Artificial channels for confined mass transport at the sub-nanometre scale

Abstract

Mass transport at the sub-nanometre scale, including selective transport of gases, liquids and ions, plays a key role in systems such as catalysis, energy generation and storage, chemical sensing and molecular separation. Highly efficient biological channels in living organisms have inspired the design of artificial channels with similar, or even higher, mass-transport efficiency, which can be used at a much larger scale. In this Review, we highlight synthetic-nanomaterials-enabled channels in the platforms of well-defined nanopores, 1D nanotubes and 2D nanochannels, and discuss their design principles, channel architectures and membrane or device fabrication. We focus on fundamental mechanisms of sub-nanometre confined mass transport and their relationships with the structure–property–performance. We then present the practicalities of these channels and discuss their potential impact on the development of next-generation sustainable technologies for use in applications related to energy, the environment and healthcare.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematics and selected materials for mass transport through nanopores, 1D nanotubes and 2D nanochannels.
Fig. 2: Techniques for the fabrication of large-area membranes.
Fig. 3: Mass transport controlled by different mechanisms.
Fig. 4: The structures and sieving behaviours of CMS, graphene and MOF.
Fig. 5: Controlling of 2D nanochannel structures.
Fig. 6: Controlling channel structure and transport behaviour by surface, electrical and chemical effects.
Fig. 7: Mass transport controlled by quantum effects.

References

  1. 1.

    Lodish, H. et al. in Molecular Cell Biology 6th edn 437–478 (W.H. Freeman, 2008).

  2. 2.

    Gouaux, E. & MacKinnon, R. Principles of selective ion transport in channels and pumps. Science 310, 1461–1465 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    CAS  Article  Google Scholar 

  4. 4.

    Murata, K. et al. Structural determinants of water permeation through aquaporin-1. Nature 407, 599–605 (2000).

    CAS  Article  Google Scholar 

  5. 5.

    Kaldenhoff, R., Kai, L. & Uehlein, N. Aquaporins and membrane diffusion of CO2 in living organisms. Biochim. Biophys. Acta Gen. Subj. 1840, 1592–1595 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    Hub, J. S. & De Groot, B. L. Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc. Natl Acad. Sci. USA 105, 1198–1203 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    Savage, D. F., O’Connell, J. D., Miercke, L. J., Finer-Moore, J. & Stroud, R. M. Structural context shapes the aquaporin selectivity filter. Proc. Natl Acad. Sci. USA 107, 17164–17169 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    Rangnekar, N., Mittal, N., Elyassi, B., Caro, J. & Tsapatsis, M. Zeolite membranes–a review and comparison with MOFs. Chem. Soc. Rev. 44, 7128–7154 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Feng, X., Ding, X. & Jiang, D. Covalent organic frameworks. Chem. Soc. Rev. 41, 6010–6022 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    Carta, M. et al. An efficient polymer molecular sieve for membrane gas separations. Science 339, 303–307 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    Tozawa, T. et al. Porous organic cages. Nat. Mater. 8, 973–978 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    Song, W. et al. Artificial water channels enable fast and selective water permeation through water-wire networks. Nat. Nanotechnol. 15, 73–79 (2020). This study is an experimental demonstration of artificial water channels (PAH[4]s) assembled in a lipid membrane that form water wires, allowing a water permeability similar to that of natural aquaporins and a very high salt rejection.

    CAS  Article  Google Scholar 

  13. 13.

    Howarth, A. J. et al. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Denny, M. S. Jr, Moreton, J. C., Benz, L. & Cohen, S. M. Metal–organic frameworks for membrane-based separations. Nat. Rev. Mater. 1, 16078 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Li, J.-R. & Zhou, H.-C. Bridging-ligand-substitution strategy for the preparation of metal–organic polyhedra. Nat. Chem. 2, 893–898 (2010).

    Article  CAS  Google Scholar 

  16. 16.

    Baughman, R. H., Zakhidov, A. A. & de Heer, W. A. Carbon nanotubes–the route toward applications. Science 297, 787–792 (2002).

    CAS  Article  Google Scholar 

  17. 17.

    Rungta, M. et al. Carbon molecular sieve structure development and membrane performance relationships. Carbon 115, 237–248 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    CAS  Article  Google Scholar 

  19. 19.

    Liu, G., Jin, W. & Xu, N. Two-dimensional-material membranes: a new family of high-performance separation membranes. Angew. Chem. Int. Ed. 55, 13384–13397 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Koltonow, A. R. & Huang, J. Two-dimensional nanofluidics. Science 351, 1395–1396 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Boyd, P. G., Lee, Y. & Smit, B. Computational development of the nanoporous materials genome. Nat. Rev. Mater. 2, 17037 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Macha, M., Marion, S., Nandigana, V. V. R. & Radenovic, A. 2D materials as an emerging platform for nanopore-based power generation. Nat. Rev. Mater. 4, 588–605 (2019).

    CAS  Article  Google Scholar 

  23. 23.

    Das, S., Heasman, P., Ben, T. & Qiu, S. Porous organic materials: strategic design and structure–function correlation. Chem. Rev. 117, 1515–1563 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    Qiao, Z. et al. Metal-induced ordered microporous polymers for fabricating large-area gas separation membranes. Nat. Mater. 18, 163–168 (2019).

