Chiral-perovskite optoelectronics

Abstract

Hybrid organic–inorganic perovskites (HOIPs) offer long carrier-diffusion lengths, high absorption coefficients, tunable band gaps and long spin lifetimes. The flexible crystal structure and ionic nature of HOIPs make it possible to allow tuning of their material properties through rational design, including the incorporation of chiral organic ligands. Recently, chiral HOIPs have emerged as promising materials for chiroptoelectronics, spintronics and ferroelectrics. They exhibit high photoluminescence polarization (17% without an external magnetic field), good device performance (a circularly polarized photodetector had 100 times higher responsivity than one based on a chiral metasurface) and high saturated polarization (~2 times higher than that of barium titanate). Here, we review the latest advances in chiral HOIPs and investigate the specific benefits of combining chiral organic and inorganic components in perovskites. We discuss demonstrations of chiroptical and ferroelectric applications, and conclude with our perspective on the future opportunities for chiral HOIPs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Potential applications of chiral materials.
Fig. 2: Timeline of research on chiral perovskites.
Fig. 3: Basics of chiral-material properties.
Fig. 4: Representative chiral ligands and chiral hybrid organic–inorganic perovskites.
Fig. 5: Chirality through chiral ligands and environment.
Fig. 6: Circularly polarized photodetectors based on chiral hybrid organic–inorganic perovskites.
Fig. 7: Spin manipulation and nonlinear chiroptical effects in chiral perovskites.
Fig. 8: Chiral-perovskite-based ferroelectrics.

References

  1. 1.

    Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

  2. 2.

    Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

  3. 3.

    Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013).

  4. 4.

    Dong, Q. et al. Electron-hole diffusion lengths >175 µm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

  5. 5.

    Tong, J. et al. Carrier lifetimes of >1 µs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 364, 475–479 (2019).

  6. 6.

    Eperon, G. E. et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 354, 861–865 (2016).

  7. 7.

    Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).

  8. 8.

    Jung, E. H. et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567, 511–515 (2019).

  9. 9.

    Zhao, D. et al. Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nat. Energy 3, 1093–1100 (2018).

  10. 10.

    Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).

  11. 11.

    Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon. 10, 699–704 (2016).

  12. 12.

    Zhao, B. et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photon. 12, 783–789 (2018).

  13. 13.

    Li, Z. et al. Room-temperature continuous-wave operation of organometal halide perovskite lasers. ACS Nano 12, 10968–10976 (2018).

  14. 14.

    Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014).

  15. 15.

    Zhu, H. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015).

  16. 16.

    Zhang, Q., Ha, S. T., Liu, X., Sum, T. C. & Xiong, Q. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett. 14, 5995–6001 (2014).

  17. 17.

    Zhang, H. et al. 2D Ruddlesden–Popper perovskites microring laser array. Adv. Mater. 30, 1706186 (2018).

  18. 18.

    Milot, R. L. et al. Charge-carrier dynamics in 2D hybrid metal–halide perovskites. Nano Lett. 16, 7001–7007 (2016).

  19. 19.

    Senanayak, S. P. et al. Understanding charge transport in lead iodide perovskite thin-film field-effect transistors. Sci. Adv. 3, e1601935 (2017).

  20. 20.

    Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999).

  21. 21.

    Brenner, T. M., Egger, D. A., Kronik, L., Hodes, G. & Cahen, D. Hybrid organic–inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016).

  22. 22.

    Juarez-Perez, E. J. et al. Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 2390–2394 (2014).

  23. 23.

    Lin, Q., Armin, A., Burn, P. L. & Meredith, P. Filterless narrowband visible photodetectors. Nat. Photon. 9, 687–694 (2015).

  24. 24.

    Fang, Y., Dong, Q., Shao, Y., Yuan, Y. & Huang, J. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photon. 9, 679–686 (2015).

  25. 25.

    Niesner, D. et al. Giant Rashba splitting in CH3NH3PbBr3 organic-inorganic perovskite. Phys. Rev. Lett. 117, 126401 (2016).

  26. 26.

    Mosconi, E., Etienne, T. & De Angelis, F. Rashba band splitting in organohalide lead perovskites: bulk and surface effects. J. Phys. Chem. Lett. 8, 2247–2252 (2017).

  27. 27.

    Odenthal, P. et al. Spin-polarized exciton quantum beating in hybrid organic–inorganic perovskites. Nat. Phys. 13, 894–899 (2017).

  28. 28.

    Giovanni, D. et al. Highly spin-polarized carrier dynamics and ultralarge photoinduced magnetization in CH3NH3PbI3 perovskite thin films. Nano Lett. 15, 1553–1558 (2015).

  29. 29.

    Zheng, F., Tan, L. Z., Liu, S. & Rappe, A. M. Rashba spin-orbit coupling enhanced carrier lifetime in CH3NH3PbI3. Nano Lett. 15, 7794–7800 (2015).

  30. 30.

    Wang, J. et al. Spin-optoelectronic devices based on hybrid organic-inorganic trihalide perovskites. Nat. Commun. 10, 129 (2019).

  31. 31.

    Sun, D. et al. Spintronics of organometal trihalide perovskites. Preprint at arXiv https://arxiv.org/abs/1608.00993 (2016).

  32. 32.

    Liao, K. et al. Spintronics of hybrid organic–inorganic perovskites: miraculous basis of integrated optoelectronic devices. Adv. Opt. Mater. 7, 1900350 (2019).

  33. 33.

    Billing, D. G. & Lemmerer, A. Bis[(S)-β-phenethylammonium] tribromoplumbate(II). Acta Cryst. E 59, m381–m383 (2003). The first report of a chiral organic–inorganic perovskite.

  34. 34.

    Billing, D. G. & Lemmerer, A. Synthesis and crystal structures of inorganic–organic hybrids incorporating an aromatic amine with a chiral functional group. CrystEngComm 8, 686–695 (2006).

  35. 35.

    Peng, Y. et al. White-light emission in a chiral one-dimensional organic–inorganic hybrid perovskite. J. Mater. Chem. C 6, 6033–6037 (2018).

  36. 36.

    Mercier, N. et al. Conglomerate-to-true-racemate reversible solid-state transition in crystals of an organic disulfide-based iodoplumbate. Angew. Chem. Int. Ed. 45, 2100–2103 (2006).

  37. 37.

    Moon, T. H., Oh, S.-J. & Ok, K. M. [((R)-C8H12N)4][Bi2Br10] and [((S)-C8H12N)4][Bi2Br10]: chiral hybrid bismuth bromides templated by chiral organic cations. ACS Omega 3, 17895–17903 (2018).

  38. 38.

    Chen, C. et al. Circularly polarized light detection using chiral hybrid perovskite. Nat. Commun. 10, 1927 (2019). Report of chiral-perovskite photodetectors with responsivity 100 times higher than that of chiral-metasurface photodetectors.

  39. 39.

    Ma, J. et al. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano 13, 3659–3665 (2019). Report of ~17% photoluminescence polarization of 2D chiral-perovskite microplates at 77 K.

  40. 40.

    Yang, C.-K. et al. The first 2D homochiral lead iodide perovskite ferroelectrics: [R- and S-1-(4-chlorophenyl)ethylammonium]2PbI4. Adv. Mater. 31, 1808088 (2019).

  41. 41.

    Ai, Y. et al. Fluorine substitution induced high T c of enantiomeric perovskite ferroelectrics: (R)- and (S)-3-(fluoropyrrolidinium)MnCl3. J. Am. Chem. Soc. 141, 4474–4479 (2019).

  42. 42.

    Liu, Y. et al. Chemical nature of ferroelastic twin domains in CH3NH3PbI3 perovskite. Nat. Mater. 17, 1013–1019 (2018).

  43. 43.

    Abendroth, J. M. et al. Spin selectivity in photoinduced charge-transfer mediated by chiral molecules. ACS Nano 13, 4928–4946 (2019).

  44. 44.

    Naaman, R., Paltiel, Y. & Waldeck, D. H. Chiral molecules and the electron spin. Nat. Rev. Chem. 3, 250–260 (2019). Comprehensive review of chiral-induced spin-selective effect and its applications.

  45. 45.

    Kelvin, W. T. The Molecular Tactics of a Crystal 26–27 (Clarendon, 1894).

  46. 46.

    Berova, N., Nakanishi, K. & Woody, R. W. (eds) Circular Dichroism: Principles and Applications 2nd edn (Wiley-VCH, 2000).

  47. 47.

    Ahn, J. et al. A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic–inorganic hybrid perovskites. Mater. Horiz. 4, 851–856 (2017). First exploration of chiroptical behaviour of chiral organic–inorganic perovskites by circular dichroism.

  48. 48.

    Yuan, C. et al. Chiral lead halide perovskite nanowires for second-order nonlinear optics. Nano Lett. 18, 5411–5417 (2018). Report of circularly polarized SHG in chiral-perovskite nanowires.

  49. 49.

    Naciri, J. et al. Synthesis and pyroelectric properties of novel ferroelectric organosiloxane liquid crystalline materials. Chem. Mater. 14, 5134–5139 (2002).

  50. 50.

    Zhang, H.-Y., Tang, Y.-Y., Shi, P.-P. & Xiong, R.-G. Toward the targeted design of molecular ferroelectrics: modifying molecular symmetries and homochirality. Acc. Chem. Res. 52, 1928–1938 (2019).

  51. 51.

    Sanchez, D. S. et al. Topological chiral crystals with helicoid-arc quantum states. Nature 567, 500–505 (2019).

  52. 52.

    Yang, Y., da Costa, R. C., Fuchter, M. J. & Campbell, A. J. Circularly polarized light detection by a chiral organic semiconductor transistor. Nat. Photon. 7, 634–638 (2013).

  53. 53.

    Li, W. et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun. 6, 8379 (2015).

  54. 54.

    Brandt, J. R., Salerno, F. & Fuchter, M. J. The added value of small-molecule chirality in technological applications. Nat. Rev. Chem. 1, 0045 (2017).

  55. 55.

    Schulz, M. et al. Chiral excitonic organic photodiodes for direct detection of circular polarized light. Adv. Funct. Mater. 29, 1900684 (2019).

  56. 56.

    Wu, Z.-G. et al. Chiral octahydro-binaphthol compound-based thermally activated delayed fluorescence materials for circularly polarized electroluminescence with superior EQE of 32.6% and extremely low efficiency roll-off. Adv. Mater. 31, 1900524 (2019).

  57. 57.

    Zinna, F. et al. Design of lanthanide-based OLEDs with remarkable circularly polarized electroluminescence. Adv. Funct. Mater. 27, 1603719 (2017).

  58. 58.

    Feuillastre, S. et al. Design and synthesis of new circularly polarized thermally activated delayed fluorescence emitters. J. Am. Chem. Soc. 138, 3990–3993 (2016).

  59. 59.

    Yang, Y., da Costa, R. C., Smilgies, D.-M., Campbell, A. J. & Fuchter, M. J. Induction of circularly polarized electroluminescence from an achiral light-emitting polymer via a chiral small-molecule dopant. Adv. Mater. 25, 2624–2628 (2013).

  60. 60.

    Han, J. et al. Recent progress on circularly polarized luminescent materials for organic optoelectronic devices. Adv. Opt. Mater. 6, 1800538 (2018).

  61. 61.

    Kissick, D. J., Wanapun, D. & Simpson, G. J. Second-order nonlinear optical imaging of chiral crystals. Annu. Rev. Anal. Chem. 4, 419–437 (2011).

  62. 62.

    Heffern, M. C., Matosziuk, L. M. & Meade, T. J. Lanthanide probes for bioresponsive imaging. Chem. Rev. 114, 4496–4539 (2014).

  63. 63.

    Lee, H. et al. Chiral imaging of collagen by second-harmonic generation circular dichroism. Biomed. Opt. Express 4, 909–916 (2013).

  64. 64.

    Bisoyi, H. K. & Li, Q. Light-directing chiral liquid crystal nanostructures: from 1D to 3D. Acc. Chem. Res. 47, 3184–3195 (2014).

  65. 65.

    Schadt, M. Liquid crystal materials and liquid crystal displays. Annu. Rev. Mater. Sci. 27, 305–379 (1997).

  66. 66.

    Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge Univ. Press, 2011).

  67. 67.

    Service, R. F. Ultrafast lasers. Lighting the way to a quantum computer. Science 292, 2412–2413 (2001).

  68. 68.

    Gisin, N. & Thew, R. Quantum communication. Nat. Photon. 1, 165–171 (2007).

  69. 69.

    Liao, S.-K. et al. Satellite-relayed intercontinental quantum network. Phys. Rev. Lett. 120, 030501 (2018).

  70. 70.

    Humphreys, P. C. et al. Deterministic delivery of remote entanglement on a quantum network. Nature 558, 268–273 (2018).

  71. 71.

    Chang, K. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274–278 (2016).

  72. 72.

    Kepenekian, M. et al. Rashba and Dresselhaus effects in hybrid organic–inorganic perovskites: from basics to devices. ACS Nano 9, 11557–11567 (2015).

  73. 73.

    Lee, D.-M., Song, J.-W., Lee, Y.-J., Yu, C.-J. & Kim, J.-H. Control of circularly polarized electroluminescence in induced twist structure of conjugate polymer. Adv. Mater. 29, 1700907 (2017).

  74. 74.

    Wan, L. et al. Inverting the handedness of circularly polarized luminescence from light-emitting polymers using film thickness. ACS Nano 13, 8099–8105 (2019).

  75. 75.

    Dor, O. B., Yochelis, S., Mathew, S. P., Naaman, R. & Paltiel, Y. A chiral-based magnetic memory device without a permanent magnet. Nat. Commun. 4, 2256 (2013).

  76. 76.

    Ben Dor, O. et al. Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field. Nat. Commun. 8, 14567 (2017).

  77. 77.

    Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

  78. 78.

    Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

  79. 79.

    He, T. et al. Spectroscopic studies of chiral perovskite nanocrystals. Appl. Phys. Lett. 111, 151102 (2017).

  80. 80.

    Chen, W. et al. Two-photon absorption-based upconverted circularly polarized luminescence generated in chiral perovskite nanocrystals. J. Phys. Chem. Lett. 10, 3290–3295 (2019). Report of the first TP-UCPPL.

  81. 81.

    Shi, Y., Duan, P., Huo, S., Li, Y. & Liu, M. Endowing perovskite nanocrystals with circularly polarized luminescence. Adv. Mater. 30, 1705011 (2018).

  82. 82.

    Georgieva, Z. N., Bloom, B. P., Ghosh, S. & Waldeck, D. H. Imprinting chirality onto the electronic states of colloidal perovskite nanoplatelets. Adv. Mater. 30, 1800097 (2018).

  83. 83.

    Long, G. et al. Spin control in reduced-dimensional chiral perovskites. Nat. Photon. 12, 528–533 (2018). Report of low-dimensional chiral perovskites exhibiting 3% circularly polarized photoluminescence without an external magnetic field.

  84. 84.

    Ye, H.-Y. et al. Metal-free three-dimensional perovskite ferroelectrics. Science 361, 151–155 (2018). Report of the first metal-free 3D chiral perovskites.

  85. 85.

    Long, G. et al. Theoretical prediction of chiral 3D hybrid organic–inorganic perovskites. Adv. Mater. 31, 1807628 (2019). Theoretical prediction that 3D chiral organic–inorganic perovskites are thermodynamically and kinetically stable.

  86. 86.

    Sohncke, L. Entwickelung einer Theorie der Krystallstruktur (Teubner, 1879).

  87. 87.

    Neumann, F. E. & Meyer, O. E. Vorlesungen über die Theorie der Elasticität der festen Körper und des Lichtäthers, gehalten an der Universität Königsberg (Teubner, 1885).

  88. 88.

    Curie, P. Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique. J. Phys. Theor. Appl. 3, 393–415 (1894).

  89. 89.

    Dong, Y. et al. Chiral perovskites: promising materials toward next-generation optoelectronics. Small 15, 1902237 (2019).

  90. 90.

    Fischer, P. & Hache, F. Nonlinear optical spectroscopy of chiral molecules. Chirality 17, 421–437 (2005).

  91. 91.

    Shi, P.-P. et al. Symmetry breaking in molecular ferroelectrics. Chem. Soc. Rev. 45, 3811–3827 (2016).

  92. 92.

    Mujica, V. Chirality transfer takes a jump. Nat. Chem. 7, 543–544 (2015).

  93. 93.

    Ostovar pour, S. et al. Through-space transfer of chiral information mediated by a plasmonic nanomaterial. Nat. Chem. 7, 591–596 (2015).

  94. 94.

    Ma, W. et al. Chiral inorganic nanostructures. Chem. Rev. 117, 8041–8093 (2017).

  95. 95.

    Li, Y., Yu, D., Dai, L., Urbas, A. & Li, Q. Organo-soluble chiral thiol-monolayer-protected gold nanorods. Langmuir 27, 98–103 (2011).

  96. 96.

    Dolamic, I., Knoppe, S., Dass, A. & Bürgi, T. First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands. Nat. Commun. 3, 798 (2012).

  97. 97.

    Goldsmith, M.-R. et al. The chiroptical signature of achiral metal clusters induced by dissymmetric adsorbates. Phys. Chem. Chem. Phys. 8, 63–67 (2006).

  98. 98.

    Carmeli, I. et al. Broad band enhancement of light absorption in photosystem I by metal nanoparticle antennas. Nano Lett. 10, 2069–2074 (2010).

  99. 99.

    Lemmerer, A. & Billing, D. G. Inorganic–organic hybrids incorporating a chiral cyclic ammonium cation. S. Afr. J. Chem. 66, 263–272 (2013).

  100. 100.

    Yuan, Z. et al. One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nat. Commun. 8, 14051 (2017).

  101. 101.

    Hu, T. et al. Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites. J. Phys. Chem. Lett. 7, 2258–2263 (2016).

  102. 102.

    Peng, Y. et al. Exploration of chiral organic–inorganic hybrid semiconducting lead halides. Chem. Asian J. 14, 2273–2277 (2019).

  103. 103.

    Zhu, L.-L. et al. Stereochemically active lead chloride enantiomers mediated by homochiral organic cation. Polyhedron 158, 445–448 (2019).

  104. 104.

    Black, R. S. & Billing, D. G. The structure and photoluminescence of chiral tin and lead inorganic-organic hybrid perovskites. Acta Cryst. A 64, C455–C456 (2008).

  105. 105.

    Black, R. S. Structure and Optical Properties of Natural Low Dimensional, Semiconducting, Organic Inorganic Hybrids. Thesis, Univ. Witwatersrand (2012).

  106. 106.

    Hajlaoui, F. et al. Synthesis, crystal structures, second harmonic generation response and temperature phase transitions of two noncentrosymmetric Cu(II)-hybrid halides compounds: [(R)-C7H16N2][CuX4] (X = Cl or Br). J. Mol. Struct. 1182, 47–53 (2019).

  107. 107.

    Ben Salah, A. M., Sayari, N., Naïli, H. & Norquist, A. J. Chiral and achiral copper(II) complexes: structure, bonding and biological activities. RSC Adv. 6, 59055–59065 (2016).

  108. 108.

    Mande, H. M., Ghalsasi, P. S. & Navamoney, A. Synthesis, structural and spectroscopic characterization of the thermochromic compounds A2CuCl4: [(naphthyl ethylammonium)2CuCl4]. Polyhedron 91, 141–149 (2015).

  109. 109.

    Tang, Y.-Y. et al. H/F-substitution-induced homochirality for designing high-T c molecular perovskite ferroelectrics. Adv. Mater. 31, 1902163 (2019).

  110. 110.

    Mande, H. M., Ghalsasi, P. S. & Arulsamy, N. Racemic and conglomerate 1-(4-haloaryl)ethylammonium tetrachlorocobaltate salts: formation of helical structures. RSC Adv. 5, 62719–62723 (2015).

  111. 111.

    Gao, X., Han, B., Yang, X. & Tang, Z. Perspective of chiral colloidal semiconductor nanocrystals: opportunity and challenge. J. Am. Chem. Soc. 141, 13700–13707 (2019).

  112. 112.

    Tong, Y. et al. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem. Int. Ed. 55, 13887–13892 (2016).

  113. 113.

    Xue, S., Xing, P., Zhang, J., Zeng, Y. & Zhao, Y. Diverse role of solvents in controlling supramolecular chirality. Chem. Eur. J. 25, 7426–7437 (2019).

  114. 114.

    Rickhaus, M., Mayor, M. & Juríček, M. Strain-induced helical chirality in polyaromatic systems. Chem. Soc. Rev. 45, 1542–1556 (2016).

  115. 115.

    Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012).

  116. 116.

    Yashima, E. et al. Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev. 116, 13752–13990 (2016).

  117. 117.

    Huck, N. P. M., Jager, W. F., de Lange, B. & Feringa, B. L. Dynamic control and amplification of molecular chirality by circular polarized light. Science 273, 1686–1688 (1996).

  118. 118.

    Moss, G. P. Basic terminology of stereochemistry (IUPAC Recommendations 1996). Pure Appl. Chem. 68, 2193–2222 (1996).

  119. 119.

    Zhao, H.-R., Li, D.-P., Ren, X.-M., Song, Y. & Jin, W.-Q. Larger spontaneous polarization ferroelectric inorganic − organic hybrids: [PbI3] chains directed organic cations aggregation to kagomé-shaped tubular architecture. J. Am. Chem. Soc. 132, 18–19 (2010).

  120. 120.

    Zheng, H. et al. Uncovering the circular polarization potential of chiral photonic cellulose films for photonic applications. Adv. Mater. 30, 1705948 (2018).

  121. 121.

    Schellman, J. A. & Oriel, P. Origin of the cotton effect of helical polypeptides. J. Chem. Phys. 37, 2114–2124 (1962).

  122. 122.

    Rochat, E., Walker, S. D. & Parker, M. C. Polarisation and wavelength division multiplexing at 1.55 µm for bandwidth enhancement of multimode fibre based access networks. Opt. Express 12, 2280–2292 (2004).

  123. 123.

    Yang, Y. et al. Emergent properties of an organic semiconductor driven by its molecular chirality. ACS Nano 11, 8329–8338 (2017).

  124. 124.

    Liu, H. L. et al. 3D chiral color prints for anti-counterfeiting. Nanoscale 11, 5506–5511 (2019).

  125. 125.

    Brandt, J. R., Wang, X., Yang, Y., Campbell, A. J. & Fuchter, M. J. Circularly polarized phosphorescent electroluminescence with a high dissymmetry factor from PHOLEDs based on a platinahelicene. J. Am. Chem. Soc. 138, 9743–9746 (2016).

  126. 126.

    Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

  127. 127.

    Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).

  128. 128.

    Xing, G. et al. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun. 8, 14558 (2017).

  129. 129.

    Zhang, C. et al. Magnetic field effects in hybrid perovskite devices. Nat. Phys. 11, 427–434 (2015).

  130. 130.

    Hilborn, R. C. Einstein coefficients, cross sections, f values, dipole moments, and all that. Am. J. Phys. 50, 982–986 (1982).

  131. 131.

    Minzioni, P. et al. Roadmap on all-optical processing. J. Opt. 21, 063001 (2019).

  132. 132.

    Zipfel, W. R., Williams, R. M. & Webb, W. W. Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369–1377 (2003).

  133. 133.

    Halasyamani, P. S. & Poeppelmeier, K. R. Noncentrosymmetric oxides. Chem. Mater. 10, 2753–2769 (1998).

  134. 134.

    Stoumpos, C. C. et al. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852–2867 (2016).

  135. 135.

    Li, L. et al. Bilayered hybrid perovskite ferroelectric with giant two-photon absorption. J. Am. Chem. Soc. 140, 6806–6809 (2018).

  136. 136.

    Gao, Y. et al. Electro-optic modulation in hybrid metal halide perovskites. Adv. Mater. 31, 1808336 (2019).

  137. 137.

    Kalanoor, B. S. et al. Third-order optical nonlinearities in organometallic methylammonium lead iodide perovskite thin films. ACS Photon. 3, 361–370 (2016).

  138. 138.

    Zhang, R. et al. Nonlinear optical response of organic–inorganic halide perovskites. ACS Photon. 3, 371–377 (2016).

  139. 139.

    Quan, L. N., Kang, J., Ning, C.-Z. & Yang, P. Nanowires for photonics. Chem. Rev. 119, 9153–9169 (2019).

  140. 140.

    Fu, Y. et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 4, 169–188 (2019).

  141. 141.

    Abel, S. et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42–47 (2019).

  142. 142.

    Fang, L. et al. Ultra-directional high-efficiency chiral silicon photonic circuits. Optica 6, 61–66 (2019).

  143. 143.

    Olesiak-Banska, J., Waszkielewicz, M., Obstarczyk, P. & Samoc, M. Two-photon absorption and photoluminescence of colloidal gold nanoparticles and nanoclusters. Chem. Soc. Rev. 48, 4087–4117 (2019).

  144. 144.

    Yang, X., Yang, M., Pang, B., Vara, M. & Xia, Y. Gold nanomaterials at work in biomedicine. Chem. Rev. 115, 10410–10488 (2015).

  145. 145.

    Boyd, R. W. in Nonlinear Optics 3rd edn 69–133 (Academic, 2008).

  146. 146.

    Scott, J. F. Applications of modern ferroelectrics. Science 315, 954–959 (2007).

  147. 147.

    Chen, A. A review of emerging non-volatile memory (NVM) technologies and applications. Solid State Electron. 125, 25–38 (2016).

  148. 148.

    Zhang, Y. et al. Highly efficient red-light emission in an organic–inorganic hybrid ferroelectric: (pyrrolidinium)MnCl3. J. Am. Chem. Soc. 137, 4928–4931 (2015).

  149. 149.

    Tang, Y.-Y. et al. Multiaxial molecular ferroelectric thin films bring light to practical applications. J. Am. Chem. Soc. 140, 8051–8059 (2018).

  150. 150.

    Huang, P.-J., Taniguchi, K. & Miyasaka, H. Bulk photovoltaic effect in a pair of chiral–polar layered perovskite-type lead iodides altered by chirality of organic cations. J. Am. Chem. Soc. 141, 14520–14523 (2019).

  151. 151.

    Huang, S. et al. Halogenated-methylammonium based 3D halide perovskites. Adv. Mater. 31, 1903830 (2019).

  152. 152.

    Guy, S., Baguenard, B., Bensalah-Ledoux, A., Hadiouche, D. & Guy, L. Full polarization control of optical planar waveguides with chiral material. ACS Photon. 4, 2916–2922 (2017).

  153. 153.

    Cerdán, L. et al. Circularly polarized laser emission in optically active organic dye solutions. Phys. Chem. Chem. Phys. 19, 22088–22093 (2017).

  154. 154.

    Niesner, D. et al. Structural fluctuations cause spin-split states in tetragonal (CH3NH3)PbI3 as evidenced by the circular photogalvanic effect. Proc. Natl Acad. Sci. USA 115, 9509–9514 (2018).

  155. 155.

    Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

  156. 156.

    Srivastava, A. et al. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys. 11, 141–147 (2015).

  157. 157.

    Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).

  158. 158.

    Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 65, 195315 (2002).

  159. 159.

    Woźniak, P., De Leon, I., Höflich, K., Leuchs, G. & Banzer, P. Interaction of light carrying orbital angular momentum with a chiral dipolar scatterer. Optica 6, 961–965 (2019).

  160. 160.

    Mirhosseini, M. et al. High-dimensional quantum cryptography with twisted light. New J. Phys. 17, 033033 (2015).

  161. 161.

    Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

  162. 162.

    Becker, M. A. et al. Bright triplet excitons in caesium lead halide perovskites. Nature 553, 189–193 (2018).

  163. 163.

    Tamarat, P. et al. The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state. Nat. Mater. 18, 717–724 (2019).

  164. 164.

    Zhang, X., Li, L., Sun, Z. & Luo, J. Rational chemical doping of metal halide perovskites. Chem. Soc. Rev. 48, 517–539 (2019).

  165. 165.

    Sanders, T., Liu, Y., Buchner, V. & Tchounwou, P. B. Neurotoxic effects and biomarkers of lead exposure: a review. Rev. Environ. Health 24, 15–46 (2009).

  166. 166.

    Jokar, E., Chien, C.-H., Tsai, C.-M., Fathi, A. & Diau, E. W.-G. Robust tin-based perovskite solar cells with hybrid organic cations to attain efficiency approaching 10%. Adv. Mater. 31, 1804835 (2019).

  167. 167.

    Xu, L.-J., Sun, C.-Z., Xiao, H., Wu, Y. & Chen, Z.-N. Green-light-emitting diodes based on tetrabromide manganese(II) complex through solution process. Adv. Mater. 29, 1605739 (2017).

  168. 168.

    Mitzi, D. B. Synthesis, structure, and properties of organic-inorganic perovskites and related materials. Prog. Inorg. Chem. 48, 1–121 (2007).

  169. 169.

    Lu, S. et al. Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning. Nat. Commun. 9, 3405 (2018).

  170. 170.

    Kim, C., Huan, T. D., Krishnan, S. & Ramprasad, R. A hybrid organic-inorganic perovskite dataset. Sci. Data 4, 170057 (2017).

  171. 171.

    Körbel, S., Marques, M. A. L. & Botti, S. Stability and electronic properties of new inorganic perovskites from high-throughput ab initio calculations. J. Mater. Chem. C. 4, 3157–3167 (2016).

  172. 172.

    Takahashi, K., Takahashi, L., Miyazato, I. & Tanaka, Y. Searching for hidden perovskite materials for photovoltaic systems by combining data science and first principle calculations. ACS Photon. 5, 771–775 (2018).

  173. 173.

    Davies, D. W. et al. Computational screening of all stoichiometric inorganic materials. Chem 1, 617–627 (2016).

  174. 174.

    Shi, Z. J. et al. Lead-free organic–inorganic hybrid perovskites for photovoltaic applications: recent advances and perspectives. Adv. Mater. 29, 1605005 (2017).

  175. 175.

    Xiao, Z., Song, Z. & Yan, Y. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv. Mater. 31, 1803792 (2019).

  176. 176.

    Yu, Z.-G. Oscillatory magnetic circular dichroism of free-carrier absorption and determination of the Rashba dispersions in hybrid organic–inorganic perovskites. J. Phys. Chem. Lett. 9, 1–7 (2018).

  177. 177.

    Tepliakov, N. V. et al. Optical activity and circular dichroism of perovskite quantum-dot molecules. J. Phys. Chem. C. 123, 2658–2664 (2019).

  178. 178.

    Gholipour, B. et al. Organometallic perovskite metasurfaces. Adv. Mater. 29, 1604268 (2017).

  179. 179.

    Wang, Z., Wang, Y., Adamo, G., Teng, J. & Sun, H. Induced optical chirality and circularly polarized emission from achiral CdSe/ZnS quantum dots via resonantly coupling with plasmonic chiral metasurfaces. Laser Photonics Rev. 13, 1800276 (2019).

  180. 180.

    Makarov, S. V. et al. Multifold emission enhancement in nanoimprinted hybrid perovskite metasurfaces. ACS Photon. 4, 728–735 (2017).

  181. 181.

    Zhang, C. et al. Lead halide perovskite-based dynamic metasurfaces. Laser Photonics Rev. 13, 1900079 (2019).

  182. 182.

    Nespolo, M., Aroyo, M. I. & Souvignier, B. Crystallographic shelves: space-group hierarchy explained. J. Appl. Crystallogr. 51, 1481–1491 (2018).

  183. 183.

    Lightner, D. A. & Gurst, J. E. Organic Conformational Analysis and Stereochemistry from Circular Dichroism Spectroscopy (Wiley-VCH, 2000).

  184. 184.

    Polavarapu, P. L. Kramers − Kronig transformation for optical rotatory dispersion studies. J. Phys. Chem. A 109, 7013–7023 (2005).

  185. 185.

    Li, A. D. & Liu, W. C. in Physical Properties and Applications of Polymer Nanocomposites (eds Tjong, S. C. & Mai, Y.-W.) 108–158 (Woodhead, 2010).

  186. 186.

    Liao, W.-Q., Tang, Y.-Y., Li, P.-F., You, Y.-M. & Xiong, R.-G. Competitive halogen bond in the molecular ferroelectric with large piezoelectric response. J. Am. Chem. Soc. 140, 3975–3980 (2018).

Download references

Acknowledgements

W.G., G.K.L. and A.R. acknowledge the support from the Singapore National Research Foundation through 2015 NRF fellowship grant (NRF-NRFF2015-03 and NRF-CRP21-2018-0007), Singapore Ministry of Education via AcRF Tier 2 grant (nos. MOE2016-T2-2-077, MOE2017-T2-1-163 and MOE2016-T3-1-006 (S)) and A*Star Quantum Technologies for Engineering (QTE) programme. R.S and G.L. acknowledge the support from the Australian Research Council Centre of Excellence in Exciton Science (funding grant number CE170100026). E.H.S. acknowledges support from the U.S. Office of Naval Research (grant award no. N00014-17-1-2524). We thank M. Zhang (Nankai University, China) for the helpful discussions.

Author information

W.G., G.K.L. and E.H.S. discussed the content. G.K.L. researched the data for the article, with help from R.S. and M.I.S. All authors contributed to the review and editing of the manuscript.

Correspondence to Edward H. Sargent or Weibo Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Long, G., Sabatini, R., Saidaminov, M.I. et al. Chiral-perovskite optoelectronics. Nat Rev Mater (2020). https://doi.org/10.1038/s41578-020-0181-5

Download citation