Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From bulk to molecularly thin hybrid perovskites

Abstract

Organic–inorganic hybrid perovskites have been intensively researched in the past decade for their optoelectronic properties. The emergence of Ruddlesden–Popper perovskites, which have mixed dimensionality, has heralded new opportunities for tailor-made semiconductors that combine enhanced stability with useful properties between those of 2D and 3D systems. Inspired by advances in 2D materials research, there is growing interest in molecularly thin versions of these hybrid perovskites, owing to their ease of incorporation into electronic devices. There is, thus, a need to understand thickness-dependent electrical, excitonic and phononic properties that go beyond quantum-confinement effects. Recent studies have shown that, apart from tuning the dimensionality of the system, fine-tuning its thickness also helps to optimize performance in different applications, ranging from third-harmonic generation to photodetectors and spintronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Decreasing dimensionality and thickness in hybrid 2D perovskites.
Fig. 2: Growth methods for thin 2D perovskite single crystals.
Fig. 3: Thickness-dependent optical properties of 2D perovskites.
Fig. 4: Thickness-dependent and strain-induced changes in photoluminescence energy.
Fig. 5: Non-linear optical properties of exfoliated 2D Ruddlesden–Popper perovskite crystals.
Fig. 6: Device fabrication and performance of molecularly thin 2D perovskites.
Fig. 7: Ferroelectric-coupled Rashba effect in perovskites.

Similar content being viewed by others

References

  1. Grancini, G. & Nazeeruddin, M. K. Dimensional tailoring of hybrid perovskites for photovoltaics. Nat. Rev. Mater. 4, 4–22 (2019).

    CAS  Google Scholar 

  2. Grätzel, M. The rise of highly efficient and stable perovskite solar cells. Acc. Chem. Res. 50, 487–491 (2017).

    Google Scholar 

  3. Etgar, L. The merit of perovskite’s dimensionality; can this replace the 3D halide perovskite? Energy Environ. Sci. 11, 234–242 (2018).

    CAS  Google Scholar 

  4. Fu, Y. et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 4, 169–188 (2019).

    CAS  Google Scholar 

  5. Smith, M. D., Crace, E. J., Jaffe, A. & Karunadasa, H. I. The diversity of layered halide perovskites. Annu. Rev. Mater. Res. 48, 111–136 (2018).

    CAS  Google Scholar 

  6. Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872 (2016).

    CAS  Google Scholar 

  7. Soe, C. M. M. et al. New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: structure, properties, and photovoltaic performance. J. Am. Chem. Soc. 139, 16297–16309 (2017).

    CAS  Google Scholar 

  8. Saparov, B. & Mitzi, D. B. Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116, 4558–4596 (2016).

    CAS  Google Scholar 

  9. Stoumpos, C. C. et al. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852–2867 (2016).

    CAS  Google Scholar 

  10. Cao, D. H., Stoumpos, C. C., Farha, O. K., Hupp, J. T. & Kanatzidis, M. G. 2D Homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 137, 7843–7850 (2015).

    CAS  Google Scholar 

  11. Yan, J., Qiu, W., Wu, G., Heremans, P. & Chen, H. Recent progress in 2D/quasi-2D layered metal halide perovskites for solar cells. J. Mater. Chem. A 6, 11063–11077 (2018).

    CAS  Google Scholar 

  12. Mauck, C. M. & Tisdale, W. A. Excitons in 2D organic–inorganic halide perovskites. Trends Chem. 1, 380–393 (2019).

    Google Scholar 

  13. Hong, X., Ishihara, T. & Nurmikko, A. V. Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys. Rev. B 45, 6961–6964 (1992).

    CAS  Google Scholar 

  14. Tanaka, K. et al. Image charge effect on two-dimensional excitons in an inorganic-organic quantum-well crystal. Phys. Rev. B 71, 045312 (2005).

    Google Scholar 

  15. Katan, C., Mercier, N. & Even, J. Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors. Chem. Rev. 119, 3140–3192 (2019).

    CAS  Google Scholar 

  16. Milot, R. L. et al. Charge-carrier dynamics in 2D hybrid metal–halide perovskites. Nano Lett. 16, 7001–7007 (2016).

    CAS  Google Scholar 

  17. Even, J., Pedesseau, L. & Katan, C. Understanding quantum confinement of charge carriers in layered 2D hybrid perovskites. ChemPhysChem 15, 3733–3741 (2014).

    CAS  Google Scholar 

  18. Tanaka, K. & Kondo, T. Bandgap and exciton binding energies in lead-iodide-based natural quantum-well crystals. Sci. Technol. Adv. Mater. 4, 599–604 (2003).

    CAS  Google Scholar 

  19. Tanaka, K. et al. Electronic and excitonic structures of inorganic–organic perovskite-type quantum-well crystal (C4H9NH3)2PbBr4. Jpn. J. Appl. Phys. 44, 5923–5932 (2005).

    CAS  Google Scholar 

  20. Kitazawa, N., Aono, M. & Watanabe, Y. Excitons in organic–inorganic hybrid compounds (CnH2n+1NH3)2PbBr4 (n = 4, 5, 7 and 12). Thin Solid Films 518, 3199–3203 (2010).

    CAS  Google Scholar 

  21. Quan, L. N. et al. Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 138, 2649–2655 (2016).

    CAS  Google Scholar 

  22. Smith, I. C., Hoke, E. T., Solis-Ibarra, D., McGehee, M. D. & Karunadasa, H. I. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 126, 11414–11417 (2014).

    Google Scholar 

  23. Gong, X. et al. Electron–phonon interaction in efficient perovskite blue emitters. Nat. Mater. 17, 550–556 (2018).

    CAS  Google Scholar 

  24. Du, K.-Z. et al. Two-dimensional lead(II) halide-based hybrid perovskites templated by acene alkylamines: crystal structures, optical properties, and piezoelectricity. Inorg. Chem. 56, 9291–9302 (2017).

    CAS  Google Scholar 

  25. Hu, T. et al. Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites. J. Phys. Chem. Lett. 7, 2258–2263 (2016).

    CAS  Google Scholar 

  26. Lemmerer, A. & Billing, D. G. Synthesis, characterization and phase transitions of the inorganic–organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4], n = 7, 8, 9 and 10. Dalton Trans. 41, 1146–1157 (2012).

    CAS  Google Scholar 

  27. Billing, D. G. & Lemmerer, A. Synthesis, characterization and phase transitions of the inorganic–organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4] (n = 12, 14, 16 and 18). New J. Chem. 32, 1736–1746 (2008).

    CAS  Google Scholar 

  28. Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).

    CAS  Google Scholar 

  29. Gao, P., Bin Mohd Yusoff, A. R. & Nazeeruddin, M. K. Dimensionality engineering of hybrid halide perovskite light absorbers. Nat. Commun. 9, 5028 (2018).

    Google Scholar 

  30. Chen, P. et al. Charge-transfer versus energy-transfer in quasi-2D perovskite light-emitting diodes. Nano Energy 50, 615–622 (2018).

    CAS  Google Scholar 

  31. Blancon, J.-C. et al. Scaling law for excitons in 2D perovskite quantum wells. Nat. Commun. 9, 2254 (2018).

    Google Scholar 

  32. Hintermayr, V. A., Polavarapu, L., Urban, A. S. & Feldmann, J. Accelerated carrier relaxation through reduced coulomb screening in two-dimensional halide perovskite nanoplatelets. ACS Nano 12, 10151–10158 (2018).

    CAS  Google Scholar 

  33. Xiao, Z., Meng, W., Wang, J., Mitzi, D. B. & Yan, Y. Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. Mater. Horiz. 4, 206–216 (2017).

    Google Scholar 

  34. Chen, Y. et al. 2D Ruddlesden–Popper perovskites for optoelectronics. Adv. Mater. 30, 1703487 (2018).

    Google Scholar 

  35. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    CAS  Google Scholar 

  36. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    CAS  Google Scholar 

  37. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Google Scholar 

  38. Ye, Z. et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature 513, 214–218 (2014).

    CAS  Google Scholar 

  39. Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Google Scholar 

  40. Leng, K. et al. Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nat. Mater. 17, 908–914 (2018).

    CAS  Google Scholar 

  41. Shi, E. et al. Two-dimensional halide perovskite nanomaterials and heterostructures. Chem. Soc. Rev. 47, 6046–6072 (2018).

    CAS  Google Scholar 

  42. Dou, L. Emerging two-dimensional halide perovskite nanomaterials. J. Mater. Chem. C 5, 11165–11173 (2017).

    CAS  Google Scholar 

  43. Miyata, K., Atallah, T. L. & Zhu, X. Y. Lead halide perovskites: Crystal-liquid duality, phonon glass electron crystals, and large polaron formation. Sci. Adv. 3, e1701469 (2017).

    Google Scholar 

  44. Yaffe, O. et al. Excitons in ultrathin organic-inorganic perovskite crystals. Phys. Rev. B 92, 045414 (2015).

    Google Scholar 

  45. Lippert, S. et al. Influence of the substrate material on the optical properties of tungsten diselenide monolayers. 2D Mater. 4, 025045 (2017).

    Google Scholar 

  46. Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun. 8, 15251 (2017).

    Google Scholar 

  47. Reid, O. G., Yang, M., Kopidakis, N., Zhu, K. & Rumbles, G. Grain-size-limited mobility in methylammonium lead iodide perovskite thin films. ACS Energy Lett. 1, 561–565 (2016).

    CAS  Google Scholar 

  48. Ponseca Jr, C. S. & Sundström, V. Revealing the ultrafast charge carrier dynamics in organo metal halide perovskite solar cell materials using time resolved THz spectroscopy. Nanoscale 8, 6249–6257 (2016).

    CAS  Google Scholar 

  49. Huang, J., Yuan, Y., Shao, Y. & Yan, Y. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2, 17042 (2017).

    CAS  Google Scholar 

  50. Li, Q. et al. Atomic layer dependence of shear modulus in a two-dimensional single-crystal organic–inorganic hybrid perovskite. J. Phys. Chem. C 123, 15251–15257 (2019).

    CAS  Google Scholar 

  51. Tu, Q. et al. Stretching and breaking of ultrathin 2D hybrid organic–inorganic perovskites. ACS Nano 12, 10347–10354 (2018).

    CAS  Google Scholar 

  52. Akinwande, D. et al. A review on mechanics and mechanical properties of 2D materials—Graphene and beyond. Extreme Mech. Lett. 13, 42–77 (2017).

    Google Scholar 

  53. Sun, S., Fang, Y., Kieslich, G., White, T. J. & Cheetham, A. K. Mechanical properties of organic–inorganic halide perovskites, CH3NH3PbX3 (X = I, Br and Cl), by nanoindentation. J. Mater. Chem. A 3, 18450–18455 (2015).

    CAS  Google Scholar 

  54. Rakita, Y., Cohen, S. R., Kedem, N. K., Hodes, G. & Cahen, D. Mechanical properties of APbX3 (A = Cs or CH3NH3; X = I or Br) perovskite single crystals. MRS Commun. 5, 623–629 (2015).

    CAS  Google Scholar 

  55. Liu, K. et al. Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett. 14, 5097–5103 (2014).

    CAS  Google Scholar 

  56. Tu, Q. et al. Out-of-plane mechanical properties of 2D hybrid organic–inorganic perovskites by nanoindentation. ACS Appl. Mater. Interfaces 10, 22167–22173 (2018).

    CAS  Google Scholar 

  57. Bosak, A. et al. Elasticity of hexagonal boron nitride: Inelastic x-ray scattering measurements. Phys. Rev. B 73, 041402 (2006).

    Google Scholar 

  58. Jiménez-Riobóo, R. J. et al. In- and out-of-plane longitudinal acoustic-wave velocities and elastic moduli in h-BN from Brillouin scattering measurements. Appl. Phys. Lett. 112, 051905 (2018).

    Google Scholar 

  59. Blakslee, O. L., Proctor, D. G., Seldin, E. J., Spence, G. B. & Weng, T. Elastic constants of compression-annealed pyrolytic graphite. J. Appl. Phys. 41, 3373–3382 (1970).

    CAS  Google Scholar 

  60. Seldin, E. J. & Nezbeda, C. W. Elastic constants and electron-microscope observations of neutron-irradiated compression-annealed pyrolytic and single-crystal graphite. J. Appl. Phys. 41, 3389–3400 (1970).

    CAS  Google Scholar 

  61. Feldman, J. L. Elastic constants of 2H-MoS2 and 2H-NbSe2 extracted from measured dispersion curves and linear compressibilities. J. Phys. Chem. Solids 37, 1141–1144 (1976).

    CAS  Google Scholar 

  62. Ji, L.-J. et al. Quantifying the exfoliation ease level of 2D materials via mechanical anisotropy. Chem. Mater. 30, 8732–8738 (2018).

    CAS  Google Scholar 

  63. Liu, Z. et al. Interlayer binding energy of graphite: a mesoscopic determination from deformation. Phys. Rev. B 85, 205418 (2012).

    Google Scholar 

  64. Björkman, T., Gulans, A., Krasheninnikov, A. V. & Nieminen, R. M. van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. Phys. Rev. Lett. 108, 235502 (2012).

    Google Scholar 

  65. Wei, T.-C. et al. Photostriction of CH3NH3PbBr3 perovskite crystals. Adv. Mater. 29, 1701789 (2017).

    Google Scholar 

  66. Zhou, Y. et al. Giant photostriction in organic–inorganic lead halide perovskites. Nat. Commun. 7, 11193 (2016).

    CAS  Google Scholar 

  67. Chen, B. et al. Large electrostrictive response in lead halide perovskites. Nat. Mater. 17, 1020–1026 (2018).

    CAS  Google Scholar 

  68. Liu, J. et al. Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application. ACS Nano 10, 3536–3542 (2016).

    CAS  Google Scholar 

  69. Ji, D. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 570, 87–90 (2019).

    CAS  Google Scholar 

  70. Yang, D. et al. All-inorganic cesium lead halide perovskite nanocrystals: synthesis, surface engineering and applications. J. Mater. Chem. C 7, 757–789 (2019).

    CAS  Google Scholar 

  71. Dou, L. et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 349, 1518–1521 (2015).

    CAS  Google Scholar 

  72. Li, Z. et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28, 284–292 (2016).

    Google Scholar 

  73. Calabrese, J. et al. Preparation and characterization of layered lead halide compounds. J. Am. Chem. Soc. 113, 2328–2330 (1991).

    CAS  Google Scholar 

  74. Xu, Z., Mitzi, D. B. & Medeiros, D. R. [(CH3)3NCH2CH2NH3]SnI4:  a layered perovskite with quaternary/primary ammonium dications and short interlayer iodine–iodine contacts. Inorg. Chem. 42, 1400–1402 (2003).

    CAS  Google Scholar 

  75. Gao, Y. et al. Molecular engineering of organic–inorganic hybrid perovskites quantum wells. Nat. Chem. 11, 1151–1157 (2019).

    CAS  Google Scholar 

  76. Mao, L., Stoumpos, C. C. & Kanatzidis, M. G. Two-dimensional hybrid halide perovskites: principles and promises. J. Am. Chem. Soc. 141, 1171–1190 (2019).

    CAS  Google Scholar 

  77. Lanford, O. E. & Kiehl, S. J. The solubility of lead iodide in solutions of potassium iodide-complex lead iodide ions. J. Am. Chem. Soc. 63, 667–669 (1941).

    CAS  Google Scholar 

  78. Stoumpos, C. C. et al. High members of the 2D Ruddlesden-Popper halide perovskites: synthesis, optical properties, and solar cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16. Chem. 2, 427–440 (2017).

    CAS  Google Scholar 

  79. Wang, J. et al. Controllable growth of centimeter-sized 2D perovskite heterostructures for highly narrow dual-band photodetectors. ACS Nano 13, 5473–5484 (2019).

    CAS  Google Scholar 

  80. Huang, Y. et al. Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano 9, 10612–10620 (2015).

    CAS  Google Scholar 

  81. Niu, W., Eiden, A., Vijaya Prakash, G. & Baumberg, J. J. Exfoliation of self-assembled 2D organic-inorganic perovskite semiconductors. Appl. Phys. Lett. 104, 171111 (2014).

    Google Scholar 

  82. Mao, L. et al. Hybrid Dion–Jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 140, 3775–3783 (2018).

    CAS  Google Scholar 

  83. Soe, C. M. M. et al. New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: structure, properties, and photovoltaic performance. J. Am. Chem. Soc. 139, 16297–16309 (2017).

    CAS  Google Scholar 

  84. Kowarik, S., Gerlach, A. & Schreiber, F. Organic molecular beam deposition: fundamentals, growth dynamics, and in situ studies. J. Phys. Condens. Matter 20, 184005 (2008).

    Google Scholar 

  85. Li, L. et al. Two-step growth of 2D organic–inorganic perovskite microplates and arrays for functional optoelectronics. J. Phys. Chem. Lett. 9, 4532–4538 (2018).

    CAS  Google Scholar 

  86. Kitazawa, N., Yaemponga, D., Aono, M. & Watanabe, Y. Optical properties of organic–inorganic hybrid films prepared by the two-step growth process. J. Lumin. 129, 1036–1041 (2009).

    CAS  Google Scholar 

  87. Wang, G. et al. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. Sci. Adv. 1, e1500613 (2015).

    Google Scholar 

  88. Wang, Y. et al. Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications. Nano Res. 10, 1223–1233 (2017).

    CAS  Google Scholar 

  89. Popov, G. et al. Atomic layer deposition of PbI2 thin films. Chem. Mater. 31, 1101–1109 (2019).

    CAS  Google Scholar 

  90. Yu, W. et al. Single crystal hybrid perovskite field-effect transistors. Nat. Commun. 9, 5354 (2018).

    CAS  Google Scholar 

  91. He, X. et al. Oriented growth of ultrathin single crystals of 2D Ruddlesden–Popper hybrid lead iodide perovskites for high-performance photodetectors. ACS Appl. Mater. Interfaces 11, 15905–15912 (2019).

    CAS  Google Scholar 

  92. Lédée, F. et al. Fast growth of monocrystalline thin films of 2D layered hybrid perovskite. CrystEngComm 19, 2598–2602 (2017).

    Google Scholar 

  93. Wang, K., Wu, C., Yang, D., Jiang, Y. & Priya, S. Quasi-two-dimensional halide perovskite single crystal photodetector. ACS Nano 12, 4919–4929 (2018).

    CAS  Google Scholar 

  94. Zhumekenov, A. A. et al. The role of surface tension in the crystallization of metal halide perovskites. ACS Energy Lett. 2, 1782–1788 (2017).

    CAS  Google Scholar 

  95. Tanaka, K. et al. Two-dimensional Wannier excitons in a layered-perovskite-type crystal (C6H13NH3)2PbI4. Solid State Commun. 122, 249–252 (2002).

    CAS  Google Scholar 

  96. Wu, X., Trinh, M. T. & Zhu, X. Y. Excitonic many-body interactions in two-dimensional lead iodide perovskite quantum wells. J. Phys. Chem. C 119, 14714–14721 (2015).

    CAS  Google Scholar 

  97. Zhang, Q., Chu, L., Zhou, F., Ji, W. & Eda, G. Excitonic properties of chemically synthesized 2D organic–inorganic hybrid perovskite nanosheets. Adv. Mater. 30, 1704055 (2018).

    Google Scholar 

  98. Lin, Y. et al. Dielectric screening of excitons and trions in single-layer MoS2. Nano Lett. 14, 5569–5576 (2014).

    CAS  Google Scholar 

  99. Ryou, J., Kim, Y.-S., Santosh, K. C. & Cho, K. Monolayer MoS2 bandgap modulation by dielectric environments and tunable bandgap transistors. Sci. Rep. 6, 29184 (2016).

    CAS  Google Scholar 

  100. Borghardt, S. et al. Engineering of optical and electronic band gaps in transition metal dichalcogenide monolayers through external dielectric screening. Phys. Rev. Mater. 1, 054001 (2017).

    Google Scholar 

  101. Bruix, A. et al. Single-layer MoS2 on Au(111): band gap renormalization and substrate interaction. Phys. Rev. B 93, 165422 (2016).

    Google Scholar 

  102. Pradeesh, K., Baumberg, J. J. & Prakash, G. V. Exciton switching and Peierls transitions in hybrid inorganic-organic self-assembled quantum wells. Appl. Phys. Lett. 95, 173305 (2009).

    Google Scholar 

  103. Baranovskii, S. D., Doerr, U., Thomas, P., Naumov, A. & Gebhardt, W. Exciton line broadening by compositional disorder in alloy quantum wells. Phys. Rev. B 48, 17149–17154 (1993).

    CAS  Google Scholar 

  104. Andreani, L. C., Panzarini, G., Kavokin, A. V. & Vladimirova, M. R. Effect of inhomogeneous broadening on optical properties of excitons in quantum wells. Phys. Rev. B 57, 4670–4680 (1998).

    CAS  Google Scholar 

  105. Kuznetsova, I. et al. Modeling excitonic line shapes in weakly disordered semiconductor nanostructures. Phys. Rev. B 81, 075307 (2010).

    Google Scholar 

  106. Pazos-Outón, L. M. et al. Photon recycling in lead iodide perovskite solar cells. Science 351, 1430–1433 (2016).

    Google Scholar 

  107. Ansari-Rad, M. & Bisquert, J. Insight into photon recycling in perovskite semiconductors from the concept of photon diffusion. Phys. Rev. Appl. 10, 034062 (2018).

    CAS  Google Scholar 

  108. Motti, S. G. et al. Heterogeneous photon recycling and charge diffusion enhance charge transport in quasi-2D lead-halide perovskite films. Nano Lett. 19, 3953–3960 (2019).

    CAS  Google Scholar 

  109. Yamada, T., Yamada, Y., Nakaike, Y., Wakamiya, A. & Kanemitsu, Y. Photon emission and reabsorption processes in CH3NH3PbBr3 single crystals revealed by time-resolved two-photon-excitation photoluminescence microscopy. Phys. Rev. Appl. 7, 014001 (2017).

    Google Scholar 

  110. Diab, H. et al. Impact of reabsorption on the emission spectra and recombination dynamics of hybrid perovskite single crystals. J. Phys. Chem. Lett. 8, 2977–2983 (2017).

    CAS  Google Scholar 

  111. Miller, O. D., Yablonovitch, E. & Kurtz, S. R. Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit. IEEE J. Photovolt. 2, 303–311 (2012).

    Google Scholar 

  112. Zhu, L. et al. Conversion efficiency limits and bandgap designs for multi-junction solar cells with internal radiative efficiencies below unity. Opt. Express 24, A740–A751 (2016).

    CAS  Google Scholar 

  113. Gan, Z. et al. The dominant energy transport pathway in halide perovskites: photon recycling or carrier diffusion? Adv. Energy Mater. 9, 1900185 (2019).

    Google Scholar 

  114. Richter, J. M. et al. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nat. Commun. 7, 13941 (2016).

    CAS  Google Scholar 

  115. Yamada, Y. et al. Dynamic optical properties of CH3NH3PbI3 single crystals as revealed by one- and two-photon excited photoluminescence measurements. J. Am. Chem. Soc. 137, 10456–10459 (2015).

    CAS  Google Scholar 

  116. Yamada, T. et al. Fast free-carrier diffusion in CH3NH3PbBr3 single crystals revealed by time-resolved one- and two-photon excitation photoluminescence spectroscopy. Adv. Electron. Mater. 2, 1500290 (2016).

    Google Scholar 

  117. Heinz, H., Vaia, R. A., Krishnamoorti, R. & Farmer, B. L. Self-assembly of alkylammonium chains on montmorillonite: effect of chain length, head group structure, and cation exchange capacity. Chem. Mater. 19, 59–68 (2007).

    CAS  Google Scholar 

  118. Heinz, H., Castelijns, H. J. & Suter, U. W. Structure and phase transitions of alkyl chains on mica. J. Am. Chem. Soc. 125, 9500–9510 (2003).

    CAS  Google Scholar 

  119. Abid, H., Trigui, A., Mlayah, A., Hlil, E. K. & Abid, Y. Phase transition in organic–inorganic perovskite (C9H19NH3)2 PbI2Br2 of long-chain alkylammonium. Results Phys. 2, 71–76 (2012).

    Google Scholar 

  120. Salerno, V., Grieco, A. & Vacatello, M. Ordered and disordered phases in mixed dodecylammonium and hexadecylammonium tetrachloromanganate(II). J. Phys. Chem. 80, 2444–2448 (1976).

    CAS  Google Scholar 

  121. Blinc, R. et al. Proton NMR study of the structural phase transitions in perovskite layer compounds: (CnH2n+1NH3)2CdCl4 and (NH3–(CH2)n–NH3) CdCl4. J. Chem. Phys. 66, 278–287 (1977).

    CAS  Google Scholar 

  122. Kind, R. et al. Dynamics of the n-decylammonium chains in the perovskite-type layer structure compound (C10H21NH3)2CdCl4. J. Chem. Phys. 71, 2118–2130 (1979).

    CAS  Google Scholar 

  123. Needham, G. F., Willett, R. D. & Franzen, H. F. Phase transitions in crystalline models of bilayers. 1. Differential scanning calorimetric and x-ray studies of (C12H25NH3)2MCl4 and (NH3C14H29NH3)2MCl4 salts (M = Mn2+, Cd2+, Cu2+). J. Phys. Chem. 88, 674–680 (1984).

    CAS  Google Scholar 

  124. Needham, G. F. & Willett, R. D. Phase transitions in crystalline model of lipid bilayer. J. Phys. Chem. 85, 3385–3387 (1981).

    CAS  Google Scholar 

  125. Casal, H. L., Cameron, D. G. & Mantsch, H. H. Ice melting induced phase transition in diacyl phosphatidylcholines. J. Phys. Chem. 87, 5354–5357 (1983).

    CAS  Google Scholar 

  126. Almirante, C., Minoni, G. & Zerbi, G. Mechanism of solid to liquidlike phase transition of alkyl chains in bilayer systems. An infrared spectroscopic study of tetradecylammonium tetrachloromanganate ([CH3(CH2)13NH3]2MnCl4) and tetradecylammonium tetrachlorozincate [CH3(CH2)13NH3]2ZnCl4. J. Phys. Chem. 90, 852–859 (1986).

    CAS  Google Scholar 

  127. Ishihara, T., Takahashi, J. & Goto, T. Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4. Phys. Rev. B 42, 11099–11107 (1990).

    CAS  Google Scholar 

  128. Li, W. et al. Surface depletion field in 2D perovskite microplates: Structural phase transition, quantum confinement and Stark effect. Nano Res. 12, 2858–2865 (2019).

    CAS  Google Scholar 

  129. Poglitsch, A. & Weber, D. Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87, 6373–6378 (1987).

    CAS  Google Scholar 

  130. Yaffe, O. et al. Local polar fluctuations in lead halide perovskite crystals. Phys. Rev. Lett. 118, 136001 (2017).

    Google Scholar 

  131. Bakulin, A. A. et al. Real-time observation of organic cation reorientation in methylammonium lead iodide perovskites. J. Phys. Chem. Lett. 6, 3663–3669 (2015).

    CAS  Google Scholar 

  132. Wu, X. et al. Light-induced picosecond rotational disordering of the inorganic sublattice in hybrid perovskites. Sci. Adv. 3, e1602388 (2017).

    Google Scholar 

  133. Miyata, K. et al. Large polarons in lead halide perovskites. Sci. Adv. 3, e1701217 (2017).

    Google Scholar 

  134. Even, J., Pedesseau, L. & Katan, C. Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid perovskites. J. Phys. Chem. C 118, 11566–11572 (2014).

    CAS  Google Scholar 

  135. Cortecchia, D. et al. Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation. J. Am. Chem. Soc. 139, 39–42 (2017).

    CAS  Google Scholar 

  136. Smith, M. D., Jaffe, A., Dohner, E. R., Lindenberg, A. M. & Karunadasa, H. I. Structural origins of broadband emission from layered Pb–Br hybrid perovskites. Chem. Sci. 8, 4497–4504 (2017).

    CAS  Google Scholar 

  137. Cortecchia, D. et al. Polaron self-localization in white-light emitting hybrid perovskites. J. Mater. Chem. C 5, 2771–2780 (2017).

    CAS  Google Scholar 

  138. Nishida, J. et al. Dynamically disordered lattice in a layered Pb-I-SCN perovskite thin film probed by two-dimensional infrared spectroscopy. J. Am. Chem. Soc. 140, 9882–9890 (2018).

    CAS  Google Scholar 

  139. Thouin, F. et al. Stable biexcitons in two-dimensional metal-halide perovskites with strong dynamic lattice disorder. Phys. Rev. Mater. 2, 034001 (2018).

    CAS  Google Scholar 

  140. Zhu, X. Y. & Podzorov, V. Charge carriers in hybrid organic–inorganic lead halide perovskites might be protected as large polarons. J. Phys. Chem. Lett. 6, 4758–4761 (2015).

    CAS  Google Scholar 

  141. Smith, M. D. & Karunadasa, H. I. White-light emission from layered halide perovskites. Acc. Chem. Res. 51, 619–627 (2018).

    CAS  Google Scholar 

  142. Yin, T. et al. Pressure-engineered structural and optical properties of two-dimensional (C4H9NH3)2PbI4 perovskite exfoliated nm-thin flakes. J. Am. Chem. Soc. 141, 1235–1241 (2019).

    CAS  Google Scholar 

  143. Liu, G. et al. Isothermal pressure-derived metastable states in 2D hybrid perovskites showing enduring bandgap narrowing. Proc. Natl Acad. Sci. USA 115, 8076–8081 (2018).

    CAS  Google Scholar 

  144. Liu, G. et al. Two regimes of bandgap red shift and partial ambient retention in pressure-treated two-dimensional perovskites. ACS Energy Lett. 2, 2518–2524 (2017).

    CAS  Google Scholar 

  145. Matsuishi, K., Ishihara, T., Onari, S., Chang, Y. H. & Park, C. H. Optical properties and structural phase transitions of lead-halide based inorganic–organic 3D and 2D perovskite semiconductors under high pressure. Phys. Status Solidi 241, 3328–3333 (2004).

    CAS  Google Scholar 

  146. Jalali, B. Silicon photonics: Nonlinear optics in the mid-infrared. Nat. Photonics 4, 506–508 (2010).

    CAS  Google Scholar 

  147. Shcherbakov, M. R. et al. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures. Nano Lett. 15, 6985–6990 (2015).

    Google Scholar 

  148. Saouma, F. O., Stoumpos, C. C., Wong, J., Kanatzidis, M. G. & Jang, J. I. Selective enhancement of optical nonlinearity in two-dimensional organic-inorganic lead iodide perovskites. Nat. Commun. 8, 742 (2017).

    CAS  Google Scholar 

  149. Hanamura, E., Nagaosa, N., Kumagai, M. & Takagahara, T. Quantum wells with enhanced exciton effects and optical non-linearity. Mater. Sci. Eng. B 1, 255–258 (1988).

    Google Scholar 

  150. Hanamura, E. Rapid radiative decay and enhanced optical nonlinearity of excitons in a quantum well. Phys. Rev. B 38, 1228–1234 (1988).

    CAS  Google Scholar 

  151. Wang, J. et al. Giant nonlinear optical response in 2D perovskite heterostructures. Adv. Opt. Mater. 7, 1900398 (2019).

    Google Scholar 

  152. Xu, C.-q et al. Optical third-harmonic generation in layered perovskite-type material (C10H21NH3)2PbI4. Solid State Commun. 79, 245–248 (1991).

    CAS  Google Scholar 

  153. Makino, H., Goto, T., Yao, T., Mousdis, G. A. & Papavassiliou, G. C. Induced absorption and spontaneous emission due to biexciton in two-dimensional semiconductor (CH3C6H4CH2NH3)2PbBr4 single crystal. J. Lumin. 112, 54–57 (2005).

    CAS  Google Scholar 

  154. Kato, Y. et al. Extremely large binding energy of biexcitons in an organic–inorganic quantum-well material (C4H9NH3)2PbBr4. Solid State Commun. 128, 15–18 (2003).

    CAS  Google Scholar 

  155. Shimizu, M., Fujisawa, J.-i. & Ishihara, T. Photoluminescence of the inorganic-organic layered semiconductor (C6H5C2H4NH3)2PbI4: Observation of triexciton formation. Phys. Rev. B 74, 155206 (2006).

    Google Scholar 

  156. Kondo, T. et al. Resonant third-order optical nonlinearity in the layered perovskite-type material (C6H13NH3)2PbI4. Solid State Commun. 105, 503–506 (1998).

    CAS  Google Scholar 

  157. Ishi, J., Kunugita, H., Ema, K., Ban, T. & Kondo, T. Influence of exciton-exciton interactions on frequency-mixing signals in a stable exciton-biexciton system. Phys. Rev. B 63, 073303 (2001).

    Google Scholar 

  158. Sheik-Bahae, M., Hagan, D. J. & Van Stryland, E. W. Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption. Phys. Rev. Lett. 65, 96–99 (1990).

    CAS  Google Scholar 

  159. Sheik-Bahae, M., Hutchings, D. C., Hagan, D. J. & Van Stryland, E. W. Dispersion of bound electron nonlinear refraction in solids. IEEE J. Quantum Electron. 27, 1296–1309 (1991).

    CAS  Google Scholar 

  160. Zhang, R. et al. Nonlinear optical response of organic–inorganic halide perovskites. ACS Photonics 3, 371–377 (2016).

    CAS  Google Scholar 

  161. Johnson, J. C., Li, Z., Ndione, P. F. & Zhu, K. Third-order nonlinear optical properties of methylammonium lead halide perovskite films. J. Mater. Chem. C 4, 4847–4852 (2016).

    CAS  Google Scholar 

  162. Stuart, B. C. et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B 53, 1749–1761 (1996).

    CAS  Google Scholar 

  163. Abdelwahab, I. et al. Highly enhanced third-harmonic generation in 2D perovskites at excitonic resonances. ACS Nano 12, 644–650 (2018).

    CAS  Google Scholar 

  164. Youngblood, N., Peng, R., Nemilentsau, A., Low, T. & Li, M. Layer-tunable third-harmonic generation in multilayer black phosphorus. ACS Photonics 4, 8–14 (2017).

    CAS  Google Scholar 

  165. Reshef, O., De Leon, I., Alam, M. Z. & Boyd, R. W. Nonlinear optical effects in epsilon-near-zero media. Nat. Rev. Mater. 4, 535–551 (2019).

    CAS  Google Scholar 

  166. Noginov, M. A. et al. Transparent conductive oxides: plasmonic materials for telecom wavelengths. Appl. Phys. Lett. 99, 021101 (2011).

    Google Scholar 

  167. Alam, M. Z., De Leon, I. & Boyd, R. W. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 352, 795–797 (2016).

    CAS  Google Scholar 

  168. Luk, T. S. et al. Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films. Appl. Phys. Lett. 106, 151103 (2015).

    Google Scholar 

  169. Caspani, L. et al. Enhanced nonlinear refractive index in ε-near-zero materials. Phys. Rev. Lett. 116, 233901 (2016).

    CAS  Google Scholar 

  170. Pradhan, A. K. et al. Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications. Sci. Rep. 4, 6415 (2014).

    CAS  Google Scholar 

  171. Calzolari, A., Ruini, A. & Catellani, A. Transparent conductive oxides as near-IR plasmonic materials: the case of Al-doped ZnO derivatives. ACS Photonics 1, 703–709 (2014).

    CAS  Google Scholar 

  172. Steinhoff, A. et al. Exciton fission in monolayer transition metal dichalcogenide semiconductors. Nat. Commun. 8, 1166 (2017).

    CAS  Google Scholar 

  173. Kappei, L., Szczytko, J., Morier-Genoud, F. & Deveaud, B. Direct observation of the Mott transition in an optically excited semiconductor quantum well. Phys. Rev. Lett. 94, 147403 (2005).

    CAS  Google Scholar 

  174. Abdelwahab, I. et al. Giant and tunable optical nonlinearity in single-crystalline 2D perovskites due to excitonic and plasma effects. Adv. Mater. 31, 1902685 (2019).

    Google Scholar 

  175. Gaponenko, M. et al. SESAM mode-locked red praseodymium laser. Opt. Lett. 39, 6939–6941 (2014).

    Google Scholar 

  176. Abe, R., Kojou, J., Masuda, K. & Kannari, F. Cr4+-doped Y3Al5O12 as a saturable absorber for a Q-switched and mode-locked 639-nm Pr3+-doped LiYF4 laser. Appl. Phys. Express 6, 032703 (2013).

    Google Scholar 

  177. Guo, P. et al. Hyperbolic dispersion arising from anisotropic excitons in two-dimensional perovskites. Phys. Rev. Lett. 121, 127401 (2018).

    CAS  Google Scholar 

  178. Cui, Y., Lu, F. & Liu, X. MoS2-clad microfibre laser delivering conventional, dispersion-managed and dissipative solitons. Sci. Rep. 6, 30524 (2016).

    CAS  Google Scholar 

  179. Lee, D., Park, K., Debnath, P. C., Kim, I. & Song, Y.-W. Thermal damage suppression of a black phosphorus saturable absorber for high-power operation of pulsed fiber lasers. Nanotechnology 27, 365203 (2016).

    Google Scholar 

  180. Grinblat, G. et al. Ultrafast all-optical modulation in 2D hybrid perovskites. ACS Nano 13, 9504–9510 (2019).

    CAS  Google Scholar 

  181. Meggiolaro, D. et al. Iodine chemistry determines the defect tolerance of lead-halide perovskites. Energy Environ. Sci. 11, 702–713 (2018).

    CAS  Google Scholar 

  182. Li, J. et al. Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals. Nat. Commun. 10, 806 (2019).

    CAS  Google Scholar 

  183. Blancon, J. C. et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 355, 1288–1292 (2017).

    CAS  Google Scholar 

  184. Yang, R. et al. Oriented quasi-2D perovskites for high performance optoelectronic devices. Adv. Mater. 30, 1804771 (2018).

    Google Scholar 

  185. Wang, X. et al. Recent progress in organometal halide perovskite photodetectors. Org. Electron. 52, 172–183 (2018).

    CAS  Google Scholar 

  186. Liu, X. et al. Polarization-driven self-powered photodetection in a single-phase biaxial hybrid perovskite ferroelectric. Angew. Chem. Int. Ed. 58, 14504–14508 (2019).

    CAS  Google Scholar 

  187. Li, L. et al. Tailored engineering of an unusual (C4H9NH3)2(CH3NH3)2Pb3Br10 two-dimensional multilayered perovskite ferroelectric for a high-performance photodetector. Angew. Chem. Int. Ed. 56, 12150–12154 (2017).

    CAS  Google Scholar 

  188. Zeidell, A. M. et al. Enhanced charge transport in hybrid perovskite field-effect transistors via microstructure control. Adv. Electron. Mater. 4, 1800316 (2018).

    Google Scholar 

  189. Zhu, L. et al. Synthesis of ultrathin two-dimensional organic–inorganic hybrid perovskite nanosheets for polymer field-effect transistors. J. Mater. Chem. C 6, 3945–3950 (2018).

    CAS  Google Scholar 

  190. Murali, B. et al. Surface restructuring of hybrid perovskite crystals. ACS Energy Lett. 1, 1119–1126 (2016).

    CAS  Google Scholar 

  191. Fang, Y., Dong, Q., Shao, Y., Yuan, Y. & Huang, J. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 9, 679–686 (2015).

    CAS  Google Scholar 

  192. Sarmah, S. P. et al. Double charged surface layers in lead halide perovskite crystals. Nano Lett. 17, 2021–2027 (2017).

    CAS  Google Scholar 

  193. Johnston, M. B. & Herz, L. M. Hybrid perovskites for photovoltaics: charge-carrier recombination, diffusion, and radiative efficiencies. Acc. Chem. Res. 49, 146–154 (2016).

    CAS  Google Scholar 

  194. Brenner, T. M., Egger, D. A., Kronik, L., Hodes, G. & Cahen, D. Hybrid organic — inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016).

    CAS  Google Scholar 

  195. Herz, L. M. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017).

    CAS  Google Scholar 

  196. Senanayak, S. P. et al. Understanding charge transport in lead iodide perovskite thin-film field-effect transistors. Sci. Adv. 3, e1601935 (2017).

    Google Scholar 

  197. Liu, Y., Zhang, S., He, J., Wang, Z. M. & Liu, Z. Recent progress in the fabrication, properties, and devices of heterostructures based on 2D materials. Nanomicro Lett. 11, 13 (2019).

    CAS  Google Scholar 

  198. Chin, X. Y., Cortecchia, D., Yin, J., Bruno, A. & Soci, C. Lead iodide perovskite light-emitting field-effect transistor. Nat. Commun. 6, 7383 (2015).

    CAS  Google Scholar 

  199. Li, F. et al. Ambipolar solution-processed hybrid perovskite phototransistors. Nat. Commun. 6, 8238 (2015).

    Google Scholar 

  200. Mei, Y., Zhang, C., Vardeny, Z. V. & Jurchescu, O. D. Electrostatic gating of hybrid halide perovskite field-effect transistors: balanced ambipolar transport at room-temperature. MRS Commun. 5, 297–301 (2015).

    CAS  Google Scholar 

  201. Li, D. et al. The effect of thermal annealing on charge transport in organolead halide perovskite microplate field-effect transistors. Adv. Mater. 29, 1601959 (2017).

    Google Scholar 

  202. Xiao, Z. et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2015).

    CAS  Google Scholar 

  203. Snaith, H. J. et al. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014).

    CAS  Google Scholar 

  204. Wang, K. et al. Distinct conducting layer edge states in two-dimensional (2D) halide perovskite. Sci. Adv. 5, eaau3241 (2019).

    Google Scholar 

  205. Zhang, F. et al. Two-dimensional organic–inorganic hybrid perovskite field-effect transistors with polymers as bottom-gate dielectrics. J. Mater. Chem. C 7, 4004–4012 (2019).

    CAS  Google Scholar 

  206. Mitzi, D. B. et al. Hybrid field-effect transistor based on a low-temperature melt-processed channel layer. Adv. Mater. 14, 1772–1776 (2002).

    CAS  Google Scholar 

  207. Matsushima, T., Fujita, K. & Tsutsui, T. High field-effect hole mobility in organic-inorganic hybrid thin films prepared by vacuum vapor deposition technique. Jpn. J. Appl. Phys. 43, L1199–L1201 (2004).

    CAS  Google Scholar 

  208. Mitzi, D. B., Dimitrakopoulos, C. D. & Kosbar, L. L. Structurally tailored organic–inorganic perovskites:  optical properties and solution-processed channel materials for thin-film transistors. Chem. Mater. 13, 3728–3740 (2001).

    CAS  Google Scholar 

  209. Noel, N. K. et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061–3068 (2014).

    CAS  Google Scholar 

  210. Hao, F., Stoumpos, C. C., Cao, D. H., Chang, R. P. H. & Kanatzidis, M. G. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8, 489–494 (2014).

    CAS  Google Scholar 

  211. Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999).

    CAS  Google Scholar 

  212. Matsushima, T. et al. Solution-processed organic–inorganic perovskite field-effect transistors with high hole mobilities. Adv. Mater. 28, 10275–10281 (2016).

    CAS  Google Scholar 

  213. Yang, Z. et al. Stable low-bandgap Pb–Sn binary perovskites for tandem solar cells. Adv. Mater. 28, 8990–8997 (2016).

    CAS  Google Scholar 

  214. Parrott, E. S. et al. Effect of structural phase transition on charge-carrier lifetimes and defects in CH3NH3SnI3 perovskite. J. Phys. Chem. Lett. 7, 1321–1326 (2016).

    CAS  Google Scholar 

  215. Sirringhaus, H. Device physics of solution-processed organic field-effect transistors. Adv. Mater. 17, 2411–2425 (2005).

    CAS  Google Scholar 

  216. Liu, C., Xu, Y. & Noh, Y.-Y. Contact engineering in organic field-effect transistors. Mater. Today 18, 79–96 (2015).

    CAS  Google Scholar 

  217. Wang, H. & Qian, X. Two-dimensional multiferroics in monolayer group IV monochalcogenides. 2D Mater. 4, 015042 (2017).

    Google Scholar 

  218. Cui, C., Xue, F., Hu, W.-J. & Li, L.-J. Two-dimensional materials with piezoelectric and ferroelectric functionalities. NPJ 2D Mater. Appl. 2, 18 (2018).

    Google Scholar 

  219. Paillard, C. et al. Photovoltaics with ferroelectrics: current status and beyond. Adv. Mater. 28, 5153–5168 (2016).

    CAS  Google Scholar 

  220. Pal, S. et al. Giant photovoltaic response in band engineered ferroelectric perovskite. Sci. Rep. 8, 8005 (2018).

    Google Scholar 

  221. Frost, J. M. et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014).

    CAS  Google Scholar 

  222. Wang, S. et al. An unprecedented biaxial trilayered hybrid perovskite ferroelectric with directionally tunable photovoltaic effects. J. Am. Chem. Soc. 141, 7693–7697 (2019).

    CAS  Google Scholar 

  223. Spanier, J. E. et al. Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator. Nat. Photonics 10, 611–616 (2016).

    CAS  Google Scholar 

  224. Liao, W.-Q. et al. A lead-halide perovskite molecular ferroelectric semiconductor. Nat. Commun. 6, 7338 (2015).

    Google Scholar 

  225. Li, L. et al. Two-dimensional hybrid perovskite-type ferroelectric for highly polarization-sensitive shortwave photodetection. J. Am. Chem. Soc. 141, 2623–2629 (2019).

    CAS  Google Scholar 

  226. Zhang, Q. et al. Tunable ferroelectricity in Ruddlesden–Popper halide perovskites. ACS Appl. Mater. Interfaces 11, 13523–13532 (2019).

    CAS  Google Scholar 

  227. Shi, P.-P. et al. Symmetry breaking in molecular ferroelectrics. Chem. Soc. Rev. 45, 3811–3827 (2016).

    CAS  Google Scholar 

  228. Kutes, Y. et al. Direct observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin films. J. Phys. Chem. Lett. 5, 3335–3339 (2014).

    CAS  Google Scholar 

  229. Stroppa, A. et al. Tunable ferroelectric polarization and its interplay with spin–orbit coupling in tin iodide perovskites. Nat. Commun. 5, 5900 (2014).

    CAS  Google Scholar 

  230. Fan, Z. et al. Ferroelectricity of CH3NH3PbI3 perovskite. J. Phys. Chem. Lett. 6, 1155–1161 (2015).

    CAS  Google Scholar 

  231. Swainson, I. P., Hammond, R. P., Soullière, C., Knop, O. & Massa, W. Phase transitions in the perovskite methylammonium lead bromide, CH3ND3PbBr3. J. Solid State Chem. 176, 97–104 (2003).

    CAS  Google Scholar 

  232. Shao, Y., Xiao, Z., Bi, C., Yuan, Y. & Huang, J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014).

    CAS  Google Scholar 

  233. Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).

    CAS  Google Scholar 

  234. Li, L. et al. Two-dimensional hybrid perovskite-type ferroelectric for highly polarization-sensitive shortwave photodetection. J. Am. Chem. Soc. 141, 2623–2629 (2019).

    CAS  Google Scholar 

  235. Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003).

    CAS  Google Scholar 

  236. Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016).

    CAS  Google Scholar 

  237. Sha, T.-T. et al. Fluorinated 2D lead iodide perovskite ferroelectrics. Adv. Mater. 31, 1901843 (2019).

    Google Scholar 

  238. You, L. et al. In-plane ferroelectricity in thin flakes of van der Waals hybrid perovskite. Adv. Mater. 30, 1803249 (2018).

    Google Scholar 

  239. Rashba, E. Properties of semiconductors with an extremum loop. I. Cyclotron and combinational Resonance in a magnetic field perpendicular to the plane of the loop. Sov. Phys. Solid State 2, 1109–1122 (1960).

    Google Scholar 

  240. Dresselhaus, G., Kip, A. F. & Kittel, C. Spin-orbit interaction and the effective masses of holes in germanium. Phys. Rev. 95, 568–569 (1954).

    CAS  Google Scholar 

  241. Stranks, S. D. & Plochocka, P. The influence of the Rashba effect. Nat. Mater. 17, 381–382 (2018).

    CAS  Google Scholar 

  242. Ma, J. et al. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano 13, 3659–3665 (2019).

    CAS  Google Scholar 

  243. Park, I.-H. et al. Ferroelectricity and Rashba effect in a two-dimensional Dion-Jacobson hybrid organic–inorganic perovskite. J. Am. Chem. Soc. 141, 15972–15976 (2019).

    CAS  Google Scholar 

  244. Hutter, E. M. et al. Direct–indirect character of the bandgap in methylammonium lead iodide perovskite. Nat. Mater. 16, 115–120 (2017).

    CAS  Google Scholar 

  245. Zhang, Y. et al. Direct-indirect nature of the bandgap in lead-free perovskite nanocrystals. J. Phys. Chem. Lett. 8, 3173–3177 (2017).

    CAS  Google Scholar 

  246. Wang, T. et al. Indirect to direct bandgap transition in methylammonium lead halide perovskite. Energy Environ. Sci. 10, 509–515 (2017).

    CAS  Google Scholar 

  247. Zheng, F., Tan, L. Z., Liu, S. & Rappe, A. M. Rashba spin–orbit coupling enhanced carrier lifetime in CH3NH3PbI3. Nano Lett. 15, 7794–7800 (2015).

    CAS  Google Scholar 

  248. Azarhoosh, P., McKechnie, S., Frost, J. M., Walsh, A. & van Schilfgaarde, M. Research Update: Relativistic origin of slow electron-hole recombination in hybrid halide perovskite solar cells. APL Mater. 4, 091501 (2016).

    Google Scholar 

  249. Etienne, T., Mosconi, E. & De Angelis, F. Dynamical origin of the Rashba effect in organohalide lead perovskites: a key to suppressed carrier recombination in perovskite solar cells? J. Phys. Chem. Lett. 7, 1638–1645 (2016).

    CAS  Google Scholar 

  250. Yin, J. et al. Layer-dependent Rashba band splitting in 2D hybrid perovskites. Chem. Mater. 30, 8538–8545 (2018).

    CAS  Google Scholar 

  251. Crepaldi, A. et al. Giant ambipolar Rashba effect in the semiconductor BiTeI. Phys. Rev. Lett. 109, 096803 (2012).

    CAS  Google Scholar 

  252. Maaß, H. et al. Spin-texture inversion in the giant Rashba semiconductor BiTeI. Nat. Commun. 7, 11621 (2016).

    Google Scholar 

  253. Kepenekian, M. et al. Rashba and Dresselhaus effects in hybrid organic–inorganic perovskites: from basics to devices. ACS Nano 9, 11557–11567 (2015).

    CAS  Google Scholar 

  254. Kim, M., Im, J., Freeman, A. J., Ihm, J. & Jin, H. Switchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskites. Proc. Natl Acad. Sci. USA 111, 6900–6904 (2014).

    CAS  Google Scholar 

  255. Kepenekian, M. & Even, J. Rashba and Dresselhaus couplings in halide perovskites: accomplishments and opportunities for spintronics and spin–orbitronics. J. Phys. Chem. Lett. 8, 3362–3370 (2017).

    CAS  Google Scholar 

  256. Niesner, D. et al. Giant Rashba splitting in CH3NH3PbBr3 organic-inorganic perovskite. Phys. Rev. Lett. 117, 126401 (2016).

    Google Scholar 

  257. Zhai, Y. et al. Giant Rashba splitting in 2D organic-inorganic halide perovskites measured by transient spectroscopies. Sci. Adv. 3, e1700704 (2017).

    Google Scholar 

  258. Todd, S. B. et al. Detection of Rashba spin splitting in 2D organic-inorganic perovskite via precessional carrier spin relaxation. APL Mater. 7, 081116 (2019).

    Google Scholar 

  259. Lau, W. H., Olesberg, J. T. & Flatté, M. E. Electron-spin decoherence in bulk and quantum-well zinc-blende semiconductors. Phys. Rev. B 64, 161301 (2001).

    Google Scholar 

  260. Ganichev, S. D. & Golub, L. E. Interplay of Rashba/Dresselhaus spin splittings probed by photogalvanic spectroscopy –A review. Phys. Status Solidi 251, 1801–1823 (2014).

    CAS  Google Scholar 

  261. Liu, X. et al. Circular photogalvanic spectroscopy of Rashba splitting in 2D hybrid organic–inorganic perovskite multiple quantum wells. Nat. Commun. 11, 323 (2020)

    CAS  Google Scholar 

  262. Niesner, D. et al. Structural fluctuations cause spin-split states in tetragonal (CH3NH3)PbI3 as evidenced by the circular photogalvanic effect. Proc. Natl Acad. Sci. USA 115, 9509–9514 (2018).

    CAS  Google Scholar 

  263. Fang, C. et al. High-performance photodetectors based on lead-free 2D Ruddlesden–Popper perovskite/MoS2 heterostructures. ACS Appl. Mater. Interfaces 11, 8419–8427 (2019).

    CAS  Google Scholar 

  264. Wang, J. et al. Spin-optoelectronic devices based on hybrid organic-inorganic trihalide perovskites. Nat. Commun. 10, 129 (2019).

    Google Scholar 

  265. Woodward, R. I. et al. Characterization of the second- and third-order nonlinear optical susceptibilities of monolayer MoS2 using multiphoton microscopy. 2D Mater. 4, 011006 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K.P.L. and K.L. researched data for the article. All authors discussed the content and contributed to the writing and revising of the manuscript.

Corresponding author

Correspondence to Kian Ping Loh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leng, K., Fu, W., Liu, Y. et al. From bulk to molecularly thin hybrid perovskites. Nat Rev Mater 5, 482–500 (2020). https://doi.org/10.1038/s41578-020-0185-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-020-0185-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing