Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements

Abstract

Reversible electrochemical processes are a promising technology for energy-efficient water treatment. Electrochemical desalination is based on the compensation of electric charge by ionic species, through which the ions are immobilized and, thereby, removed from a feed-water stream flowing through a desalination cell. For decades, electrochemical desalination has focused on the use of carbon electrodes, but their salt-removal ability is limited by the mechanism of ion electrosorption at low molar concentrations and low charge-storage capacity. Recently, charge-transfer materials, often found in batteries, have demonstrated much larger charge-storage capacities and energy-efficient desalination at both low and high molar strengths. In this Review, we assess electrochemical-desalination mechanisms and materials, including ion electrosorption and charge-transfer processes, namely, ion binding with redox-active polymers, ion insertion, conversion reactions and redox-active electrolytes. Furthermore, we discuss performance metrics and cell architectures, which we decouple from the nature of the electrode material and the underlying mechanism to show the versatility of cell-design concepts. These charge-transfer processes enable a wealth of environmental applications, ranging from potable-water generation and industrial-water remediation to lithium recovery and heavy-metal-ion removal.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Electrochemical processes for ion immobilization.
Fig. 2: Desalination cell designs.
Fig. 3: Ion electrosorption.
Fig. 4: Redox-active polymers.
Fig. 5: Ion-insertion and ion-conversion reactions.
Fig. 6: Redox-active electrolytes.
Fig. 7: Performance domains of electrochemical-desalination materials.

References

  1. 1.

    Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    Ghaffour, N., Missimer, T. M. & Amy, G. L. Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination 309, 197–207 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    Jones, E., Qadir, M., van Vliet, M. T. H., Smakhtin, V. & Kang, S.-m. The state of desalination and brine production: a global outlook. Sci. Total Environ. 657, 1343–1356 (2019).

    CAS  Article  Google Scholar 

  4. 4.

    Chen, F. et al. Dual-ions electrochemical deionization: a desalination generator. Energy Environ. Sci. 10, 2081–2089 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    Blair, J. W. & Murphy, G. W. in Saline Water Conversion Vol. 27 Ch. 20 (American Chemical Society, 1960). First paper on electrochemical desalination, featuring a cell comprising a carbon electrode paired with Ag/AgCl.

  6. 6.

    Murphy, G. W. & Caudle, D. D. Mathematical theory of electrochemical demineralization in flowing systems. Electrochim. Acta 12, 1655–1664 (1967).

    CAS  Article  Google Scholar 

  7. 7.

    Johnson, A. M. & Newman, J. Desalting by means of porous carbon electrodes. J. Electrochem. Soc. 118, 510–517 (1971).

    CAS  Article  Google Scholar 

  8. 8.

    de Levie, R. On porous electrodes in electrolyte solutions: I. Capacitance effects. Electrochim. Acta 8, 751–780 (1963).

    Article  Google Scholar 

  9. 9.

    Bockris, J. O. M. The structure of water in the double layer. Inorganica Chim. Acta 40, X14 (1980).

    Article  Google Scholar 

  10. 10.

    Zhao, R., Biesheuvel, P. M., Miedema, H., Bruning, H. & van der Wal, A. Charge efficiency: a functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization. J. Phys. Chem. Lett. 1, 205–210 (2009).

    Article  CAS  Google Scholar 

  11. 11.

    Evans, S. & Hamilton, W. S. The mechanism of demineralization at carbon electrodes. J. Electrochem. Soc. 113, 1314–1319 (1966).

    CAS  Article  Google Scholar 

  12. 12.

    Biesheuvel, P. M., Fu, Y. & Bazant, M. Z. Diffuse charge and Faradaic reactions in porous electrodes. Phys. Rev. E 83, 061507 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    Porada, S. et al. Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization. Energy Environ. Sci. 6, 3700–3712 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    Porada, S., Zhao, R., van der Wal, A., Presser, V. & Biesheuvel, P. M. Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 58, 1388–1442 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    Dykstra, J. E., Porada, S., van der Wal, A. & Biesheuvel, P. M. Energy consumption in capacitive deionization - constant current versus constant voltage operation. Water Res. 143, 367–375 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    Beguin, F., Presser, V., Balducci, A. & Frackowiak, E. Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26, 2219–2251 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    Prehal, C., Koczwara, C., Amenitsch, H., Presser, V. & Paris, O. Salt concentration and charging velocity determine ion charge storage mechanism in nanoporous supercapacitors. Nat. Commun. 9, 4145 (2018).

    CAS  Article  Google Scholar 

  18. 18.

    Rubin, S., Suss, M. E., Biesheuvel, P. M. & Bercovici, M. Induced-charge capacitive deionization: the electrokinetic response of a porous particle to an external electric field. Phys. Rev. Lett. 117, 234502 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Biesheuvel, P. M. & van der Wal, A. Membrane capacitive deionization. J. Membr. Sci. 346, 256–262 (2010).

    CAS  Article  Google Scholar 

  20. 20.

    Cho, Y. et al. A novel three-dimensional desalination system utilizing honeycomb-shaped lattice structures for flow-electrode capacitive deionization. Energy Environ. Sci. 10, 1746–1750 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Lee, J. et al. High electrochemical seawater desalination performance enabled by an iodide redox electrolyte paired with a sodium superionic conductor. ACS Sustain. Chem. Eng. 7, 10132–10142 (2019).

    CAS  Article  Google Scholar 

  22. 22.

    Kim, Y.-J. & Choi, J.-H. Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane. Sep. Purif. Technol. 71, 70–75 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    Biesheuvel, P. M., Zhao, R., Porada, S. & van der Wal, A. Theory of membrane capacitive deionization including the effect of the electrode pore space. J. Colloid Interface Sci. 360, 239–248 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    Zhao, R., Porada, S., Biesheuvel, P. M. & van der Wal, A. Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis. Desalination 330, 35–41 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    Jeon, S. I. et al. Desalination via a new membrane capacitive deionization process utilizing flow-electrodes. Energy Environ. Sci. 6, 1471–1475 (2013).

    CAS  Article  Google Scholar 

  26. 26.

    Gendel, Y., Rommerskirchen, A. K. E., David, O. & Wessling, M. Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology. Electrochem. Commun. 46, 152–156 (2014).

    CAS  Article  Google Scholar 

  27. 27.

    Hatzell, K. B. et al. Capacitive deionization concept based on suspension electrodes without ion exchange membranes. Electrochem. Commun. 43, 18–21 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    Porada, S. et al. Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation. J. Mater. Chem. A 2, 9313–9321 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    Su, X. et al. Asymmetric Faradaic systems for selective electrochemical separations. Energy Environ. Sci. 10, 1272–1283 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Lee, J., Kim, S., Kim, C. & Yoon, J. Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy Environ. Sci. 7, 3683–3689 (2014). This study introduced the hybrid CDI concept.

    CAS  Article  Google Scholar 

  31. 31.

    Smith, K. C. & Dmello, R. Na-ion desalination (NID) enabled by Na-blocking membranes and symmetric Na-intercalation: porous-electrode modeling. J. Electrochem. Soc. 163, A530–A539 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Srimuk, P. et al. MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization. J. Mater. Chem. A 4, 18265–18271 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Lee, J., Kim, S. & Yoon, J. Rocking chair desalination battery based on Prussian blue electrodes. ACS Omega 2, 1653–1659 (2017). This paper presented rocking-chair desalination using Prussian blue.

    CAS  Article  Google Scholar 

  34. 34.

    Grygolowicz-Pawlak, E. et al. Coulometric sodium chloride removal system with Nafion membrane for seawater sample treatment. Anal. Chem. 84, 6158–6165 (2012). This paper introduced the chloride-ion-desalination concept.

    CAS  Article  Google Scholar 

  35. 35.

    Srimuk, P., Husmann, S. & Presser, V. Low voltage operation of a silver/silver chloride battery with high desalination capacity in seawater. RSC Adv. 9, 14849–14858 (2019).

    CAS  Article  Google Scholar 

  36. 36.

    Nam, D.-H. & Choi, K.-S. Bismuth as a new chloride-storage electrode enabling the construction of a practical high capacity desalination battery. J. Am. Chem. Soc. 139, 11055–11063 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    Abu Khalla, S. & Suss, M. E. Desalination via chemical energy: an electrodialysis cell driven by spontaneous electrode reactions. Desalination 467, 257–262 (2019).

    CAS  Article  Google Scholar 

  38. 38.

    Lee, J. et al. Confined redox reactions of iodide in carbon nanopores for fast and energy-efficient desalination of brackish water and seawater. ChemSusChem 11, 3460–3472 (2018).

    CAS  Article  Google Scholar 

  39. 39.

    Pasta, M., Wessells, C. D., Cui, Y. & La Mantia, F. A desalination battery. Nano Lett. 12, 839–843 (2012). This study introduced the concept of the desalination battery.

    CAS  Article  Google Scholar 

  40. 40.

    Suss, M. E. & Presser, V. Water desalination with energy storage electrode materials. Joule 2, 10–15 (2018).

    Article  Google Scholar 

  41. 41.

    Yoon, H., Lee, J., Kim, S. & Yoon, J. Review of concepts and applications of electrochemical ion separation (EIONS) process. Sep. Purif. Technol. 215, 190–207 (2019).

    CAS  Article  Google Scholar 

  42. 42.

    Farmer, J. C. et al. Electrosorption of chromium ions on carbon aerogel electrodes as a means of remediating ground water. Energy Fuels 11, 337–347 (1997).

    CAS  Article  Google Scholar 

  43. 43.

    Saeed, A., Akhter, M. W. & Iqbal, M. Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Sep. Purif. Technol. 45, 25–31 (2005).

    CAS  Article  Google Scholar 

  44. 44.

    Hu, L., Mei, J.-y, Chen, Q.-w., Zhang, P. & Yan, N. Magnetically separable Prussian blue analogue Mn3[Co(CN)6]2·nH2O porous nanocubes as excellent absorbents for heavy metal ions. Nanoscale 3, 4270–4274 (2011).

    CAS  Article  Google Scholar 

  45. 45.

    Su, X. et al. Electrochemically-mediated selective capture of heavy metal chromium and arsenic oxyanions from water. Nat. Commun. 9, 4701 (2018).

    Article  CAS  Google Scholar 

  46. 46.

    Farmer, J. C., Fix, D. V., Mack, G. V., Pekala, R. W. & Poco, J. F. Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes. J. Appl. Electrochem. 26, 1007–1018 (1996).

    CAS  Article  Google Scholar 

  47. 47.

    Farmer, J. C., Fix, D. V., Mack, G. V., Pekala, R. W. & Poco, J. F. Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes. J. Electrochem. Soc. 143, 159–169 (1996).

    CAS  Article  Google Scholar 

  48. 48.

    Lee, J., Yu, S.-H., Kim, C., Sung, Y.-E. & Yoon, J. Highly selective lithium recovery from brine using a λ-MnO2–Ag battery. Phys. Chem. Chem. Phys. 15, 7690–7695 (2013).

    CAS  Article  Google Scholar 

  49. 49.

    Siekierka, A., Tomaszewska, B. & Bryjak, M. Lithium capturing from geothermal water by hybrid capacitive deionization. Desalination 436, 8–14 (2018).

    CAS  Article  Google Scholar 

  50. 50.

    Pasta, M., Battistel, A. & La Mantia, F. Batteries for lithium recovery from brines. Energy Environ. Sci. 5, 9487–9491 (2012). This study reported that desalination batteries can selectively extract lithium.

    CAS  Article  Google Scholar 

  51. 51.

    Trócoli, R., Battistel, A. & La Mantia, F. Nickel hexacyanoferrate as suitable alternative to Ag for electrochemical lithium recovery. ChemSusChem 8, 2514–2519 (2015).

    Article  CAS  Google Scholar 

  52. 52.

    Kim, S., Kim, J., Kim, S., Lee, J. & Yoon, J. Electrochemical lithium recovery and organic pollutant removal from industrial wastewater of a battery recycling plant. Environ. Sci. Water Res. Technol. 4, 175–182 (2018).

    CAS  Article  Google Scholar 

  53. 53.

    Kim, S., Yoon, H., Shin, D., Lee, J. & Yoon, J. Electrochemical selective ion separation in capacitive deionization with sodium manganese oxide. J. Colloid Interface Sci. 506, 644–648 (2017).

    CAS  Article  Google Scholar 

  54. 54.

    Yoon, H., Lee, J., Kim, S. & Yoon, J. Electrochemical sodium ion impurity removal system for producing high purity KCl. Hydrometallurgy 175, 354–358 (2018).

    CAS  Article  Google Scholar 

  55. 55.

    Yoon, H. et al. Capacitive deionization with Ca-alginate coated-carbon electrode for hardness control. Desalination 392, 46–53 (2016).

    CAS  Article  Google Scholar 

  56. 56.

    Dykstra, J. E., Dijkstra, J., van der Wal, A., Hamelers, H. V. M. & Porada, S. On-line method to study dynamics of ion adsorption from mixtures of salts in capacitive deionization. Desalination 390, 47–52 (2016).

    CAS  Article  Google Scholar 

  57. 57.

    Srimuk, P. et al. Potential-dependent, switchable ion selectivity in aqueous media using titanium disulfide. ChemSusChem 11, 2091–2100 (2018).

    CAS  Article  Google Scholar 

  58. 58.

    Wang, Y. L. et al. High-performance capacitive deionization disinfection of water with graphene oxide-graft-quaternized chitosan nanohybrid electrode coating. ACS Nano 9, 10142–10157 (2015).

    CAS  Google Scholar 

  59. 59.

    Kim, T., Yu, J., Kim, C. & Yoon, J. Hydrogen peroxide generation in flow-mode capacitive deionization. J. Electroanal. Chem. 776, 101–104 (2016).

    CAS  Article  Google Scholar 

  60. 60.

    Kim, S. et al. Hybrid electrochemical desalination system combined with an oxidation process. ACS Sustain. Chem. Eng. 6, 1620–1626 (2018).

    CAS  Article  Google Scholar 

  61. 61.

    Bijmans, M. F. M. et al. CAPMIX-deploying capacitors for salt gradient power extraction. Energy Procedia 20, 108–115 (2012).

    CAS  Article  Google Scholar 

  62. 62.

    Janssen, M., Härtel, A. & van Roij, R. Boosting capacitive blue-energy and desalination devices with waste heat. Phys. Rev. Lett. 113, 268501 (2014).

    Article  CAS  Google Scholar 

  63. 63.

    Härtel, A., Janssen, M., Weingarth, D., Presser, V. & van Roij, R. Heat-to-current conversion of low-grade heat from a thermocapacitive cycle by supercapacitors. Energy Environ. Sci. 8, 2396–2401 (2015).

    Article  CAS  Google Scholar 

  64. 64.

    Sales, B. B. et al. Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell. Environ. Sci. Technol. 44, 5661–5665 (2010).

    CAS  Article  Google Scholar 

  65. 65.

    Sales, B. B. et al. Extraction of energy from small thermal differences near room temperature using capacitive membrane technology. Environ. Sci. Technol. Lett. 1, 356–360 (2014).

    CAS  Article  Google Scholar 

  66. 66.

    Shapira, B., Cohen, I., Penki, T. R., Avraham, E. & Aurbach, D. Energy extraction and water treatment in one system: The idea of using a desalination battery in a cooling tower. J. Power Sources 378, 146–152 (2018).

    CAS  Article  Google Scholar 

  67. 67.

    Soffer, A. & Folman, M. The electrical double layer of high surface porous carbon electrode. J. Electroanal. Chem. Interf. Electrochem. 38, 25–43 (1972).

    CAS  Article  Google Scholar 

  68. 68.

    Biesheuvel, P. M. et al. Capacitive Deionization — defining a class of desalination technologies. Preprint at arXiv https://arxiv.org/abs/1709.05925 (2017).

  69. 69.

    Laheäär, A., Przygocki, P., Abbas, Q. & Béguin, F. Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors. Electrochem. Commun. 60, 21–25 (2015).

    Article  CAS  Google Scholar 

  70. 70.

    Brousse, T., Bélanger, D. & Long, J. W. To be or not to be pseudocapacitive? J. Electrochem. Soc. 162, A5185–A5189 (2015).

    CAS  Article  Google Scholar 

  71. 71.

    Suss, M. E. et al. Water desalination via capacitive deionization: what is it and what can we expect from it? Energy Environ. Sci. 8, 2296–2319 (2015). A review article on CDI.

    CAS  Article  Google Scholar 

  72. 72.

    Zhao, R. et al. Time-dependent ion selectivity in capacitive charging of porous electrodes. J. Colloid Interface Sci. 384, 38–44 (2012).

    CAS  Article  Google Scholar 

  73. 73.

    Su, X., Kulik, H. J., Jamison, T. F. & Hatton, T. A. Anion-selective redox electrodes: electrochemically mediated separation with heterogeneous organometallic interfaces. Adv. Funct. Mater. 26, 3394–3404 (2016).

    CAS  Article  Google Scholar 

  74. 74.

    Byles, B. W., Hayes-Oberst, B. & Pomerantseva, E. Ion removal performance, structural/compositional dynamics, and electrochemical stability of layered manganese oxide electrodes in hybrid capacitive deionization. ACS Appl. Mater. Interfaces 10, 32313–32322 (2018).

    CAS  Article  Google Scholar 

  75. 75.

    Bao, W. et al. Porous cryo-dried MXene for efficient capacitive deionization. Joule 2, 778–787 (2018).

    CAS  Article  Google Scholar 

  76. 76.

    Lee, J. et al. Pseudocapacitive desalination of brackish water and seawater with vanadium-pentoxide-decorated multiwalled carbon nanotubes. ChemSusChem 10, 3611–3623 (2017).

    CAS  Article  Google Scholar 

  77. 77.

    Avraham, E., Bouhadana, Y., Soffer, A. & Aurbach, D. Limitation of charge efficiency in capacitive deionization. I. On the behavior of single activated carbon. J. Electrochem. Soc. 156, P95–P99 (2009).

    CAS  Article  Google Scholar 

  78. 78.

    Avraham, E., Noked, M., Bouhadana, Y., Soffer, A. & Aurbach, D. Limitations of charge efficiency in capacitive deionization. II. On the behavior of CDI cells comprising two activated carbon electrodes. J. Electrochem. Soc. 156, P157–P162 (2009).

    CAS  Article  Google Scholar 

  79. 79.

    Prehal, C. et al. Tracking the structural arrangement of ions in carbon supercapacitor nanopores using in situ small-angle X-ray scattering. Energy Environ. Sci. 8, 1725–1735 (2015).

    CAS  Article  Google Scholar 

  80. 80.

    Shapira, B., Avraham, E. & Aurbach, D. Side reactions in capacitive deionization (CDI) processes: the role of oxygen reduction. Electrochim. Acta 220, 285–295 (2016).

    CAS  Article  Google Scholar 

  81. 81.

    Suss, M. E. et al. Capacitive desalination with flow-through electrodes. Energy Environ. Sci. 5, 9511–9519 (2012).

    CAS  Article  Google Scholar 

  82. 82.

    Kim, T. & Yoon, J. CDI ragone plot as a functional tool to evaluate desalination performance in capacitive deionization. RSC Adv. 5, 1456–1461 (2015).

    CAS  Article  Google Scholar 

  83. 83.

    Christen, T. & Carlen, M. W. Theory of Ragone plots. J. Power Sources 91, 210–216 (2000).

    CAS  Article  Google Scholar 

  84. 84.

    Ragone, D. V. in Society of Automotive Engineers Mid-Year Meeting 1968 1–12 (Society of Automotive Engineers, 1968).

  85. 85.

    Zhang, X., Zuo, K., Zhang, X., Zhang, C. & Liang, P. Selective ion separation by capacitive deionization (CDI) based technologies: a state-of-the-art review. Environ. Sci. Water Res. Technol. 6, 243–257 (2020). Review article on the selective separation by CDI.

    CAS  Article  Google Scholar 

  86. 86.

    Oyarzun, D. I., Hemmatifar, A., Palko, J. W., Stadermann, M. & Santiago, J. G. Adsorption and capacitive regeneration of nitrate using inverted capacitive deionization with surfactant functionalized carbon electrodes. Sep. Purif. Technol. 194, 410–415 (2018).

    CAS  Article  Google Scholar 

  87. 87.

    Su, X. & Hatton, T. A. Redox-electrodes for selective electrochemical separations. Adv. Colloid Interface Sci. 244, 6–20 (2017).

    CAS  Article  Google Scholar 

  88. 88.

    Seader, J. D., Henley, E. J. & Roper, D. K. in Separation Process Principles: Chemical and Biochemical Operations 3rd edn Vol. 18 (Wiley, 2010).

  89. 89.

    Sun, B. et al. Separation of low concentration of cesium ion from wastewater by electrochemically switched ion exchange method: experimental adsorption kinetics analysis. J. Hazard. Mater. 233–234, 177–183 (2012).

    Article  CAS  Google Scholar 

  90. 90.

    Wang, L., Dykstra, J. E. & Lin, S. Energy efficiency of capacitive deionization. Environ. Sci. Technol. 53, 3366–3378 (2019).

    CAS  Article  Google Scholar 

  91. 91.

    Hemmatifar, A., Palko, J. W., Stadermann, M. & Santiago, J. G. Energy breakdown in capacitive deionization. Water Res. 104, 303–311 (2016).

    CAS  Article  Google Scholar 

  92. 92.

    Hawks, S. A. et al. Performance metrics for the objective assessment of capacitive deionization systems. Water Res. 152, 126–137 (2019).

    CAS  Article  Google Scholar 

  93. 93.

    Tan, C., He, C., Fletcher, J. & Waite, T. D. Energy recovery in pilot scale membrane CDI treatment of brackish waters. Water Res. 168, 115146 (2020).

    CAS  Article  Google Scholar 

  94. 94.

    Qu, Y. et al. Energy consumption analysis of constant voltage and constant current operations in capacitive deionization. Desalination 400, 18–24 (2016).

    CAS  Article  Google Scholar 

  95. 95.

    Gogotsi, Y. & Simon, P. True performance metrics in electrochemical energy storage. Science 334, 917–918 (2011).

    CAS  Article  Google Scholar 

  96. 96.

    Długołęcki, P. & van der Wal, A. Energy recovery in membrane capacitive deionization. Environ. Sci. Technol. 47, 4904–4910 (2013).

    Article  CAS  Google Scholar 

  97. 97.

    Hand, S., Shang, X., Guest, J. S., Smith, K. C. & Cusick, R. D. Global sensitivity analysis to characterize operational limits and prioritize performance goals of capacitive deionization technologies. Environ. Sci. Technol. 53, 3748–3756 (2019).

    CAS  Article  Google Scholar 

  98. 98.

    Hand, S., Guest, J. S. & Cusick, R. D. Technoeconomic analysis of brackish water capacitive deionization: navigating tradeoffs between performance, lifetime, and material costs. Environ. Sci. Technol. 53, 13353–13363 (2019).

    Article  CAS  Google Scholar 

  99. 99.

    Landon, J., Gao, X., Omosebi, A. & Liu, K. Progress and outlook for capacitive deionization technology. Curr. Opin. Chem. Eng. 25, 1–8 (2019).

    Article  Google Scholar 

  100. 100.

    Moreno, D. & Hatzell, M. C. Efficiency of carnot and conventional capacitive deionization cycles. J. Phys. Chem. C 122, 22480–22486 (2018).

    CAS  Article  Google Scholar 

  101. 101.

    Smith, K. C. Theoretical evaluation of electrochemical cell architectures using cation intercalation electrodes for desalination. Electrochim. Acta 230, 333–341 (2017). This study introduced the sodium-ion-desalination concept.

    CAS  Article  Google Scholar 

  102. 102.

    Arulrajan, A. C. et al. Exceptional water desalination performance with anion-selective electrodes. Adv. Mater. 31, 1806937 (2019).

    Article  CAS  Google Scholar 

  103. 103.

    Nam, D.-H. & Choi, K.-S. Electrochemical desalination using Bi/BiOCl electrodialysis cells. ACS Sustain. Chem. Eng. 6, 15455–15462 (2018).

    CAS  Article  Google Scholar 

  104. 104.

    Kim, N. et al. Short review of multichannel membrane capacitive deionization: principle, current status, and future prospect. Appl. Sci. 10, 683 (2020). Review article on multichannel membrane CDI.

    Article  Google Scholar 

  105. 105.

    Kim, C., Srimuk, P., Lee, J. & Presser, V. Enhanced desalination via cell voltage extension of membrane capacitive deionization using an aqueous/organic bi-electrolyte. Desalination 443, 56–61 (2018).

    CAS  Article  Google Scholar 

  106. 106.

    Doornbusch, G. J., Dykstra, J. E., Biesheuvel, P. M. & Suss, M. E. Fluidized bed electrodes with high carbon loading for water desalination by capacitive deionization. J. Mater. Chem. A 4, 3642–3647 (2016).

    CAS  Article  Google Scholar 

  107. 107.

    Rommerskirchen, A., Gendel, Y. & Wessling, M. Single module flow-electrode capacitive deionization for continuous water desalination. Electrochem. Commun. 60, 34–37 (2015).

    CAS  Article  Google Scholar 

  108. 108.

    Beh, E. S., Benedict, M. A., Desai, D. & Rivest, J. B. A redox-shuttled electrochemical method for energy-efficient separation of salt from water. ACS Sustain. Chem. Eng. 7, 13411–13417 (2019).

    CAS  Article  Google Scholar 

  109. 109.

    Liang, Q. et al. An organic flow desalination battery. Energy Storage Mater. 20, 203–207 (2019).

    Article  Google Scholar 

  110. 110.

    Tang, W., He, D., Zhang, C., Kovalsky, P. & Waite, T. D. Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes. Water Res. 120, 229–237 (2017).

    CAS  Article  Google Scholar 

  111. 111.

    Le Fevre, L. W. et al. Cell optimisation of supercapacitors using a quasi-reference electrode and potentiostatic analysis. J. Power Sources 424, 52–60 (2019).

    Article  CAS  Google Scholar 

  112. 112.

    Zornitta, R. L. et al. Charge and potential balancing for optimized capacitive deionization using lignin-derived, low-cost activated carbon electrodes. ChemSusChem 11, 2101–2113 (2018).

    CAS  Article  Google Scholar 

  113. 113.

    Liu, Y. et al. Review on carbon-based composite materials for capacitive deionization. RSC Adv. 5, 15205–15225 (2015).

    CAS  Article  Google Scholar 

  114. 114.

    Porada, S., Bryjak, M., van der Wal, A. & Biesheuvel, P. M. Effect of electrode thickness variation on operation of capacitive deionization. Electrochim. Acta 75, 148–156 (2012).

    CAS  Article  Google Scholar 

  115. 115.

    Porada, S. et al. Water desalination using capacitive deionization with microporous carbon electrodes. ACS Appl. Mater. Interfaces 4, 1194–1199 (2012).

    CAS  Article  Google Scholar 

  116. 116.

    Li, H. B., Zou, L. D., Pan, L. K. & Sun, Z. Novel graphene-like electrodes for capacitive deionization. Environ. Sci. Technol. 44, 8692–8697 (2010).

    CAS  Article  Google Scholar 

  117. 117.

    Yan, C., Zou, L. & Short, R. Single-walled carbon nanotubes and polyaniline composites for capacitive deionization. Desalination 290, 125–129 (2012).

    CAS  Article  Google Scholar 

  118. 118.

    Chang, L., Li, J., Duan, X. & Liu, W. Porous carbon derived from Metal–organic framework (MOF) for capacitive deionization electrode. Electrochim. Acta 176, 956–964 (2015).

    CAS  Article  Google Scholar 

  119. 119.

    Schipper, F. et al. Study of cathode materials for lithium-ion batteries: recent progress and new challenges. Inorganics 5, 32 (2017).

    Article  CAS  Google Scholar 

  120. 120.

    Wang, Z. et al. Nanoarchitectured metal–organic framework/polypyrrole hybrids for brackish water desalination using capacitive deionization. Mater. Horiz. 6, 1433–1437 (2019).

    CAS  Article  Google Scholar 

  121. 121.

    Kim, T. et al. Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage. J. Colloid Interface Sci. 446, 317–326 (2015).

    CAS  Article  Google Scholar 

  122. 122.

    Gao, X. et al. Complementary surface charge for enhanced capacitive deionization. Water Res. 92, 275–282 (2016).

    CAS  Article  Google Scholar 

  123. 123.

    Gao, X., Omosebi, A., Landon, J. & Liu, K. L. Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption–desorption behavior. Energy Environ. Sci. 8, 897–909 (2015).

    CAS  Article  Google Scholar 

  124. 124.

    Porada, S., Feng, G., Suss, M. E. & Presser, V. Capacitive deionization in organic solutions: case study using propylene carbonate. RSC Adv. 6, 5865–5870 (2016).

    CAS  Article  Google Scholar 

  125. 125.

    Kalluri, R. K. et al. Unraveling the potential and pore-size dependent capacitance of slit-shaped graphitic carbon pores in aqueous electrolytes. Phys. Chem. Chem. Phys. 15, 2309–2320 (2013).

    CAS  Article  Google Scholar 

  126. 126.

    Bi, S. et al. Permselective ion electrosorption of subnanometer pores at high molar strength enables capacitive deionization of saline water. Sustain. Energy Fuels 4, 1285–1295 (2020).

    CAS  Article  Google Scholar 

  127. 127.

    Tang, W. et al. Various cell architectures of capacitive deionization: recent advances and future trends. Water Res. 150, 225–251 (2019).

    CAS  Article  Google Scholar 

  128. 128.

    Kim, C., Lee, J., Srimuk, P., Aslan, M. & Presser, V. Concentration-gradient multichannel flow-stream membrane capacitive deionization cell for high desalination capacity of carbon electrodes. ChemSusChem 10, 4914–4920 (2017).

    CAS  Article  Google Scholar 

  129. 129.

    Kim, C., Srimuk, P., Lee, J., Aslan, M. & Presser, V. Semi-continuous capacitive deionization using multi-channel flow stream and ion exchange membranes. Desalination 425, 104–110 (2018).

    CAS  Article  Google Scholar 

  130. 130.

    Kang, J. S. et al. Rapid inversion of surface charges in heteroatom-doped porous carbon: a route to robust electrochemical desalination. Adv. Funct. Mater. 30, 1909387 (2019).

    Article  CAS  Google Scholar 

  131. 131.

    Xu, X. et al. Facile synthesis of novel graphene sponge for high performance capacitive deionization. Sci. Rep. 5, 8458 (2015).

    CAS  Article  Google Scholar 

  132. 132.

    Xu, X., Sun, Z., Chua, D. H. C. & Pan, L. Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance. Sci. Rep. 5, 11225 (2015).

    CAS  Article  Google Scholar 

  133. 133.

    Gerischer, H., McIntyre, R., Scherson, D. & Storck, W. Density of the electronic states of graphite: derivation from differential capacitance measurements. J. Phys. Chem. 91, 1930–1935 (1987).

    CAS  Article  Google Scholar 

  134. 134.

    Kornyshev, A. A., Luque, N. B. & Schmickler, W. Differential capacitance of ionic liquid interface with graphite: the story of two double layers. J. Solid. State Electrochem. 18, 1345–1349 (2014).

    CAS  Article  Google Scholar 

  135. 135.

    Weingarth, D. et al. Graphitization as a universal tool to tailor the potential-dependent capacitance of carbon supercapacitors. Adv. Energy Mater. 4, 1400316 (2014).

    Article  CAS  Google Scholar 

  136. 136.

    Paraknowitsch, J. P. & Thomas, A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 6, 2839–2855 (2013).

    CAS  Article  Google Scholar 

  137. 137.

    Xu, X., Pan, L., Liu, Y., Lu, T. & Sun, Z. Enhanced capacitive deionization performance of graphene by nitrogen doping. J. Colloid Interface Sci. 445, 143–150 (2015).

    CAS  Article  Google Scholar 

  138. 138.

    Xu, X. et al. Capacitive deionization using nitrogen-doped mesostructured carbons for highly efficient brackish water desalination. Chem. Eng. J. 362, 887–896 (2019).

    CAS  Article  Google Scholar 

  139. 139.

    He, D., Wong, C. E., Tang, W., Kovalsky, P. & Waite, T. D. Faradaic reactions in water desalination by batch-mode capacitive deionization. Environ. Sci. Technol. Lett. 3, 222–226 (2016).

    CAS  Article  Google Scholar 

  140. 140.

    Srimuk, P. et al. High performance stability of titania decorated carbon for desalination with capacitive deionization in oxygenated water. RSC Adv. 6, 106081–106089 (2016).

    CAS  Article  Google Scholar 

  141. 141.

    Singh, K., Porada, S., de Gier, H. D., Biesheuvel, P. M. & de Smet, L. C. P. M. Timeline on the application of intercalation materials in capacitive deionization. Desalination 455, 115–134 (2019).

    CAS  Article  Google Scholar 

  142. 142.

    Privett, B. J., Shin, J. H. & Schoenfisch, M. H. Electrochemical sensors. Anal. Chem. 82, 4723–4741 (2010).

    CAS  Article  Google Scholar 

  143. 143.

    Muench, S. et al. Polymer-based organic batteries. Chem. Rev. 116, 9438–9484 (2016).

    CAS  Article  Google Scholar 

  144. 144.

    Zhang, B. et al. Redox gated polymer memristive processing memory unit. Nat. Commun. 10, 736 (2019).

    CAS  Article  Google Scholar 

  145. 145.

    Beer, P. D. & Gale, P. A. Anion recognition and sensing: the state of the art and future perspectives. Angew. Chem. Int. Ed. 40, 486–516 (2001).

    CAS  Article  Google Scholar 

  146. 146.

    Achilleos, D. S. & Hatton, T. A. Selective molecularly mediated pseudocapacitive separation of ionic species in solution. ACS Appl. Mater. Interfaces 8, 32743–32753 (2016).

    CAS  Article  Google Scholar 

  147. 147.

    Kim, K. et al. Asymmetric redox-polymer interfaces for electrochemical reactive separations: synergistic capture and conversion of arsenic. Adv. Mater. 32, 1906877 (2020).

    CAS  Article  Google Scholar 

  148. 148.

    Raudsepp, T., Marandi, M., Tamm, T., Sammelselg, V. & Tamm, J. Influence of ion-exchange on the electrochemical properties of polypyrrole films. Electrochim. Acta 122, 79–86 (2014).

    CAS  Article  Google Scholar 

  149. 149.

    Cui, H. et al. Defluoridation of water via electrically controlled anion exchange by polyaniline modified electrode reactor. Water Res. 45, 5736–5744 (2011).

    CAS  Article  Google Scholar 

  150. 150.

    Kim, Y., Lin, Z., Jeon, I., Van Voorhis, T. & Swager, T. M. Polyaniline nanofiber electrodes for reversible capture and release of mercury(II) from water. J. Am. Chem. Soc. 140, 14413–14420 (2018).

    CAS  Article  Google Scholar 

  151. 151.

    Ren, Y., Mao, X. & Hatton, T. A. An asymmetric electrochemical system with complementary tunability in hydrophobicity for selective separations of organics. ACS Cent. Sci. 5, 1396–1406 (2019).

    CAS  Article  Google Scholar 

  152. 152.

    Kong, H., Yang, M., Miao, Y. C. & Zhao, X. Y. Polypyrrole as a novel chloride-storage electrode for seawater desalination. Energy Technol. 7, 1900835 (2019).

    CAS  Article  Google Scholar 

  153. 153.

    Ahualli, S., Iglesias, G. R., Fernandez, M. M., Jimenez, M. L. & Delgado, A. V. Use of soft electrodes in capacitive deionization of solutions. Environ. Sci. Technol. 51, 5326–5333 (2017).

    CAS  Article  Google Scholar 

  154. 154.

    Su, X. & Hatton, T. A. Electrosorption at functional interfaces: from molecular-level interactions to electrochemical cell design. Phys. Chem. Chem. Phys. 19, 23570–23584 (2017).

    CAS  Article  Google Scholar 

  155. 155.

    Li, Y. et al. Novel hybrid capacitive deionization constructed by a redox-active covalent organic framework and its derived porous carbon for highly efficient desalination. J. Mater. Chem. A 7, 25305–25313 (2019).

    CAS  Article  Google Scholar 

  156. 156.

    Chandra, S. et al. Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J. Am. Chem. Soc. 135, 17853–17861 (2013).

    CAS  Article  Google Scholar 

  157. 157.

    Huggins, R. A. Advanced Batteries. Materials Science Aspects Ch. 1.3 (Springer, 2009).

  158. 158.

    Augustyn, V. & Gogotsi, Y. 2D materials with nanoconfined fluids for electrochemical energy storage. Joule 1, 443–452 (2017).

    CAS  Article  Google Scholar 

  159. 159.

    Guo, L. et al. A high performance electrochemical deionization method to desalinate brackish water with FePO4/RGO nanocomposite. J. Mater. Chem. A 6, 8901–8908 (2018).

    CAS  Article  Google Scholar 

  160. 160.

    Meng, J. et al. Advances in structure and property optimizations of battery electrode materials. Joule 1, 522–547 (2017).

    CAS  Article  Google Scholar 

  161. 161.

    Kim, S., Lee, J., Kim, C. & Yoon, J. Na2FeP2O7 as a novel material for hybrid capacitive deionization. Electrochim. Acta 203, 265–271 (2016).

    CAS  Article  Google Scholar 

  162. 162.

    Srimuk, P. et al. Titanium disulfide: a promising low-dimensional electrode material for sodium ion intercalation for sea water desalination. Chem. Mater. 29, 9964–9973 (2017).

    CAS  Article  Google Scholar 

  163. 163.

    Kim, H. et al. Ab initio study of the sodium intercalation and intermediate phases in Na0.44MnO2 for sodium-ion battery. Chem. Mater. 24, 1205–1211 (2012).

    CAS  Article  Google Scholar 

  164. 164.

    Sauvage, F., Laffont, L., Tarascon, J. M. & Baudrin, E. Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorg. Chem. 46, 3289–3294 (2007).

    CAS  Article  Google Scholar 

  165. 165.

    Moreau, P., Guyomard, D., Gaubicher, J. & Boucher, F. Structure and stability of sodium intercalated phases in olivine FePO4. Chem. Mater. 22, 4126–4128 (2010).

    CAS  Article  Google Scholar 

  166. 166.

    Dai, D. et al. Analysis of the spin exchange interactions and the ordered magnetic structures of lithium transition metal phosphates LiMPO4 (M=Mn, Fe, Co, Ni) with the olivine structure. Inorg. Chem. 44, 2407–2413 (2005).

    CAS  Article  Google Scholar 

  167. 167.

    Tan, C. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017).

    CAS  Article  Google Scholar 

  168. 168.

    Wang, B. et al. Prussian blue analogs for rechargeable batteries. iScience 3, 110–133 (2018).

    CAS  Article  Google Scholar 

  169. 169.

    Mathis, T. S. et al. Energy storage data reporting in perspective — guidelines for interpreting the performance of electrochemical energy storage systems. Adv. Energy Mater. 9, 1902007 (2019).

    CAS  Article  Google Scholar 

  170. 170.

    Srimuk, P. et al. In situ tracking of partial sodium desolvation of materials with capacitive, pseudocapacitive, and battery-like charge/discharge behavior in aqueous electrolytes. Langmuir 34, 13132–13143 (2018).

    CAS  Article  Google Scholar 

  171. 171.

    Ridley, P., Andris, R. & Pomerantseva, E. HCDI performance of Na-2x3 and Na-2x4 nanowires for water desalination. SPIE Proc. 11085, 110851J (2019).

    Google Scholar 

  172. 172.

    Byles, B. W., Cullen, D. A., More, K. L. & Pomerantseva, E. Tunnel structured manganese oxide nanowires as redox active electrodes for hybrid capacitive deionization. Nano Energy 44, 476–488 (2018).

    CAS  Article  Google Scholar 

  173. 173.

    Leong, Z. Y. & Yang, H. Y. A study of MnO2 with different crystalline forms for pseudocapacitive desalination. ACS Appl. Mater. Interfaces 11, 13176–13184 (2019).

    CAS  Article  Google Scholar 

  174. 174.

    Nayak, P. K., Yang, L., Brehm, W. & Adelhelm, P. From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew. Chem. Int. Ed. 57, 102–120 (2018).

    CAS  Article  Google Scholar 

  175. 175.

    Naguib, M. et al. Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012).

    CAS  Article  Google Scholar 

  176. 176.

    Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).

    CAS  Article  Google Scholar 

  177. 177.

    Augustyn, V., Simon, P. & Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014).

    CAS  Article  Google Scholar 

  178. 178.

    Lee, J. et al. Sodium ion removal by hydrated vanadyl phosphate for electrochemical water desalination. J. Mater. Chem. A 7, 4175–4184 (2019).

    CAS  Article  Google Scholar 

  179. 179.

    Levi, M. D. et al. Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements. Adv. Energy Mater. 5, 1400815 (2015).

    Article  CAS  Google Scholar 

  180. 180.

    Shpigel, N. et al. Direct assessment of nanoconfined water in 2D Ti3C2 electrode interspaces by a surface acoustic technique. J. Am. Chem. Soc. 140, 8910–8917 (2018).

    CAS  Article  Google Scholar 

  181. 181.

    Naguib, M. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011).

    CAS  Article  Google Scholar 

  182. 182.

    Qian, A., Seo, J. Y., Shi, H., Lee, J. Y. & Chung, C.-H. Surface functional groups and electrochemical behavior in dimethyl sulfoxide-delaminated Ti3C2Tx MXene. ChemSusChem 11, 3719–3723 (2018).

    CAS  Article  Google Scholar 

  183. 183.

    Schultz, T. et al. Surface termination dependent work function and electronic properties of Ti3C2Tx MXene. Chem. Mater. 31, 6590–6597 (2019).

    CAS  Article  Google Scholar 

  184. 184.

    Srimuk, P. et al. Two-dimensional molybdenum carbide (MXene) with divacancy ordering for brackish and sea water desalination via cation and anion intercalation. ACS Sustain. Chem. Eng. 6, 3739–3747 (2018).

    CAS  Article  Google Scholar 

  185. 185.

    Huang, S. & Mochalin, V. N. Hydrolysis of 2D transition-metal carbides (MXenes) in colloidal solutions. Inorg. Chem. 58, 1958–1966 (2019).

    CAS  Article  Google Scholar 

  186. 186.

    Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered Materials. Science 331, 568–571 (2011).

    CAS  Article  Google Scholar 

  187. 187.

    Huang, W., Luo, X., Gan, C. K., Quek, S. Y. & Liang, G. Theoretical study of thermoelectric properties of few-layer MoS2 and WSe2. Phys. Chem. Chem. Phys. 16, 10866–10874 (2014).

    CAS  Article  Google Scholar 

  188. 188.

    Srimuk, P. et al. Faradaic deionization of brackish and sea water via pseudocapacitive cation and anion intercalation into few layered molybdenum disulfide. J. Mater. Chem. A 5, 15640–15649 (2017).

    CAS  Article  Google Scholar 

  189. 189.

    Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    CAS  Article  Google Scholar 

  190. 190.

    He, H. et al. Structural properties and phase transition of Na adsorption on monolayer MoS2. Nanoscale Res. Lett. 11, 330 (2016).

    Article  CAS  Google Scholar 

  191. 191.

    Wang, X. et al. In situ electron microscopy investigation of sodiation of titanium disulfide nanoflakes. ACS Nano 13, 9421–9430 (2019).

    CAS  Article  Google Scholar 

  192. 192.

    Mitchell, J. B., Lo, W. C., Genc, A., LeBeau, J. & Augustyn, V. Transition from battery to pseudocapacitor behavior via structural water in tungsten oxide. Chem. Mater. 29, 3928–3937 (2017).

    CAS  Article  Google Scholar 

  193. 193.

    Feng, Q., Kanoh, H. & Ooi, K. Manganese oxide porous crystals. J. Mater. Chem. 9, 319–333 (1999).

    CAS  Article  Google Scholar 

  194. 194.

    Pinna, N., Willinger, M., Weiss, K., Urban, J. & Schlögl, R. Local structure of nanoscopic materials:  V2O5 nanorods and nanowires. Nano Lett. 3, 1131–1134 (2003).

    CAS  Article  Google Scholar 

  195. 195.

    Moretti, A. & Passerini, S. Bilayered nanostructured V2O5·nH2O for metal batteries. Adv. Energy Mater. 6, 1600868 (2016).

    Article  CAS  Google Scholar 

  196. 196.

    Masquelier, C. & Croguennec, L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem. Rev. 113, 6552–6591 (2013).

    CAS  Article  Google Scholar 

  197. 197.

    Zhu, Y., Peng, L., Chen, D. & Yu, G. Intercalation pseudocapacitance in ultrathin VOPO4 nanosheets: toward high-rate alkali-ion-based electrochemical energy storage. Nano Lett. 16, 742–747 (2016).

    CAS  Article  Google Scholar 

  198. 198.

    Paulitsch, B., Yun, J. & Bandarenka, A. S. Electrodeposited Na2VOx[Fe(CN)6] films as a cathode material for aqueous Na-ion batteries. ACS Appl. Mater. Interfaces 9, 8107–8112 (2017).

    CAS  Article  Google Scholar 

  199. 199.

    Lee, J. et al. Enhancement in desalination performance of battery electrodes via improved mass transport using a multichannel flow system. ACS Appl. Mater. Interfaces 11, 36580–36588 (2019).

    CAS  Article  Google Scholar 

  200. 200.

    Ding, J., Hu, W., Paek, E. & Mitlin, D. Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem. Rev. 118, 6457–6498 (2018).

    CAS  Article  Google Scholar 

  201. 201.

    Zhao, W., Guo, L., Ding, M., Huang, Y. & Yang, H. Y. Ultrahigh-desalination-capacity dual-ion electrochemical deionization device based on Na3V2(PO4)3@C–AgCl electrodes. ACS Appl. Mater. Interfaces 10, 40540–40548 (2018).

    CAS  Article  Google Scholar 

  202. 202.

    Wang, Z., Gong, H., Zhang, Y., Liang, P. & Wang, K. Nitrogen recovery from low-strength wastewater by combined membrane capacitive deionization (MCDI) and ion exchange (IE) process. Chem. Eng. J. 316, 1–6 (2017).

    CAS  Article  Google Scholar 

  203. 203.

    Mossad, M. & Zou, L. Study of fouling and scaling in capacitive deionisation by using dissolved organic and inorganic salts. J. Hazard. Mater. 244–245, 387–393 (2013).

    Article  CAS  Google Scholar 

  204. 204.

    Zhang, W., Mossad, M. & Zou, L. A study of the long-term operation of capacitive deionisation in inland brackish water desalination. Desalination 320, 80–85 (2013).

    CAS  Article  Google Scholar 

  205. 205.

    Liu, X., Whitacre, J. F. & Mauter, M. S. Mechanisms of humic acid fouling on capacitive and insertion electrodes for electrochemical desalination. Environ. Sci. Technol. 52, 12633–12641 (2018).

    CAS  Article  Google Scholar 

  206. 206.

    Stone, A. T. & Morgan, J. J. Reduction and dissolution of manganese(III) and manganese(IV) oxides by organics: 2. Survey of the reactivity of organics. Environ. Sci. Technol. 18, 617–624 (1984).

    CAS  Article  Google Scholar 

  207. 207.

    Bates, R. G. & Macaskill, J. B. Standard potential of the silver-silver chloride electrode. Pure Appl. Chem. 50, 1701–1706 (1978).

    Article  Google Scholar 

  208. 208.

    Cai, P. F. et al. Capacitive deionization of seawater effected by nano Ag and Ag@C on graphene. Mar. Pollut. Bull. 85, 733–737 (2014).

    CAS  Article  Google Scholar 

  209. 209.

    Chen, F., Huang, Y., Guo, L., Ding, M. & Yang, H. Y. A dual-ion electrochemistry deionization system based on AgCl-Na0.44MnO2 electrodes. Nanoscale 9, 10101–10108 (2017).

    CAS  Article  Google Scholar 

  210. 210.

    Yoon, H., Lee, J., Kim, S. & Yoon, J. Hybrid capacitive deionization with Ag coated carbon composite electrode. Desalination 422, 42–48 (2017).

    CAS  Article  Google Scholar 

  211. 211.

    Huang, Y. et al. Low energy consumption dual-ion electrochemical deionization system using NaTi2(PO4)3-AgNPs electrodes. Desalination 451, 241–247 (2019).

    CAS  Article  Google Scholar 

  212. 212.

    Zhao, W., Ding, M., Guo, L. & Yang, H. Y. Dual-ion electrochemical deionization system with binder-free aerogel electrodes. Small 15, 1805505 (2019).

    Article  CAS  Google Scholar 

  213. 213.

    Fighera, M., van der Wal, P. D. & Shea, H. Microfluidic platform for seawater desalination by coulometric removal of chloride ions through printed Ag electrodes. J. Electrochem. Soc. 164, H836–H845 (2017).

    CAS  Article  Google Scholar 

  214. 214.

    Lee, J. et al. Redox-electrolytes for non-flow electrochemical energy storage: a critical review and best practice. Prog. Mater. Sci. 101, 46–89 (2019).

    CAS  Article  Google Scholar 

  215. 215.

    Bandaru, P. R., Yamada, H., Narayanan, R. & Hoefer, M. Charge transfer and storage in nanostructures. Mater. Sci. Eng. R Rep. 96, 1–69 (2015).

    Article  Google Scholar 

  216. 216.

    Narayanan, R. & Bandaru, P. R. High rate capacity through redox electrolytes confined in macroporous electrodes. J. Electrochem. Soc. 162, A86–A91 (2015).

    CAS  Article  Google Scholar 

  217. 217.

    Desai, D. et al. Electrochemical desalination of seawater and hypersaline brines with coupled electricity storage. ACS Energy Lett. 3, 375–379 (2018).

    CAS  Article  Google Scholar 

  218. 218.

    Hou, X. et al. Coupling desalination and energy storage with redox flow electrodes. Nanoscale 10, 12308–12314 (2018).

    CAS  Article  Google Scholar 

  219. 219.

    Kim, N., Hong, S. P., Lee, J., Kim, C. & Yoon, J. High desalination performance via redox couple reaction in the multi-channel capacitive deionization system. ACS Sustain. Chem. Eng. 7, 16182–16189 (2019).

    CAS  Article  Google Scholar 

  220. 220.

    Chen, L., Bai, H., Huang, Z. & Li, L. Mechanism investigation and suppression of self-discharge in active electrolyte enhanced supercapacitors. Energy Environ. Sci. 7, 1750–1759 (2014).

    CAS  Article  Google Scholar 

  221. 221.

    Lee, J. et al. Tin/vanadium redox electrolyte for battery-like energy storage capacity combined with supercapacitor-like power handling. Energy Environ. Sci. 9, 3392–3398 (2016).

    CAS  Article  Google Scholar 

  222. 222.

    Cohen, I., Shapira, B., Avraham, E., Soffer, A. & Aurbach, D. Bromide ions specific removal and recovery by electrochemical desalination. Environ. Sci. Technol. 52, 6275–6281 (2018).

    CAS  Article  Google Scholar 

  223. 223.

    Kickelbick, G. Hybrid Materials: Synthesis, Characterization, and Applications (Wiley-VCH, 2007).

  224. 224.

    Fleischmann, S., Tolosa, A. & Presser, V. Design of carbon/metal oxide hybrids for electrochemical energy storage. Chem. Eur. J. 24, 12143–12153 (2018).

    CAS  Article  Google Scholar 

  225. 225.

    Levi, M. D. et al. In situ tracking of ion insertion in iron phosphate olivine electrodes via electrochemical quartz crystal admittance. J. Phys. Chem. C 117, 1247–1256 (2013).

    CAS  Article  Google Scholar 

  226. 226.

    Kumar, A., Fukuda, H., Hatton, T. A. & Lienhard, J. H. Lithium recovery from oil and gas produced water: a need for a growing energy industry. ACS Energy Lett. 4, 1471–1474 (2019).

    CAS  Article  Google Scholar 

  227. 227.

    Turcheniuk, K., Bondarev, D., Singhal, V. & Yushin, G. Ten years left to redesign lithium-ion batteries. Nature 559, 467–470 (2018).

    CAS  Article  Google Scholar 

  228. 228.

    Epstein, J. A., Feist, E. M., Zmora, J. & Marcus, Y. Extraction of lithium from the dead sea. Hydrometallurgy 6, 269–275 (1981).

    CAS  Article  Google Scholar 

  229. 229.

    Kavanagh, L., Keohane, J., Cabellos, G. G., Lloyd, A. & Cleary, J. Global lithium sources - industrial use and future in the electric vehicle industry: a review. Resources 7, 57 (2018).

    Article  Google Scholar 

  230. 230.

    Bryjak, M., Siekierka, A., Kujawski, J., Smolińska-Kempisty, K. & Kujawski, W. Capacitive deionization for selective extraction of lithium from aqueous solutions. J. Membr. Sep. Technol. 4, 110–115 (2015).

    CAS  Article  Google Scholar 

  231. 231.

    Calvo, E. J. Electrochemical methods for sustainable recovery of lithium from natural brines and battery recycling. Curr. Opin. Electrochem. 15, 102–108 (2019).

    CAS  Article  Google Scholar 

  232. 232.

    Yu, J., Wang, X., Zhou, M. & Wang, Q. A redox targeting-based material recycling strategy for spent lithium ion batteries. Energy Environ. Sci. 12, 2672–2677 (2019).

    CAS  Article  Google Scholar 

  233. 233.

    Bain, E. J., Calo, J. M., Spitz-Steinberg, R., Kirchner, J. & Axén, J. Electrosorption/electrodesorption of arsenic on a granular activated carbon in the presence of other heavy metals. Energy Fuels 24, 3415–3421 (2010).

    CAS  Article  Google Scholar 

  234. 234.

    Liu, Y.-X., Yuan, D.-X., Yan, J.-M., Li, Q.-L. & Ouyang, T. Electrochemical removal of chromium from aqueous solutions using electrodes of stainless steel nets coated with single wall carbon nanotubes. J. Hazard. Mater. 186, 473–480 (2011).

    CAS  Article  Google Scholar 

  235. 235.

    Choi, J., Dorji, P., Shon, H. K. & Hong, S. Applications of capacitive deionization: Desalination, softening, selective removal, and energy efficiency. Desalination 449, 118–130 (2019).

    CAS  Article  Google Scholar 

  236. 236.

    Huang, Z., Lu, L., Cai, Z. & Ren, Z. J. Individual and competitive removal of heavy metals using capacitive deionization. J. Hazard. Mater. 302, 323–331 (2016).

    CAS  Article  Google Scholar 

  237. 237.

    Fan, C. S., Liou, S. Y. H. & Hou, C. H. Capacitive deionization of arsenic-contaminated groundwater in a single-pass mode. Chemosphere 184, 924–931 (2017).

    CAS  Article  Google Scholar 

  238. 238.

    Gaikwad, M. S. & Balomajumder, C. Simultaneous electrosorptive removal of chromium(VI) and fluoride ions by capacitive deionization (CDI): Multicomponent isotherm modeling and kinetic study. Sep. Purif. Technol. 186, 272–281 (2017).

    CAS  Article  Google Scholar 

  239. 239.

    Zhang, M., Jia, F., Dai, M. & Song, S. Combined electrosorption and chemisorption of low concentration Pb(II) from aqueous solutions with molybdenum disulfide as electrode. Appl. Surf. Sci. 455, 258–266 (2018).

    CAS  Article  Google Scholar 

  240. 240.

    Suss, M. E. Size-based ion selectivity of micropore electric double layers in capacitive deionization electrodes. J. Electrochem. Soc. 164, E270–E275 (2017).

    CAS  Article  Google Scholar 

  241. 241.

    Guyes, E. N., Malka, T. & Suss, M. E. Enhancing the ion-size-based selectivity of capacitive deionization electrodes. Environ. Sci. Technol. 53, 8447–8454 (2019).

    CAS  Article  Google Scholar 

  242. 242.

    Srimuk, P., Wang, L., Budak, Ö. & Presser, V. High-performance ion removal via zinc–air desalination. Electrochem. Commun. https://doi.org/10.1016/j.elecom.2020.106713 (2020).

  243. 243.

    Liu, X., Shanbhag, S. & Mauter, M. S. Understanding and mitigating performance decline in electrochemical deionization. Curr. Opin. Chem. Eng. 25, 67–74 (2019).

    Article  Google Scholar 

  244. 244.

    Tsouris, C. et al. Mesoporous carbon for capacitive deionization of saline water. Environ. Sci. Technol. 45, 10243–10249 (2011).

    CAS  Article  Google Scholar 

  245. 245.

    Kong, W. et al. Holey graphene hydrogel with in-plane pores for high-performance capacitive desalination. Nano Res. 9, 2458–2466 (2016).

    CAS  Article  Google Scholar 

  246. 246.

    Dai, K., Shi, L., Fang, J., Zhang, D. & Yu, B. NaCl adsorption in multi-walled carbon nanotubes. Mater. Lett. 59, 1989–1992 (2005).

    CAS  Article  Google Scholar 

  247. 247.

    Liu, N.-L. et al. ZIF-8 derived, nitrogen-doped porous electrodes of carbon polyhedron particles for high-performance electrosorption of salt ions. Sci. Rep. 6, 28847 (2016).

    CAS  Article  Google Scholar 

  248. 248.

    Xu, X., Wang, M., Liu, Y., Lu, T. & Pan, L. Metal–organic framework-engaged formation of a hierarchical hybrid with carbon nanotube inserted porous carbon polyhedra for highly efficient capacitive deionization. J. Mater. Chem. A 4, 5467–5473 (2016).

    CAS  Article  Google Scholar 

  249. 249.

    Zhang, J. et al. N, P, S co-doped hollow carbon polyhedra derived from MOF-based core-shell nanocomposites for capacitive deionization. J. Mater. Chem. A 6, 15245–15252 (2018).

    CAS  Article  Google Scholar 

  250. 250.

    Liu, Y. et al. Metal–organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization. Chem. Commun. 51, 12020–12023 (2015).

    CAS  Article  Google Scholar 

  251. 251.

    Chang, L., Li, J., Duan, X. & Liu, W. Porous carbon derived from Metal–organic framework (MOF) for capacitive deionization electrode. Electrochim. Acta 176, 956–964 (2015).

    CAS  Article  Google Scholar 

  252. 252.

    Chen, B. et al. Enhanced capacitive desalination of MnO2 by forming composite with multi-walled carbon nanotubes. RSC Adv. 6, 6730–6736 (2016).

    CAS  Article  Google Scholar 

  253. 253.

    Wu, T. et al. Highly stable hybrid capacitive deionization with a MnO2 anode and a positively charged cathode. Environ. Sci. Technol. Lett. 5, 98–102 (2018).

    CAS  Article  Google Scholar 

  254. 254.

    Porada, S., Shrivastava, A., Bukowska, P., Biesheuvel, P. M. & Smith, K. C. Nickel hexacyanoferrate electrodes for continuous cation intercalation desalination of brackish water. Electrochim. Acta 255, 369–378 (2017).

    CAS  Article  Google Scholar 

  255. 255.

    Kim, T., Gorski, C. A. & Logan, B. E. Low energy desalination using battery electrode deionization. Environ. Sci. Technol. Lett. 4, 444–449 (2017).

    CAS  Article  Google Scholar 

  256. 256.

    Guo, L. et al. A Prussian blue anode for high performance electrochemical deionization promoted by the faradaic mechanism. Nanoscale 9, 13305–13312 (2017).

    CAS  Article  Google Scholar 

  257. 257.

    Choi, S. et al. Battery electrode materials with omnivalent cation storage for fast and charge-efficient ion removal of asymmetric capacitive deionization. Adv. Funct. Mater. 28, 1802665 (2018).

    Article  CAS  Google Scholar 

  258. 258.

    Ding, Z. et al. Significantly improved stability of hybrid capacitive deionization using nickel hexacyanoferrate/reduced graphene oxide cathode at low voltage operation. Desalination 468, 114078 (2019).

    CAS  Article  Google Scholar 

  259. 259.

    Vafakhah, S. et al. Efficient sodium-ion intercalation into the freestanding Prussian blue/graphene aerogel anode in a hybrid capacitive deionization system. ACS Appl. Mater. Interfaces 11, 5989–5998 (2019).

    CAS  Article  Google Scholar 

  260. 260.

    Han, C., Meng, Q., Cao, B. & Tian, G. Enhanced hybrid capacitive deionization performance by sodium titanium phosphate/reduced porous graphene oxide composites. ACS Omega 4, 11455–11463 (2019).

    CAS  Article  Google Scholar 

  261. 261.

    Cao, J., Wang, Y., Wang, L., Yu, F. & Ma, J. Na3V2(PO4)3@C as Faradaic electrodes in capacitive deionization for high-performance desalination. Nano Lett. 19, 823–828 (2019).

    Article  CAS  Google Scholar 

  262. 262.

    Huang, Y., Chen, F., Guo, L. & Yang, H. Y. Ultrahigh performance of a novel electrochemical deionization system based on a NaTi2(PO4)3/rGO nanocomposite. J. Mater. Chem. A 5, 18157–18165 (2017).

    CAS  Article  Google Scholar 

  263. 263.

    Lukatskaya, M. R., Dunn, B. & Gogotsi, Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 12647 (2016).

    Article  Google Scholar 

  264. 264.

    Kim, C. et al. Influence of pore structure and cell voltage of activated carbon cloth as a versatile electrode material for capacitive deionization. Carbon 122, 329–335 (2017).

    CAS  Article  Google Scholar 

  265. 265.

    Chun, S.-E. et al. Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge. Nat. Commun. 6, 7818 (2015).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank E. Arzt (INM) for his continued support for research on energy materials and electrochemical technologies. V.P. acknowledges funding from the German Research Foundation (Deutsche Forschungsgemeinschaft) through the MXene-CDI project (PR-1173/11), the Leibniz Association through the Carbon Metal-Oxide Nanohybrids project (CarMON) (SAW-2017) and the Minerva Foundation through an Award for Research Cooperation and High Excellence in Science (ARCHES). X.S. acknowledges financial support from the University of Illinois at Urbana–Champaign and the Department of Chemical and Biomolecular Engineering, and the support of the National Science Foundation under CBET grant no. 1931941.

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Volker Presser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Srimuk, P., Su, X., Yoon, J. et al. Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nat Rev Mater (2020). https://doi.org/10.1038/s41578-020-0193-1

Download citation