    CAS  Article  Google Scholar 

  25. 25.

    Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  CAS  Google Scholar 

  26. 26.

    Hasell, T. & Cooper, A. I. Porous organic cages: soluble, modular and molecular pores. Nat. Rev. Mater. 1, 16053 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Koh, D.-Y., McCool, B. A., Deckman, H. W. & Lively, R. P. Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes. Science 353, 804–807 (2016). In this study, carbon molecular sieves with rigid nanopores are processed into robust, hollow-fibre membranes for separating para-xylene and ortho-xylene, which have a 1 Å difference in molecular size.

    CAS  Article  Google Scholar 

  28. 28.

    Lee, J.-Y., Wood, C. D., Bradshaw, D., Rosseinsky, M. J. & Cooper, A. I. Hydrogen adsorption in microporous hypercrosslinked polymers. Chem. Commun. https://doi.org/10.1039/B604625H (2006).

    Article  Google Scholar 

  29. 29.

    McKeown, N. B. & Budd, P. M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 35, 675–683 (2006).

    CAS  Article  Google Scholar 

  30. 30.

    Cooper, A. I. Conjugated microporous polymers. Adv. Mater. 21, 1291–1295 (2009).

    CAS  Article  Google Scholar 

  31. 31.

    Yuan, D., Lu, W., Zhao, D. & Zhou, H.-C. Highly stable porous polymer networks with exceptionally high gas-uptake capacities. Adv. Mater. 23, 3723–3725 (2011).

    CAS  Article  Google Scholar 

  32. 32.

    Koros, W. J. & Zhang, C. Materials for next-generation molecularly selective synthetic membranes. Nat. Mater. 16, 289–297 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    Tan, R. et al. Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. Nat. Mater. 19, 195–202 (2020).

    CAS  Article  Google Scholar 

  34. 34.

    Wang, L. et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat. Nanotechnol. 12, 509–522 (2017).

    CAS  Article  Google Scholar 

  35. 35.

    Wang, L. et al. Molecular valves for controlling gas phase transport made from discrete ångström-sized pores in graphene. Nat. Nanotechnol. 10, 785–790 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Cun, H. et al. Centimeter-sized single-orientation monolayer hexagonal boron nitride with or without nanovoids. Nano Lett. 18, 1205–1212 (2018).

    CAS  Article  Google Scholar 

  37. 37.

    Villalobos, L. F. et al. Large-scale synthesis of crystalline g-C3N4 nanosheets and high-temperature H2 sieving from assembled films. Sci. Adv. 6, eaay9851 (2020).

    CAS  Article  Google Scholar 

  38. 38.

    Peng, Y. et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).

    CAS  Article  Google Scholar 

  39. 39.

    Rodenas, T. et al. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14, 48–55 (2015).

    CAS  Article  Google Scholar 

  40. 40.

    Peng, Y. et al. Ultrathin two-dimensional covalent organic framework nanosheets: preparation and application in highly sensitive and selective DNA detection. J. Am. Chem. Soc. 139, 8698–8704 (2017).

    CAS  Article  Google Scholar 

  41. 41.

    Shinde, D. B. et al. Crystalline 2D covalent organic framework membranes for high-flux organic solvent nanofiltration. J. Am. Chem. Soc. 140, 14342–14349 (2018).

    CAS  Article  Google Scholar 

  42. 42.

    Jeon, M. Y. et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature 543, 690–694 (2017).

    CAS  Article  Google Scholar 

  43. 43.

    Moreno, C. et al. Bottom-up synthesis of multifunctional nanoporous graphene. Science 360, 199–203 (2018).

    CAS  Article  Google Scholar 

  44. 44.

    Qiu, H., Xue, M., Shen, C., Zhang, Z. & Guo, W. Graphynes for water desalination and gas separation. Adv. Mater. 31, 1803772 (2019).

    CAS  Article  Google Scholar 

  45. 45.

    Deng, J. et al. Epitaxial growth of ultraflat stanene with topological band inversion. Nat. Mater. 17, 1081–1086 (2018).

    CAS  Article  Google Scholar 

  46. 46.

    Murray, D. J. et al. Large area synthesis of a nanoporous two-dimensional polymer at the air/water interface. J. Am. Chem. Soc. 137, 3450–3453 (2015).

    CAS  Article  Google Scholar 

  47. 47.

    Tasis, D., Tagmatarchis, N., Bianco, A. & Prato, M. Chemistry of carbon nanotubes. Chem. Rev. 106, 1105–1136 (2006).

    CAS  Article  Google Scholar 

  48. 48.

    Hummer, G., Rasaiah, J. C. & Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001).

    CAS  Article  Google Scholar 

  49. 49.

    Tunuguntla, R. H. et al. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 357, 792–796 (2017). This study demonstrates that CNTs with diameters of 0.8 nm can show higher water flux than aquaporin channels, as a consequence of the atomically smooth CNT walls and the intermolecular hydrogen-bond rearrangement of water molecules in nanoconfinement.

    CAS  Article  Google Scholar 

  50. 50.

    Kocsis, I. et al. Oriented chiral water wires in artificial transmembrane channels. Sci. Adv. 4, eaao5603 (2018).

    Article  CAS  Google Scholar 

  51. 51.

    Zhou, X. et al. Self-assembling subnanometer pores with unusual mass-transport properties. Nat. Commun. 3, 949 (2012).

    Article  CAS  Google Scholar 

  52. 52.

    Lang, C. et al. Biomimetic transmembrane channels with high stability and transporting efficiency from helically folded macromolecules. Angew. Chem. Int. Ed. 55, 9723–9727 (2016).

    CAS  Article  Google Scholar 

  53. 53.

    Peinemann, K.-V., Abetz, V. & Simon, P. F. W. Asymmetric superstructure formed in a block copolymer via phase separation. Nat. Mater. 6, 992–996 (2007).

    CAS  Article  Google Scholar 

  54. 54.

    Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    Article  CAS  Google Scholar 

  55. 55.

    Feng, X., Kawabata, K., Kaufman, G., Elimelech, M. & Osuji, C. O. Highly selective vertically aligned nanopores in sustainably derived polymer membranes by molecular templating. ACS Nano 11, 3911–3921 (2017).

    CAS  Article  Google Scholar 

  56. 56.

    Yucelen, G. I. et al. Formation of single-walled aluminosilicate nanotubes from molecular precursors and curved nanoscale intermediates. J. Am. Chem. Soc. 133, 5397–5412 (2011).

    CAS  Article  Google Scholar 

  57. 57.

    Yucelen, G. I. et al. Shaping single-walled metal oxide nanotubes from precursors of controlled curvature. Nano Lett. 12, 827–832 (2012).

    CAS  Article  Google Scholar 

  58. 58.

    Kim, W.-g & Nair, S. Membranes from nanoporous 1D and 2D materials: a review of opportunities, developments, and challenges. Chem. Eng. Sci. 104, 908–924 (2013).

    CAS  Article  Google Scholar 

  59. 59.

    Gopinadhan, K. et al. Complete steric exclusion of ions and proton transport through confined monolayer water. Science 363, 145–148 (2019).

    CAS  Article  Google Scholar 

  60. 60.

    Radha, B. et al. Molecular transport through capillaries made with atomic-scale precision. Nature 538, 222–225 (2016).

    CAS  Article  Google Scholar 

  61. 61.

    Keerthi, A. et al. Ballistic molecular transport through two-dimensional channels. Nature 558, 420–424 (2018). Nanofluidic channels made by van der Waals assembly of 2D crystals are shown to be capable of frictionless transport of gas molecules, which is enabled by quantum effects.

    CAS  Article  Google Scholar 

  62. 62.

    Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

    CAS  Article  Google Scholar 

  63. 63.

    Liu, G., Jin, W. & Xu, N. Graphene-based membranes. Chem. Soc. Rev. 44, 5016–5030 (2015).

    CAS  Article  Google Scholar 

  64. 64.

    Thebo, K. H. et al. Highly stable graphene-oxide-based membranes with superior permeability. Nat. Commun. 9, 1486 (2018).

    Article  CAS  Google Scholar 

  65. 65.

    Hung, W.-S. et al. Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing. Chem. Mater. 26, 2983–2990 (2014).

    CAS  Article  Google Scholar 

  66. 66.

    Morelos-Gomez, A. et al. Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. Nat. Nanotechnol. 12, 1083–1088 (2017).

    CAS  Article  Google Scholar 

  67. 67.

    Yang, Q. et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat. Mater. 16, 1198–1202 (2017).

    CAS  Article  Google Scholar 

  68. 68.

    Naguib, M. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011).

    CAS  Article  Google Scholar 

  69. 69.

    Ding, L. et al. MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 9, 155 (2018).

    Article  CAS  Google Scholar 

  70. 70.

    Shen, J. et al. 2D MXene nanofilms with tunable gas transport channels. Adv. Funct. Mater. 28, 1801511 (2018).

    Article  CAS  Google Scholar 

  71. 71.

    Ren, C. E. et al. Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. J. Phys. Chem. Lett. 6, 4026–4031 (2015).

    CAS  Article  Google Scholar 

  72. 72.

    Chen, C. et al. Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation. Nat. Commun. 9, 1902 (2018).

    Article  CAS  Google Scholar 

  73. 73.

    Ries, L. et al. Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization. Nat. Mater. 18, 1112–1117 (2019).

    CAS  Article  Google Scholar 

  74. 74.

    Wang, Z. et al. Understanding the aqueous stability and filtration capability of MoS2 membranes. Nano Lett. 17, 7289–7298 (2017).

    CAS  Article  Google Scholar 

  75. 75.

    Jiang, J.-W., Qi, Z., Park, H. S. & Rabczuk, T. Elastic bending modulus of single-layer molybdenum disulfide (MoS2): finite thickness effect. Nanotechnology 24, 435705 (2013).

    Article  CAS  Google Scholar 

  76. 76.

    Hu, S. et al. Transport of hydrogen isotopes through interlayer spacing in van der Waals crystals. Nat. Nanotechnol. 13, 468–472 (2018).

    CAS  Article  Google Scholar 

  77. 77.

    Mouterde, T. et al. Molecular streaming and its voltage control in ångström-scale channels. Nature 567, 87–90 (2019).

    CAS  Article  Google Scholar 

  78. 78.

    Esfandiar, A. et al. Size effect in ion transport through angstrom-scale slits. Science 358, 511–513 (2017).

    CAS  Article  Google Scholar 

  79. 79.

    Wang, Q. & O’Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 112, 4124–4155 (2012).

    CAS  Article  Google Scholar 

  80. 80.

    Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).

    CAS  Article  Google Scholar 

  81. 81.

    Jue, M. L., Koh, D.-Y., McCool, B. A. & Lively, R. P. Enabling widespread use of microporous materials for challenging organic solvent separations. Chem. Mater. 29, 9863–9876 (2017).

    CAS  Article  Google Scholar 

  82. 82.

    Robeson, L. M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 62, 165–185 (1991).

    CAS  Article  Google Scholar 

  83. 83.

    Robeson, L. M. The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008).

    CAS  Article  Google Scholar 

  84. 84.

    Qu, F. et al. Understanding the effect of zeolite crystal expansion/contraction on separation performance of NaA zeolite membrane: a combined experimental and molecular simulation study. J. Membr. Sci. 539, 14–23 (2017).

    CAS  Article  Google Scholar 

  85. 85.

    Li, H. et al. Na+-gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels. Science 367, 667–671 (2020).

    CAS  Article  Google Scholar 

  86. 86.

    Koenig, S. P., Wang, L., Pellegrino, J. & Bunch, J. S. Selective molecular sieving through porous graphene. Nat. Nanotechnol. 7, 728–732 (2012).

    CAS  Article  Google Scholar 

  87. 87.

    Zhao, J. et al. Etching gas-sieving nanopores in single-layer graphene with an angstrom precision for high-performance gas mixture separation. Sci. Adv. 5, eaav1851 (2019).

    CAS  Article  Google Scholar 

  88. 88.

    Surwade, S. P. et al. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 10, 459–464 (2015).

    CAS  Article  Google Scholar 

  89. 89.

    Yang, Y. et al. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 364, 1057–1062 (2019).

    CAS  Article  Google Scholar 

  90. 90.

    Zhang, D. et al. Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials. Science 359, 675–679 (2018).

    CAS  Article  Google Scholar 

  91. 91.

    Zhu, Y. et al. Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy. Nat. Mater. 16, 532–536 (2017).

    CAS  Article  Google Scholar 

  92. 92.

    Liu, L. et al. Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution. Nat. Chem. 11, 622–628 (2019).

    CAS  Article  Google Scholar 

  93. 93.

    Zhang, K. et al. Exploring the framework hydrophobicity and flexibility of ZIF-8: from biofuel recovery to hydrocarbon separations. J. Phys. Chem. Lett. 4, 3618–3622 (2013).

    CAS  Article  Google Scholar 

  94. 94.

    Zhang, C. & Koros, W. J. Zeolitic imidazolate framework-enabled membranes: challenges and opportunities. J. Phys. Chem. Lett. 6, 3841–3849 (2015).

    CAS  Article  Google Scholar 

  95. 95.

    Friebe, S., Geppert, B., Steinbach, F. & Caro, J. Metal–organic framework UiO-66 layer: a highly oriented membrane with good selectivity and hydrogen permeance. ACS Appl. Mater. Interfaces 9, 12878–12885 (2017).

    CAS  Article  Google Scholar 

  96. 96.

    Liu, G. et al. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nat. Mater. 17, 283–289 (2018). In this study, mixed-matrix membranes based on fcu MOFs with rigid nanopores are shown to separate gas molecules of similar sizes.

    CAS  Article  Google Scholar 

  97. 97.

    Cadiau, A., Adil, K., Bhatt, P. M., Belmabkhout, Y. & Eddaoudi, M. A metal-organic framework–based splitter for separating propylene from propane. Science 353, 137–140 (2016).

    CAS  Article  Google Scholar 

  98. 98.

    Lin, R.-B. et al. Molecular sieving of ethylene from ethane using a rigid metal–organic framework. Nat. Mater. 17, 1128–1133 (2018).

    CAS  Article  Google Scholar 

  99. 99.

    Li, X. et al. Direct imaging of tunable crystal surface structures of MOF MIL-101 using high-resolution electron microscopy. J. Am. Chem. Soc. 141, 12021–12028 (2019).

    CAS  Article  Google Scholar 

  100. 100.

    Ma, X. et al. Zeolitic imidazolate framework membranes made by ligand-induced permselectivation. Science 361, 1008–1011 (2018).

    CAS  Article  Google Scholar 

  101. 101.

    Knebel, A. et al. Defibrillation of soft porous metal-organic frameworks with electric fields. Science 358, 347–351 (2017).

    CAS  Article  Google Scholar 

  102. 102.

    Wang, Z. et al. Tunable molecular separation by nanoporous membranes. Nat. Commun. 7, 13872 (2016).

    CAS  Article  Google Scholar 

  103. 103.

    Wang, Y. et al. Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations. Mater. Today Nano 3, 69–95 (2018).

    Article  Google Scholar 

  104. 104.

    Yang, H. et al. Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations. Nat. Commun. 10, 2101 (2019).

    Article  CAS  Google Scholar 

  105. 105.

    Song, Q. et al. Porous organic cage thin films and molecular-sieving membranes. Adv. Mater. 28, 2629–2637 (2016).

    CAS  Article  Google Scholar 

  106. 106.

    Shen, Y.-x et al. Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes. Nat. Commun. 9, 2294 (2018).

    Article  CAS  Google Scholar 

  107. 107.

    Chen, L. et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550, 380–383 (2017). This study shows that, through cation–π interactions and hydrogen bonds, one type of cation can precisely control the interlayer spacing of GO channels to exclude other cations with larger hydrated volumes.

    CAS  Article  Google Scholar 

  108. 108.

    Abraham, J. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12, 546–550 (2017).

    CAS  Article  Google Scholar 

  109. 109.

    Hu, M. & Mi, B. Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 47, 3715–3723 (2013).

    CAS  Article  Google Scholar 

  110. 110.

    Liu, J. et al. Bioinspired graphene membrane with temperature tunable channels for water gating and molecular separation. Nat. Commun. 8, 2011 (2017).

    Article  CAS  Google Scholar 

  111. 111.

    Falk, K., Sedlmeier, F., Joly, L., Netz, R. R. & Bocquet, L. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 10, 4067–4073 (2010).

    CAS  Article  Google Scholar 

  112. 112.

    Majumder, M., Chopra, N., Andrews, R. & Hinds, B. J. Enhanced flow in carbon nanotubes. Nature 438, 44 (2005).

    CAS  Article  Google Scholar 

  113. 113.

    Secchi, E. et al. Massive radius-dependent flow slippage in carbon nanotubes. Nature 537, 210–213 (2016).

    CAS  Article  Google Scholar 

  114. 114.

    Faucher, S. J. et al. Critical knowledge gaps in mass transport through single-digit nanopores: a review and perspective. J. Phys. Chem. C 123, 21309–21326 (2019).

    CAS  Article  Google Scholar 

  115. 115.

    Tunuguntla, R. H., Allen, F. I., Kim, K., Belliveau, A. & Noy, A. Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins. Nat. Nanotechnol. 11, 639–644 (2016).

    CAS  Article  Google Scholar 

  116. 116.

    Xie, Q. et al. Fast water transport in graphene nanofluidic channels. Nat. Nanotechnol. 13, 238–245 (2018).

    CAS  Article  Google Scholar 

  117. 117.

    Algara-Siller, G. et al. Square ice in graphene nanocapillaries. Nature 519, 443–445 (2015).

    CAS  Article  Google Scholar 

  118. 118.

    Li, Q., Song, J., Besenbacher, F. & Dong, M. Two-dimensional material confined water. Acc. Chem. Res. 48, 119–127 (2015).

    Article  CAS  Google Scholar 

  119. 119.

    Fumagalli, L. et al. Anomalously low dielectric constant of confined water. Science 360, 1339–1342 (2018).

    CAS  Article  Google Scholar 

  120. 120.

    Kühne, M. et al. Ultrafast lithium diffusion in bilayer graphene. Nat. Nanotechnol. 12, 895–900 (2017).

    Article  CAS  Google Scholar 

  121. 121.

    Kühne, M. et al. Reversible superdense ordering of lithium between two graphene sheets. Nature 564, 234–239 (2018).

    Article  CAS  Google Scholar 

  122. 122.

    Bediako, D. K. et al. Heterointerface effects in the electrointercalation of van der Waals heterostructures. Nature 558, 425–429 (2018).

    CAS  Article  Google Scholar 

  123. 123.

    Jain, T. et al. Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores. Nat. Nanotechnol. 10, 1053–1057 (2015).

    CAS  Article  Google Scholar 

  124. 124.

    Feng, J. et al. Single-layer MoS2 nanopores as nanopower generators. Nature 536, 197–200 (2016).

    CAS  Article  Google Scholar 

  125. 125.

    Fornasiero, F. et al. Ion exclusion by sub-2-nm carbon nanotube pores. Proc. Natl Acad. Sci. USA 105, 17250–17255 (2008).

    CAS  Article  Google Scholar 

  126. 126.

    Zhang, M. et al. Controllable ion transport by surface-charged graphene oxide membrane. Nat. Commun. 10, 1253 (2019). This study proposes the regulation of the surface charge of graphene-oxide membranes to enhance the capability of desalinating water that exceeds the performance limits of state-of-the-art nanofiltration membranes.

    Article  CAS  Google Scholar 

  127. 127.

    Hong, S. et al. Scalable graphene-based membranes for ionic sieving with ultrahigh charge selectivity. Nano Lett. 17, 728–732 (2017).

    CAS  Article  Google Scholar 

  128. 128.

    Siwy, Z. & Fornasiero, F. Improving on aquaporins. Science 357, 753 (2017).

    CAS  Article  Google Scholar 

  129. 129.

    Zhou, K. G. et al. Electrically controlled water permeation through graphene oxide membranes. Nature 559, 236–240 (2018). In this study, an electric field was applied across the GO membrane, which can function as voltage gates to reversely change the interlayer spacing and water permeability.

    CAS  Article  Google Scholar 

  130. 130.

    Cheng, C., Jiang, G., Simon, G. P., Liu, J. Z. & Li, D. Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes. Nat. Nanotechnol. 13, 685–690 (2018).

    CAS  Article  Google Scholar 

  131. 131.

    Forse, A. C. et al. Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy. Nat. Energy 2, 16216 (2017).

    Article  CAS  Google Scholar 

  132. 132.

    Borukhov, I., Andelman, D. & Orland, H. Steric effects in electrolytes: A modified Poisson-Boltzmann equation. Phys. Rev. Lett. 79, 435–438 (1997).

    CAS  Article  Google Scholar 

  133. 133.

    van der Vegt, N. F. A. et al. Water-mediated ion pairing: occurrence and relevance. Chem. Rev. 116, 7626–7641 (2016).

    Article  CAS  Google Scholar 

  134. 134.

    Kang, Y., Xia, Y., Wang, H. & Zhang, X. 2D laminar membranes for selective water and ion transport. Adv. Funct. Mater. 29, 1902014 (2019).

    Article  CAS  Google Scholar 

  135. 135.

    Wang, S. et al. Comparison of facilitated transport behavior and separation properties of membranes with imidazole groups and zinc ions as CO2 carriers. J. Membr. Sci. 505, 44–52 (2016).

    CAS  Article  Google Scholar 

  136. 136.

    Li, L. et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science 362, 443–446 (2018).

    CAS  Article  Google Scholar 

  137. 137.

    Li, W., Su, P., Zhang, G., Shen, C. & Meng, Q. Preparation of continuous NH2–MIL-53 membrane on ammoniated polyvinylidene fluoride hollow fiber for efficient H2 purification. J. Membr. Sci. 495, 384–391 (2015).

    CAS  Article  Google Scholar 

  138. 138.

    Li, X. et al. Fast and selective fluoride ion conduction in sub-1-nanometer metal-organic framework channels. Nat. Commun. 10, 2490 (2019).

    Article  CAS  Google Scholar 

  139. 139.

    Chan, J. Y. et al. Incorporation of homochirality into a zeolitic imidazolate framework membrane for efficient chiral separation. Angew. Chem. Int. Ed. 130, 17376–17380 (2018).

    Article  Google Scholar 

  140. 140.

    Lu, Y. et al. Homochiral MOF–polymer mixed matrix membranes for efficient separation of chiral molecules. Angew. Chem. Int. Ed. 58, 16928–16935 (2019).

    CAS  Article  Google Scholar 

  141. 141.

    Sun, P. et al. Selective ion penetration of graphene oxide membranes. ACS Nano 7, 428–437 (2013).

    CAS  Article  Google Scholar 

  142. 142.

    Shi, G. et al. Two-dimensional Na–Cl crystals of unconventional stoichiometries on graphene surface from dilute solution at ambient conditions. Nat. Chem. 10, 776–779 (2018).

    CAS  Article  Google Scholar 

  143. 143.

    Achari, A., S, S. & Eswaramoorthy, M. High performance MoS2 membranes: effects of thermally driven phase transition on CO2 separation efficiency. Energy Environ. Sci. 9, 1224–1228 (2016).

    CAS  Article  Google Scholar 

  144. 144.

    Shen, J. et al. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving. ACS Nano 10, 3398–3409 (2016).

    CAS  Article  Google Scholar 

  145. 145.

    Nguyen, T. X., Jobic, H. & Bhatia, S. K. Microscopic observation of kinetic molecular sieving of hydrogen isotopes in a nanoporous material. Phys. Rev. Lett. 105, 085901 (2010).

    CAS  Article  Google Scholar 

  146. 146.

    Chu, X.-Z. et al. Dynamic experiments and model of hydrogen and deuterium separation with micropore molecular sieve Y at 77 K. Chem. Eng. J. 152, 428–433 (2009).

    CAS  Article  Google Scholar 

  147. 147.

    Kim, J. Y. et al. Exploiting diffusion barrier and chemical affinity of metal–organic frameworks for efficient hydrogen isotope separation. J. Am. Chem. Soc. 139, 15135–15141 (2017).

    CAS  Article  Google Scholar 

  148. 148.

    Oh, H. et al. A cryogenically flexible covalent organic framework for efficient hydrogen isotope separation by quantum sieving. Angew. Chem. Int. Ed. 52, 13219–13222 (2013).

    CAS  Article  Google Scholar 

  149. 149.

    Liu, M. et al. Barely porous organic cages for hydrogen isotope separation. Science 366, 613–620 (2019).

    CAS  Article  Google Scholar 

  150. 150.

    Noguchi, D. et al. Selective D2 adsorption enhanced by the quantum sieving effect on entangled single-wall carbon nanotubes. J. Phys. Condens. Matter 22, 334207 (2010).

    Article  CAS  Google Scholar 

  151. 151.

    Lozada-Hidalgo, M. et al. Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping. Nat. Commun. 8, 15215 (2017).

    CAS  Article  Google Scholar 

  152. 152.

    Lozada-Hidalgo, M. et al. Sieving hydrogen isotopes through two-dimensional crystals. Science 351, 68–70 (2016). In this study, monolayers of graphene and boron nitride are used to separate hydrogen ion isotopes at room temperature, which is attributed to a quantum effect by showing different zero-point energies of protons and deuterons.

    CAS  Article  Google Scholar 

  153. 153.

    Hu, S. et al. Proton transport through one-atom-thick crystals. Nature 516, 227–230 (2014).

    CAS  Article  Google Scholar 

  154. 154.

    Karnik, R. N. Breakthrough for protons. Nature 516, 173–174 (2014).

    CAS  Article  Google Scholar 

  155. 155.

    Lozada-Hidalgo, M. et al. Giant photoeffect in proton transport through graphene membranes. Nat. Nanotechnol. 13, 300–303 (2018).

    CAS  Article  Google Scholar 

  156. 156.

    Ma, M. et al. Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction. Nat. Nanotechnol. 10, 692–695 (2015).

    CAS  Article  Google Scholar 

  157. 157.

    Bocquet, L. & Netz, R. R. Phonon modes for faster flow. Nat. Nanotechnol. 10, 657–658 (2015).

    CAS  Article  Google Scholar 

  158. 158.

    Barnard, A. W., Zhang, M., Wiederhecker, G. S., Lipson, M. & McEuen, P. L. Real-time vibrations of a carbon nanotube. Nature 566, 89–93 (2019).

    CAS  Article  Google Scholar 

  159. 159.

    Yang, J. et al. Photo-induced ultrafast active ion transport through graphene oxide membranes. Nat. Commun. 10, 1171 (2019).

    Article  CAS  Google Scholar 

  160. 160.

    Feng, J. et al. Observation of ionic Coulomb blockade in nanopores. Nat. Mater. 15, 850–855 (2016). Ion transport through a single sub-nm pore on a monolayer MoS2 membrane was investigated and showed a quantum-like, ionic Coulomb blockade behaviour that can control the transport at a single-ion level.

    CAS  Article  Google Scholar 

  161. 161.

    Kavokine, N., Marbach, S., Siria, A. & Bocquet, L. Ionic Coulomb blockade as a fractional Wien effect. Nat. Nanotechnol. 14, 573–578 (2019).

    CAS  Article  Google Scholar 

  162. 162.

    Tang, L., Meng, X., Deng, D. & Bao, X. Confinement catalysis with 2D materials for energy conversion. Adv. Mater. 31, 1901996 (2019).

    CAS  Article  Google Scholar 

  163. 163.

    Karmakar, A., Samanta, P., Desai, A. V. & Ghosh, S. K. Guest-responsive metal–organic frameworks as scaffolds for separation and sensing applications. Acc. Chem. Res. 50, 2457–2469 (2017).

    CAS  Article  Google Scholar 

  164. 164.

    Yu, X. et al. Graphene-based smart materials. Nat. Rev. Mater. 2, 17046 (2017).

    CAS  Article  Google Scholar 

  165. 165.

    Acerce, M., Akdoğan, E. K. & Chhowalla, M. Metallic molybdenum disulfide nanosheet-based electrochemical actuators. Nature 549, 370–373 (2017).

    CAS  Article  Google Scholar 

  166. 166.

    Feng, J. et al. Identification of single nucleotides in MoS2 nanopores. Nat. Nanotechnol. 10, 1070–1076 (2015).

    CAS  Article  Google Scholar 

  167. 167.

    Ying, Y.-L. & Long, Y.-T. Nanopore-based single-biomolecule interfaces: from information to knowledge. J. Am. Chem. Soc. 141, 15720–15729 (2019).

    CAS  Article  Google Scholar 

  168. 168.

    Cheng, Y. et al. Advanced porous materials in mixed matrix membranes. Adv. Mater. 30, 1802401 (2018).

    Article  CAS  Google Scholar 

  169. 169.

    Gao, G. et al. Versatile two-dimensional stanene-based membrane for hydrogen purification. Int. J. Hydrog. Energy 42, 5577–5583 (2017).

    CAS  Article  Google Scholar 

  170. 170.

    Cui, X. et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 353, 141–144 (2016).

    CAS  Article  Google Scholar 

  171. 171.

    Liao, P.-Q., Huang, N.-Y., Zhang, W.-X., Zhang, J.-P. & Chen, X.-M. Controlling guest conformation for efficient purification of butadiene. Science 356, 1193–1196 (2017).

    CAS  Article  Google Scholar 

  172. 172.

    Wang, X. et al. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nat. Commun. 8, 14460 (2017).

    CAS  Article  Google Scholar 

  173. 173.

    Zhao, C. et al. Hybrid membranes of metal–organic molecule nanocages for aromatic/aliphatic hydrocarbon separation by pervaporation. Chem. Commun. 50, 13921–13923 (2014).

    CAS  Article  Google Scholar 

  174. 174.

    Waller, P. J., Gándara, F. & Yaghi, O. M. Chemistry of covalent organic frameworks. Acc. Chem. Res. 48, 3053–3063 (2015).

    CAS  Article  Google Scholar 

  175. 175.

    Rose, I. et al. Polymer ultrapermeability from the inefficient packing of 2D chains. Nat. Mater. 16, 932–937 (2017).

    CAS  Article  Google Scholar 

  176. 176.

    Zhu, G. et al. Molecularly mixed composite membranes for advanced separation processes. Angew. Chem. Int. Ed. 58, 2638–2643 (2019).

    CAS  Article  Google Scholar 

  177. 177.

    Liang, B. et al. Microporous membranes comprising conjugated polymers with rigid backbones enable ultrafast organic-solvent nanofiltration. Nat. Chem. 10, 961–967 (2018).

    CAS  Article  Google Scholar 

  178. 178.

    Liu, Y., Wang, N. & Caro, J. In situ formation of LDH membranes of different microstructures with molecular sieve gas selectivity. J. Mater. Chem. A 2, 5716–5723 (2014).

    CAS  Article  Google Scholar 

  179. 179.

    Friščić, T. et al. Real-time and in situ monitoring of mechanochemical milling reactions. Nat. Chem. 5, 66–73 (2012).

    Article  CAS  Google Scholar 

  180. 180.

    Jiang, D.-E., Cooper, V. R. & Dai, S. Porous graphene as the ultimate membrane for gas separation. Nano Lett. 9, 4019–4024 (2009).

    CAS  Article  Google Scholar 

  181. 181.

    Mukherjee, S., Bartlow, V. M. & Nair, S. Phenomenology of the growth of single-walled aluminosilicate and aluminogermanate nanotubes of precise dimensions. Chem. Mater. 17, 4900–4909 (2005).

    CAS  Article  Google Scholar 

  182. 182.

    Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    CAS  Article  Google Scholar 

  183. 183.

    Liao, J. et al. Fabrication of high-performance facilitated transport membranes for CO2 separation. Chem. Sci. 5, 2843–2849 (2014).

    CAS  Article  Google Scholar 

  184. 184.

    Ji, M. et al. An ensemble synthesis strategy for fabrication of hollow fiber T-type zeolite membrane modules. J. Membr. Sci. 563, 460–469 (2018).

    CAS  Article  Google Scholar 

  185. 185.

    Cai, Y. et al. Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 12, 56–62 (2018).

    CAS  Article  Google Scholar 

  186. 186.

    Richardson, J. J., Björnmalm, M. & Caruso, F. Technology-driven layer-by-layer assembly of nanofilms. Science 348, aaa2491 (2015).

    Article  CAS  Google Scholar 

  187. 187.

    Akbari, A. et al. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat. Commun. 7, 10891 (2016).

    CAS  Article  Google Scholar 

  188. 188.

    Stassen, I. et al. Chemical vapour deposition of zeolitic imidazolate framework thin films. Nat. Mater. 15, 304–310 (2016).

    CAS  Article  Google Scholar 

  189. 189.

    Tu, Y.-M. et al. Rapid fabrication of precise high-throughput filters from membrane protein nanosheets. Nat. Mater. 19, 347–354 (2020).

    CAS  Article  Google Scholar 

  190. 190.

    Tang, Z., Dong, J. & Nenoff, T. M. Internal surface modification of MFI-type zeolite membranes for high selectivity and high flux for hydrogen. Langmuir 25, 4848–4852 (2009).

    CAS  Article  Google Scholar 

  191. 191.

    Zhang, C. & Koros, W. J. Ultraselective carbon molecular sieve membranes with tailored synergistic sorption selective properties. Adv. Mater. 29, 1701631 (2017).

    Article  CAS  Google Scholar 

  192. 192.

    Liu, N., Li, L., McPherson, B. & Lee, R. Removal of organics from produced water by reverse osmosis using MFI-type zeolite membranes. J. Membr. Sci. 325, 357–361 (2008).

    CAS  Article  Google Scholar 

  193. 193.

    Liu, X., Demir, N. K., Wu, Z. & Li, K. Highly water-stable zirconium metal–organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J. Am. Chem. Soc. 137, 6999–7002 (2015).

    CAS  Article  Google Scholar 

  194. 194.

    Liu, H., Wang, H. & Zhang, X. Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification. Adv. Mater. 27, 249–254 (2015).

    Article  CAS  Google Scholar 

  195. 195.

    Ji, J. et al. Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs. Adv. Funct. Mater. 27, 1603623 (2017).

    Article  CAS  Google Scholar 

  196. 196.

    Zhang, C. et al. Unexpected molecular sieving properties of zeolitic imidazolate framework-8. J. Phys. Chem. Lett. 3, 2130–2134 (2012).

    CAS  Article  Google Scholar 

  197. 197.

    Gascon, J. Flicking the switch on a molecular gate. Science 358, 303–303 (2017).

    CAS  Article  Google Scholar 

  198. 198.

    Duan, C. Frictionless when flat. Nature 558, 379–380 (2018).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support received from National Natural Science Foundation of China (91934303, 22038006, 21921006, 21490585), the Innovative Research Team Program by the Ministry of Education of China (IRT_17R54) and the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP). J.S. and Y.H. acknowledge the CCF grant (FCC/1/1972-19) to Y.H. from King Abdullah University of Science and Technology (KAUST).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wanqin Jin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Liu, G., Han, Y. et al. Artificial channels for confined mass transport at the sub-nanometre scale. Nat Rev Mater (2021). https://doi.org/10.1038/s41578-020-00268-7

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing