Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Materials for solar-powered water evaporation

Abstract

Solar-powered water evaporation — the extraction of vapour from liquid water using solar energy — provides the basis for the development of eco-friendly and cost-effective freshwater production. Liquid water consumes and carries energy, and, thus, plays an essential role in this process. As such, extensive experimental and theoretical studies have been focused on water management to achieve efficient solar vapour generation. Many innovative materials have been proposed to enable highly controllable and efficient solar-to-thermal energy conversion to address the challenges in the energy–water nexus from the microscale to the molecular level. In this Review, we summarize the fundamental principles of materials design for efficient solar-to-thermal energy conversion and vapour generation. We discuss how to integrate photothermal materials, nanostructures/microstructures and water–material interactions to improve the performance of the evaporation system via in situ utilization of solar energy. Focusing on materials science and engineering, we overview the key challenges and opportunities for nanostructured and microstructured materials in both fundamental research and practical water-purification applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Phase transitions of water.
Fig. 2: Energy-conversion strategies.
Fig. 3: Isolated evaporating surfaces and water paths.
Fig. 4: Tailoring the wettability and topography of the evaporating surface.
Fig. 5: Hydrogen-bond networks and material-induced variations of the state of water.
Fig. 6: Hydrogel-induced water activation.
Fig. 7: Future perspectives.

References

  1. 1.

    Lewis, N. S. Research opportunities to advance solar energy utilization. Science 351, aad1920 (2016).

    Article  CAS  Google Scholar 

  2. 2.

    Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017).

    Article  CAS  Google Scholar 

  3. 3.

    Tiwari, G. N., Kumar, A. & Sodha, M. S. A review — cooling by water evaporation over roof. Energy Convers. Manag. 22, 143–153 (1982).

    Article  Google Scholar 

  4. 4.

    Tao, P. et al. Solar-driven interfacial evaporation. Nat. Energy 3, 1031–1041 (2018). This paper outlines the achievements in solar interfacial evaporation based on an isolated evaporation front that helps to reduce energy losses.

    Article  Google Scholar 

  5. 5.

    Service, R. F. Desalination freshens up. Science 313, 1088–1090 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    Chen, C., Kuang, Y. & Hu, L. Challenges and opportunities for solar evaporation. Joule 3, 683–718 (2019).

    CAS  Article  Google Scholar 

  7. 7.

    Blanco, J. et al. Review of feasible solar energy applications to water processes. Renew. Sustain. Energy Rev. 13, 1437–1445 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    Tanaka, H., Nosoko, T. & Nagata, T. A highly productive basin-type-multiple-effect coupled solar still. Desalination 130, 279–293 (2000).

    CAS  Article  Google Scholar 

  9. 9.

    Mistry, K. H., Antar, M. A. & Lienhard V, J. H. An improved model for multiple effect distillation. Desalin. Water Treat. 51, 807–821 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    Ohmura, A. & Wild, M. Is the hydrological cycle accelerating? Science 298, 1345–1346 (2002).

    CAS  Article  Google Scholar 

  11. 11.

    El Kharraz, J., Zaragoza, G. & Ghaffour, N. in Water, Energy, Food and Ecosystems (WEFE) Nexus and Sustainable Development Goals (SDGs) (eds Barchiesi, S., Carmona-Moreno, C., Dondeynaz, C. & Biedler, M.) 17–24 (WEFE, 2018).

  12. 12.

    Wang, J. et al. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 29, 1603730 (2017).

    Article  CAS  Google Scholar 

  13. 13.

    Liu, H. et al. Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification. J. Mater. Chem. A 6, 18839–18846 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    Li, Y. et al. 3D-printed, all-in-one evaporator for high-efficiency solar steam generation under 1 sun illumination. Adv. Mater. 29, 1700981 (2017). This paper is one of the first introducing advanced manufacturing for the fabrication of solar evaporators.

    Article  CAS  Google Scholar 

  15. 15.

    Zhou, X., Zhao, F., Guo, Y., Zhang, Y. & Yu, G. A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 11, 1985–1992 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    Ren, H. et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 29, 1702590 (2017).

    Article  CAS  Google Scholar 

  17. 17.

    Zhang, P. et al. A microstructured graphene/poly(N-isopropylacrylamide) membrane for intelligent solar water evaporation. Angew. Chem. Int. Ed. 57, 16343–16347 (2018).

    CAS  Article  Google Scholar 

  18. 18.

    Chen, C. et al. Dual functional asymmetric plasmonic structures for solar water purification and pollution detection. Nano Energy 51, 451–456 (2018).

    CAS  Article  Google Scholar 

  19. 19.

    Zhou, L. et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2, e1501227 (2016).

    Article  CAS  Google Scholar 

  20. 20.

    Zielinski, M. S. et al. Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation. Nano Lett. 16, 2159–2167 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Zhao, Y. et al. Plasmonic Cu2−xS nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides. J. Am. Chem. Soc. 131, 4253–4261 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    Zhao, Y. & Burda, C. Development of plasmonic semiconductor nanomaterials with copper chalcogenides for a future with sustainable energy materials. Energy Environ. Sci. 5, 5564–5576 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    Yu, F. et al. Dispersion stability of thermal nanofluids. Prog. Nat. Sci. Mater. Int. 27, 531–542 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    Umlauff, M. et al. Direct observation of free-exciton thermalization in quantum-well structures. Phys. Rev. B 57, 1390 (1998).

    CAS  Article  Google Scholar 

  25. 25.

    Whang, A. J. W., Chen, Y. Y. & Wu, B. Y. Innovative design of cassegrain solar concentrator system for indoor illumination utilizing chromatic aberration to filter out ultraviolet and infrared in sunlight. Sol. Energy 8, 1115–1122 (2009).

    Article  Google Scholar 

  26. 26.

    Yu, N. et al. Dynamically tuning near-infrared-induced photothermal performances of TiO2 nanocrystals by Nb doping for imaging-guided photothermal therapy of tumors. Nanoscale 9, 9148–9159 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    Choi, W., Termin, A. & Hoffmann, M. R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 98, 13669–13679 (2002).

    Article  Google Scholar 

  28. 28.

    Tao, J., Luttrell, T. & Batzill, M. A two-dimensional phase of TiO2 with a reduced bandgap. Nat. Chem. 3, 296–300 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    Dette, C. et al. TiO2 anatase with a bandgap in the visible region. Nano Lett. 14, 6533–6538 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    Li, Y. et al. From titanium sesquioxide to titanium dioxide: oxidation-induced structural, phase, and property evolution. Chem. Mater. 30, 4383–4392 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    Cui, S., Liu, H., Gan, L., Li, Y. & Zhu, D. Fabrication of low-dimension nanostructures based on organic conjugated molecules. Adv. Mater. 20, 2918–2925 (2008).

    CAS  Article  Google Scholar 

  32. 32.

    Xu, L., Cheng, L., Wang, C., Peng, R. & Liu, Z. Conjugated polymers for photothermal therapy of cancer. Polym. Chem. 5, 1573–1580 (2014).

    CAS  Article  Google Scholar 

  33. 33.

    Li, Y. & Zou, Y. Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility. Adv. Mater. 20, 2952–2958 (2008).

    CAS  Article  Google Scholar 

  34. 34.

    Liu, J. et al. Conjugated polymer nanoparticles for photoacoustic vascular imaging. Polym. Chem. 5, 2854–2862 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    Gibson, G. L., McCormick, T. M. & Seferos, D. S. Atomistic band gap engineering in donor–acceptor polymers. J. Am. Chem. Soc. 134, 539–547 (2011).

    Article  CAS  Google Scholar 

  36. 36.

    Wang, Y. et al. Dopant-enabled supramolecular approach for controlled synthesis of nanostructured conductive polymer hydrogels. Nano Lett. 15, 7736–7741 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    Shi, Y. et al. A conductive self-healing hybrid gel enabled by metal-ligand supramolecule and nanostructured conductive polymer. Nano Lett. 15, 6276–6281 (2015).

    CAS  Article  Google Scholar 

  38. 38.

    Chen, M., Fang, X., Tang, S. & Zheng, N. Polypyrrole nanoparticles for high-performance in vivo near-infrared photothermal cancer therapy. Chem. Commun. 48, 8934–8936 (2012).

    CAS  Article  Google Scholar 

  39. 39.

    Bjorklund, R. B. & Liedberg, B. Electrically conducting composites of colloidal polypyrrole and methylcellulose. J. Chem. Soc. Chem. Commun. 16, 1293–1295 (1986).

    Article  Google Scholar 

  40. 40.

    Yang, K. et al. In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Adv. Mater. 24, 5586–5592 (2012).

    CAS  Article  Google Scholar 

  41. 41.

    Zha, Z., Yue, X., Ren, Q. & Dai, Z. Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv. Mater. 25, 777–782 (2013).

    CAS  Article  Google Scholar 

  42. 42.

    Wang, C. et al. Iron oxide @ polypyrrole nanoparticles as a multifunctional drug carrier for remotely controlled cancer therapy with synergistic antitumor effect. ACS Nano 7, 6782–6795 (2013).

    CAS  Article  Google Scholar 

  43. 43.

    Yang, J. et al. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells. Angew. Chem. Int. Ed. 50, 441–444 (2011).

    CAS  Article  Google Scholar 

  44. 44.

    Chen, Q. et al. A durable monolithic polymer foam for efficient solar steam generation. Chem. Sci. 9, 623–628 (2018).

    CAS  Article  Google Scholar 

  45. 45.

    Cheng, L., Yang, K., Chen, Q. & Liu, Z. Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer. ACS Nano 6, 5605–5613 (2012).

    CAS  Article  Google Scholar 

  46. 46.

    Gong, H. et al. Near-infrared absorbing polymeric nanoparticles as a versatile drug carrier for cancer combination therapy. Adv. Funct. Mater. 23, 6059–6067 (2013).

    CAS  Article  Google Scholar 

  47. 47.

    Jiang, Q. et al. Polydopamine-filled bacterial nanocellulose as a biodegradable interfacial photothermal evaporator for highly efficient solar steam generation. J. Mater. Chem. A 5, 18397–18402 (2017).

    CAS  Article  Google Scholar 

  48. 48.

    Zhou, L. et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photon. 10, 393–398 (2016). This paper is one of the first reporting a nanostructured plasmonic absorber that exhibits strong light absorption for solar water evaporation under one-sun irradiation.

    CAS  Article  Google Scholar 

  49. 49.

    Zhao, Q. et al. Super black and ultrathin amorphous carbon film inspired by anti-reflection architecture in butterfly wing. Carbon 49, 877–883 (2011).

    CAS  Article  Google Scholar 

  50. 50.

    Yang, Z. P., Ci, L., Bur, J. A., Lin, S. Y. & Ajayan, P. M. Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Lett. 8, 446–451 (2008).

    CAS  Article  Google Scholar 

  51. 51.

    Mizuno, K. et al. A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl Acad. Sci. USA 106, 6044–6047 (2009).

    CAS  Article  Google Scholar 

  52. 52.

    Zhang, P., Li, J., Lv, L., Zhao, Y. & Qu, L. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 11, 5087–5093 (2017).

    CAS  Article  Google Scholar 

  53. 53.

    Hu, X. et al. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv. Mater. 29, 1604031 (2017).

    Article  CAS  Google Scholar 

  54. 54.

    Liu, Z. et al. High-absorption recyclable photothermal membranes used in a bionic system for high-efficiency solar desalination via enhanced localized heating. J. Mater. Chem. A 5, 20044–20052 (2017).

    CAS  Article  Google Scholar 

  55. 55.

    Zhao, F. et al. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 13, 489–495 (2018). This paper is the first to introduce the use of hydrogel-based materials that may reduce energy demand for water evaporation and greatly enhance SVG.

    CAS  Article  Google Scholar 

  56. 56.

    Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    CAS  Article  Google Scholar 

  57. 57.

    Wang, X., Liu, Q., Wu, S., Xu, B. & Xu, H. Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar–thermal energy conversion. Adv. Mater. 31, 1807716 (2019).

    Article  CAS  Google Scholar 

  58. 58.

    Li, W., Li, Z., Bertelsmann, K. & Fan, D. E. Portable low-pressure solar steaming-collection unisystem with polypyrrole origamis. Adv. Mater. 31, 1900720 (2019).

    Article  CAS  Google Scholar 

  59. 59.

    Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003).

    CAS  Article  Google Scholar 

  60. 60.

    Boriskina, S. V., Ghasemi, H. & Chen, G. Plasmonic materials for energy: from physics to applications. Mater. Today 16, 375–386 (2013).

    CAS  Article  Google Scholar 

  61. 61.

    Liu, Z. et al. Ultra-broadband tunable resonant light trapping in a two-dimensional randomly microstructured plasmonic-photonic absorber. Sci. Rep. 7, 43803 (2017).

    Article  Google Scholar 

  62. 62.

    Masuda, H. & Fukuda, K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995).

    CAS  Article  Google Scholar 

  63. 63.

    Jin, H., Lin, G., Bai, L., Zeiny, A. & Wen, D. Steam generation in a nanoparticle-based solar receiver. Nano Energy 28, 397–406 (2016).

    CAS  Article  Google Scholar 

  64. 64.

    Neumann, O. et al. Solar vapor generation enabled by nanoparticles. ACS Nano 7, 42–49 (2013).

    CAS  Article  Google Scholar 

  65. 65.

    Ni, G. et al. Volumetric solar heating of nanofluids for direct vapor generation. Nano Energy 17, 290–301 (2015).

    CAS  Article  Google Scholar 

  66. 66.

    Prasher, R., Phelan, P. E. & Bhattacharya, P. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett. 6, 1529–1534 (2006).

    CAS  Article  Google Scholar 

  67. 67.

    Ito, Y. et al. Multifunctional porous graphene for high-efficiency steam generation by heat localization. Adv. Mater. 27, 4302–4307 (2015).

    CAS  Article  Google Scholar 

  68. 68.

    Ghasemi, H. et al. Solar steam generation by heat localization. Nat. Commun. 5, 4449 (2014). This paper is one of the first demonstrating a structural design that helped to utilize the harvested solar energy in situ for vapour generation.

    CAS  Article  Google Scholar 

  69. 69.

    Shi, L., Wang, Y., Zhang, L. & Wang, P. Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation. J. Mater. Chem. A 5, 16212–16219 (2017).

    CAS  Article  Google Scholar 

  70. 70.

    Yang, Y. et al. Graphene-based standalone solar energy converter for water desalination and purification. ACS Nano 12, 829–835 (2018).

    CAS  Article  Google Scholar 

  71. 71.

    Wang, G. et al. Reduced graphene oxide–polyurethane nanocomposite foam as a reusable photoreceiver for efficient solar steam generation. Chem. Mater. 29, 5629–5635 (2017).

    CAS  Article  Google Scholar 

  72. 72.

    Xu, N. et al. Mushrooms as efficient solar steam-generation devices. Adv. Mater. 29, 1606762 (2017).

    Article  CAS  Google Scholar 

  73. 73.

    Guo, Y. et al. Synergistic energy nanoconfinement and water activation in hydrogels for efficient solar water desalination. ACS Nano 13, 7913–7919 (2019).

    CAS  Article  Google Scholar 

  74. 74.

    Xue, G. et al. Robust and low-cost flame-treated wood for high-performance solar steam generation. ACS Appl. Mater. Interfaces 9, 15052–15057 (2017).

    CAS  Article  Google Scholar 

  75. 75.

    Liu, P. F. et al. A mimetic transpiration system for record high conversion efficiency in solar steam generator under one-sun. Mater. Today Energy 8, 166–173 (2018).

    CAS  Article  Google Scholar 

  76. 76.

    Zhang, P. et al. Three-dimensional water evaporation on a macroporous vertically aligned graphene pillar array under one sun. J. Mater. Chem. A 6, 15303–15309 (2018).

    CAS  Article  Google Scholar 

  77. 77.

    Liu, Z. et al. Extremely cost-effective and efficient solar vapor generation under nonconcentrated illumination using thermally isolated black paper. Glob. Chall. 1, 1600003 (2017).

    Article  Google Scholar 

  78. 78.

    Zhou, X., Zhao, F., Guo, Y., Rosenberger, B. & Yu, G. Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci. Adv. 5, eaaw5484 (2019). This paper is the first to propose the concept of designing hydratable polymers to regulate the water state for ultrafast solar water evaporation.

    Article  Google Scholar 

  79. 79.

    Zeng, Y. et al. Solar evaporation enhancement using floating light-absorbing magnetic particles. Energy Environ. Sci. 4, 4074–4078 (2011).

    CAS  Article  Google Scholar 

  80. 80.

    Ni, G. et al. Steam generation under one sun enabled by a floating structure with thermal concentration. Nat. Energy 1, 16126 (2016). This paper is one of the first describing the concept of heat concentration for efficient energy utilization to generate high-temperature steam under one-sun illumination.

    CAS  Article  Google Scholar 

  81. 81.

    Howell, J. R., Mengüç, M. P. & Siegel, R. Thermal Radiation Heat Transfer 6th edn (CRC, 2015).

  82. 82.

    Bae, K. et al. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 6, 10103 (2015).

    CAS  Article  Google Scholar 

  83. 83.

    Wang, X., He, Y., Liu, X., Cheng, G. & Zhu, J. Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes. Appl. Energy 195, 414–425 (2017).

    CAS  Article  Google Scholar 

  84. 84.

    Liu, Y. et al. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 27, 2768–2774 (2015).

    CAS  Article  Google Scholar 

  85. 85.

    Geng, H. et al. Plant leaves inspired sunlight-driven purifier for high-efficiency clean water production. Nat. Commun. 10, 1512 (2019).

    Article  CAS  Google Scholar 

  86. 86.

    Li, C. et al. Scalable and robust bilayer polymer foams for highly efficient and stable solar desalination. Nano Energy 60, 841–849 (2019).

    CAS  Article  Google Scholar 

  87. 87.

    Zhang, P. et al. Direct solar steam generation system for clean water production. Energy Storage Mater. 18, 429–446 (2019).

    Article  Google Scholar 

  88. 88.

    Cooper, T. A. et al. Contactless steam generation and superheating under one sun illumination. Nat. Commun. 9, 5086 (2018).

    CAS  Article  Google Scholar 

  89. 89.

    Li, Y. et al. Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination. Nano Energy 41, 201–209 (2017).

    CAS  Article  Google Scholar 

  90. 90.

    Li, X. et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl Acad. Sci. USA 113, 13953–13958 (2016).

    CAS  Article  Google Scholar 

  91. 91.

    Jiang, Q. et al. Bilayered biofoam for highly efficient solar steam generation. Adv. Mater. 28, 9400–9407 (2016).

    CAS  Article  Google Scholar 

  92. 92.

    Zhu, M. et al. Tree-inspired design for high-efficiency water extraction. Adv. Mater. 29, 1704107 (2017).

    Article  CAS  Google Scholar 

  93. 93.

    Zhang, L., Tang, B., Wu, J., Li, R. & Wang, P. Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater. 27, 4889–4894 (2015). This paper is one of the first introducing the idea of using interfacial evaporation to lower the energy loss to the bulk water.

    CAS  Article  Google Scholar 

  94. 94.

    Liu, Y., Chen, J., Guo, D., Cao, M. & Jiang, L. Floatable, self-cleaning, and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air–water interface. ACS Appl. Mater. Interfaces 7, 13645–13652 (2015).

    CAS  Article  Google Scholar 

  95. 95.

    Yu, S. et al. The impact of surface chemistry on the performance of localized solar-driven evaporation system. Sci. Rep. 5, 13600 (2015).

    Article  Google Scholar 

  96. 96.

    Xu, W. et al. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination. Adv. Energy Mater. 8, 1702884 (2018).

    Article  CAS  Google Scholar 

  97. 97.

    Wan, R. & Shi, G. Accelerated evaporation of water on graphene oxide. Phys. Chem. Chem. Phys. 19, 8843–8847 (2017).

    CAS  Article  Google Scholar 

  98. 98.

    Sharma, S. & Debenedetti, P. G. Evaporation rate of water in hydrophobic confinement. Proc. Natl Acad. Sci. USA 109, 4365–4370 (2012).

    CAS  Article  Google Scholar 

  99. 99.

    Guo, Y., Zhao, F., Zhou, X., Chen, Z. & Yu, G. Tailoring nanoscale surface topography of hydrogel for efficient solar vapor generation. Nano Lett. 19, 2530–2536 (2019). This paper demonstrates the concept of regulating the surface topography in polymers to enhance SVG.

    CAS  Article  Google Scholar 

  100. 100.

    Hong, S. et al. Nature-inspired, 3D origami solar steam generator toward near full utilization of solar energy. ACS Appl. Mater. Interfaces 10, 28517–28524 (2018).

    CAS  Article  Google Scholar 

  101. 101.

    Kim, K., Yu, S., An, C., Kim, S. & Jang, J. Mesoporous three-dimensional graphene networks for highly efficient solar desalination under 1 sun illumination. ACS Appl. Mater. Interfaces 10, 15602–15608 (2018).

    CAS  Article  Google Scholar 

  102. 102.

    Wang, Y. et al. Improved light-harvesting and thermal management for efficient solar-driven water evaporation using 3D photothermal cones. J. Mater. Chem. A 6, 9874–9881 (2018).

    CAS  Article  Google Scholar 

  103. 103.

    Li, X. et al. Enhancement of interfacial solar vapor generation by environmental energy. Joule 2, 1331–1338 (2018).

    CAS  Article  Google Scholar 

  104. 104.

    Song, H. et al. Cold vapor generation beyond the input solar energy limit. Adv. Sci. 5, 1800222 (2018).

    Article  CAS  Google Scholar 

  105. 105.

    Xue, G. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 12, 317–321 (2017).

    CAS  Article  Google Scholar 

  106. 106.

    Zhang, Z. et al. Emerging hydrovoltaic technology. Nat. Nanotechnol. 13, 1109–1119 (2018).

    CAS  Article  Google Scholar 

  107. 107.

    Cheng, H. et al. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots. Angew. Chem. Int. Ed. 52, 10482–10486 (2013).

    CAS  Article  Google Scholar 

  108. 108.

    Cheng, H. et al. Moisture-activated torsional graphene-fiber motor. Adv. Mater. 26, 2909–2913 (2014).

    CAS  Article  Google Scholar 

  109. 109.

    Zhou, X., Guo, Y., Zhao, F. & Yu, G. Hydrogels as an emerging material platform for solar water purification. Acc. Chem. Res. 52, 3244–3253 (2019). This paper outlines key developments of hydrogel-based materials as an emerging platform for solar water purification.

    CAS  Article  Google Scholar 

  110. 110.

    Luzar, A. & Chandler, D. Hydrogen-bond kinetics in liquid water. Nature 379, 55–57 (1996).

    CAS  Article  Google Scholar 

  111. 111.

    Maréchal, Y. The Hydrogen Bond and the Water Molecule 1st edn (Elsevier, 2006).

  112. 112.

    Ohmine, I. & Tanaka, H. Fluctuation, relaxations, and hydration in liquid water. Hydrogen-bond rearrangement dynamics. Chem. Rev. 93, 2545–2566 (1993).

    CAS  Article  Google Scholar 

  113. 113.

    Fecko, C. J., Eaves, J. D., Loparo, J. J., Tokmakoff, A. & Geissler, P. L. Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science 301, 1698–1702 (2003).

    CAS  Article  Google Scholar 

  114. 114.

    Boulougouris, G. C., Economou, I. G. & Theodorou, D. N. Engineering a molecular model for water phase equilibrium over a wide temperature range. J. Phys. Chem. B 102, 1029–1035 (1998).

    CAS  Article  Google Scholar 

  115. 115.

    Smith, J. D. et al. Energetics of hydrogen bond network rearrangements in liquid water. Science 306, 851–853 (2004).

    CAS  Article  Google Scholar 

  116. 116.

    Duboué-Dijon, E. & Laage, D. Characterization of the local structure in liquid water by various order parameters. J. Phys. Chem. B 119, 8406–8418 (2015).

    Article  CAS  Google Scholar 

  117. 117.

    Rey, R., Møller, K. B. & Hynes, J. T. Hydrogen bond dynamics in water and ultrafast infrared spectroscopy. J. Phys. Chem. B 106, 11993–11996 (2002).

    CAS  Article  Google Scholar 

  118. 118.

    Rahman, A. & Stillinger, F. H. Hydrogen-bond patterns in liquid water. J. Am. Chem. Soc. 95, 7943–7948 (1973).

    CAS  Article  Google Scholar 

  119. 119.

    Luzar, A. & Chandler, D. Effect of environment on hydrogen bond dynamics in liquid water. Phys. Rev. Lett. 76, 928 (1996).

    CAS  Article  Google Scholar 

  120. 120.

    Eaves, J. D. et al. Hydrogen bonds in liquid water are broken only fleetingly. Proc. Natl Acad. Sci. USA 102, 13019–13022 (2005).

    CAS  Article  Google Scholar 

  121. 121.

    Smith, J. D. et al. Unified description of temperature-dependent hydrogen-bond rearrangements in liquid water. Proc. Natl Acad. Sci. USA 102, 14171–14174 (2005).

    CAS  Article  Google Scholar 

  122. 122.

    Sanz, E., Vega, C., Abascal, J. L. & MacDowell, L. G. Phase diagram of water from computer simulation. Phys. Rev. Lett. 92, 255701 (2004).

    CAS  Article  Google Scholar 

  123. 123.

    Chutia, A., Hamada, I. & Tokuyama, M. Role of lone pair and π-orbital interaction in formation of water nanostructures confined in carbon nanotubes. Chem. Phys. Lett. 550, 118–124 (2012).

    CAS  Article  Google Scholar 

  124. 124.

    Tomo, Y. et al. Superstable ultrathin water film confined in a hydrophilized carbon nanotube. Nano Lett. 18, 1869–1874 (2018).

    CAS  Article  Google Scholar 

  125. 125.

    Takaiwa, D., Hatano, I., Koga, K. & Tanaka, H. Phase diagram of water in carbon nanotubes. Proc. Natl Acad. Sci. USA 105, 39–43 (2008).

    CAS  Article  Google Scholar 

  126. 126.

    Vila Verde, A. & Lipowsky, R. Cooperative slowdown of water rotation near densely charged ions is intense but short-ranged. J. Phys. Chem. B 117, 10556–10566 (2013).

    CAS  Article  Google Scholar 

  127. 127.

    Wang, S. et al. An insight into liquid water networks through hydrogen bonding halide anion: stimulated Raman scattering. J. Appl. Phys. 119, 163104 (2016).

    Article  CAS  Google Scholar 

  128. 128.

    Smith, J. D., Saykally, R. J. & Geissler, P. L. The effects of dissolved halide anions on hydrogen bonding in liquid water. J. Am. Chem. Soc. 129, 13847–13856 (2007).

    CAS  Article  Google Scholar 

  129. 129.

    Omta, A. W., Kropman, M. F., Woutersen, S. & Bakker, H. J. Negligible effect of ions on the hydrogen-bond structure in liquid water. Science 301, 347–349 (2003).

    CAS  Article  Google Scholar 

  130. 130.

    Hatakeyema, T., Yamauchi, A. & Hatakeyema, H. Studies on bound water in poly (vinyl alcohol). Hydrogel by DSC and FT-NMR. Eur. Polym. J. 20, 61–64 (1984).

    CAS  Article  Google Scholar 

  131. 131.

    Terada, T., Maeda, Y. & Kitano, H. Raman spectroscopic study on water in polymer gels. J. Phys. Chem. 97, 3619–3622 (1993).

    CAS  Article  Google Scholar 

  132. 132.

    Ping, Z. H., Nguyen, Q. T., Chen, S. M., Zhou, J. Q. & Ding, Y. D. States of water in different hydrophilic polymers—DSC and FTIR studies. Polymer 42, 8461–8467 (2001).

    CAS  Article  Google Scholar 

  133. 133.

    Wang, T. & Gunasekaran, S. State of water in chitosan–PVA hydrogel. J. Appl. Polym. Sci. 101, 3227–3232 (2006).

    CAS  Article  Google Scholar 

  134. 134.

    Kudo, K., Ishida, J., Syuu, G., Sekine, Y. & Ikeda-Fukazawa, T. Structural changes of water in poly(vinyl alcohol) hydrogel during dehydration. J. Chem. Phys. 140, 044909 (2014).

    Article  CAS  Google Scholar 

  135. 135.

    Sekine, Y. & Ikeda-Fukazawa, T. Structural changes of water in a hydrogel during dehydration. J. Chem. Phys. 130, 034501 (2009).

    Article  CAS  Google Scholar 

  136. 136.

    Hara, K., Masuike, T., Nakamura, A., Okabe, H. & Hiramatsu, N. Raman scattering study during the dehydration process of polyacrylamide gel. Jpn. J. Appl. Phys. 34, 5700 (1995).

    CAS  Article  Google Scholar 

  137. 137.

    Hara, K., Masuike, T., Nakamura, A. & Hiramatsu, N. Elastic property and Raman spectrum evolutions during dehydration process of polyacrylamide gel. Phys. B 219, 526–528 (1996).

    Article  Google Scholar 

  138. 138.

    Zhang, Y. S. & Khademhosseini, A. Advances in engineering hydrogels. Science 356, eaaf3627 (2017).

    Article  CAS  Google Scholar 

  139. 139.

    Ahmed, E. M. Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res. 6, 105–121 (2015).

    CAS  Article  Google Scholar 

  140. 140.

    Zhao, F., Bae, J., Zhou, X., Guo, Y. & Yu, G. Nanostructured functional hydrogels as an emerging platform for advanced energy technologies. Adv. Mater. 30, 1801796 (2018).

    Article  CAS  Google Scholar 

  141. 141.

    Abu-Arabi, M., Al-harahsheh, M., Mousa, H. & Alzghoul, Z. Theoretical investigation of solar desalination with solar still having phase change material and connected to a solar collector. Desalination 448, 60–68 (2018).

    CAS  Article  Google Scholar 

  142. 142.

    Wang, Z. et al. Pathways and challenges for efficient solar-thermal desalination. Sci. Adv. 5, eaax0763 (2019).

    Article  Google Scholar 

  143. 143.

    Sun, Z. et al. Plasmon based double-layer hydrogel device for a highly efficient solar vapor generation. Adv. Funct. Mater. 29, 1901312 (2019).

    Article  CAS  Google Scholar 

  144. 144.

    Liu, H. et al. High-performance solar steam device with layered channels: artificial tree with a reversed design. Adv. Energy Mater. 8, 1701616 (2018).

    Article  CAS  Google Scholar 

  145. 145.

    Xu, W. et al. Efficient water transport and solar steam generation via radially, hierarchically structured aerogels. ACS Nano 13, 7930–7938 (2019).

    CAS  Article  Google Scholar 

  146. 146.

    Shi, Y. et al. A 3D photothermal structure toward improved energy efficiency in solar steam generation. Joule 2, 1171–1186 (2018).

    CAS  Article  Google Scholar 

  147. 147.

    Gong, F. et al. Scalable, eco-friendly and ultrafast solar steam generators based on one-step melamine-derived carbon sponges toward water purification. Nano Energy 58, 322–330 (2019).

    CAS  Article  Google Scholar 

  148. 148.

    Liu, Z. et al. Continuously producing watersteam and concentrated brine from seawater by hanging photothermal fabrics under sunlight. Adv. Funct. Mater. 29, 1905485 (2019).

    CAS  Article  Google Scholar 

  149. 149.

    Bian, Y. et al. Carbonized bamboos as excellent 3D solar vapor-generation devices. Adv. Mater. Technol. 4, 1800593 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.Y. acknowledges the support from the Welch Foundation award F-1861, UT Energy Institute, Camille Dreyfus Teacher-Scholar Award, Sloan Research Fellowship and partially from Lockheed Martin, Corp.

Author information

Affiliations

Authors

Contributions

All authors contributed to the discussion of content and edited the manuscript before submission.

Corresponding author

Correspondence to Guihua Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, F., Guo, Y., Zhou, X. et al. Materials for solar-powered water evaporation. Nat Rev Mater 5, 388–401 (2020). https://doi.org/10.1038/s41578-020-0182-4

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing