Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chemical recycling to monomer for an ideal, circular polymer economy


The majority of post-consumer plastic waste is not recycled. Impediments to the recycling of commodity polymers include separation, impurities and degradation of the macromolecular structures, all of which can negatively affect the properties of recycled materials. An attractive alternative is to transform polymers back into monomers and purify them for repolymerization — a form of chemical recycling we term chemical recycling to monomer (CRM). Material recycled in this way exhibits no loss in properties, creating an ideal, circular polymer economy. This Review presents our vision for realizing a circular polymer economy based on CRM. We examine the energetics of polymerization and other challenges in developing practical and scalable CRM processes. We briefly review attempts to achieve CRM with commodity polymers, including through polyolefin thermolysis and nylon 6 ring-closing depolymerization, and closely examine the recent flourishing of CRM with new-to-the-world polymers. The benefits of heterocycle ring-opening polymerization are discussed in terms of synthetic control and kinetically accessible polymer-backbone functionality. Common chemical and structural characteristics of CRM-compatible ring-opening-polymerization monomers are identified, and the properties, benefits and liabilities of these recyclable polymers are discussed. We conclude with our perspective on the ideals and opportunities for the field.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Present and ideal polymer economies.
Fig. 2: Conceptual model of polymerization energetics.
Fig. 3: Comparison of highly exergonic and ergoneutral polymerization and depolymerization reactions.
Fig. 4: Polycarbonate synthesis and depolymerization modes with alicyclic epoxides and CO2 or alicyclic carbonates.
Fig. 5: Polycarbonate synthesis and selective CRM.
Fig. 6: Related polycarbonate synthesis and depolymerization reactions.
Fig. 7: ROP and CRM of lactones.


  1. 1.

    Freinkel, S. Plastic: A Toxic Love Story (Houghton Mifflin Harcourt, 2011).

  2. 2.

    Nguyen, B. et al. Separation and analysis of microplastics and nanoplastics in complex environmental samples. Acc. Chem. Res. 52, 858–866 (2019).

    CAS  Google Scholar 

  3. 3.

    Blaesing, M. & Amelung, W. Plastics in soil: analytical methods and possible sources. Sci. Total Environ. 612, 422–435 (2018).

    CAS  Google Scholar 

  4. 4.

    Pan, Z. et al. Microplastics in the Northwestern Pacific: abundance, distribution, and characteristics. Sci. Total Environ. 650, 1913–1922 (2019).

    CAS  Google Scholar 

  5. 5.

    Machovsky-Capuska, G. E., Amiot, C., Denuncio, P., Grainger, R. & Raubenheimer, D. A nutritional perspective on plastic ingestion in wildlife. Sci. Total Environ. 656, 789–796 (2019).

    CAS  Google Scholar 

  6. 6.

    Rhodes, C. J. Plastic pollution and potential solutions. Sci. Prog. 101, 207–260 (2018).

    Google Scholar 

  7. 7.

    Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Google Scholar 

  8. 8.

    Ellen MacArthur Foundation. The new plastics economy: rethinking the future of plastics & catalysing action. Ellen MacArthur Foundation (2017).

  9. 9.

    PlasticsEurope. Plastics — the Facts 2018. An analysis of European plastics production, demand and waste data (PlasticsEurope, 2019).

  10. 10.

    Waters, C. N. et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351, aad2622 (2016).

    Google Scholar 

  11. 11.

    Poland, S. J. & Darensbourg, D. J. A quest for polycarbonates provided via sustainable epoxide/CO2 copolymerization processes. Green Chem. 19, 4990–5011 (2017).

    CAS  Google Scholar 

  12. 12.

    Schneiderman, D. K. & Hillmyer, M. A. 50th anniversary perspective: there is a great future in sustainable polymers. Macromolecules 50, 3733–3750 (2017).

    CAS  Google Scholar 

  13. 13.

    Hong, M. & Chen, E. Y.-X. Chemically recyclable polymers: a circular economy approach to sustainability. Green Chem. 19, 3692–3706 (2017).

    CAS  Google Scholar 

  14. 14.

    Zhang, X., Fevre, M., Jones, G. O. & Waymouth, R. M. Catalysis as an enabling science for sustainable polymers. Chem. Rev. 118, 839–885 (2018).

    CAS  Google Scholar 

  15. 15.

    Lu, X., Liu, Y. & Zhou, H. Learning nature: recyclable monomers and polymers. Chem. Eur. J. 24, 11255–11266 (2018).

    CAS  Google Scholar 

  16. 16.

    Fortman, D. J. et al. Approaches to sustainable and continually recyclable cross-linked polymers. ACS Sustain. Chem. Eng. 6, 11145–11159 (2018).

    CAS  Google Scholar 

  17. 17.

    Rahimi, A. & García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1, 0046 (2017).

    Google Scholar 

  18. 18.

    Ren, T., Qi, W., Su, R. & He, Z. Promising techniques for depolymerization of lignin into value-added chemicals. ChemCatChem 11, 639–654 (2019).

    Google Scholar 

  19. 19.

    Roth, M. E., Green, O., Gnaim, S. & Shabat, D. Dendritic, oligomeric, and polymeric self-immolative molecular amplification. Chem. Rev. 116, 1309–1352 (2016).

    CAS  Google Scholar 

  20. 20.

    Peterson, G. I., Larsen, M. B. & Boydston, A. J. Controlled depolymerization: stimuli-responsive self-immolative polymers. Macromolecules 45, 7317–7328 (2012).

    CAS  Google Scholar 

  21. 21.

    Kaitz, J. A., Lee, O. P. & Moore, J. S. Depolymerizable polymers: preparation, applications, and future outlook. MRS Commun. 5, 191–204 (2015).

    CAS  Google Scholar 

  22. 22.

    Christensen, P. R., Scheuermann, A. M., Loeffler, K. E. & Helms, B. A. Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds. Nat. Chem. 11, 442–448 (2019).

    CAS  Google Scholar 

  23. 23.

    Hodge, P. Entropically driven ring-opening polymerization of strainless organic macrocycles. Chem. Rev. 114, 2278–2312 (2014).

    CAS  Google Scholar 

  24. 24.

    Liu, Y., Sun, W. & Liu, J. Greenhouse gas emissions from different municipal solid waste management scenarios in China: based on carbon and energy flow analysis. Waste Manag. 68, 653–661 (2017).

    CAS  Google Scholar 

  25. 25.

    Fruergaard, T., Christensen, T. H. & Astrup, T. Energy recovery from waste incineration: assessing the importance of district heating networks. Waste Manag. 30, 1264–1272 (2010).

    CAS  Google Scholar 

  26. 26.

    Bernstad Saraiva, A., Souza, R. G., Mahler, C. F. & Valle, R. A. B. Consequential lifecycle modelling of solid waste management systems - reviewing choices and exploring their consequences. J. Clean. Prod. 202, 488–496 (2018).

    Google Scholar 

  27. 27.

    Bernardo, C. A., Simões, C. L. & Costa Pinto, L. M. Environmental and economic life cycle analysis of plastic waste management options. A review. AIP Conf. Proc. 1779, 140001–140005 (2016).

    Google Scholar 

  28. 28.

    Zheng, J. & Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Change 9, 374–378 (2019).

    Google Scholar 

  29. 29.

    Ragaert, K., Delva, L. & Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 69, 24–58 (2017).

    CAS  Google Scholar 

  30. 30.

    Hinsken, H., Moss, S., Pauquet, J. R. & Zweifel, H. Degradation of polyolefins during melt processing. Polym. Degrad. Stab. 34, 279–293 (1991).

    CAS  Google Scholar 

  31. 31.

    Oblak, P., Gonzalez-Gutierrez, J., Zupancic, B., Aulova, A. & Emri, I. Processability and mechanical properties of extensively recycled high density polyethylene. Polym. Degrad. Stab. 114, 133–145 (2015).

    CAS  Google Scholar 

  32. 32.

    Dunn, E. W., Lamb, J. R., LaPointe, A. M. & Coates, G. W. Carbonylation of ethylene oxide to beta-propiolactone: a facile route to poly(3-hydroxypropionate) and acrylic acid. ACS Catal. 6, 8219–8223 (2016).

    CAS  Google Scholar 

  33. 33.

    Slowik, M. & Valente, R. Catalytic conversion of waste carbon monoxide to valuable chemicals and materials. Tech. Proc. Clean Technol. Sustain. Ind. Conf. 6, 283–286 (2010).

    Google Scholar 

  34. 34.

    Porcelli, R. V., Farmer, J. J. & Lapointe, R. E. Process for production of acrylates from epoxides. US Patent WO/2013/063191 A1 (2013).

  35. 35.

    Sookraj, S. H. & Sherry, K. E. Compositions for improved production of acrylic acid. US Patent Application 2019/0031592 A1 (2019).

  36. 36.

    Jia, X., Qin, C., Friedberger, T., Guan, Z. & Huang, Z. Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions. Sci. Adv. 2, e1501591 (2016).

    Google Scholar 

  37. 37.

    Aguado, J., Serrano, D. P. & Escola, J. M. Fuels from waste plastics by thermal and catalytic processes: a review. Ind. Eng. Chem. Res. 47, 7982–7992 (2008).

    CAS  Google Scholar 

  38. 38.

    Cardone, F., Ferrotti, G., Frigio, F. & Canestrari, F. Influence of polymer modification on asphalt binder dynamic and steady flow viscosities. Constr. Build. Mater. 71, 435–443 (2014).

    Google Scholar 

  39. 39.

    Zhang, F. et al. Preparation methods and performance of modified asphalt using rubber–plastic alloy and its compounds. J. Mater. Civ. Eng. 30, 04018163 (2018).

    Google Scholar 

  40. 40.

    Burnett, N. P., Reid, G. M. & McCartney, T. J. A road making material, a method of producing a road making material and a road made therefrom. US Patent WO/2019/092254 A1 (2019).

  41. 41.

    George, N. & Kurian, T. Recent developments in the chemical recycling of postconsumer poly(ethylene terephthalate) waste. Ind. Eng. Chem. Res. 53, 14185–14198 (2014).

    CAS  Google Scholar 

  42. 42.

    Geyer, B., Lorenz, G. & Kandelbauer, A. Recycling of poly(ethylene terephthalate) - a review focusing on chemical methods. Express Polym. Lett. 10, 559–586 (2016).

    CAS  Google Scholar 

  43. 43.

    Malik, N., Kumar, P., Shrivastava, S. & Ghosh, S. B. An overview on PET waste recycling for application in packaging. Int. J. Plast. Tech. 21, 1–24 (2017).

    CAS  Google Scholar 

  44. 44.

    Ignatyev, I. A., Thielemans, W. & Vander Beke, B. Recycling of polymers: a review. ChemSusChem 7, 1579–1593 (2014).

    CAS  Google Scholar 

  45. 45.

    Kamber, N. E. et al. The depolymerization of poly(ethylene terephthalate) (PET) using N-heterocyclic carbenes from ionic liquids. J. Chem. Educ. 87, 519–521 (2010).

    CAS  Google Scholar 

  46. 46.

    Fukushima, K. et al. Advanced chemical recycling of poly(ethylene terephthalate) through organocatalytic aminolysis. Polym. Chem. 4, 1610–1616 (2013).

    CAS  Google Scholar 

  47. 47.

    Allen, R. D., Bajjuri, K. M., Hedrick, J. L., Breyta, G. & Larson, C. E. Methods and materials for depolymerizing polyesters. US Patent 9,914,816 (2015).

  48. 48.

    Fukushima, K. et al. Unexpected efficiency of cyclic amidine catalysts in depolymerizing poly(ethylene terephthalate). J. Polym. Sci. A Polym. Chem. 51, 1606–1611 (2013).

    CAS  Google Scholar 

  49. 49.

    Greer, S. C. Physical chemistry of equilibrium polymerization. J. Phys. Chem. B 102, 5413–5422 (1998).

    CAS  Google Scholar 

  50. 50.

    Odian, G. Principles of Polymerization 4th edn (Wiley, 2004).

  51. 51.

    Wool, R. P. Polymer entanglements. Macromolecules 26, 1564–1569 (1993).

    CAS  Google Scholar 

  52. 52.

    Fetters, L. J., Lohse, D. J., Richter, D., Witten, T. A. & Zirkel, A. Connection between polymer molecular-weight, density, chain dimensions, and melt viscoelastic properties. Macromolecules 27, 4639–4647 (1994).

    CAS  Google Scholar 

  53. 53.

    Le Châtelier, H. L. Sur un énoncé général des lois des équilibres chimiques. C. R. Acad. Sci. 99, 786–789 (1884).

    Google Scholar 

  54. 54.

    Le Châtelier, H. L. in A Source Book in Chemistry, 1400–1900 (eds Leicester, H. M. & Klickstein, H. S.) 481–483 (McGraw-Hill, 1952).

  55. 55.

    Diaz-Silvarrey, L. S., Zhang, K. & Phan, A. N. Monomer recovery through advanced pyrolysis of waste high density polyethylene (HDPE). Green Chem. 20, 1813–1823 (2018).

    CAS  Google Scholar 

  56. 56.

    Guddeti, R. R., Knight, R. & Grossmann, E. D. Depolymerization of polypropylene in an induction-coupled plasma (ICP) reactor. Ind. Eng. Chem. Res. 39, 1171–1176 (2000).

    CAS  Google Scholar 

  57. 57.

    Miranda, R., Yang, J., Roy, C. & Vasile, C. Vacuum pyrolysis of commingled plastics containing PVC I. Kinetic study. Polym. Degrad. Stab. 72, 469–491 (2001).

    CAS  Google Scholar 

  58. 58.

    Yu, J., Sun, L., Ma, C., Qiao, Y. & Yao, H. Thermal degradation of PVC: a review. Waste Manag. 48, 300–314 (2016).

    CAS  Google Scholar 

  59. 59.

    Hong, M. & Chen, E. Y. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of gamma-butyrolactone. Nat. Chem. 8, 42–49 (2016).

    CAS  Google Scholar 

  60. 60.

    Kim, K. J., Doi, Y. & Abe, H. Effect of metal compounds on thermal degradation behavior of aliphatic poly(hydroxyalkanoic acid)s. Polym. Degrad. Stab. 93, 776–785 (2008).

    CAS  Google Scholar 

  61. 61.

    Pereira, F. R. et al. Adverse effects of GHB-induced coma on long-term memory and related brain function. Drug Alcohol Depend. 190, 29–36 (2018).

    Google Scholar 

  62. 62.

    Busardo, F. P. et al. Replacing GHB with GBL in recreational settings: a new trend in Chemsex. Curr. Drug Metab. 19, 1080–1085 (2018).

    CAS  Google Scholar 

  63. 63.

    Hagen, J. Industrial Catalysis: A Practical Approach (Wiley-VCH, 2015).

  64. 64.

    Stille, J. K. & Plummer, L. Polymerization by the Diels–Alder reaction. J. Org. Chem. 26, 4026–4029 (1961).

    CAS  Google Scholar 

  65. 65.

    Gandini, A., Coelho, D. & Silvestre, A. J. D. Reversible click chemistry at the service of macromolecular materials. Part 1: kinetics of the Diels–Alder reaction applied to furan–maleimide model compounds and linear polymerizations. Eur. Polym. J. 44, 4029–4036 (2008).

    CAS  Google Scholar 

  66. 66.

    Darensbourg, D. J. & Yeung, A. D. Kinetics of the (salen)Cr(III)- and (salen)Co(III)-catalyzed copolymerization of epoxides with CO2, and of the accompanying degradation reactions. Polym. Chem. 6, 1103–1117 (2015).

    CAS  Google Scholar 

  67. 67.

    Coderre, D. N., Fastnacht, K. V., Wright, T. J., Dharmaratne, N. U. & Kiesewetter, M. K. H-bonding organocatalysts for ring-opening polymerization at elevated temperatures. Macromolecules 51, 10121–10126 (2018).

    CAS  Google Scholar 

  68. 68.

    Jehanno, C., Pérez-Madrigal, M. M., Demarteau, J., Sardon, H. & Dove, A. P. Organocatalysis for depolymerisation. Polym. Chem. 10, 172–186 (2019).

    CAS  Google Scholar 

  69. 69.

    Barbé, P. C., Cecchin, G. & Noristi, L. The catalytic-system Ti-complex/MgCl2. Adv. Polym. Sci. 81, 1–81 (1987).

    Google Scholar 

  70. 70.

    Kim, S. H. & Somorjai, G. A. Surface science of single-site heterogeneous olefin polymerization catalysts. Proc. Natl Acad. Sci. USA 103, 15289–15294 (2006).

    CAS  Google Scholar 

  71. 71.

    Eagan, J. M. et al. Combining polyethylene and polypropylene: enhanced performance with PE/iPP multiblock polymers. Science 355, 814–816 (2017).

    CAS  Google Scholar 

  72. 72.

    Garcia, J. M. & Robertson, M. L. The future of plastics recycling. Science 358, 870–872 (2017).

    CAS  Google Scholar 

  73. 73.

    Layman, J. M., Gunnerson, M., Bond, E. B., Schonemann, H. & Williams, K. Reclaimed polypropylene composition. US Patent WO/2017/003800 A1 (2017).

  74. 74.

    Layman, J. M., Collias, D. I., Gunnerson, M., Schonemann, H. & Williams, K. Method for purifying reclaimed polymers. US Patent Application 2018/0171096 A1 (2018).

  75. 75.

    Woo, O. S., Kruse, T. M. & Broadbelt, L. J. Binary mixture pyrolysis of polystyrene and poly(alpha-methylstyrene). Polym. Degrad. Stab. 70, 155–160 (2000).

    CAS  Google Scholar 

  76. 76.

    Maschio, G., Feliu, J. A., Ligthart, J., Ferrara, I. & Bassani, C. The use of adiabatic calorimetry for the process analysis and safety evaluation in free radical polymerization. J. Therm. Anal. Calorim. 58, 201–214 (1999).

    CAS  Google Scholar 

  77. 77.

    Godiya, C. B. et al. Depolymerization of waste poly(methyl methacrylate) scraps and purification of depolymerized products. J. Environ. Manage. 231, 1012–1020 (2019).

    CAS  Google Scholar 

  78. 78.

    Braido, R. S., Borges, L. E. P. & Pinto, J. C. Chemical recycling of crosslinked poly(methyl methacrylate) and characterization of polymers produced with the recycled monomer. J. Anal. Appl. Pyrolysis 132, 47–55 (2018).

    CAS  Google Scholar 

  79. 79.

    Neary, W. J. & Kennemur, J. G. Polypentenamer renaissance: challenges and opportunities. ACS Macro Lett. 8, 46–56 (2019).

    CAS  Google Scholar 

  80. 80.

    Tuba, R. et al. Synthesis of recyclable tire additives via equilibrium ring-opening metathesis polymerization. ACS Sustain. Chem. Eng. 4, 6090–6094 (2016).

    CAS  Google Scholar 

  81. 81.

    Höcker, H. Thermodynamic recycling — on ring-opening polymerization and ring-closing depolymerization. J. Macromol. Sci. A 30, 595–601 (1993).

    Google Scholar 

  82. 82.

    Duda, A. & Kowalski, A. in Handbook of Ring-Opening Polymerization (eds Dubois, P., Raquez, J.-M. & Coulembier, O.) 1–51 (Wiley-VCH, 2009).

  83. 83.

    Murakami M. & Ito Y. in Activation of Unreactive Bonds and Organic Synthesis. Topics in Organometallic Chemistry Vol. 3 (ed. Murai, S.) 97–129 (Springer, 1999).

  84. 84.

    Choi, J., Kwon, S. & Mah, S. Photoinduced living cationic polymerization of tetrahydrofuran(IV): syringe method. J. Appl. Polym. Sci. 83, 2082–2087 (2002).

    CAS  Google Scholar 

  85. 85.

    Aouissi, A., Al-Deyab, S. S. & Al-Shahri, H. The cationic ring-opening polymerization of tetrahydrofuran with 12-tungstophosphoric acid. Molecules 15, 1398–1407 (2010).

    CAS  Google Scholar 

  86. 86.

    Ge, Y. Y. et al. SiO2-Al2O3 composite oxides with hierarchical pores as solid acid catalysts for tetrahydrofuran polymerization. Kinet. Catal. 54, 761–766 (2013).

    CAS  Google Scholar 

  87. 87.

    Wang, Y., Hou, Y. & Song, H. Ring-closing depolymerization of polytetrahydrofuran to produce tetrahydrofuran using heteropolyacid as catalyst. Polym. Degrad. Stab. 144, 17–23 (2017).

    CAS  Google Scholar 

  88. 88.

    Enthaler, S. Zinc(II)-triflate as catalyst precursor for ring-closing depolymerization of end-of-life polytetrahydrofuran to produce tetrahydrofuran. J. Appl. Polym. Sci. 131, 39791 (2014).

    Google Scholar 

  89. 89.

    Ogata, N. Studies on polymerization and depolymerization of ε-caprolactam polymer. IX. Reformation reaction of ε-caprolactam from poly-ε-capramide. Bull. Chem. Soc. Jpn. 34, 1201–1205 (1961).

    CAS  Google Scholar 

  90. 90.

    Pilati, F. & Toselli, M. in Handbook of Plastics Recycling (ed. La Mantia, F.) 297–336 (Rapra Technology, 2002).

  91. 91.

    Coates, G. W. & Moore, D. R. Discrete metal-based catalysts for the copolymerization of CO2 and epoxides: discovery, reactivity, optimization, and mechanism. Angew. Chem. Int. Ed. 43, 6618–6639 (2004).

    CAS  Google Scholar 

  92. 92.

    Lu, X., Ren, W. & Wu, G. CO2 copolymers from epoxides: catalyst activity, product selectivity, and stereochemistry control. Acc. Chem. Res. 45, 1721–1735 (2012).

    CAS  Google Scholar 

  93. 93.

    Darensbourg, D. J. Comments on the depolymerization of polycarbonates derived from epoxides and carbon dioxide: a mini review. Polym. Degrad. Stab. 149, 45–51 (2018).

    CAS  Google Scholar 

  94. 94.

    Keul, H., Bächer, R. & Höcker, H. Anionic ring-opening polymerization of 2,2-dimethyltrimethylene carbonate. Makromol. Chem. Macromol. Chem. Phys. 187, 2579–2589 (1986).

    CAS  Google Scholar 

  95. 95.

    Matsuo, J., Aoki, K., Sanda, F. & Endo, T. Substituent effect on the anionic equilibrium polymerization of six-membered cyclic carbonates. Macromolecules 31, 4432–4438 (1998).

    CAS  Google Scholar 

  96. 96.

    Kamber, N. E. et al. Organocatalytic ring-opening polymerization. Chem. Rev. 107, 5813–5840 (2007).

    CAS  Google Scholar 

  97. 97.

    Sanders, D. P. et al. A simple and efficient synthesis of functionalized cyclic carbonate monomers using a versatile pentafluorophenyl ester intermediate. J. Am. Chem. Soc. 132, 14724–14726 (2010).

    CAS  Google Scholar 

  98. 98.

    Tempelaar, S., Mespouille, L., Coulembier, O., Dubois, P. & Dove, A. P. Synthesis and post-polymerisation modifications of aliphatic poly(carbonate)s prepared by ring-opening polymerisation. Chem. Soc. Rev. 42, 1312–1336 (2013).

    CAS  Google Scholar 

  99. 99.

    Zhang, Z., Kuijer, R., Bulstra, S. K., Grijpma, D. W. & Feijen, J. The in vivo and in vitro degradation behavior of poly(trimethylene carbonate). Biomaterials 27, 1741–1748 (2006).

    CAS  Google Scholar 

  100. 100.

    Hill, J. W. & Carothers, W. H. Studies of polymerization and ring formation. XX. Many-membered cyclic esters. J. Am. Chem. Soc. 55, 5031–5039 (1933).

    CAS  Google Scholar 

  101. 101.

    McNeill, I. C. & Rincon, A. Degradation studies of some polyesters and polycarbonates: Part 5 — Poly(trimethylene carbonate). Polym. Degrad. Stab. 24, 59–72 (1989).

    CAS  Google Scholar 

  102. 102.

    Diaz-Celorio, E., Franco, L., Marquez, Y., Rodriguez-Galan, A. & Puiggali, J. Thermal degradation studies on homopolymers and copolymers based on trimethylene carbonate and glycolide units. Thermochim. Acta 528, 23–31(2012).

    CAS  Google Scholar 

  103. 103.

    Childers, M. I., Longo, J. M., Van Zee, N. J., LaPointe, A. M. & Coates, G. W. Stereoselective epoxide polymerization and copolymerization. Chem. Rev. 114, 8129–8152 (2014).

    CAS  Google Scholar 

  104. 104.

    Liu, Y., Zhou, H., Guo, J., Ren, W. & Lu, X. Completely recyclable monomers and polycarbonate: approach to sustainable polymers. Angew. Chem. Int. Ed. 56, 4862–4866 (2017).

    CAS  Google Scholar 

  105. 105.

    Byrne, C. M., Allen, S. D., Lobkovsky, E. B. & Coates, G. W. Alternating copolymerization of limonene oxide and carbon dioxide. J. Am. Chem. Soc. 126, 11404–11405 (2004).

    CAS  Google Scholar 

  106. 106.

    Reiter, M., Vagin, S., Kronast, A., Jandl, C. & Rieger, B. A Lewis acid β-diiminato-zinc-complex as all-rounder for co- and terpolymerisation of various epoxides with carbon dioxide. Chem. Sci. 8, 1876–1882 (2017).

    CAS  Google Scholar 

  107. 107.

    Li, C., Sablong, R. J., van Benthem, R. A. T. M. & Koning, C. E. Unique base-initiated depolymerization of limonene-derived polycarbonates. ACS Macro Lett. 6, 684–688 (2017).

    CAS  Google Scholar 

  108. 108.

    Fiorani, G. et al. Catalytic coupling of carbon dioxide with terpene scaffolds: access to challenging bio-based organic carbonates. ChemSusChem 9, 1304–1311 (2016).

    CAS  Google Scholar 

  109. 109.

    Darensbourg, D. J., Bottarelli, P. & Andreatta, J. R. Inquiry into the formation of cyclic carbonates during the (salen)CrX catalyzed CO2/cyclohexene oxide copolymerization process in the presence of ionic initiators. Macromolecules 40, 7727–7729 (2007).

    CAS  Google Scholar 

  110. 110.

    Darensbourg, D. J., Andreatta, J. R., Jungman, M. J. & Reibenspies, J. H. Investigations into the coupling of cyclohexene oxide and carbon disulfide catalyzed by (salen)CrCl. Selectivity for the production of copolymers vs. cyclic thiocarbonates. Dalton Trans. 2009, 8891–8899 (2009).

    Google Scholar 

  111. 111.

    Darensbourg, D. J., Wilson, S. J. & Yeung, A. D. Oxygen/sulfur scrambling during the copolymerization of cyclopentene oxide and carbon disulfide: selectivity for copolymer vs cyclic [thio]carbonates. Macromolecules 46, 8102–8110 (2013).

    CAS  Google Scholar 

  112. 112.

    Tezuka, K., Komatsu, K. & Haba, O. The anionic ring-opening polymerization of five-membered cyclic carbonates fused to the cyclohexane ring. Polym. J. 45, 1183–1187 (2013).

    CAS  Google Scholar 

  113. 113.

    Haba, O. & Itabashi, H. Ring-opening polymerization of a five-membered lactone trans-fused to a cyclohexane ring. Polym. J. 46, 89–93 (2014).

    CAS  Google Scholar 

  114. 114.

    Ellis, W. C. et al. Copolymerization of CO2 and meso epoxides using enantioselective beta-diiminate catalysts: a route to highly isotactic polycarbonates. Chem. Sci. 5, 4004–4011 (2014).

    CAS  Google Scholar 

  115. 115.

    Guerin, W. et al. Enantiopure isotactic PCHC synthesized by ring-opening polymerization of cyclohexene carbonate. Macromolecules 47, 4230–4235 (2014).

    CAS  Google Scholar 

  116. 116.

    Diallo, A. K. et al. Block and random copolymers of 1,2-cyclohexyl cyclocarbonate and l-lactide or trimethylene carbonate synthesized by ring-opening polymerization. Macromolecules 48, 3247–3256 (2015).

    CAS  Google Scholar 

  117. 117.

    Honda, S., Mori, T., Goto, H. & Sugimoto, H. Carbon-dioxide-derived unsaturated alicyclic polycarbonate: synthesis, characterization, and post-polymerization modification. Polymer 55, 4832–4836 (2014).

    CAS  Google Scholar 

  118. 118.

    Darensbourg, D. J., Chung, W.-C., Arp, C. J., Tsai, F.-T. & Kyran, S. J. Copolymerization and cycloaddition products derived from coupling reactions of 1,2-epoxy-4-cyclohexene and carbon dioxide. Postpolymerization functionalization via thiol–ene click reactions. Macromolecules 47, 7347–7353 (2014).

    CAS  Google Scholar 

  119. 119.

    Winkler, M., Romain, C., Meier, M. A. R. & Williams, C. K. Renewable polycarbonates and polyesters from 1,4-cyclohexadiene. Green Chem. 17, 300–306 (2015).

    CAS  Google Scholar 

  120. 120.

    Diallo, A. K. et al. Syndioselective ring-opening polymerization and copolymerization of trans-1,4-cyclohexadiene carbonate mediated by achiral metal- and organo-catalysts. Polym. Chem. 6, 1961–1971 (2015).

    CAS  Google Scholar 

  121. 121.

    Kutney, J. P. & Ratcliffe, A. H. A novel and mild procedure for preparation of cyclic carbonates. An excellent protecting group for vicinal diols. Synth. Commun. 5, 47–52 (1975).

    CAS  Google Scholar 

  122. 122.

    Darensbourg, D. J., Wei, S., Yeung, A. D. & Ellis, W. C. An efficient method of depolymerization of poly(cyclopentene carbonate) to its comonomers: cyclopentene oxide and carbon dioxide. Macromolecules 46, 5850–5855 (2013).

    CAS  Google Scholar 

  123. 123.

    Darensbourg, D. J., Yeung, A. D. & Wei, S. Base initiated depolymerization of polycarbonates to epoxide and carbon dioxide co-monomers: a computational study. Green Chem. 15, 1578–1583 (2013).

    CAS  Google Scholar 

  124. 124.

    Darensbourg, D. J. & Yeung, A. D. Thermodynamics of the carbon dioxide–epoxide copolymerization and kinetics of the metal-free degradation: a computational study. Macromolecules 46, 83–95 (2013).

    CAS  Google Scholar 

  125. 125.

    Darensbourg, D. J., Chung, W., Yeung, A. D. & Luna, M. Dramatic behavioral differences of the copolymerization reactions of 1,4-cyclohexadiene and 1,3-cyclohexadiene oxides with carbon dioxide. Macromolecules 48, 1679–1687 (2015).

    CAS  Google Scholar 

  126. 126.

    Darensbourg, D. J. & Wilson, S. J. Synthesis of poly(indene carbonate) from indene oxide and carbon dioxide — a polycarbonate with a rigid backbone. J. Am. Chem. Soc. 133, 18610–18613 (2011).

    CAS  Google Scholar 

  127. 127.

    Darensbourg, D. J., Wei, S. & Wilson, S. J. Depolymerization of poly(indene carbonate). A unique degradation pathway. Macromolecules 46, 3228–3233 (2013).

    CAS  Google Scholar 

  128. 128.

    Kim, J. G., Cowman, C. D., LaPointe, A. M., Wiesner, U. & Coates, G. W. Tailored living block copolymerization: multiblock poly(cyclohexene carbonate)s with sequence control. Macromolecules 44, 1110–1113 (2011).

    CAS  Google Scholar 

  129. 129.

    Zhang, J. et al. Fully degradable and well-defined brush copolymers from combination of living CO2/epoxide copolymerization, thiol–ene click reaction and ROP of ε-caprolactone. Macromolecules 44, 9882–9886 (2011).

    CAS  Google Scholar 

  130. 130.

    Yi, N., Unruangsri, J., Shaw, J. & Williams, C. K. Carbon dioxide capture and utilization: using dinuclear catalysts to prepare polycarbonates. Faraday Discuss. 183, 67–82 (2015).

    CAS  Google Scholar 

  131. 131.

    Liu, Y., Wang, M., Ren, W., Xu, Y. & Lu, X. Crystalline hetero-stereocomplexed polycarbonates produced from amorphous opposite enantiomers having different chemical structures. Angew. Chem. Int. Ed. 54, 7042–7046 (2015).

    CAS  Google Scholar 

  132. 132.

    Si, G. et al. Chromium complexes containing a tetradentate [OSSO]-type bisphenolate ligand as a novel family of catalysts for the copolymerization of carbon dioxide and 4-vinylcyclohexene oxide. RSC Adv. 6, 22821–22826 (2016).

    CAS  Google Scholar 

  133. 133.

    Lin, P. et al. Bimetallic nickel complexes that bear diamine-bis(benzotriazole phenolate) derivatives as efficient catalysts for the copolymerization of carbon dioxide with epoxides. ChemCatChem 8, 984–991 (2016).

    CAS  Google Scholar 

  134. 134.

    Huang, L., Tsai, C., Chuang, H. & Ko, B. Copolymerization of carbon dioxide with epoxides catalyzed by structurally well-characterized dinickel bis(benzotriazole iminophenolate) complexes: influence of carboxylate ligands on the catalytic performance. Inorg. Chem. 56, 6141–6151 (2017).

    CAS  Google Scholar 

  135. 135.

    Zhang, H., Liu, B., Ding, H., Chen, J. & Duan, Z. Polycarbonates derived from propylene oxide, CO2, and 4-vinyl cyclohexene oxides terpolymerization catalyzed by bifunctional salcyCoIIINO3 complex and its post-polymerization modification. Polymer 129, 5–11 (2017).

    CAS  Google Scholar 

  136. 136.

    Chang, C. et al. Alternating copolymerization of epoxides with carbon dioxide or cyclic anhydrides using bimetallic nickel and cobalt catalysts: preparation of hydrophilic nanofibers from functionalized polyesters. Polymer 141, 1–11 (2018).

    CAS  Google Scholar 

  137. 137.

    Zhang, Y., Yang, G. & Wu, G. A bifunctional β-diiminate zinc catalyst with CO2/epoxides copolymerization and RAFT polymerization capacities for versatile block copolymers construction. Macromolecules 51, 3640–3646 (2018).

    CAS  Google Scholar 

  138. 138.

    Darensbourg, D. J., Rodgers, J. L. & Fang, C. C. The copolymerization of carbon dioxide and [2-(3,4-epoxycyclohexyl)ethyl]trimethoxysilane catalyzed by (salen)CrCl. Formation of a CO2 soluble polycarbonate. Inorg. Chem. 42, 4498–4500 (2003).

    CAS  Google Scholar 

  139. 139.

    Duchateau, R. et al. Ester-functionalized polycarbonates obtained by copolymerization of ester-substituted oxiranes and carbon dioxide: a MALDI-ToF-MS analysis study. Macromolecules 39, 7900–7908 (2006).

    CAS  Google Scholar 

  140. 140.

    Darensbourg, D. J. & Kyran, S. J. Carbon dioxide copolymerization study with a sterically encumbering naphthalene-derived oxide. ACS Catal. 5, 5421–5430 (2015).

    CAS  Google Scholar 

  141. 141.

    Liu, Y. et al. CO2-mediated formation of chiral carbamates from meso-epoxides via polycarbonate intermediates. J. Org. Chem. 81, 8959–8966 (2016).

    CAS  Google Scholar 

  142. 142.

    Nishioka, K., Goto, H. & Sugimoto, H. Dual catalyst system for asymmetric alternating copolymerization of carbon dioxide and cyclohexene oxide with chiral aluminum complexes: Lewis base as catalyst activator and Lewis acid as monomer activator. Macromolecules 45, 8172–8192 (2012).

    CAS  Google Scholar 

  143. 143.

    Koning, C. et al. Synthesis and physical characterization of poly(cyclohexane carbonate), synthesized from CO2 and cyclohexene oxide. Polymer 42, 3995–4004 (2001).

    CAS  Google Scholar 

  144. 144.

    Musser, M. T. in Ullmann’s Encyclopedia of Industrial Chemistry Vol. 11 (ed. Elvers, B.) 49–60 (Wiley-VCH, 2011).

  145. 145.

    Carothers, W. H., Dorough, G. L. & Natta, F. J. Studies of polymerization and ring formation. X. The reversible polymerization of six-membered cyclic esters. J. Am. Chem. Soc. 54, 761–772 (1932).

    CAS  Google Scholar 

  146. 146.

    Lowe, C. E. Preparation of high molecular weight polyhydroxyacetic ester. US Patent 2,668,162 (1954).

  147. 147.

    Garlotta, D. A literature review of poly(lactic acid). J. Polym. Environ. 9, 63–84 (2001).

    CAS  Google Scholar 

  148. 148.

    Farah, S., Anderson, D. G. & Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications — a comprehensive review. Adv. Drug Deliv. Rev. 107, 367–392 (2016).

    CAS  Google Scholar 

  149. 149.

    Posen, I. D., Jaramillo, P. & Griffin, W. M. Uncertainty in the life cycle greenhouse gas emissions from US production of three biobased polymer families. Environ. Sci. Technol. 50, 2846–2858 (2016).

    CAS  Google Scholar 

  150. 150.

    Weiss, M. et al. A review of the environmental impacts of biobased materials. J. Ind. Ecol. 16, S169–S181 (2012).

    CAS  Google Scholar 

  151. 151.

    Terrade, F. G., van Krieken, J., Verkuijl, B. J. V. & Bouwman, E. Catalytic cracking of lactide and poly(lactic acid) to acrylic acid at low temperatures. ChemSusChem 10, 1904–1908 (2017).

    CAS  Google Scholar 

  152. 152.

    Shuklova, I. A. et al. Studies on the epimerization of diastereomeric lactides. Tetrahedron Lett. 52, 1027–1030 (2011).

    Google Scholar 

  153. 153.

    Lou, X., Detrembleur, C. & Jérôme, R. Living cationic polymerization of delta-valerolactone and synthesis of high molecular weight homopolymer and asymmetric telechelic and block copolymer. Macromolecules 35, 1190–1195 (2002).

    CAS  Google Scholar 

  154. 154.

    Datta, P. P., Pothupitiya, J. U., Kiesewetter, E. T. & Kiesewetter, M. K. Coupled equilibria in H-bond donating ring-opening polymerization: the effective catalyst-determined shift of a polymerization equilibrium. Eur. Polym. J. 95, 671–677 (2017).

    CAS  Google Scholar 

  155. 155.

    Kricheldorf, H. R., Dunsing, R. & Serra, A. Polylactones. 10. Cationic polymerization of delta-valerolactone by means of alkylating reagents. Macromolecules 20, 2050–2057 (1987).

    CAS  Google Scholar 

  156. 156.

    Abe, H. Thermal degradation of environmentally degradable poly(hydroxyalkanoic acid)s. Macromol. Biosci. 6, 469–486 (2006).

    CAS  Google Scholar 

  157. 157.

    Fahnhorst, G. W. & Hoye, T. R. A carbomethoxylated polyvalerolactone from malic acid: synthesis and divergent chemical recycling. ACS Macro Lett. 7, 143–147 (2018).

    CAS  Google Scholar 

  158. 158.

    Schneiderman, D. K. & Hillmyer, M. A. Aliphatic polyester block polymer design. Macromolecules 49, 2419–2428 (2016).

    CAS  Google Scholar 

  159. 159.

    Iwabuchi, S., Jaacks, V. & Kern, W. The thermal degradation of poly-epsilon-caprolactone. Makromol. Chem. 177, 2675–2679 (1976).

    CAS  Google Scholar 

  160. 160.

    Abe, H., Takahashi, N., Kim, K. J., Mochizuki, M. & Doi, Y. Effects of residual zinc compounds and chain-end structure on thermal degradation of poly(ε-caprolactone). Biomacromolecules 5, 1480–1488 (2004).

    CAS  Google Scholar 

  161. 161.

    Kondo, R., Toshima, K. & Matsumura, S. Lipase-catalyzed selective transformation of polycaprolactone into cyclic dicaprolactone and its repolymerization in supercritical carbon dioxide. Macromol. Biosci. 2, 267–271 (2002).

    CAS  Google Scholar 

  162. 162.

    Sivalingam, G. & Madras, G. Thermal degradation of poly(ε-caprolactone). Polym. Degrad. Stab. 80, 11–16 (2003).

    CAS  Google Scholar 

  163. 163.

    MacDonald, J. P. & Shaver, M. P. An aromatic/aliphatic polyester prepared via ring-opening polymerisation and its remarkably selective and cyclable depolymerisation to monomer. Polym. Chem. 7, 553–559 (2016).

    CAS  Google Scholar 

  164. 164.

    Lizundia, E., Makwana, V. A., Larrañaga, A., Luis Vilas, J. & Shaver, M. P. Thermal, structural and degradation properties of an aromatic–aliphatic polyester built through ring-opening polymerisation. Polym. Chem. 8, 3530–3538 (2017).

    CAS  Google Scholar 

  165. 165.

    Yuan, J. et al. 4-Hydroxyproline-derived sustainable polythioesters: controlled ring-opening polymerization, complete recyclability, and facile functionalization. J. Am. Chem. Soc. 141, 4928–4935 (2019).

    CAS  Google Scholar 

  166. 166.

    Hong, M. & Chen, E. Y.-X. Towards truly sustainable polymers: a metal-free recyclable polyester from biorenewable non-strained γ-butyrolactone. Angew. Chem. Int. Ed. 55, 4188–4193 (2016).

    CAS  Google Scholar 

  167. 167.

    Zhu, J. & Chen, Y.-X. Living coordination polymerization of a six-five bicyclic lactone to produce completely recyclable polyester. Angew. Chem. Int. Ed. 57, 12558–12562 (2018).

    CAS  Google Scholar 

  168. 168.

    Zhu, J., Watson, E. M., Tang, J. & Chen, E. Y.-X. A synthetic polymer system with repeatable chemical recyclability. Science 360, 398–403 (2018).

    CAS  Google Scholar 

  169. 169.

    Cywar, R. M., Zhu, J. & Chen, E. Y.-X. Selective or living organopolymerization of a six-five bicyclic lactone to produce fully recyclable polyesters. Polym. Chem. 10, 3097–3106 (2019).

    CAS  Google Scholar 

  170. 170.

    Zhu, J.-B. & Chen, E. Y.-X. Catalyst-sidearm-induced stereoselectivity switching in polymerization of a racemic lactone for stereocomplexed crystalline polymer with a circular life cycle. Angew. Chem. Int. Ed. 131, 1190–1194 (2019).

    Google Scholar 

  171. 171.

    Sheldon, R. A. The E factor: fifteen years on. Green Chem. 9, 1273–1283 (2007).

    CAS  Google Scholar 

  172. 172.

    Kuttippurath, J., Kumar, P., Nair, P. J. & Pandey, P. C. Emergence of ozone recovery evidenced by reduction in the occurrence of Antarctic ozone loss saturation. NPJ Clim. Atmos. Sci. 1, 42 (2018).

    Google Scholar 

  173. 173.

    Langematz, U. Stratospheric ozone: down and up through the anthropocene. ChemTexts 5, 8 (2019).

    Google Scholar 

  174. 174.

    Fonner, V. A. et al. Effectiveness and safety of oral HIV preexposure prophylaxis for all populations. AIDS 30, 1973–1983 (2016).

    Google Scholar 

  175. 175.

    Zhang, X. S., Zuo, X. B., Ortmann, P., Mecking, S. & Alamo, R. G. Crystallization of long-spaced precision polyacetals I: melting and recrystallization of rapidly formed crystallites. Macromolecules 52, 4934–4948 (2019).

    CAS  Google Scholar 

  176. 176.

    Busch, H., Schiebel, E., Sickinger, A. & Mecking, S. Ultralong-chain-spaced crystalline poly(H-phosphonate)s and poly(phenylphosphonate)s. Macromolecules 50, 7901–7910 (2017).

    CAS  Google Scholar 

  177. 177.

    Myers, D. et al. Ring opening polymerization of macrolactones: high conversions and activities using an yttrium catalyst. Polym. Chem. 8, 5780–5785 (2017).

    CAS  Google Scholar 

  178. 178.

    Haider, T. et al. Long-chain polyorthoesters as degradable polyethylene mimics. Macromolecules 52, 2411–2420 (2019).

    CAS  Google Scholar 

  179. 179.

    Stempfle, F., Ortmann, P. & Mecking, S. Long-chain aliphatic polymers to bridge the gap between semicrystalline polyolefins and traditional polycondensates. Chem. Rev. 116, 4597–4641 (2016).

    CAS  Google Scholar 

  180. 180.

    Inoue, S. High polymers from CO2. Chemtech 6, 588–594 (1976).

    CAS  Google Scholar 

  181. 181.

    Zhang, D. et al. Polymerization of cyclic carbamates: a practical route to aliphatic polyurethanes. Macromolecules 52, 2719–2724 (2019).

    CAS  Google Scholar 

  182. 182.

    Keul, H., Müller, A. J., Höcker, H., Sylvester, G. & Schon, N. Preparation of polymers with polycarbonate sequences and their depolymerization; an example of thermodynamic recycling. Makromol. Chem. Macromol. Symp. 67, 289–298 (1993).

    CAS  Google Scholar 

  183. 183.

    Höcker, H. & Keul, H. Ring-opening polymerization and depolymerization in respective polymers. Macromol. Symp. 98, 825–834 (1995).

    Google Scholar 

  184. 184.

    Neffgen, S., Keul, H. & Höcker, H. Ring-opening polymerization of cyclic urethanes and ring-closing depolymerization of the respective polyurethanes. Macromol. Rapid Commun. 17, 373–382 (1996).

    CAS  Google Scholar 

  185. 185.

    Lebedev, B. V., Smirnova, N. N. & Kiparisova, E. G. Calorimetric study of tetrahydro-1,3-oxazin-2-one and poly(oxy-1,3-propanediyliminocarbonyl), and the polymerization/depolymerization equilibrium. Macromol. Chem. Phys. 198, 41–58 (1997).

    CAS  Google Scholar 

  186. 186.

    Kusan, J., Keul, H. & Höcker, H. Cationic ring-opening polymerization of tetramethylene urethane. Macromolecules 34, 389–395 (2001).

    CAS  Google Scholar 

Download references


This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (award no. DE-FG02-05ER15687) and Cornell University.

Author information




Both authors contributed to the research of data and the discussion of content. Y.D.Y.L.G. wrote the manuscript. Y.D.Y.L.G. and G.W.C. edited and revised the manuscript prior to submission.

Corresponding authors

Correspondence to Geoffrey W. Coates or Yutan D. Y. L. Getzler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Aquafil nylon carpet recycling:


How2Recycle initiative:

IBM VolCat:

NatureWorks Ingeo:

NatureWorks Ingeo chemical recycling:

Plastics Insight:

Shaw Industries nylon carpet recycling:

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Coates, G.W., Getzler, Y.D.Y.L. Chemical recycling to monomer for an ideal, circular polymer economy. Nat Rev Mater 5, 501–516 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing