Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chiral-perovskite optoelectronics

Abstract

Hybrid organic–inorganic perovskites (HOIPs) offer long carrier-diffusion lengths, high absorption coefficients, tunable band gaps and long spin lifetimes. The flexible crystal structure and ionic nature of HOIPs make it possible to allow tuning of their material properties through rational design, including the incorporation of chiral organic ligands. Recently, chiral HOIPs have emerged as promising materials for chiroptoelectronics, spintronics and ferroelectrics. They exhibit high photoluminescence polarization (17% without an external magnetic field), good device performance (a circularly polarized photodetector had 100 times higher responsivity than one based on a chiral metasurface) and high saturated polarization (~2 times higher than that of barium titanate). Here, we review the latest advances in chiral HOIPs and investigate the specific benefits of combining chiral organic and inorganic components in perovskites. We discuss demonstrations of chiroptical and ferroelectric applications, and conclude with our perspective on the future opportunities for chiral HOIPs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential applications of chiral materials.
Fig. 2: Timeline of research on chiral perovskites.
Fig. 3: Basics of chiral-material properties.
Fig. 4: Representative chiral ligands and chiral hybrid organic–inorganic perovskites.
Fig. 5: Chirality through chiral ligands and environment.
Fig. 6: Circularly polarized photodetectors based on chiral hybrid organic–inorganic perovskites.
Fig. 7: Spin manipulation and nonlinear chiroptical effects in chiral perovskites.
Fig. 8: Chiral-perovskite-based ferroelectrics.

Similar content being viewed by others

References

  1. Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    Article  CAS  Google Scholar 

  2. Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  CAS  Google Scholar 

  3. Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013).

    Article  CAS  Google Scholar 

  4. Dong, Q. et al. Electron-hole diffusion lengths >175 µm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    Article  CAS  Google Scholar 

  5. Tong, J. et al. Carrier lifetimes of >1 µs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 364, 475–479 (2019).

    Article  CAS  Google Scholar 

  6. Eperon, G. E. et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 354, 861–865 (2016).

    Article  CAS  Google Scholar 

  7. Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).

    Article  CAS  Google Scholar 

  8. Jung, E. H. et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567, 511–515 (2019).

    Article  CAS  Google Scholar 

  9. Zhao, D. et al. Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nat. Energy 3, 1093–1100 (2018).

    Article  CAS  Google Scholar 

  10. Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).

    Article  CAS  Google Scholar 

  11. Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon. 10, 699–704 (2016).

    Article  CAS  Google Scholar 

  12. Zhao, B. et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photon. 12, 783–789 (2018).

    Article  CAS  Google Scholar 

  13. Li, Z. et al. Room-temperature continuous-wave operation of organometal halide perovskite lasers. ACS Nano 12, 10968–10976 (2018).

    Article  CAS  Google Scholar 

  14. Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014).

    Article  CAS  Google Scholar 

  15. Zhu, H. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015).

    Article  CAS  Google Scholar 

  16. Zhang, Q., Ha, S. T., Liu, X., Sum, T. C. & Xiong, Q. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett. 14, 5995–6001 (2014).

    Article  CAS  Google Scholar 

  17. Zhang, H. et al. 2D Ruddlesden–Popper perovskites microring laser array. Adv. Mater. 30, 1706186 (2018).

    Article  CAS  Google Scholar 

  18. Milot, R. L. et al. Charge-carrier dynamics in 2D hybrid metal–halide perovskites. Nano Lett. 16, 7001–7007 (2016).

    Article  CAS  Google Scholar 

  19. Senanayak, S. P. et al. Understanding charge transport in lead iodide perovskite thin-film field-effect transistors. Sci. Adv. 3, e1601935 (2017).

    Article  CAS  Google Scholar 

  20. Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999).

    Article  CAS  Google Scholar 

  21. Brenner, T. M., Egger, D. A., Kronik, L., Hodes, G. & Cahen, D. Hybrid organic–inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016).

    Article  CAS  Google Scholar 

  22. Juarez-Perez, E. J. et al. Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 2390–2394 (2014).

    Article  CAS  Google Scholar 

  23. Lin, Q., Armin, A., Burn, P. L. & Meredith, P. Filterless narrowband visible photodetectors. Nat. Photon. 9, 687–694 (2015).

    Article  CAS  Google Scholar 

  24. Fang, Y., Dong, Q., Shao, Y., Yuan, Y. & Huang, J. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photon. 9, 679–686 (2015).

    Article  CAS  Google Scholar 

  25. Niesner, D. et al. Giant Rashba splitting in CH3NH3PbBr3 organic-inorganic perovskite. Phys. Rev. Lett. 117, 126401 (2016).

    Article  CAS  Google Scholar 

  26. Mosconi, E., Etienne, T. & De Angelis, F. Rashba band splitting in organohalide lead perovskites: bulk and surface effects. J. Phys. Chem. Lett. 8, 2247–2252 (2017).

    Article  CAS  Google Scholar 

  27. Odenthal, P. et al. Spin-polarized exciton quantum beating in hybrid organic–inorganic perovskites. Nat. Phys. 13, 894–899 (2017).

    Article  CAS  Google Scholar 

  28. Giovanni, D. et al. Highly spin-polarized carrier dynamics and ultralarge photoinduced magnetization in CH3NH3PbI3 perovskite thin films. Nano Lett. 15, 1553–1558 (2015).

    Article  CAS  Google Scholar 

  29. Zheng, F., Tan, L. Z., Liu, S. & Rappe, A. M. Rashba spin-orbit coupling enhanced carrier lifetime in CH3NH3PbI3. Nano Lett. 15, 7794–7800 (2015).

    Article  CAS  Google Scholar 

  30. Wang, J. et al. Spin-optoelectronic devices based on hybrid organic-inorganic trihalide perovskites. Nat. Commun. 10, 129 (2019).

    Article  CAS  Google Scholar 

  31. Sun, D. et al. Spintronics of organometal trihalide perovskites. Preprint at arXiv https://arxiv.org/abs/1608.00993 (2016).

  32. Liao, K. et al. Spintronics of hybrid organic–inorganic perovskites: miraculous basis of integrated optoelectronic devices. Adv. Opt. Mater. 7, 1900350 (2019).

    Article  CAS  Google Scholar 

  33. Billing, D. G. & Lemmerer, A. Bis[(S)-β-phenethylammonium] tribromoplumbate(II). Acta Cryst. E 59, m381–m383 (2003). The first report of a chiral organic–inorganic perovskite.

    Article  CAS  Google Scholar 

  34. Billing, D. G. & Lemmerer, A. Synthesis and crystal structures of inorganic–organic hybrids incorporating an aromatic amine with a chiral functional group. CrystEngComm 8, 686–695 (2006).

    Article  CAS  Google Scholar 

  35. Peng, Y. et al. White-light emission in a chiral one-dimensional organic–inorganic hybrid perovskite. J. Mater. Chem. C 6, 6033–6037 (2018).

    Article  CAS  Google Scholar 

  36. Mercier, N. et al. Conglomerate-to-true-racemate reversible solid-state transition in crystals of an organic disulfide-based iodoplumbate. Angew. Chem. Int. Ed. 45, 2100–2103 (2006).

    Article  CAS  Google Scholar 

  37. Moon, T. H., Oh, S.-J. & Ok, K. M. [((R)-C8H12N)4][Bi2Br10] and [((S)-C8H12N)4][Bi2Br10]: chiral hybrid bismuth bromides templated by chiral organic cations. ACS Omega 3, 17895–17903 (2018).

    Article  CAS  Google Scholar 

  38. Chen, C. et al. Circularly polarized light detection using chiral hybrid perovskite. Nat. Commun. 10, 1927 (2019). Report of chiral-perovskite photodetectors with responsivity 100 times higher than that of chiral-metasurface photodetectors.

    Article  CAS  Google Scholar 

  39. Ma, J. et al. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano 13, 3659–3665 (2019). Report of ~17% photoluminescence polarization of 2D chiral-perovskite microplates at 77 K.

    Article  CAS  Google Scholar 

  40. Yang, C.-K. et al. The first 2D homochiral lead iodide perovskite ferroelectrics: [R- and S-1-(4-chlorophenyl)ethylammonium]2PbI4. Adv. Mater. 31, 1808088 (2019).

    Article  CAS  Google Scholar 

  41. Ai, Y. et al. Fluorine substitution induced high T c of enantiomeric perovskite ferroelectrics: (R)- and (S)-3-(fluoropyrrolidinium)MnCl3. J. Am. Chem. Soc. 141, 4474–4479 (2019).

    Article  CAS  Google Scholar 

  42. Liu, Y. et al. Chemical nature of ferroelastic twin domains in CH3NH3PbI3 perovskite. Nat. Mater. 17, 1013–1019 (2018).

    Article  CAS  Google Scholar 

  43. Abendroth, J. M. et al. Spin selectivity in photoinduced charge-transfer mediated by chiral molecules. ACS Nano 13, 4928–4946 (2019).

    Article  CAS  Google Scholar 

  44. Naaman, R., Paltiel, Y. & Waldeck, D. H. Chiral molecules and the electron spin. Nat. Rev. Chem. 3, 250–260 (2019). Comprehensive review of chiral-induced spin-selective effect and its applications.

    Article  CAS  Google Scholar 

  45. Kelvin, W. T. The Molecular Tactics of a Crystal 26–27 (Clarendon, 1894).

  46. Berova, N., Nakanishi, K. & Woody, R. W. (eds) Circular Dichroism: Principles and Applications 2nd edn (Wiley-VCH, 2000).

  47. Ahn, J. et al. A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic–inorganic hybrid perovskites. Mater. Horiz. 4, 851–856 (2017). First exploration of chiroptical behaviour of chiral organic–inorganic perovskites by circular dichroism.

    Article  CAS  Google Scholar 

  48. Yuan, C. et al. Chiral lead halide perovskite nanowires for second-order nonlinear optics. Nano Lett. 18, 5411–5417 (2018). Report of circularly polarized SHG in chiral-perovskite nanowires.

    Article  CAS  Google Scholar 

  49. Naciri, J. et al. Synthesis and pyroelectric properties of novel ferroelectric organosiloxane liquid crystalline materials. Chem. Mater. 14, 5134–5139 (2002).

    Article  CAS  Google Scholar 

  50. Zhang, H.-Y., Tang, Y.-Y., Shi, P.-P. & Xiong, R.-G. Toward the targeted design of molecular ferroelectrics: modifying molecular symmetries and homochirality. Acc. Chem. Res. 52, 1928–1938 (2019).

    Article  CAS  Google Scholar 

  51. Sanchez, D. S. et al. Topological chiral crystals with helicoid-arc quantum states. Nature 567, 500–505 (2019).

    Article  CAS  Google Scholar 

  52. Yang, Y., da Costa, R. C., Fuchter, M. J. & Campbell, A. J. Circularly polarized light detection by a chiral organic semiconductor transistor. Nat. Photon. 7, 634–638 (2013).

    Article  CAS  Google Scholar 

  53. Li, W. et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun. 6, 8379 (2015).

    Article  CAS  Google Scholar 

  54. Brandt, J. R., Salerno, F. & Fuchter, M. J. The added value of small-molecule chirality in technological applications. Nat. Rev. Chem. 1, 0045 (2017).

    Article  CAS  Google Scholar 

  55. Schulz, M. et al. Chiral excitonic organic photodiodes for direct detection of circular polarized light. Adv. Funct. Mater. 29, 1900684 (2019).

    Article  CAS  Google Scholar 

  56. Wu, Z.-G. et al. Chiral octahydro-binaphthol compound-based thermally activated delayed fluorescence materials for circularly polarized electroluminescence with superior EQE of 32.6% and extremely low efficiency roll-off. Adv. Mater. 31, 1900524 (2019).

    Article  CAS  Google Scholar 

  57. Zinna, F. et al. Design of lanthanide-based OLEDs with remarkable circularly polarized electroluminescence. Adv. Funct. Mater. 27, 1603719 (2017).

    Article  CAS  Google Scholar 

  58. Feuillastre, S. et al. Design and synthesis of new circularly polarized thermally activated delayed fluorescence emitters. J. Am. Chem. Soc. 138, 3990–3993 (2016).

    Article  CAS  Google Scholar 

  59. Yang, Y., da Costa, R. C., Smilgies, D.-M., Campbell, A. J. & Fuchter, M. J. Induction of circularly polarized electroluminescence from an achiral light-emitting polymer via a chiral small-molecule dopant. Adv. Mater. 25, 2624–2628 (2013).

    Article  CAS  Google Scholar 

  60. Han, J. et al. Recent progress on circularly polarized luminescent materials for organic optoelectronic devices. Adv. Opt. Mater. 6, 1800538 (2018).

    Article  CAS  Google Scholar 

  61. Kissick, D. J., Wanapun, D. & Simpson, G. J. Second-order nonlinear optical imaging of chiral crystals. Annu. Rev. Anal. Chem. 4, 419–437 (2011).

    Article  CAS  Google Scholar 

  62. Heffern, M. C., Matosziuk, L. M. & Meade, T. J. Lanthanide probes for bioresponsive imaging. Chem. Rev. 114, 4496–4539 (2014).

    Article  CAS  Google Scholar 

  63. Lee, H. et al. Chiral imaging of collagen by second-harmonic generation circular dichroism. Biomed. Opt. Express 4, 909–916 (2013).

    Article  CAS  Google Scholar 

  64. Bisoyi, H. K. & Li, Q. Light-directing chiral liquid crystal nanostructures: from 1D to 3D. Acc. Chem. Res. 47, 3184–3195 (2014).

    Article  CAS  Google Scholar 

  65. Schadt, M. Liquid crystal materials and liquid crystal displays. Annu. Rev. Mater. Sci. 27, 305–379 (1997).

    Article  CAS  Google Scholar 

  66. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge Univ. Press, 2011).

  67. Service, R. F. Ultrafast lasers. Lighting the way to a quantum computer. Science 292, 2412–2413 (2001).

    Article  CAS  Google Scholar 

  68. Gisin, N. & Thew, R. Quantum communication. Nat. Photon. 1, 165–171 (2007).

    Article  CAS  Google Scholar 

  69. Liao, S.-K. et al. Satellite-relayed intercontinental quantum network. Phys. Rev. Lett. 120, 030501 (2018).

    Article  CAS  Google Scholar 

  70. Humphreys, P. C. et al. Deterministic delivery of remote entanglement on a quantum network. Nature 558, 268–273 (2018).

    Article  CAS  Google Scholar 

  71. Chang, K. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274–278 (2016).

    Article  CAS  Google Scholar 

  72. Kepenekian, M. et al. Rashba and Dresselhaus effects in hybrid organic–inorganic perovskites: from basics to devices. ACS Nano 9, 11557–11567 (2015).

    Article  CAS  Google Scholar 

  73. Lee, D.-M., Song, J.-W., Lee, Y.-J., Yu, C.-J. & Kim, J.-H. Control of circularly polarized electroluminescence in induced twist structure of conjugate polymer. Adv. Mater. 29, 1700907 (2017).

    Article  CAS  Google Scholar 

  74. Wan, L. et al. Inverting the handedness of circularly polarized luminescence from light-emitting polymers using film thickness. ACS Nano 13, 8099–8105 (2019).

    Article  CAS  Google Scholar 

  75. Dor, O. B., Yochelis, S., Mathew, S. P., Naaman, R. & Paltiel, Y. A chiral-based magnetic memory device without a permanent magnet. Nat. Commun. 4, 2256 (2013).

    Article  CAS  Google Scholar 

  76. Ben Dor, O. et al. Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field. Nat. Commun. 8, 14567 (2017).

    Article  CAS  Google Scholar 

  77. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    Article  CAS  Google Scholar 

  78. Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Article  CAS  Google Scholar 

  79. He, T. et al. Spectroscopic studies of chiral perovskite nanocrystals. Appl. Phys. Lett. 111, 151102 (2017).

    Article  CAS  Google Scholar 

  80. Chen, W. et al. Two-photon absorption-based upconverted circularly polarized luminescence generated in chiral perovskite nanocrystals. J. Phys. Chem. Lett. 10, 3290–3295 (2019). Report of the first TP-UCPPL.

    Article  CAS  Google Scholar 

  81. Shi, Y., Duan, P., Huo, S., Li, Y. & Liu, M. Endowing perovskite nanocrystals with circularly polarized luminescence. Adv. Mater. 30, 1705011 (2018).

    Article  CAS  Google Scholar 

  82. Georgieva, Z. N., Bloom, B. P., Ghosh, S. & Waldeck, D. H. Imprinting chirality onto the electronic states of colloidal perovskite nanoplatelets. Adv. Mater. 30, 1800097 (2018).

    Article  CAS  Google Scholar 

  83. Long, G. et al. Spin control in reduced-dimensional chiral perovskites. Nat. Photon. 12, 528–533 (2018). Report of low-dimensional chiral perovskites exhibiting 3% circularly polarized photoluminescence without an external magnetic field.

    Article  CAS  Google Scholar 

  84. Ye, H.-Y. et al. Metal-free three-dimensional perovskite ferroelectrics. Science 361, 151–155 (2018). Report of the first metal-free 3D chiral perovskites.

    Article  CAS  Google Scholar 

  85. Long, G. et al. Theoretical prediction of chiral 3D hybrid organic–inorganic perovskites. Adv. Mater. 31, 1807628 (2019). Theoretical prediction that 3D chiral organic–inorganic perovskites are thermodynamically and kinetically stable.

    Article  CAS  Google Scholar 

  86. Sohncke, L. Entwickelung einer Theorie der Krystallstruktur (Teubner, 1879).

  87. Neumann, F. E. & Meyer, O. E. Vorlesungen über die Theorie der Elasticität der festen Körper und des Lichtäthers, gehalten an der Universität Königsberg (Teubner, 1885).

  88. Curie, P. Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique. J. Phys. Theor. Appl. 3, 393–415 (1894).

    Article  Google Scholar 

  89. Dong, Y. et al. Chiral perovskites: promising materials toward next-generation optoelectronics. Small 15, 1902237 (2019).

    Article  CAS  Google Scholar 

  90. Fischer, P. & Hache, F. Nonlinear optical spectroscopy of chiral molecules. Chirality 17, 421–437 (2005).

    Article  CAS  Google Scholar 

  91. Shi, P.-P. et al. Symmetry breaking in molecular ferroelectrics. Chem. Soc. Rev. 45, 3811–3827 (2016).

    Article  CAS  Google Scholar 

  92. Mujica, V. Chirality transfer takes a jump. Nat. Chem. 7, 543–544 (2015).

    Article  CAS  Google Scholar 

  93. Ostovar pour, S. et al. Through-space transfer of chiral information mediated by a plasmonic nanomaterial. Nat. Chem. 7, 591–596 (2015).

    Article  CAS  Google Scholar 

  94. Ma, W. et al. Chiral inorganic nanostructures. Chem. Rev. 117, 8041–8093 (2017).

    Article  CAS  Google Scholar 

  95. Li, Y., Yu, D., Dai, L., Urbas, A. & Li, Q. Organo-soluble chiral thiol-monolayer-protected gold nanorods. Langmuir 27, 98–103 (2011).

    Article  CAS  Google Scholar 

  96. Dolamic, I., Knoppe, S., Dass, A. & Bürgi, T. First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands. Nat. Commun. 3, 798 (2012).

    Article  CAS  Google Scholar 

  97. Goldsmith, M.-R. et al. The chiroptical signature of achiral metal clusters induced by dissymmetric adsorbates. Phys. Chem. Chem. Phys. 8, 63–67 (2006).

    Article  CAS  Google Scholar 

  98. Carmeli, I. et al. Broad band enhancement of light absorption in photosystem I by metal nanoparticle antennas. Nano Lett. 10, 2069–2074 (2010).

    Article  CAS  Google Scholar 

  99. Lemmerer, A. & Billing, D. G. Inorganic–organic hybrids incorporating a chiral cyclic ammonium cation. S. Afr. J. Chem. 66, 263–272 (2013).

    CAS  Google Scholar 

  100. Yuan, Z. et al. One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nat. Commun. 8, 14051 (2017).

    Article  CAS  Google Scholar 

  101. Hu, T. et al. Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites. J. Phys. Chem. Lett. 7, 2258–2263 (2016).

    Article  CAS  Google Scholar 

  102. Peng, Y. et al. Exploration of chiral organic–inorganic hybrid semiconducting lead halides. Chem. Asian J. 14, 2273–2277 (2019).

    Article  CAS  Google Scholar 

  103. Zhu, L.-L. et al. Stereochemically active lead chloride enantiomers mediated by homochiral organic cation. Polyhedron 158, 445–448 (2019).

    Article  CAS  Google Scholar 

  104. Black, R. S. & Billing, D. G. The structure and photoluminescence of chiral tin and lead inorganic-organic hybrid perovskites. Acta Cryst. A 64, C455–C456 (2008).

    Article  Google Scholar 

  105. Black, R. S. Structure and Optical Properties of Natural Low Dimensional, Semiconducting, Organic Inorganic Hybrids. Thesis, Univ. Witwatersrand (2012).

  106. Hajlaoui, F. et al. Synthesis, crystal structures, second harmonic generation response and temperature phase transitions of two noncentrosymmetric Cu(II)-hybrid halides compounds: [(R)-C7H16N2][CuX4] (X = Cl or Br). J. Mol. Struct. 1182, 47–53 (2019).

    Article  CAS  Google Scholar 

  107. Ben Salah, A. M., Sayari, N., Naïli, H. & Norquist, A. J. Chiral and achiral copper(II) complexes: structure, bonding and biological activities. RSC Adv. 6, 59055–59065 (2016).

    Article  CAS  Google Scholar 

  108. Mande, H. M., Ghalsasi, P. S. & Navamoney, A. Synthesis, structural and spectroscopic characterization of the thermochromic compounds A2CuCl4: [(naphthyl ethylammonium)2CuCl4]. Polyhedron 91, 141–149 (2015).

    Article  CAS  Google Scholar 

  109. Tang, Y.-Y. et al. H/F-substitution-induced homochirality for designing high-T c molecular perovskite ferroelectrics. Adv. Mater. 31, 1902163 (2019).

    Article  CAS  Google Scholar 

  110. Mande, H. M., Ghalsasi, P. S. & Arulsamy, N. Racemic and conglomerate 1-(4-haloaryl)ethylammonium tetrachlorocobaltate salts: formation of helical structures. RSC Adv. 5, 62719–62723 (2015).

    Article  CAS  Google Scholar 

  111. Gao, X., Han, B., Yang, X. & Tang, Z. Perspective of chiral colloidal semiconductor nanocrystals: opportunity and challenge. J. Am. Chem. Soc. 141, 13700–13707 (2019).

    Article  CAS  Google Scholar 

  112. Tong, Y. et al. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem. Int. Ed. 55, 13887–13892 (2016).

    Article  CAS  Google Scholar 

  113. Xue, S., Xing, P., Zhang, J., Zeng, Y. & Zhao, Y. Diverse role of solvents in controlling supramolecular chirality. Chem. Eur. J. 25, 7426–7437 (2019).

    Article  CAS  Google Scholar 

  114. Rickhaus, M., Mayor, M. & Juríček, M. Strain-induced helical chirality in polyaromatic systems. Chem. Soc. Rev. 45, 1542–1556 (2016).

    Article  CAS  Google Scholar 

  115. Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012).

    Article  CAS  Google Scholar 

  116. Yashima, E. et al. Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev. 116, 13752–13990 (2016).

    Article  CAS  Google Scholar 

  117. Huck, N. P. M., Jager, W. F., de Lange, B. & Feringa, B. L. Dynamic control and amplification of molecular chirality by circular polarized light. Science 273, 1686–1688 (1996).

    Article  CAS  Google Scholar 

  118. Moss, G. P. Basic terminology of stereochemistry (IUPAC Recommendations 1996). Pure Appl. Chem. 68, 2193–2222 (1996).

    Article  CAS  Google Scholar 

  119. Zhao, H.-R., Li, D.-P., Ren, X.-M., Song, Y. & Jin, W.-Q. Larger spontaneous polarization ferroelectric inorganic − organic hybrids: [PbI3] chains directed organic cations aggregation to kagomé-shaped tubular architecture. J. Am. Chem. Soc. 132, 18–19 (2010).

    Article  CAS  Google Scholar 

  120. Zheng, H. et al. Uncovering the circular polarization potential of chiral photonic cellulose films for photonic applications. Adv. Mater. 30, 1705948 (2018).

    Article  CAS  Google Scholar 

  121. Schellman, J. A. & Oriel, P. Origin of the cotton effect of helical polypeptides. J. Chem. Phys. 37, 2114–2124 (1962).

    Article  CAS  Google Scholar 

  122. Rochat, E., Walker, S. D. & Parker, M. C. Polarisation and wavelength division multiplexing at 1.55 µm for bandwidth enhancement of multimode fibre based access networks. Opt. Express 12, 2280–2292 (2004).

    Article  Google Scholar 

  123. Yang, Y. et al. Emergent properties of an organic semiconductor driven by its molecular chirality. ACS Nano 11, 8329–8338 (2017).

    Article  CAS  Google Scholar 

  124. Liu, H. L. et al. 3D chiral color prints for anti-counterfeiting. Nanoscale 11, 5506–5511 (2019).

    Article  CAS  Google Scholar 

  125. Brandt, J. R., Wang, X., Yang, Y., Campbell, A. J. & Fuchter, M. J. Circularly polarized phosphorescent electroluminescence with a high dissymmetry factor from PHOLEDs based on a platinahelicene. J. Am. Chem. Soc. 138, 9743–9746 (2016).

    Article  CAS  Google Scholar 

  126. Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

    Article  CAS  Google Scholar 

  127. Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).

    Article  CAS  Google Scholar 

  128. Xing, G. et al. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun. 8, 14558 (2017).

    Article  CAS  Google Scholar 

  129. Zhang, C. et al. Magnetic field effects in hybrid perovskite devices. Nat. Phys. 11, 427–434 (2015).

    Article  CAS  Google Scholar 

  130. Hilborn, R. C. Einstein coefficients, cross sections, f values, dipole moments, and all that. Am. J. Phys. 50, 982–986 (1982).

    Article  CAS  Google Scholar 

  131. Minzioni, P. et al. Roadmap on all-optical processing. J. Opt. 21, 063001 (2019).

    Article  CAS  Google Scholar 

  132. Zipfel, W. R., Williams, R. M. & Webb, W. W. Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369–1377 (2003).

    Article  CAS  Google Scholar 

  133. Halasyamani, P. S. & Poeppelmeier, K. R. Noncentrosymmetric oxides. Chem. Mater. 10, 2753–2769 (1998).

    Article  CAS  Google Scholar 

  134. Stoumpos, C. C. et al. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852–2867 (2016).

    Article  CAS  Google Scholar 

  135. Li, L. et al. Bilayered hybrid perovskite ferroelectric with giant two-photon absorption. J. Am. Chem. Soc. 140, 6806–6809 (2018).

    Article  CAS  Google Scholar 

  136. Gao, Y. et al. Electro-optic modulation in hybrid metal halide perovskites. Adv. Mater. 31, 1808336 (2019).

    Article  CAS  Google Scholar 

  137. Kalanoor, B. S. et al. Third-order optical nonlinearities in organometallic methylammonium lead iodide perovskite thin films. ACS Photon. 3, 361–370 (2016).

    Article  CAS  Google Scholar 

  138. Zhang, R. et al. Nonlinear optical response of organic–inorganic halide perovskites. ACS Photon. 3, 371–377 (2016).

    Article  CAS  Google Scholar 

  139. Quan, L. N., Kang, J., Ning, C.-Z. & Yang, P. Nanowires for photonics. Chem. Rev. 119, 9153–9169 (2019).

    Article  CAS  Google Scholar 

  140. Fu, Y. et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 4, 169–188 (2019).

    Article  CAS  Google Scholar 

  141. Abel, S. et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42–47 (2019).

    Article  CAS  Google Scholar 

  142. Fang, L. et al. Ultra-directional high-efficiency chiral silicon photonic circuits. Optica 6, 61–66 (2019).

    Article  CAS  Google Scholar 

  143. Olesiak-Banska, J., Waszkielewicz, M., Obstarczyk, P. & Samoc, M. Two-photon absorption and photoluminescence of colloidal gold nanoparticles and nanoclusters. Chem. Soc. Rev. 48, 4087–4117 (2019).

    Article  CAS  Google Scholar 

  144. Yang, X., Yang, M., Pang, B., Vara, M. & Xia, Y. Gold nanomaterials at work in biomedicine. Chem. Rev. 115, 10410–10488 (2015).

    Article  CAS  Google Scholar 

  145. Boyd, R. W. in Nonlinear Optics 3rd edn 69–133 (Academic, 2008).

  146. Scott, J. F. Applications of modern ferroelectrics. Science 315, 954–959 (2007).

    Article  CAS  Google Scholar 

  147. Chen, A. A review of emerging non-volatile memory (NVM) technologies and applications. Solid State Electron. 125, 25–38 (2016).

    Article  CAS  Google Scholar 

  148. Zhang, Y. et al. Highly efficient red-light emission in an organic–inorganic hybrid ferroelectric: (pyrrolidinium)MnCl3. J. Am. Chem. Soc. 137, 4928–4931 (2015).

    Article  CAS  Google Scholar 

  149. Tang, Y.-Y. et al. Multiaxial molecular ferroelectric thin films bring light to practical applications. J. Am. Chem. Soc. 140, 8051–8059 (2018).

    Article  CAS  Google Scholar 

  150. Huang, P.-J., Taniguchi, K. & Miyasaka, H. Bulk photovoltaic effect in a pair of chiral–polar layered perovskite-type lead iodides altered by chirality of organic cations. J. Am. Chem. Soc. 141, 14520–14523 (2019).

    Article  CAS  Google Scholar 

  151. Huang, S. et al. Halogenated-methylammonium based 3D halide perovskites. Adv. Mater. 31, 1903830 (2019).

    Article  CAS  Google Scholar 

  152. Guy, S., Baguenard, B., Bensalah-Ledoux, A., Hadiouche, D. & Guy, L. Full polarization control of optical planar waveguides with chiral material. ACS Photon. 4, 2916–2922 (2017).

    Article  CAS  Google Scholar 

  153. Cerdán, L. et al. Circularly polarized laser emission in optically active organic dye solutions. Phys. Chem. Chem. Phys. 19, 22088–22093 (2017).

    Article  Google Scholar 

  154. Niesner, D. et al. Structural fluctuations cause spin-split states in tetragonal (CH3NH3)PbI3 as evidenced by the circular photogalvanic effect. Proc. Natl Acad. Sci. USA 115, 9509–9514 (2018).

    Article  CAS  Google Scholar 

  155. Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  CAS  Google Scholar 

  156. Srivastava, A. et al. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys. 11, 141–147 (2015).

    Article  CAS  Google Scholar 

  157. Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).

    Article  CAS  Google Scholar 

  158. Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 65, 195315 (2002).

    Article  CAS  Google Scholar 

  159. Woźniak, P., De Leon, I., Höflich, K., Leuchs, G. & Banzer, P. Interaction of light carrying orbital angular momentum with a chiral dipolar scatterer. Optica 6, 961–965 (2019).

    Article  Google Scholar 

  160. Mirhosseini, M. et al. High-dimensional quantum cryptography with twisted light. New J. Phys. 17, 033033 (2015).

    Article  CAS  Google Scholar 

  161. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  CAS  Google Scholar 

  162. Becker, M. A. et al. Bright triplet excitons in caesium lead halide perovskites. Nature 553, 189–193 (2018).

    Article  CAS  Google Scholar 

  163. Tamarat, P. et al. The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state. Nat. Mater. 18, 717–724 (2019).

    Article  CAS  Google Scholar 

  164. Zhang, X., Li, L., Sun, Z. & Luo, J. Rational chemical doping of metal halide perovskites. Chem. Soc. Rev. 48, 517–539 (2019).

    Article  CAS  Google Scholar 

  165. Sanders, T., Liu, Y., Buchner, V. & Tchounwou, P. B. Neurotoxic effects and biomarkers of lead exposure: a review. Rev. Environ. Health 24, 15–46 (2009).

    Article  CAS  Google Scholar 

  166. Jokar, E., Chien, C.-H., Tsai, C.-M., Fathi, A. & Diau, E. W.-G. Robust tin-based perovskite solar cells with hybrid organic cations to attain efficiency approaching 10%. Adv. Mater. 31, 1804835 (2019).

    Article  CAS  Google Scholar 

  167. Xu, L.-J., Sun, C.-Z., Xiao, H., Wu, Y. & Chen, Z.-N. Green-light-emitting diodes based on tetrabromide manganese(II) complex through solution process. Adv. Mater. 29, 1605739 (2017).

    Article  CAS  Google Scholar 

  168. Mitzi, D. B. Synthesis, structure, and properties of organic-inorganic perovskites and related materials. Prog. Inorg. Chem. 48, 1–121 (2007).

    Google Scholar 

  169. Lu, S. et al. Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning. Nat. Commun. 9, 3405 (2018).

    Article  CAS  Google Scholar 

  170. Kim, C., Huan, T. D., Krishnan, S. & Ramprasad, R. A hybrid organic-inorganic perovskite dataset. Sci. Data 4, 170057 (2017).

    Article  Google Scholar 

  171. Körbel, S., Marques, M. A. L. & Botti, S. Stability and electronic properties of new inorganic perovskites from high-throughput ab initio calculations. J. Mater. Chem. C. 4, 3157–3167 (2016).

    Article  CAS  Google Scholar 

  172. Takahashi, K., Takahashi, L., Miyazato, I. & Tanaka, Y. Searching for hidden perovskite materials for photovoltaic systems by combining data science and first principle calculations. ACS Photon. 5, 771–775 (2018).

    Article  CAS  Google Scholar 

  173. Davies, D. W. et al. Computational screening of all stoichiometric inorganic materials. Chem 1, 617–627 (2016).

    Article  CAS  Google Scholar 

  174. Shi, Z. J. et al. Lead-free organic–inorganic hybrid perovskites for photovoltaic applications: recent advances and perspectives. Adv. Mater. 29, 1605005 (2017).

    Article  CAS  Google Scholar 

  175. Xiao, Z., Song, Z. & Yan, Y. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv. Mater. 31, 1803792 (2019).

    Article  CAS  Google Scholar 

  176. Yu, Z.-G. Oscillatory magnetic circular dichroism of free-carrier absorption and determination of the Rashba dispersions in hybrid organic–inorganic perovskites. J. Phys. Chem. Lett. 9, 1–7 (2018).

    Article  CAS  Google Scholar 

  177. Tepliakov, N. V. et al. Optical activity and circular dichroism of perovskite quantum-dot molecules. J. Phys. Chem. C. 123, 2658–2664 (2019).

    Article  Google Scholar 

  178. Gholipour, B. et al. Organometallic perovskite metasurfaces. Adv. Mater. 29, 1604268 (2017).

    Article  CAS  Google Scholar 

  179. Wang, Z., Wang, Y., Adamo, G., Teng, J. & Sun, H. Induced optical chirality and circularly polarized emission from achiral CdSe/ZnS quantum dots via resonantly coupling with plasmonic chiral metasurfaces. Laser Photonics Rev. 13, 1800276 (2019).

    Article  CAS  Google Scholar 

  180. Makarov, S. V. et al. Multifold emission enhancement in nanoimprinted hybrid perovskite metasurfaces. ACS Photon. 4, 728–735 (2017).

    Article  CAS  Google Scholar 

  181. Zhang, C. et al. Lead halide perovskite-based dynamic metasurfaces. Laser Photonics Rev. 13, 1900079 (2019).

    Article  CAS  Google Scholar 

  182. Nespolo, M., Aroyo, M. I. & Souvignier, B. Crystallographic shelves: space-group hierarchy explained. J. Appl. Crystallogr. 51, 1481–1491 (2018).

    Article  CAS  Google Scholar 

  183. Lightner, D. A. & Gurst, J. E. Organic Conformational Analysis and Stereochemistry from Circular Dichroism Spectroscopy (Wiley-VCH, 2000).

  184. Polavarapu, P. L. Kramers − Kronig transformation for optical rotatory dispersion studies. J. Phys. Chem. A 109, 7013–7023 (2005).

    Article  CAS  Google Scholar 

  185. Li, A. D. & Liu, W. C. in Physical Properties and Applications of Polymer Nanocomposites (eds Tjong, S. C. & Mai, Y.-W.) 108–158 (Woodhead, 2010).

  186. Liao, W.-Q., Tang, Y.-Y., Li, P.-F., You, Y.-M. & Xiong, R.-G. Competitive halogen bond in the molecular ferroelectric with large piezoelectric response. J. Am. Chem. Soc. 140, 3975–3980 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

W.G., G.K.L. and A.R. acknowledge the support from the Singapore National Research Foundation through 2015 NRF fellowship grant (NRF-NRFF2015-03 and NRF-CRP21-2018-0007), Singapore Ministry of Education via AcRF Tier 2 grant (nos. MOE2016-T2-2-077, MOE2017-T2-1-163 and MOE2016-T3-1-006 (S)) and A*Star Quantum Technologies for Engineering (QTE) programme. R.S and G.L. acknowledge the support from the Australian Research Council Centre of Excellence in Exciton Science (funding grant number CE170100026). E.H.S. acknowledges support from the U.S. Office of Naval Research (grant award no. N00014-17-1-2524). We thank M. Zhang (Nankai University, China) for the helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

W.G., G.K.L. and E.H.S. discussed the content. G.K.L. researched the data for the article, with help from R.S. and M.I.S. All authors contributed to the review and editing of the manuscript.

Corresponding authors

Correspondence to Edward H. Sargent or Weibo Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, G., Sabatini, R., Saidaminov, M.I. et al. Chiral-perovskite optoelectronics. Nat Rev Mater 5, 423–439 (2020). https://doi.org/10.1038/s41578-020-0181-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-020-0181-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing