. & Di Valentin, C. Curved TiO2 nanoparticles in water: short (chemical) and long (physical) range interfacial effects. ACS Appl. Mater. Interfaces 10, 29943–29953 (2018).

    CAS  Google Scholar 

  126. Selli, D., Fazio, G. & Di Valentin, C. Modelling realistic TiO2 nanospheres: a benchmark study of SCC-DFTB against hybrid DFT. J. Chem. Phys. 147, 164701 (2017).

    Google Scholar 

  127. Valero, R., Morales-García, Á. & Illas, F. Theoretical modeling of electronic excitations of gas-phase and solvated TiO2 nanoclusters and nanoparticles of interest in photocatalysis. J. Chem. Theory Comput. 14, 4391–4404 (2018).

    CAS  Google Scholar 

  128. Morales-García, Á., Valero, R. & Illas, F. Performance of the G0W0 method in predicting the electronic gap of TiO2 nanoparticles. J. Chem. Theory Comput. 13, 3746–3753 (2017).

    Google Scholar 

  129. Morales-García, Á., Macià Escatllar, A., Illas, F. & Bromley, S. T. Understanding the interplay between size, morphology and energy gap in photoactive TiO2 nanoparticles. Nanoscale 11, 9032–9041 (2019).

    Google Scholar 

  130. Lamiel-Garcia, O., Ko, K. C., Lee, J. Y., Bromley, S. T. & Illas, F. When anatase nanoparticles become bulklike: properties of realistic TiO2 nanoparticles in the 1–6 nm size range from all electron relativistic density functional theory based calculations. J. Chem. Theory Comput. 13, 1785–1793 (2017).

    CAS  Google Scholar 

  131. Ko, K. C., Bromley, S. T., Lee, J. Y. & Illas, F. Size-dependent level alignment between rutile and anatase TiO2 nanoparticles: implications for photocatalysis. J. Phys. Chem. Lett. 8, 5593–5598 (2017).

    CAS  Google Scholar 

  132. Nam, Y., Li, L., Lee, J. Y. & Prezhdo, O. V. Strong influence of oxygen vacancy location on charge carrier losses in reduced TiO2 nanoparticles. J. Phys. Chem. Lett. 10, 2676–2683 (2019).

    CAS  Google Scholar 

  133. Tauster, S. J., Fung, S. C. & Garten, R. L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 100, 170–175 (1978).

    CAS  Google Scholar 

  134. Sanchez, M. G. & Gazquez, J. L. Oxygen vacancy model in strong metal-support interaction. J. Catal. 104, 120–135 (1987).

    CAS  Google Scholar 

  135. Laoufi, I. et al. Size and catalytic activity of supported gold nanoparticles: an in operando study during CO oxidation. J. Phys. Chem. C 115, 4673–4679 (2011).

    CAS  Google Scholar 

  136. Roldan Cuenya, B. Metal nanoparticle catalysts beginning to shape-up. Acc. Chem. Res. 46, 1682–1691 (2013).

    CAS  Google Scholar 

  137. Vajda, S. et al. Supported gold clusters and cluster-based nanomaterials: characterization, stability and growth studies by in situ GISAXS under vacuum conditions and in the presence of hydrogen. Top. Catal. 39, 161–166 (2006).

    CAS  Google Scholar 

  138. Chen, M. S. & Goodman, D. W. The structure of catalytically active gold on titania. Science 306, 252–255 (2004).

    CAS  Google Scholar 

  139. Green, I. X., Tang, W. J., Neurock, M. & Yates, J. T. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 333, 736–739 (2011).

    CAS  Google Scholar 

  140. Fujitani, T. & Nakamura, I. Mechanism and active sites of the oxidation of CO over Au/TiO2. Angew. Chem. Int. Ed. 50, 10144–10147 (2011).

    CAS  Google Scholar 

  141. Ghosh, A., Saha, R., Ghosh, S. K., Mukherjee, K. & Saha, B. Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on benzaldehyde to benzoic acid conversion in aqueous media at room temperature: a kinetic approach. Spectrochim. Acta A 109, 55–67 (2013).

    CAS  Google Scholar 

  142. Haruta, M. Gold as a novel catalyst in the 21st century: preparation, working mechanism and applications. Gold Bull. 37, 27–36 (2004).

    CAS  Google Scholar 

  143. Negreiros, F. R., Camellone, M. F. & Fabris, S. Effects of thermal fluctuations on the hydroxylation and reduction of ceria surfaces by molecular H2. J. Phys. Chem. C 119, 21567–21573 (2015).

    CAS  Google Scholar 

  144. van Santen, R. A., Ghouri, M. M., Shetty, S. & Hensen, E. M. H. Structure sensitivity of the Fischer–Tropsch reaction; molecular kinetics simulations. Catal. Sci. Technol. 1, 891–911 (2011).

    Google Scholar 

  145. Farnesi Camellone, M., Kowalski, P. M. & Marx, D. Ideal, defective, and gold-promoted rutile TiO2(110) surfaces interacting with CO, H2, and H2O: Structures, energies, thermodynamics, and dynamics from PBE+U. Phys. Rev. B Condens. Matter 84, 035413 (2011).

    Google Scholar 

  146. Stamatakis, M. & Vlachos, D. G. Unraveling the complexity of catalytic reactions via kinetic Monte Carlo simulation: current status and frontiers. ACS Catal. 2, 2648–2663 (2012).

    CAS  Google Scholar 

  147. Nielsen, J., d’Avezac, M., Hetherington, J. & Stamatakis, M. Parallel kinetic Monte Carlo simulation framework incorporating accurate models of adsorbate lateral interactions. J. Chem. Phys. 139, 224706 (2013).

    Google Scholar 

  148. Cao, S., Tao, F., Tang, Y., Li, Y. & Yu, J. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 45, 4747–4765 (2016).

    CAS  Google Scholar 

  149. Tosoni, S. & Pacchioni, G. Oxide-supported gold clusters and nanoparticles in catalysis: a computational chemistry perspective. ChemCatChem 11, 73–89 (2019).

    CAS  Google Scholar 

  150. Wang, Y.-G., Mei, D., Glezakou, V.-A., Li, J. & Rousseau, R. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nat. Commun. 6, 6511 (2015).

    CAS  Google Scholar 

  151. Lee, M.-S., McGrail, B. P., Rousseau, R. & Glezakou, V.-A. Structure, dynamics and stability of water/scCO2/mineral interfaces from ab initio molecular dynamics simulations. Sci. Rep. 5, 14857 (2015).

    CAS  Google Scholar 

  152. Wang, Y.-G. et al. CO oxidation on Au/TiO2: condition-dependent active sites and mechanistic pathways. J. Am. Chem. Soc. 138, 10467–10476 (2016).

    CAS  Google Scholar 

  153. Yoon, Y., Rousseau, R., Weber, R. S., Mei, D. & Lercher, J. A. First-principles study of phenol hydrogenation on Pt and Ni catalysts in aqueous phase. J. Am. Chem. Soc. 136, 10287–10298 (2014).

    CAS  Google Scholar 

  154. Singh, N. et al. Impact of pH on aqueous-phase phenol hydrogenation catalyzed by carbon-supported Pt and Rh. ACS Catal. 9, 1120–1128 (2019).

    CAS  Google Scholar 

  155. Lykhach, Y. et al. Counting electrons on supported nanoparticles. Nat. Mater. 15, 284–288 (2016).

    CAS  Google Scholar 

  156. Puigdollers, A. R. & Pacchioni, G. CO oxidation on Au nanoparticles supported on ZrO2: role of metal/oxide interface and oxide reducibility. ChemCatChem 9, 1119–1127 (2017).

    CAS  Google Scholar 

  157. del Río, E. et al. Reversible deactivation of a Au/Ce0.62Zr0.38O2 catalyst in CO oxidation: a systematic study of CO2-triggered carbonate inhibition. J. Catal. 316, 210–218 (2014).

    Google Scholar 

  158. Martinez, U. & Hammer, B. Adsorption properties versus oxidation states of rutile TiO2(110). J. Chem. Phys. 134, 194703 (2011).

    Google Scholar 

  159. Matthey, D. et al. Enhanced bonding of gold nanoparticles on oxidized TiO2(110). Science 315, 1692–1696 (2007).

    CAS  Google Scholar 

  160. Bai, Y. et al. Controllably interfacing with metal: a strategy for enhancing CO oxidation on oxide catalysts by surface polarization. J. Am. Chem. Soc. 136, 14650–14653 (2014).

    CAS  Google Scholar 

  161. Chrétien, S., Buratto, S. K. & Metiu, H. Catalysis by very small Au clusters. Curr. Opin. Solid State Mater. Sci. 11, 62–75 (2007).

    Google Scholar 

  162. Zhou, X. et al. Unraveling charge state of supported Au single-atoms during CO oxidation. J. Am. Chem. Soc. 140, 554–557 (2018).

    CAS  Google Scholar 

  163. Zhang, Y., Kolmakov, A., Chretien, S., Metiu, H. & Moskovits, M. Control of catalytic reactions at the surface of a metal oxide nanowire by manipulating electron density inside it. Nano Lett. 4, 403–407 (2004).

    CAS  Google Scholar 

  164. Suchorski, Y. et al. The role of metal/oxide interfaces for long-range metal particle activation during CO oxidation. Nat. Mater. 17, 519–522 (2018).

    CAS  Google Scholar 

  165. Zhai, H. & Alexandrova, A. N. Fluxionality of catalytic clusters: when it matters and how to address it. ACS Catal. 7, 1905–1911 (2017).

    CAS  Google Scholar 

  166. Zhang, W. et al. Liquid metal/metal oxide frameworks. Adv. Funct. Mater. 24, 3799–3807 (2014).

    CAS  Google Scholar 

  167. Liu, J.-C., Wang, Y.-G. & Li, J. Toward rational design of oxide-supported single-atom catalysts: atomic dispersion of gold on ceria. J. Am. Chem. Soc. 139, 6190–6199 (2017).

    CAS  Google Scholar 

  168. Daelman, N., Capdevila-Cortada, M. & López, N. Dynamic charge and oxidation state of Pt/CeO2 single-atom catalysts. Nat. Mater. 18, 1215–1221 (2019).

    CAS  Google Scholar 

  169. Zhang, H., Liu, G., Shi, L. & Ye, J. Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 8, 1701343 (2018).

    Google Scholar 

  170. Matsubu, J. C. et al. Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts. Nat. Chem. 9, 120–127 (2017).

    CAS  Google Scholar 

  171. Xu, C.-Q. et al. Structural rearrangement of Au–Pd nanoparticles under reaction conditions: An ab initio molecular dynamics study. ACS Nano 11, 1649–1658 (2017).

    CAS  Google Scholar 

  172. Zhang, Y. et al. Surface-plasmon-driven hot electron photochemistry. Chem. Rev. 118, 2927–2954 (2018).

    CAS  Google Scholar 

  173. Heard, C. J. et al. 2D oxide nanomaterials to address the energy transition and catalysis. Adv. Mater. 31, 1801712 (2019).

    Google Scholar 

  174. Weng, B., Lu, K.-Q., Tang, Z., Chen, H. M. & Xu, Y.-J. Stabilizing ultrasmall Au clusters for enhanced photoredox catalysis. Nat. Commun. 9, 1543 (2018).

    Google Scholar 

  175. Pacchioni, G. Electronic interactions and charge transfers of metal atoms and clusters on oxide surfaces. Phys. Chem. Chem. Phys. 15, 1737–1757 (2013).

    CAS  Google Scholar 

  176. Liu, X. et al. Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ. Sci. 10, 402–434 (2017).

    CAS  Google Scholar 

  177. Kim, N.-W., Lee, D.-K. & Yu, H. Selective shape control of cerium oxide nanocrystals for photocatalytic and chemical sensing effect. RCS Adv. 9, 13829–13837 (2019).

    CAS  Google Scholar 

  178. Walker, J. M., Akbar, S. A. & Morris, P. A. Synergistic effects in gas sensing semiconducting oxide nano-heterostructures: a review. Sens. Actuators B Chem 286, 624–640 (2019).

    CAS  Google Scholar 

  179. Chang, Q.-Y. et al. Tuning adsorption and catalytic properties of α-Cr2O3 and ZnO in propane dehydrogenation by creating oxygen vacancy and doping single Pt atom: a comparative first-principles study. Ind. Eng. Chem. Res. 58, 10199–10209 (2019).

    CAS  Google Scholar 

  180. Bavykin, D. V., Friedrich, J. M. & Walsh, F. C. Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Adv. Mater. 18, 2807–2824 (2006).

    CAS  Google Scholar 

  181. Artiglia, L., Agnoli, S. & Granozzi, G. Vanadium oxide nanostructures on another oxide: the viewpoint from model catalysts studies. Coord. Chem. Rev. 301–302, 106–122 (2015).

    Google Scholar 

  182. Tian, B. et al. Self-adjusted synthesis of ordered stable mesoporous minerals by acid–base pairs. Nat. Mater. 2, 159–163 (2003).

    CAS  Google Scholar 

  183. Metiu, H., Chrétien, S., Hu, Z., Li, B. & Sun, X. Chemistry of Lewis acid–base pairs on oxide surfaces. J. Phys. Chem. C 116, 10439–10450 (2012).

    CAS  Google Scholar 

  184. Stamatakis, M., Christiansen, M. A., Vlachos, D. G. & Mpourmpakis, G. Multiscale modeling reveals poisoning mechanisms of MgO-supported Au clusters in CO oxidation. Nano Lett. 12, 3621–3626 (2012).

    CAS  Google Scholar 

  185. Post, J. E. Manganese oxide minerals: crystal structures and economic and environmental significance. Proc. Natl Acad. Sci. USA 96, 3447–3454 (1999).

    CAS  Google Scholar 

  186. Bajdich, M., García-Mota, M., Vojvodic, A., Nørskov, J. K. & Bell, A. T. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 135, 13521–13530 (2013).

    CAS  Google Scholar 

  187. Zhang, Z., Bondarchuk, O., Kay, B. D., White, J. M. & Dohnálek, Z. Imaging water dissociation on TiO2(110):  evidence for inequivalent geminate OH groups. J. Phys. Chem. B 110, 21840–21845 (2006).

    CAS  Google Scholar 

  188. De Lange, M. W., Van Ommen, J. G. & Lefferts, L. Deoxygenation of benzoic acid on metal oxides: 1. The selective pathway to benzaldehyde. Appl. Catal. A 220, 41–49 (2001).

    Google Scholar 

  189. Védrine, J. C. The role of redox, acid-base and collective properties and of cristalline state of heterogeneous catalysts in the selective oxidation of hydrocarbons. Top. Catal. 21, 97–106 (2002).

    Google Scholar 

  190. Kung, H. H. Transition Metal Oxides: Surface Chemistry and Catalysis (Elsevier, 1989).

  191. McFarland, E. W. & Metiu, H. Catalysis by doped oxides. Chem. Rev. 113, 4391–4427 (2013).

    CAS  Google Scholar 

  192. Tanabe, K. Solid Acids and Bases: Their Catalytic Properties (Elsevier, 2012).

  193. Védrine, J. C. Acid–base characterization of heterogeneous catalysts: an up-to-date overview. Res. Chem. Intermed. 41, 9387–9423 (2015).

    Google Scholar 

  194. Cheng, J. & Sprik, M. Acidity of the aqueous rutile TiO2(110) surface from density functional theory based molecular dynamics. J. Chem. Theory Comput. 6, 880–889 (2010).

    CAS  Google Scholar 

  195. Wang, Z.-T. et al. Probing equilibrium of molecular and deprotonated water on TiO2(110). Proc. Natl Acad. Sci. USA 114, 1801–1805 (2017).

    CAS  Google Scholar 

  196. Diebold, U. Perspective: A controversial benchmark system for water-oxide interfaces: H2O/TiO2(110). J. Chem. Phys. 147, 040901 (2017).

    Google Scholar 

  197. Henderson, M. A. Structural sensitivity in the dissociation of water on TiO2 single-crystal surfaces. Langmuir 12, 5093–5098 (1996).

    CAS  Google Scholar 

  198. Walle, L. E., Borg, A., Uvdal, P. & Sandell, A. Experimental evidence for mixed dissociative and molecular adsorption of water on a rutile TiO2(110) surface without oxygen vacancies. Phys. Rev. B Condens. Matter 80, 235436 (2009).

    Google Scholar 

  199. Wang, C.-y., Groenzin, H. & Shultz, M. J. Comparative study of acetic acid, methanol, and water adsorbed on anatase TiO2 probed by sum frequency generation spectroscopy. J. Am. Chem. Soc. 127, 9736–9744 (2005).

    CAS  Google Scholar 

  200. Liu, S. et al. Coverage dependence of methanol dissociation on TiO2(110). J. Phys. Chem. Lett. 6, 3327–3334 (2015).

    CAS  Google Scholar 

  201. Nguyen, M.-T. et al. Dynamics, stability, and adsorption states of water on oxidized RuO2(110). J. Phys. Chem. C 121, 18505–18515 (2017).

    CAS  Google Scholar 

  202. Fabish, T. J. & Hair, M. L. The dependence of the work function of carbon black on surface acidity. J. Colloid Interface Sci. 62, 16–23 (1977).

    CAS  Google Scholar 

  203. Hagelin, H., Murray, J. S., Politzer, P., Brinck, T. & Berthelot, M. Family-independent relationships between computed molecular surface quantities and solute hydrogen bond acidity/basicity and solute-induced methanol O–H infrared frequency shifts. Can. J. Chem. 73, 483–488 (1995).

    CAS  Google Scholar 

  204. Vojvodic, A. et al. On the behavior of Brønsted-Evans-Polanyi relations for transition metal oxides. J. Chem. Phys. 134, 244509 (2011).

    CAS  Google Scholar 

  205. Viñes, F., Vojvodic, A., Abild-Pedersen, F. & Illas, F. Brønsted–Evans–Polanyi relationship for transition metal carbide and transition metal oxide surfaces. J. Phys. Chem. C 117, 4168–4171 (2013).

    Google Scholar 

  206. Loffreda, D., Delbecq, F., Vigné, F. & Sautet, P. Fast prediction of selectivity in heterogeneous catalysis from extended Brønsted–Evans–Polanyi relations: a theoretical insight. Angew. Chem. Int. Ed. 48, 8978–8980 (2009).

    CAS  Google Scholar 

  207. Stair, P. C. The concept of Lewis acids and bases applied to surfaces. J. Am. Chem. Soc. 104, 4044–4052 (1982).

    CAS  Google Scholar 

  208. Boles, M. A., Ling, D., Hyeon, T. & Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 15, 141–153 (2016).

    CAS  Google Scholar 

  209. Lee, Y.-J., Lee, T. & Soon, A. Phase stability diagrams of group 6 Magnéli oxides and their implications for photon-assisted applications. Chem. Mater. 31, 4282–4290 (2019).

    CAS  Google Scholar 

  210. Cheng, J., Liu, X., VandeVondele, J., Sulpizi, M. & Sprik, M. Redox potentials and acidity constants from density functional theory based molecular dynamics. Acc. Chem. Res. 47, 3522–3529 (2014).

    CAS  Google Scholar 

  211. Gattinoni, C. & Michaelides, A. Understanding corrosion inhibition with van der Waals DFT methods: the case of benzotriazole. Faraday Discuss. 180, 439–458 (2015).

    CAS  Google Scholar 

  212. Nilsing, M., Lunell, S., Persson, P. & Ojamäe, L. Phosphonic acid adsorption at the TiO2 anatase (101) surface investigated by periodic hybrid HF-DFT computations. Surf. Sci. 582, 49–60 (2005).

    CAS  Google Scholar 

  213. Janotti, A. & Van de Walle, C. G. LDA + U and hybrid functional calculations for defects in ZnO, SnO2, and TiO2. Phys. Stat. Sol. 248, 799–804 (2011).

    CAS  Google Scholar 

  214. Labat, F., Baranek, P. & Adamo, C. Structural and electronic properties of selected rutile and anatase TiO2 surfaces:  an ab initio investigation. J. Chem. Theory Comput. 4, 341–352 (2008).

    CAS  Google Scholar 

  215. Ping, Y. & Galli, G. Optimizing the band edges of tungsten trioxide for water oxidation: a first-principles study. J. Phys. Chem. C 118, 6019–6028 (2014).

    CAS  Google Scholar 

  216. Bjorneholm, O. et al. Water at interfaces. Chem. Rev. 116, 7698–7726 (2016).

    Google Scholar 

  217. Rustad, J. R., Felmy, A. R. & Hay, B. P. Molecular statics calculations of proton binding to goethite surfaces: a new approach to estimation of stability constants for multisite surface complexation models. Geochim. Cosmochim. Acta 60, 1563–1576 (1996).

    CAS  Google Scholar 

  218. Yanina, S. V. & Rosso, K. M. Linked reactivity at mineral-water interfaces through bulk crystal conduction. Science 320, 218–222 (2008).

    CAS  Google Scholar 

  219. Rustad, J. R. Molecular models of surface relaxation, hydroxylation, and surface charging at oxide-water interfaces. Rev. Mineral. Geochem. 42, 169–198 (2001).

    CAS  Google Scholar 

  220. Davis, J. A. Adsorption of natural dissolved organic matter at the oxide/water interface. Geochim. Cosmochim. Acta 46, 2381–2393 (1982).

    CAS  Google Scholar 

  221. Lee, M.-S., McGrail, B. P., Rousseau, R. & Glezakou, V.-A. Molecular level investigation of CH4 and CO2 adsorption in hydrated calcium–montmorillonite. J. Phys. Chem. C 122, 1125–1134 (2018).

    CAS  Google Scholar 

  222. Ohlin, C. A., Villa, E. M., Rustad, J. R. & Casey, W. H. Dissolution of insulating oxide materials at the molecular scale. Nat. Mater. 9, 11–19 (2010).

    CAS  Google Scholar 

  223. Warren, S. C. et al. Identifying champion nanostructures for solar water-splitting. Nat. Mater. 12, 842–849 (2013).

    CAS  Google Scholar 

  224. Paracchino, A., Laporte, V., Sivula, K., Grätzel, M. & Thimsen, E. Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 10, 456–461 (2011).

    CAS  Google Scholar 

  225. Williamson, M. J., Tromp, R. M., Vereecken, P. M., Hull, R. & Ross, F. M. Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nat. Mater. 2, 532–536 (2003).

    CAS  Google Scholar 

  226. Allègre, C. J., Provost, A. & Jaupart, C. Oscillatory zoning: a pathological case of crystal growth. Nature 294, 223–228 (1981).

    Google Scholar 

  227. Gránásy, L., Pusztai, T., Börzsönyi, T., Warren, J. A. & Douglas, J. F. A general mechanism of polycrystalline growth. Nat. Mater. 3, 645–650 (2004).

    Google Scholar 

  228. Shi, H., Lercher, J. A. & Yu, X.-Y. Sailing into uncharted waters: recent advances in the in situ monitoring of catalytic processes in aqueous environments. Catal. Sci. Technol. 5, 3035–3060 (2015).

    CAS  Google Scholar 

  229. O’Shea, S. J. & Welland, M. E. Atomic force microscopy at solid–liquid interfaces. Langmuir 14, 4186–4197 (1998).

    Google Scholar 

  230. Bain, C. D. Sum-frequency vibrational spectroscopy of the solid/liquid interface. J. Chem. Soc. Faraday Trans. 91, 1281–1296 (1995).

    CAS  Google Scholar 

  231. Cyr, D. M., Venkataraman, B. & Flynn, G. W. STM investigations of organic molecules physisorbed at the liquid–solid interface. Chem. Mater. 8, 1600–1615 (1996).

    CAS  Google Scholar 

  232. Braslau, A. et al. Surface roughness of water measured by X-ray reflectivity. Phys. Rev. Lett. 54, 114–117 (1985).

    CAS  Google Scholar 

  233. Hong, Y. & Xin-shi, G. Preparation of polyethylene–paraffin compound as a form-stable solid-liquid phase change material. Sol. Energy Mater. Sol. Cell 64, 37–44 (2000).

    CAS  Google Scholar 

  234. Fukuma, T. Water distribution at solid/liquid interfaces visualized by frequency modulation atomic force microscopy. Sci. Technol. Adv. Mater. 11, 033003 (2010).

    Google Scholar 

  235. Balajka, J. et al. High-affinity adsorption leads to molecularly ordered interfaces on TiO2 in air and solution. Science 361, 786–789 (2018).

    CAS  Google Scholar 

  236. Jesson, B. J. & Madden, P. A. Structure and dynamics at the aluminum solid–liquid interface: an ab initio simulation. J. Chem. Phys. 113, 5935–5946 (2000).

    CAS  Google Scholar 

  237. Ganesh, P., Jiang, D.-e. & Kent, P. R. C. Accurate static and dynamic properties of liquid electrolytes for Li-ion batteries from ab initio molecular dynamics. J. Phys. Chem. B 115, 3085–3090 (2011).

    CAS  Google Scholar 

  238. Motta, A., Gaigeot, M. P. & Costa, D. Ab initio molecular dynamics study of the AlOOH Boehmite/water interface: role of steps in interfacial Grotthus proton transfers. J. Phys. Chem. C 116, 12514–12524 (2012).

    CAS  Google Scholar 

  239. Tilocca, A. & Cormack, A. N. Modeling the water–bioglass interface by ab initio molecular dynamics simulations. ACS Appl. Mater. Interfaces 1, 1324–1333 (2009).

    CAS  Google Scholar 

  240. Skelton, A. A., Fenter, P., Kubicki, J. D., Wesolowski, D. J. & Cummings, P. T. Simulations of the quartz(1011‾)/water interface: a comparison of classical force fields, ab initio molecular dynamics, and X-ray reflectivity experiments. J. Phys. Chem. C 115, 2076–2088 (2011).

    CAS  Google Scholar 

  241. Rustad, J. R., Felmy, A. R. & Bylaska, E. J. Molecular simulation of the magnetite-water interface. Geochim. Cosmochim. Acta 67, 1001–1016 (2003).

    CAS  Google Scholar 

  242. Cheng, J., Liu, X., Kattirtzi, J. A., VandeVondele, J. & Sprik, M. Aligning electronic and protonic energy levels of proton-coupled electron transfer in water oxidation on aqueous TiO2. Angew. Chem. Int. Ed. 53, 12046–12050 (2014).

    CAS  Google Scholar 

  243. Cheng, J. & Sprik, M. The electric double layer at a rutile TiO2 water interface modelled using density functional theory based molecular dynamics simulation. J. Phys. Condens. Matter 26, 244108 (2014).

    CAS  Google Scholar 

  244. Cheng, H. & Selloni, A. Hydroxide ions at the water/anatase TiO2(101) interface: structure and electronic states from first principles molecular dynamics. Langmuir 26, 11518–11525 (2010).

    CAS  Google Scholar 

  245. Calegari Andrade, M. F., Ko, H.-Y., Car, R. & Selloni, A. Structure, polarization, and sum frequency generation spectrum of interfacial water on anatase TiO2. J. Phys. Chem. Lett. 9, 6716–6721 (2018).

    CAS  Google Scholar 

  246. Nadeem, I. M. et al. Water dissociates at the aqueous interface with reduced anatase TiO2 (101). J. Phys. Chem. Lett. 9, 3131–3136 (2018).

    CAS  Google Scholar 

  247. Hussain, H. et al. Structure of a model TiO2 photocatalytic interface. Nat. Mater. 16, 461–466 (2017).

    CAS  Google Scholar 

  248. Kosmulski, M. The significance of the difference in the point of zero charge between rutile and anatase. Adv. Colloid Interface Sci. 99, 255–264 (2002).

    CAS  Google Scholar 

  249. Shen, M. & Henderson, M. A. Site competition during coadsorption of acetone with methanol and water on TiO2(110). Langmuir 27, 9430–9438 (2011).

    CAS  Google Scholar 

  250. Herman, G. S., Dohnálek, Z., Ruzycki, N. & Diebold, U. Experimental investigation of the interaction of water and methanol with anatase–TiO2(101). J. Phys. Chem. B 107, 2788–2795 (2003).

    CAS  Google Scholar 

  251. Wang, C.-y., Groenzin, H. & Shultz, M. J. Direct observation of competitive adsorption between methanol and water on TiO2: an in situ sum-frequency generation study. J. Am. Chem. Soc. 126, 8094–8095 (2004).

    CAS  Google Scholar 

  252. Předota, M. et al. Electric double layer at the rutile (110) surface. 1. Structure of surfaces and interfacial water from molecular dynamics by use of ab initio potentials. J. Phys. Chem. B 108, 12049–12060 (2004).

    Google Scholar 

  253. Bandura, A. V. & Kubicki, J. D. Derivation of force field parameters for TiO2–H2O systems from ab initio calculations. J. Phys. Chem. B 107, 11072–11081 (2003).

    CAS  Google Scholar 

  254. Natarajan, S. K. & Behler, J. Neural network molecular dynamics simulations of solid–liquid interfaces: water at low-index copper surfaces. Phys. Chem. Chem. Phys. 18, 28704–28725 (2016).

    CAS  Google Scholar 

  255. Sukuba, I., Chen, L., Probst, M. & Kaiser, A. A neural network interface for DL_POLY and its application to liquid water. Mol. Simulat. https://doi.org/10.1080/08927022.2018.1560440 (2018).

    Article  Google Scholar 

  256. Cheng, J., VandeVondele, J. & Sprik, M. Identifying trapped electronic holes at the aqueous TiO2 interface. J. Phys. Chem. C 118, 5437–5444 (2014).

    CAS  Google Scholar 

  257. Martínez, J. I. et al. Unveiling universal trends for the energy level alignment in organic/oxide interfaces. Phys. Chem. Chem. Phys. 19, 24412–24420 (2017).

    Google Scholar 

  258. Pacchioni, G. First principles calculations on oxide-based heterogeneous catalysts and photocatalysts: problems and advances. Catal. Lett. 145, 80–94 (2015).

    CAS  Google Scholar 

  259. Mattioli, G., Filippone, F., Alippi, P. & Amore Bonapasta, A. Ab initio study of the electronic states induced by oxygen vacancies in rutile and anatase TiO2. Phys. Rev. B Condens. Matter 78, 241201 (2008).

    Google Scholar 

  260. Finazzi, E., Di Valentin, C., Pacchioni, G. & Selloni, A. Excess electron states in reduced bulk anatase TiO2: comparison of standard GGA, GGA+U, and hybrid DFT calculations. J. Chem. Phys. 129, 154113 (2008).

    Google Scholar 

  261. Mattioli, G., Alippi, P., Filippone, F., Caminiti, R. & Amore Bonapasta, A. Deep versus shallow behavior of intrinsic defects in rutile and anatase TiO2 polymorphs. J. Phys. Chem. C 114, 21694–21704 (2010).

    CAS  Google Scholar 

  262. Janotti, A. et al. Hybrid functional studies of the oxygen vacancy in TiO2. Phys. Rev. B Condens. Matter 81, 085212 (2010).

    Google Scholar 

  263. Morgan, B. J. & Watson, G. W. Intrinsic n-type defect formation in TiO2: a comparison of rutile and anatase from GGA+U calculations. J. Phys. Chem. C 114, 2321–2328 (2010).

    CAS  Google Scholar 

  264. Deák, P., Aradi, B. & Frauenheim, T. Quantitative theory of the oxygen vacancy and carrier self-trapping in bulk TiO2. Phys. Rev. B Condens. Matter 86, 195206 (2012).

    Google Scholar 

  265. Janotti, A., Franchini, C., Varley, J. B., Kresse, G. & Van de Walle, C. G. Dual behavior of excess electrons in rutile TiO2. Phys. Stat. Sol. 7, 199–203 (2013).

    CAS  Google Scholar 

  266. Spreafico, C. & VandeVondele, J. The nature of excess electrons in anatase and rutile from hybrid DFT and RPA. Phys. Chem. Chem. Phys. 16, 26144–26152 (2014).

    CAS  Google Scholar 

  267. Landmann, M., Rauls, E. & Schmidt, W. G. The electronic structure and optical response of rutile, anatase and brookite TiO2. J. Phys. Condens. Matter. 24, 195503 (2012).

    CAS  Google Scholar 

  268. Li, Y.-F. & Liu, Z.-P. Particle size, shape and activity for photocatalysis on titania anatase nanoparticles in aqueous surroundings. J. Am. Chem. Soc. 133, 15743–15752 (2011).

    CAS  Google Scholar 

  269. Zhang, J., Hughes, T. F., Steigerwald, M., Brus, L. & Friesner, R. A. Realistic cluster modeling of electron transport and trapping in solvated TiO2 nanoparticles. J. Am. Chem. Soc. 134, 12028–12042 (2012).

    CAS  Google Scholar 

  270. Nunzi, F., De Angelis, F. & Selloni, A. Ab initio simulation of the absorption spectra of photoexcited carriers in TiO2 nanoparticles. J. Phys. Chem. Lett. 7, 3597–3602 (2016).

    CAS  Google Scholar 

  271. Cho, D. et al. Effect of size and structure on the ground-state and excited-state electronic structure of TiO2 nanoparticles. J. Chem. Theory Comput. 12, 3751–3763 (2016).

    CAS  Google Scholar 

  272. Nam, Y., Li, L., Lee, J. Y. & Prezhdo, O. V. Size and shape effects on charge recombination dynamics of TiO2 nanoclusters. J. Phys. Chem. C 122, 5201–5208 (2018).

    CAS  Google Scholar 

  273. Morgan, B. J. & Watson, G. W. A density functional theory + U study of oxygen vacancy formation at the (110), (100), (101), and (001) surfaces of rutile TiO2. J. Phys. Chem. C 113, 7322–7328 (2009).

    CAS  Google Scholar 

  274. Deskins, N. A., Rousseau, R. & Dupuis, M. Distribution of Ti3+ surface sites in reduced TiO2. J. Phys. Chem. C 115, 7562–7572 (2011).

    CAS  Google Scholar 

  275. Giordano, L., Pacchioni, G., Bredow, T. & Sanz, J. F. Cu, Ag, and Au atoms adsorbed on TiO2(110): cluster and periodic calculations. Surf. Sci. 471, 21–31 (2001).

    CAS  Google Scholar 

  276. Lopez, N. & Nørskov, J. K. Catalytic CO oxidation by a gold nanoparticle:  a density functional study. J. Am. Chem. Soc. 124, 11262–11263 (2002).

    CAS  Google Scholar 

  277. Wahlstrom, E. et al. Bonding of gold nanoclusters to oxygen vacancies on rutile TiO2(110). Phys. Rev. Lett. 90, 026101 (2003).

    CAS  Google Scholar 

  278. Vijay, A., Mills, G. & Metiu, H. Adsorption of gold on stoichiometric and reduced rutile TiO2 (110) surfaces. J. Chem. Phys. 118, 6536–6551 (2003).

    CAS  Google Scholar 

  279. Liu, Z. P., Gong, X. Q., Kohanoff, J., Sanchez, C. & Hu, P. Catalytic role of metal oxides in gold-based catalysts: a first principles study of CO oxidation on TiO2 supported Au. Phys. Rev. Lett. 91, 266102 (2003).

    Google Scholar 

  280. Molina, L. M., Rasmussen, M. D. & Hammer, B. Adsorption of O2 and oxidation of CO at Au nanoparticles supported by TiO2(110). J. Chem. Phys. 120, 7673–7680 (2004).

    CAS  Google Scholar 

  281. Wang, J. G. & Hammer, B. Role of Au+ in supporting and activating Au7 on TiO2(110). Phys. Rev. Lett. 97, 136107 (2006).

    CAS  Google Scholar 

  282. Ammal, S. C. & Heyden, A. Modeling the noble metal/TiO2 (110) interface with hybrid DFT functionals: a periodic electrostatic embedded cluster model study. J. Chem. Phys. 133, 164703 (2010).

    Google Scholar 

  283. Duan, Z. & Henkelman, G. CO oxidation at the Au/TiO2 boundary: the role of the Au/Ti5c site. ACS Catal. 5, 1589–1595 (2015).

    CAS  Google Scholar 

  284. Yoo, S.-H., Siemer, N., Todorova, M., Marx, D. & Neugebauer, J. Deciphering charge transfer and electronic polarization effects at gold nanocatalysts on reduced titania support. J. Phys. Chem. C 123, 5495–5506 (2019).

    CAS  Google Scholar 

  285. Lazzeri, M. & Selloni, A. Stress-driven reconstruction of an oxide surface: the anatase TiO2(001)−(1 × 4) surface. Phys. Rev. Lett. 87, 266105 (2001).

    CAS  Google Scholar 

  286. Gong, X.-Q., Selloni, A., Batzill, M. & Diebold, U. Steps on anatase TiO2(101). Nat. Mater. 5, 665–670 (2006).

    CAS  Google Scholar 

  287. Cheng, H. & Selloni, A. Surface and subsurface oxygen vacancies in anatase TiO2 and differences with rutile. Phys. Rev. B Condens. Matter 79, 092101 (2009).

    Google Scholar 

  288. Gong, X. Q., Selloni, A., Dulub, O., Jacobson, P. & Diebold, U. Small Au and Pt clusters at the anatase TiO2(101) surface:  behavior at terraces, steps, and surface oxygen vacancies. J. Am. Chem. Soc. 130, 370–381 (2008).

    CAS  Google Scholar 

  289. Muhich, C. L., Zhou, Y., Holder, A. M., Weimer, A. W. & Musgrave, C. B. Effect of surface deposited Pt on the photoactivity of TiO2. J. Phys. Chem. C 116, 10138–10149 (2012).

    CAS  Google Scholar 

  290. Zhou, Y., Muhich, C. L., Neltner, B. T., Weimer, A. W. & Musgrave, C. B. Growth of Pt particles on the anatase TiO2 (101) surface. J. Phys. Chem. C 116, 12114–12123 (2012).

    CAS  Google Scholar 

  291. Zhang, S.-T. et al. Density functional theory study on the metal–support interaction between Ru cluster and anatase TiO2(101) surface. J. Phys. Chem. C 118, 3514–3522 (2014).

    CAS  Google Scholar 

  292. Puigdollers, A. R., Schlexer, P. & Pacchioni, G. Gold and silver clusters on TiO2 and ZrO2 (101) surfaces: role of dispersion forces. J. Phys. Chem. C 119, 15381–15389 (2015).

    CAS  Google Scholar 

  293. Thang, H. V., Pacchioni, G., DeRita, L. & Christopher, P. Nature of stable single atom Pt catalysts dispersed on anatase TiO2. J. Catal. 367, 104–114 (2018).

    CAS  Google Scholar 

  294. Di Paola, A., Bellardita, M. & Palmisano, L. Brookite, the least known TiO2 photocatalyst. Catalysts 3, 36–73 (2013).

    Google Scholar 

  295. Zhang, J., Zhou, P., Liu, J. & Yu, J. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 16, 20382–20386 (2014).

    CAS  Google Scholar 

  296. Cheng, J. & Sprik, M. Aligning electronic energy levels at theTiO2/H2O interface. Phys. Rev. B Condens. Matter 82, 081406 (2010).

    Google Scholar 

  297. Deák, P., Aradi, B. & Frauenheim, T. Band lineup and charge carrier separation in mixed rutile-anatase systems. J. Phys. Chem. C 115, 3443–3446 (2011).

    Google Scholar 

  298. Scanlon, D. O. et al. Band alignment of rutile and anatase TiO2. Nat. Mater. 12, 798–801 (2013).

    CAS  Google Scholar 

  299. Migani, A. et al. Level alignment of a prototypical photocatalytic system: methanol on TiO2(110). J. Am. Chem. Soc. 135, 11429–11432 (2013).

    CAS  Google Scholar 

  300. Zhao, W.-N., Zhu, S.-C., Li, Y.-F. & Liu, Z.-P. Three-phase junction for modulating electron–hole migration in anatase–rutile photocatalysts. Chem. Sci. 6, 3483–3494 (2015).

    CAS  Google Scholar 

  301. Huang, P. & Carter, E. A. Advances in correlated electronic structure methods for solids, surfaces, and nanostructures. Annu. Rev. Phys. Chem. 59, 261–290 (2008).

    CAS  Google Scholar 

  302. Toroker, M. C. et al. First principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes. Phys. Chem. Chem. Phys. 13, 16644–16654 (2011).

    CAS  Google Scholar 

  303. Sousa, C., Tosoni, S. & Illas, F. Theoretical approaches to excited-state-related phenomena in oxide surfaces. Chem. Rev. 113, 4456–4495 (2013).

    CAS  Google Scholar 

  304. Ping, Y., Rocca, D. & Galli, G. Electronic excitations in light absorbers for photoelectrochemical energy conversion: first principles calculations based on many body perturbation theory. Chem. Soc. Rev. 42, 2437–2469 (2013).

    CAS  Google Scholar 

  305. Ping, Y., Sundararaman, R. & Goddard, W. A. 3rd. Solvation effects on the band edge positions of photocatalysts from first principles. Phys. Chem. Chem. Phys. 17, 30499–30509 (2015).

    CAS  Google Scholar 

  306. Mathew, K., Sundararaman, R., Letchworth-Weaver, K., Arias, T. A. & Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).

    Google Scholar 

  307. Gaggioli, C. A., Stoneburner, S. J., Cramer, C. J. & Gagliardi, L. Beyond density functional theory: the multiconfigurational approach to model heterogeneous catalysis. ACS Catal. 9, 8481–8502 (2019).

    CAS  Google Scholar 

  308. Greeley, J., Nørskov, J. K. & Mavrikakis, M. Electronic structure and catalysis on metal surfaces. Annu. Rev. Phys. Chem. 53, 319–348 (2002).

    CAS  Google Scholar 

  309. Van Voorhis, T. et al. The diabatic picture of electron transfer, reaction barriers, and molecular dynamics. Annu. Rev. Phys. Chem. 61, 149–170 (2010).

    Google Scholar 

  310. Akimov, A. V., Neukirch, A. J. & Prezhdo, O. V. Theoretical insights into photoinduced charge transfer and catalysis at oxide interfaces. Chem. Rev. 113, 4496–4565 (2013).

    CAS  Google Scholar 

  311. Wang, L., Akimov, A. & Prezhdo, O. V. Recent progress in surface hopping: 2011–2015. J. Phys. Chem. Lett. 7, 2100–2112 (2016).

    CAS  Google Scholar 

  312. Fischer, S. A., Duncan, W. R. & Prezhdo, O. V. Ab initio nonadiabatic molecular dynamics of wet-electrons on the TiO2 surface. J. Am. Chem. Soc. 131, 15483–15491 (2009).

    CAS  Google Scholar 

  313. Barrow, B. & Trivedi, D. J. in Computational Photocatalysis: Modeling of Photophysics and Photochemistry at Interfaces. ACS Symposium Series Vol. 1331 Ch. 5 (eds Kilin, D. & Kilina, S.) 101–136 (American Chemical Society, 2019).

  314. Tully, J. C. Molecular dynamics with electronic transitions. J. Chem. Phys. 93, 1061–1071 (1990).

    CAS  Google Scholar 

  315. Schlegel, H. B. Exploring potential energy surfaces for chemical reactions: an overview of some practical methods. J. Comput. Chem. 24, 1514–1527 (2003).

    CAS  Google Scholar 

  316. Iannuzzi, M., Laio, A. & Parrinello, M. Efficient exploration of reactive potential energy surfaces using Car-Parrinello molecular dynamics. Phys. Rev. Lett. 90, 238302 (2003).

    Google Scholar 

  317. Laio, A. & Gervasio, F. L. Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep. Prog. Phys. 71, 126601 (2008).

    Google Scholar 

  318. Barducci, A., Bonomi, M. & Parrinello, M. Metadynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1, 826–843 (2011).

    CAS  Google Scholar 

  319. Kühne, T. D. Second generation Car–Parrinello molecular dynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 391–406 (2014).

    Google Scholar 

  320. Valsson, O., Tiwary, P. & Parrinello, M. Enhancing important fluctuations: rare events and metadynamics from a conceptual viewpoint. Annu. Rev. Phys. Chem. 67, 159–184 (2016).

    CAS  Google Scholar 

  321. Předota, M., Zhang, Z., Fenter, P., Wesolowski, D. J. & Cummings, P. T. Electric double layer at the rutile (110) surface. 2. Adsorption of ions from molecular dynamics and X-ray experiments. J. Phys. Chem. B 108, 12061–12072 (2004).

    Google Scholar 

  322. Raju, M., van Duin, A. C. & Fichthorn, K. A. Mechanisms of oriented attachment of TiO2 nanocrystals in vacuum and humid environments: reactive molecular dynamics. Nano Lett. 14, 1836–1842 (2014).

    CAS  Google Scholar 

  323. Chroneos, A., Yildiz, B., Tarancón, A., Parfitt, D. & Kilner, J. A. Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations. Energy Environ. Sci. 4, 2774–2789 (2011).

    CAS  Google Scholar 

  324. Parfitt, D., Kordatos, A., Filippatos, P. P. & Chroneos, A. Diffusion in energy materials: Governing dynamics from atomistic modelling. Appl. Phys. Rev. 4, 031305 (2017).

    Google Scholar 

  325. Youssef, M., Yang, J. & Yildiz, B. in Handbook of Materials Modeling: Applications: Current and Emerging Materials (eds Andreoni, W. & Yip, S.) 1–24 (Springer, 2019).

  326. Andreoni, W. & Yip, S. Handbook of Materials Modeling: Applications: Current and Emerging Materials (Springer, 2020).

  327. Donadio, D. in Handbook of Materials Modeling: Applications: Current and Emerging Materials (eds Andreoni, W. & Yip, S.) 1–11 (Springer, 2018).

  328. Chatterjee, A. & Vlachos, D. G. An overview of spatial microscopic and accelerated kinetic Monte Carlo methods. J. Comput. Aided Mater. Des. 14, 253–308 (2007).

    Google Scholar 

  329. Salciccioli, M., Stamatakis, M., Caratzoulas, S. & Vlachos, D. G. A review of multiscale modeling of metal-catalyzed reactions: mechanism development for complexity and emergent behavior. Chem. Eng. Sci. 66, 4319–4355 (2011).

    CAS  Google Scholar 

  330. Bruix, A., Margraf, J. T., Andersen, M. & Reuter, K. First-principles-based multiscale modelling of heterogeneous catalysis. Nat. Catal. 2, 659–670 (2019).

    CAS  Google Scholar 

Download references

Acknowledgements

This manuscript was written with support of all three authors from U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Work by R.R. and V.-A.G. was performed at Pacific Northwest National Laboratory (PNNL), which is a multiprogramme laboratory operated for the DOE by the Battelle Memorial Institute under contract no. DE-AC05-76RL01830. A.S. was supported under award DE-SC0007347.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of the manuscript.

Corresponding authors

Correspondence to Roger Rousseau, Vassiliki-Alexandra Glezakou or Annabella Selloni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rousseau, R., Glezakou, VA. & Selloni, A. Theoretical insights into the surface physics and chemistry of redox-active oxides. Nat Rev Mater 5, 460–475 (2020). https://doi.org/10.1038/s41578-020-0198-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-020-0198-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing