Abstract
The search for alternatives to traditional Li-ion batteries has sparked interest in the chemistry and manufacturing of solid-state Li-ion conductors. Li-ion conductors are traditionally processed as millimetre-sized pellets using conventional ceramic-processing routes. However, in thin-film form, Li-ion conductors offer applications beyond energy storage, including artificial intelligence, in-memory computing and smart sensing. In this Review, we examine the chemistry and thin-film processing of Li oxides and discuss challenges and opportunities for the integration of Li-oxide films in microbatteries for energy storage, neuromorphic computation mimicking human-brain operations and sensors for toxins and greenhouse gases. Li oxides in thin-film form provide fast Li-ion movement and connected electronic-state changes, which improve energy and information density and increase cycle speed and endurance of Li-conductor-based devices. Finally, we provide a future vision of lithionic devices integrating Li-based ceramics for the design of microdevices beyond batteries.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Becerra, J. The digital revolution is not about technology – it’s about people. World Economic Forum https://www.weforum.org/agenda/2017/03/the-digital-revolution-is-not-about-technology-it-s-about-people/ (2017).
Gerrish, H. H. Transistor Electronics (Goodheart-Willcox, 1969).
Shilov, A. Samsung completes development of 5nm EUV process technology. AnandTech https://www.anandtech.com/show/14231/samsung-completes-development-of-5-nm-euv-process-technology (2019).
Shilov, A. TSMC announces performance-enhanced 7nm & 5nm process technologies. AnandTech https://www.anandtech.com/show/14687/tsmc-announces-performanceenhanced-7nm-5nm-process-technologies (2019).
Olofsson, A. Silicon compilers - version 2.0. Int. Symp. Phys. Des. http://www.ispd.cc/slides/ispd2018.html (2018).
Von Neumann, J. First draft of a report on the EDVAC. IEEE Ann. Hist. Comput. 15, 27–75 (1993).
Hruska, J. Microfluidics: DARPA is betting embedded water droplets could cool next-gen chips. ExtremeTech https://www.extremetech.com/extreme/224516-microfluidics-darpa-is-betting-embedded-water-droplets-could-cool-next-gen-chips (2016).
NanoMarkets. Opportunities for thin-film batteries. SlideShare https://www.slideshare.net/NanoMarkets/thin-batteries (2014).
Frank, R. What’s happening in air quality sensing? Sensor Tips https://www.sensortips.com/featured/whats-happening-in-air-quality-sensing/ (2019).
Maier, J. Space charge regions in solid two-phase systems and their conduction contribution. III. Defect chemistry and ionic-conductivity in thin-films. Solid State Ion. 23, 59–67 (1987).
Lacivita, V. et al. Resolving the amorphous structure of lithium phosphorus oxynitride (Lipon). J. Am. Chem. Soc. 140, 11029–11038 (2018).
Bates, J. B. et al. Rechargeable thin-film lithium microbatteries. Solid State Technol. 36, 59–64 (1993).
Johnson, R. T., Biefeld, R. M., Knotek, M. L. & Morosin, B. Ionic-conductivity in solid electrolytes based on lithium aluminosilicate glass and glass-ceramic. J. Electrochem. Soc. 123, 680–687 (1976).
Kennedy, J. H. & Yang, Y. A highly conductive Li+-glass system: (1-x)(0.4SiS2-0.6Li2S)-xLiI. J. Electrochem. Soc. 133, 2437–2438 (1986).
Mercier, R., Malugani, J. P., Fahys, B. & Robert, G. Superionic conduction in Li2S-P2S5-LiI-glasses. Solid State Ion. 5, 663–666 (1981).
Pizzini, S. Ionic conductivity in lithium compounds. J. Appl. Electrochem. 1, 153–161 (1971).
Dudney, N. J., Bates, J. B., Zuhr, R. A., Luck, C. F. & Robertson, J. D. Sputtering of lithium compounds for preparation of electrolyte thin-films. Solid State Ion. 53, 655–661 (1992).
Bates, J. B. et al. Electrical-properties of amorphous lithium electrolyte thin-films. Solid State Ion. 53, 647–654 (1992).
Bates, J. B. et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J. Power Sources 43, 103–110 (1993).
Put, B., Vereecken, P. M. & Stesmans, A. On the chemistry and electrochemistry of LiPON breakdown. J. Mater. Chem. A 6, 4848–4859 (2018).
Lee, C., Akbar, S. A. & Park, C. O. Potentiometric CO2 gas sensor with lithium phosphorous oxynitride electrolyte. Sens. Actuators B Chem. 80, 234–242 (2001).
Zhao, E. Q., Ma, F. R., Guo, Y. D. & Jin, Y. C. Stable LATP/LAGP double-layer solid electrolyte prepared via a simple dry-pressing method for solid state lithium ion batteries. RSC Adv. 6, 92579–92585 (2016).
Aono, H., Sugimoto, E., Sadaoka, Y., Imanaka, N. & Adachi, G. Ionic-conductivity of solid electrolytes based on lithium titanium phosphate. J. Electrochem. Soc. 137, 1023–1027 (1990).
Belous, A. G., Novitskaya, G. N., Polyanetskaya, S. V. & Gornikov, Y. I. Study of complex oxides with the composition La2/3-xLi3xTiO3. Inorg. Mater. 23, 412–415 (1987).
Yoon, J., Hunter, G., Akbar, S. & Dutta, P. K. Interface reaction and its effect on the performance of a CO2 gas sensor based on Li0.35La0.55TiO3 electrolyte and Li2CO3 sensing electrode. Sens. Actuators B Chem. 182, 95–103 (2013).
Shi, T., Wu, J. F., Liu, Y., Yang, R. & Guo, X. Behavioral plasticity emulated with lithium lanthanum titanate-based memristive devices: habituation. Adv. Electron. Mater. 3, 1700046 (2017).
Lee, J. Z., Wang, Z. Y., Xin, H. L. L., Wynn, T. A. & Meng, Y. S. Amorphous lithium lanthanum titanate for solid-state microbatteries. J. Electrochem. Soc. 164, A6268–A6273 (2017).
Meesala, Y., Jena, A., Chang, H. & Liu, R. S. Recent advancements in Li-ion conductors for all-solid-state Li-ion batteries. ACS Energy Lett. 2, 2734–2751 (2017).
Struzik, M., Garbayo, I., Pfenninger, R. & Rupp, J. L. M. A simple and fast electrochemical CO2 sensor based on Li7La3Zr2O12 for environmental monitoring. Adv. Mater. 30, 1804098 (2018).
Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007).
Kotobuki, M., Munakata, H., Kanamura, K., Sato, Y. & Yoshida, T. Compatibility of Li7La3Zr2O12 solid electrolyte to all-solid-state battery using Li metal anode. J. Electrochem. Soc. 157, A1076–A1079 (2010).
Wang, B., Kwak, B. S., Sales, B. C. & Bates, J. B. Ionic conductivities and structure of lithium phosphorus oxynitride glasses. J. Non-Cryst. Solids 183, 297–306 (1995).
Pfenninger, R., Struzik, M., Garbayo, I., Stilp, E. & Rupp, J. L. M. A low ride on processing temperature for fast lithium conduction in garnet solid-state battery films. Nat. Energy 4, 475–483 (2019).
Sastre, J. et al. Lithium garnet Li7La3Zr2O12 electrolyte for all-solid-state batteries: closing the gap between bulk and thin film Li-ion conductivities. Adv. Mater. Interfaces 7, 2000425 (2020).
Jones, S. D., Akridge, J. R. & Shokoohi, F. K. Thin-film rechargeable Li batteries. Solid State Ion. 69, 357–368 (1994).
Bates, J. B., Dudney, N. J., Neudecker, B., Ueda, A. & Evans, C. D. Thin-film lithium and lithium-ion batteries. Solid State Ion. 135, 33–45 (2000).
Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997).
Zhang, L. et al. The nature of lithium-ion transport in low power consumption LiFePO4 resistive memory with graphite as electrode. Phys. Status Solidi RRL 12, 1800320 (2018).
Nizamidin, P., Yimit, A., Abdurrahman, A. & Itoh, K. Formaldehyde gas sensor based on silver-and-yttrium-co doped-lithium iron phosphate thin film optical waveguide. Sens. Actuators B Chem. 176, 460–466 (2013).
Lee, H., Kim, S., Kim, K. B. & Choi, J. W. Scalable fabrication of flexible thin-film batteries for smart lens applications. Nano Energy 53, 225–231 (2018).
Mizushima, K., Jones, P. C., Wiseman, P. J. & Goodenough, J. B. LixCoO2 (O<x≤1): A new cathode material for batteries of high energy density. Solid State Ion. 3–4, 171–174 (1981).
Wang, B. et al. Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes. J. Electrochem. Soc. 143, 3203–3213 (1996).
Moradpour, A. et al. Resistive switching phenomena in LixCoO2 thin films. Adv. Mater. 23, 4141–4145 (2011).
Gonzalez-Rosillo, J. C. et al. Lithium-battery anode gains additional functionality for neuromorphic computing through metal–insulator phase separation. Adv. Mater. 32, 1907465 (2020).
Thackeray, M. M., Johnson, P. J., Depicciotto, L. A., Bruce, P. G. & Goodenough, J. B. Electrochemical extraction of lithium from LiMn2O4. Mater. Res. Bull. 19, 179–187 (1984).
Bates, J. B. et al. Thin-film rechargeable lithium batteries. J. Power Sources 54, 58–62 (1995).
Morcrette, M., Barboux, P., Perriere, J. & Brousse, T. LiMn2O4 thin films for lithium ion sensors. Solid State Ion. 112, 249–254 (1998).
Menetrier, M., Saadoune, I., Levasseur, S. & Delmas, C. The insulator-metal transition upon lithium deintercalation from LiCoO2: electronic properties and 7Li NMR study. J. Mater. Chem. 9, 1135–1140 (1999).
Marianetti, C. A., Kotliar, G. & Ceder, G. A first-order Mott transition in LixCoO2. Nat. Mater. 3, 627–631 (2004).
Milewska, A. et al. The nature of the nonmetal-metal transition in LixCoO2 oxide. Solid State Ion. 263, 110–118 (2014).
Gokmen, T. & Vlasov, Y. Acceleration of deep neural network training with resistive cross-point devices: design considerations. Front. Neurosci. 10, 333 (2016).
Wang, Z. R. et al. Resistive switching materials for information processing. Nat. Rev. Mater. 5, 173–195 (2020).
Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009).
He, P., Yu, H. J., Li, D. & Zhou, H. S. Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J. Mater. Chem. 22, 3680–3695 (2012).
Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).
Antolini, E. LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties. Solid State Ion. 170, 159–171 (2004).
Fuller, E. J. et al. Li-ion synaptic transistor for low power analog computing. Adv. Mater. 29, 1604310 (2017).
Nadkarni, N., Zhou, T. T., Fraggedakis, D., Gao, T. & Bazant, M. Z. Modeling the metal–insulator phase transition in LixCoO2 for energy and information storage. Adv. Funct. Mater. 29, 1902821 (2019).
Thackeray, M. M., David, W. I. F., Bruce, P. G. & Goodenough, J. B. Lithium insertion into manganese spinels. Mater. Res. Bull. 18, 461–472 (1983).
Nizamidin, P., Yin, Y., Turdi, G. & Yimit, A. Characterization of the optical and gas sensitivities of a nickel-doped lithium iron phosphate thin film. Anal. Lett. 51, 2039–2049 (2018).
Moore, S. K. Two startups use processing in flash memory for AI at the edge. IEEE Spectrum https://spectrum.ieee.org/tech-talk/computing/embedded-systems/two-startups-use-processing-in-flash-memory-for-ai-at-the-edge (2018).
Li, J. C., Ma, C., Chi, M. F., Liang, C. D. & Dudney, N. J. Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015).
Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).
Quartarone, E. & Mustarelli, P. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem. Soc. Rev. 40, 2525–2540 (2011).
Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017).
US Department of Energy. Vehicle Technologies Office annual merit review 2017 report (DOE, 2017).
Andre, D. et al. Future generations of cathode materials: an automotive industry perspective. J. Mater. Chem. A 3, 6709–6732 (2015).
Ohta, S., Kobayashi, T., Seki, J. & Asaoka, T. Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte. J. Power Sources 202, 332–335 (2012).
Wu, J. F., Pang, W. K., Peterson, V. K., Wei, L. & Guo, X. Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries. ACS Appl. Mater. Interfaces 9, 12461–12468 (2017).
Ahn, B. Y. et al. Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323, 1590–1593 (2009).
Oudenhoven, J. F. M., Baggetto, L. & Notten, P. H. L. All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts. Adv. Energy Mater. 1, 10–33 (2011).
Roberts, M. et al. 3D lithium ion batteries-from fundamentals to fabrication. J. Mater. Chem. 21, 9876–9890 (2011).
Cheah, S. K. et al. Self-supported three-dimensional nanoelectrodes for microbattery applications. Nano Lett. 9, 3230–3233 (2009).
Perre, E. et al. Direct electrodeposition of aluminium nano-rods. Electrochem. Commun. 10, 1467–1470 (2008).
Taberna, L., Mitra, S., Poizot, P., Simon, P. & Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5, 567–573 (2006).
Mazor, H., Golodnitsky, D., Burstein, L. & Peled, E. High power copper sulfide cathodes for thin-film microbatteries. Electrochem. Solid-State Lett. 12, A232–A235 (2009).
Baggetto, L., Knoops, H. C. M., Niessen, R. A. H., Kessels, W. M. M. & Notten, P. H. L. 3D negative electrode stacks for integrated all-solid-state lithium-ion microbatteries. J. Mater. Chem. 20, 3703–3708 (2010).
Pearse, A. et al. Three-dimensional solid-state lithium-ion batteries fabricated by conformal vapor-phase chemistry. ACS Nano 12, 4286–4294 (2018).
Yao, H. B. et al. Crab shells as sustainable templates from nature for nanostructured battery electrodes. Nano Lett. 13, 3385–3390 (2013).
Hyde, S. T. & Schröder-Turk, G. E. Geometry of interfaces: topological complexity in biology and materials. Interface Focus 2, 529–538 (2012).
Zhu, C. et al. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 6962 (2015).
Kim, C. et al. High-power aqueous zinc-ion batteries for customized electronic devices. ACS Nano 12, 11838–11846 (2018).
Han, F. D. et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019).
Porz, L. et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017).
Westover, A. S., Dudney, N. J., Sacci, R. L. & Kalnaus, S. Deposition and confinement of Li metal along an artificial lipon–lipon interface. ACS Energy Lett. 4, 651–655 (2019).
Dudney, N. J. Solid-state thin-film rechargeable batteries. Mat. Sci. Eng. B 116, 245–249 (2005).
Garbayo, I. et al. Glass-type polyamorphism in Li-garnet thin film solid state battery conductors. Adv. Energy Mater. 8, 1702265 (2018).
Ahn, J. K. & Yoon, S. G. Characteristics of amorphous lithium lanthanum titanate electrolyte thin films grown by PLD for use in rechargeable lithium microbatteries. Electrochem. Solid-State Lett. 8, A75–A78 (2005).
Li, C. L., Zhang, B. & Fu, Z. W. Physical and electrochemical characterization of amorphous lithium lanthanum titanate solid electrolyte thin-film fabricated by e-beam evaporation. Thin Solid Films 515, 1886–1892 (2006).
Tan, D. H. S., Banerjee, A., Chen, Z. & Meng, Y. S. From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 15, 170–180 (2020).
Li, X. L. et al. LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery. J. Energy Chem. 40, 39–45 (2020).
Kim, K. J. & Rupp, J. L. M. All ceramic cathode composite design and manufacturing towards low interfacial resistance for garnet-based solid-state batteries. Energy Environ. Sci. https://doi.org/10.1039/D0EE02062A (2020).
Kim, K. J., Balaish, M., Wadaguchi, M., Kong, L. & Rupp, J. L. M. Solid-state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Adv. Energy Mater. https://doi.org/10.1002/aenm.202002689 (2020).
Hwang, C. S. Prospective of semiconductor memory devices: from memory system to materials. Adv. Electron. Mater. 1, 1400056 (2015).
Berggren, K. et al. Roadmap on emerging hardware and technology for machine learning. Nanotechnology 32, 012002 (2020).
Mead, C. Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636 (1990).
Xia, Q. F. & Yang, J. J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18, 309–323 (2019).
Tang, J. S. et al. Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges. Adv. Mater. 31, e1902761 (2019).
Chua, L. O. Memristor-the missing circuit element. IEEE Trans. Circuits Syst. 18, 507–519 (1971).
Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007).
Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).
Pan, F., Gao, S., Chen, C., Song, C. & Zeng, F. Recent progress in resistive random access memories: Materials, switching mechanisms, and performance. Mat. Sci. Eng. R. Rep 83, 1–59 (2014).
Burr, G. W. et al. Overview of candidate device technologies for storage-class memory. IBM J. Res. Dev. 52, 449–464 (2008).
Chen, Y. Y. & Petti, C. ReRAM technology evolution for storage class memory application (IEEE, 2016).
Burr, G. W. et al. Neuromorphic computing using non-volatile memory. Adv. Phys X 2, 89–124 (2017).
Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015).
Borghetti, J. et al. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–876 (2010).
Yang, J. J. S., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013).
Torrezan, A. C., Strachan, J. P., Medeiros-Ribeiro, G. & Williams, R. S. Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 22, 485203 (2011).
Wei, Z. et al. Demonstration of high-density ReRAM ensuring 10-year retention at 85º C based on a newly developed reliability model (IEEE, 2011).
Zhirnov, V. V., Meade, R., Cavin, R. K. & Sandhu, G. Scaling limits of resistive memories. Nanotechnology 22, 254027 (2011).
Yoon, J. H. et al. Truly electroforming-free and low-energy memristors with preconditioned conductive tunneling paths. Adv. Funct. Mater. 27, 1702010 (2017).
Messerschmitt, F., Kubicek, M., Schweiger, S. & Rupp, J. L. M. Memristor kinetics and diffusion characteristics for mixed anionic-electronic SrTiO3-δ bits: The memristor-based Cottrell analysis connecting material to device performance. Adv. Funct. Mater. 24, 7448–7460 (2014).
Valov, I., Waser, R., Jameson, J. R. & Kozicki, M. N. Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 22, 254003 (2011).
Banno, N., Sakamoto, T., Hasegawa, T., Terabe, K. & Aono, M. Effect of ion diffusion on switching voltage of solid-electrolyte nanometer switch. Jpn. J. Appl. Phys. 45, 3666–3668 (2006).
Kozicki, M. N. & Barnaby, H. J. Conductive bridging random access memory—materials, devices and applications. Semicond. Sci. Technol. 31, 113001 (2016).
Yao, P. et al. Face classification using electronic synapses. Nat. Commun. 8, 15199 (2017).
Wang, W. et al. Learning of spatiotemporal patterns in a spiking neural network with resistive switching synapses. Sci. Adv. 4, eaat4752 (2018).
Li, Y. Y. & Chueh, W. C. Electrochemical and chemical insertion for energy transformation and switching. Annu. Rev. Mater. Res. 48, 137–165 (2018).
Xia, H., Lu, L. & Ceder, G. Li diffusion in LiCoO2 thin films prepared by pulsed laser deposition. J. Power Sources 159, 1422–1427 (2006).
Stanje, B. et al. Solid electrolytes: extremely fast charge carriers in garnet-type Li6La3ZrTaO12 single crystals. Ann. Phys. (Berl.) 529, 1700140 (2017).
van den Broek, J., Afyon, S. & Rupp, J. L. M. Interface-engineered all-solid-state Li-ion batteries based on garnet-type fast Li+ conductors. Adv. Energy Mater. 6, 1600736 (2016).
Zhu, X. J. et al. Direct observation of lithium-ion transport under an electrical field in LixCoO2 nanograins. Sci. Rep. 3, 1084 (2013).
Mai, V. H. et al. Memristive and neuromorphic behavior in a LixCoO2 nanobattery. Sci. Rep. 5, 7761 (2015).
Nguyen, V. S. et al. Direct evidence of lithium ion migration in resistive switching of lithium cobalt oxide nanobatteries. Small 14, e1801038 (2018).
Greenlee, J. D. et al. In-situ oxygen x-ray absorption spectroscopy investigation of the resistance modulation mechanism in LiNbO2 memristors. Appl. Phys. Lett. 100, 182106 (2012).
Yakopcic, C. et al. Filament formation in lithium niobate memristors supports neuromorphic programming capability. Neural Comput. Appl. 30, 3773–3779 (2018).
Greenlee, J. D. et al. Radiation effects on LiNbO2 memristors for neuromorphic computing applications. IEEE Trans. Nucl. Sci. 60, 4555–4562 (2013).
Wang, S. et al. Experimental study of LiNbO3 memristors for use in neuromorphic computing. Microelectron. Eng. 168, 37–40 (2017).
Wang, S. et al. Lithium based memristive device (IEEE, 2015).
Zhu, X. J. et al. In situ nanoscale electric field control of magnetism by nanoionics. Adv. Mater. 28, 7658–7665 (2016).
Fraggedakis, D. M. M., Zhou, T. & Bazant, M. Z. Dielectric breakdown by electric-field induced phase separation. J. Electrochem. Soc. 167, 11 (2020).
Watanabe, Y. et al. Low-energy-consumption three-valued memory device inspired by solid-state batteries. ACS Appl. Mater. Interfaces 11, 45150–45154 (2019).
Hu, Q. et al. Lithium ion trapping mechanism of SiO2 in LiCoO2 based memristors. Sci. Rep. 9, 5081 (2019).
Li, Y. Y. et al. Low-voltage, CMOS-free synaptic memory based on LixTiO2 redox transistors. ACS Appl. Mater. Interfaces 11, 38982–38992 (2019).
Speulmanns, J., Kia, A. M., Kühnel, K., Bönhardt, S. & Weinreich, W. Surface-dependent performance of ultrathin TiN films as an electrically conducting Li diffusion barrier for Li-ion-based devices. ACS Appl. Mater. Interfaces 12, 39252–39260 (2020).
Gurney, K. R. et al. High resolution fossil fuel combustion CO2 emission fluxes for the United States. Environ. Sci. Technol. 43, 5535–5541 (2009).
Wang, C., Chen, J. N. & Zou, J. Decomposition of energy-related CO2 emission in China: 1957–2000. Energy 30, 73–83 (2005).
Joughin, I., Smith, B. E. & Medley, B. Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science 344, 735–738 (2014).
Feldmann, J. & Levermann, A. Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin. Proc. Natl Acad. Sci. USA 112, 14191–14196 (2015).
Obama, B. The irreversible momentum of clean energy. Science 355, 126–129 (2017).
Aleixandre, M. & Gerboles, M. Review of small commercial sensors for indicative monitoring of ambient gas. Chem. Eng. Trans. 30, 169–174 (2012).
Szulczynski, B. & Gebicki, J. Currently commercially available chemical sensors employed for detection of volatile organic compounds in outdoor and indoor air. Environments 4, 21 (2017).
Dinh, T. V., Choi, I. Y., Son, Y. S. & Kim, J. C. A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction. Sens. Actuators B Chem. 231, 529–538 (2016).
Park, C. O. & Akbar, S. A. Ceramics for chemical sensing. J. Mater. Sci. 38, 4611–4637 (2003).
Liu, Y. X., Parisi, J., Sun, X. C. & Lei, Y. Solid-state gas sensors for high temperature applications–a review. J. Mater. Chem. A 2, 9919–9943 (2014).
Yamazoe, N. & Miura, N. Environmental gas-sensing. Sens. Actuators B Chem. 20, 95–102 (1994).
Maskell, W. C. Inorganic solid state chemically sensitive devices: electrochemical oxygen gas sensors. J. Phys. E Sci. Instrum. 20, 1156–1168 (1987).
Weppner, W. Solid-state electrochemical gas sensors. Sens. Actuators 12, 107–119 (1987).
Ramamoorthy, R., Dutta, P. K. & Akbar, S. A. Oxygen sensors: materials, methods, designs and applications. J. Mater. Sci. 38, 4271–4282 (2003).
Chamberland, M. G. A. Solid-state detectors for the potentiometric determination of gaseous oxides. J. Electrochem. Soc. 124, 1579–1583 (1977).
Worrell, W. L. & Liu, Q. G. A new sulphur dioxide sensor using a novel two-phase solid-sulphate electrolyte. J. Electroanal. Chem. Interfacial Electrochem. 168, 355–362 (1984).
Akila, R. & Jacob, K. T. Use of the Nasicon/Na2So4 couple in a solid state sensor for Sox (x=2,3). J. Appl. Electrochem. 18, 245–251 (1988).
Wang, H. R., Chen, D., Zhang, M. & Wang, J. H. Influence of the sensing and reference electrodes relative size on the sensing properties of Li3PO4-based potentiometric CO2 sensors. Surf. Coat. Technol. 320, 542–547 (2017).
Yu, X. H., Bates, J. B., Jellison, G. E. & Hart, F. X. A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride. J. Electrochem. Soc. 144, 524–532 (1997).
Su, Y. et al. LiPON thin films with high nitrogen content for application in lithium batteries and electrochromic devices prepared by RF magnetron sputtering. Solid State Ion. 282, 63–69 (2015).
Ivanov-Shitz, A. K., Kireev, V. V., Mel’nikov, O. K. & Demianets, L. N. Growth and ionic conductivity of γ-Li3PO4. Crystallogr. Rep. 46, 864–867 (2001).
Menil, F., Daddah, B. O., Tardy, P., Debeda, H. & Lucat, C. Planar LiSICON-based potentiometric CO2 sensors: influence of the working and reference electrodes relative size on the sensing properties. Sens. Actuators B Chem. 107, 695–707 (2005).
Obata, K., Motohi, S. & Matsushima, S. NO2 and CO2 sensing properties of LISICON-based sensor operative at room temperature. Sens. Mater. 24, 43–56 (2012).
Satyanarayana, L., Choi, G. P., Noh, W. S., Lee, W. Y. & Park, J. S. Characteristics and performance of binary carbonate auxiliary phase CO2 sensor based on Li3PO4 solid electrolyte. Solid State Ion. 177, 3485–3490 (2007).
Lee, H. K., Choi, N. J., Moon, S. E., Yang, W. S. & Kim, J. A solid electrolyte potentiometric CO2 gas sensor composed of lithium phosphate as both the reference and the solid electrolyte materials. J. Korean Phys. Soc. 61, 938–941 (2012).
Choi, N. J., Lee, H. K., Moon, S. E., Yang, W. S. & Kim, J. Stacked-type potentiometric solid-state CO2 gas sensor. Sens. Actuators B Chem. 187, 340–346 (2013).
Sun, G. L., Wang, H. R., Li, P., Liu, Z. & Jiang, Z. D. Response characteristics of a potentiometric CO2 gas sensor based on Li3PO4 solid electrolyte using Au film as the electrodes. J. Appl. Phys. 115, 124505 (2014).
Noh, W. S., Satyanarayana, L. & Park, J. S. Potentiometric CO2 sensor using Li+ ion conducting Li3PO4 thin film electrolyte. Sensors 5, 465–472 (2005).
Zhu, Y. M., Thangadurai, V. & Weppner, W. Garnet-like solid state electrolyte Li6BaLa2Ta2O12 based potentiometric CO2 gas sensor. Sens. Actuators B Chem. 176, 284–289 (2013).
Thangadurai, V., Narayanan, S. & Pinzaru, D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43, 4714–4727 (2014).
Bachman, J. C. et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016).
Alonso-Porta, M. & Kumar, R. V. Use of NASICON/Na2CO3 system for measuring CO2. Sens. Actuators B Chem. 71, 173–178 (2000).
Sahner, K. et al. CO2 selective potentiometric sensor in thick-film technology. Sensors 8, 4774–4785 (2008).
Obata, K., Kumazawa, S., Shimanoe, K., Miura, N. & Yamazoe, N. Potentiometric sensor based on NASICON and In2O3 for detection of CO2 at room temperature — modification with foreign substances. Sens. Actuators B Chem. 76, 639–643 (2001).
Dang, H. Y. & Guo, X. M. Characteristics of NASICON-based thick-film CO2 sensor attached with integrated auxiliary electrode. IEEE Sens. J. 12, 2430–2434 (2012).
Yao, S., Shimizu, Y., Miura, N. & Yamazoe, N. Solid electrolyte carbon dioxide sensor using sodium-ion conductor and Li2CO3-BaCO3 electrode. Jpn. J. Appl. Phys. 31, L197–L199 (1992).
Kida, T., Kishi, S., Yuasa, M., Shimanoe, K. & Yamazoe, N. Planar NASICON-based CO2 sensor using BiCuVOx/perovskite-type oxide as a solid-reference electrode. J. Electrochem. Soc. 155, J117–J121 (2008).
Aono, H., Sadaoka, Y., Montanaro, L., Di Bartolomeo, E. & Traversa, E. Humidity influence on the CO2 response of potentiometric sensors based on NASICON pellets with new compositions, Na3Zr2-(x/4)Si2-xP1+xO12 (x=1.333). J. Am. Ceram. Soc. 85, 585–589 (2002).
Kim, H. J., Choi, J. W., Do Kim, S. & Yoo, K. S. Thick-film CO2 sensors based on NASICON synthesized by a sol-gel process. Mater. Sci. Forum 544–545, 925–928 (2007).
Kida, T., Shimanoe, K., Miura, N. & Yamazoe, N. Stability of NASICON-based CO2 sensor under humid conditions at low temperature. Sens. Actuators B Chem. 75, 179–187 (2001).
Kaneyasu, K. et al. A carbon dioxide gas sensor based on solid electrolyte for air quality control. Sens. Actuators B Chem. 66, 56–58 (2000).
Izquierdo, R. et al. Pulsed laser deposition of NASICON thin films for the fabrication of ion selective membranes. J. Electrochem. Soc. 144, L323–L325 (1997).
Wang, L. & Kumar, R. V. Cross-sensitivity effects on a new carbon dioxide gas sensor based on solid bielectrolyte. Meas. Sci. Technol. 15, 1005–1010 (2004).
Hong, H. S., Kim, J. W., Jung, S. J. & Park, C. O. Suppression of NO and SO2 cross-sensitivity in electrochemical CO2 sensors with filter layers. Sens. Actuators B Chem. 113, 71–79 (2006).
Salam, F., Bredikhin, S., Birke, P. & Weppner, W. Effect of the thickness of the gas-sensitive layer on the response of solid state electrochemical CO2 sensors. Solid State Ion. 110, 319–325 (1998).
Yan, Y. T., Shimizu, Y., Miura, N. & Yamazoe, N. High-performance solid-electrolyte SOx sensor using MgO-stabilized zirconia tube and Li2SO4-CaSO4-SiO2 auxiliary phase. Sens. Actuators B Chem. 20, 81–87 (1994).
Yan, Y., Shimizu, Y., Miura, N. & Yamazoe, N. Solid-state sensor for sulfur-oxides based on stabilized zirconia and metal sulfate. Chem. Lett. 21, 635–638 (1992).
Maruyama, T., Saito, Y., Matsumoto, Y. & Yano, Y. Potentiometric sensor for sulfur-oxides using NASICON as a solid electrolyte. Solid State Ion. 17, 281–286 (1985).
Min, B. Y. & Choi, S. D. SO2-sensing characteristics of Nasicon sensors with Na2SO4–BaSO4 auxiliary electrolytes. Sens. Actuators B Chem. 93, 209–213 (2003).
Rao, N., van den Bleek, C. M., Schoonman, J. & Sorensen, O. T. A novel temperature-gradient Na+-β″-alumina solid electrolyte based SOx gas sensor without gaseous reference electrode. Solid State Ion. 53, 30–38 (1992).
Itoh, M., Sugimoto, E. & Kozuka, Z. Solid reference electrode of SO2 sensor using β-alumina solid electrolyte. Trans. Jpn. Inst. Met. 25, 504–510 (1984).
Yang, J. H., Yang, P. H. & Meng, G. Y. A fully solid-state SOx (x = 2,3) gas sensor utilizing Ag-β″-alumina as solid electrolyte. Sens. Actuators B Chem. 31, 209–212 (1996).
Yang, P. H., Yang, J. H., Chen, C. S., Peng, D. K. & Meng, G. Y. Performance evaluation of SOx (x = 2,3) gas sensors using Ag-β″-alumina solid electrolyte. Solid State Ion. 86–88, 1095–1099 (1996).
Wang, L. & Kumar, R. V. Potentiometric SO2 gas sensor based on a thick film of Ca2+ ion conducting solid electrolyte. J. Appl. Electrochem. 36, 173–178 (2006).
Wang, L. & Kumar, R. V. A new SO2 gas sensor based on an Mg2+ conducting solid electrolyte. J. Electroanal. Chem. 543, 109–114 (2003).
Dutta, A. & Ishihara, T. Amperometric NOX sensor based on oxygen pumping current by using LaGaO3-based solid electrolyte for monitoring exhaust gas. Sens. Actuators B Chem. 108, 309–313 (2005).
Zhuiykov, S., Ono, T., Yamazoe, N. & Miura, N. High-temperature NOx sensors using zirconia solid electrolyte and zinc-family oxide sensing electrode. Solid State Ion. 152, 801–807 (2002).
Miura, N., Nakatou, M. & Zhuiykov, S. Impedancemetric gas sensor based on zirconia solid electrolyte and oxide sensing electrode for detecting total NOx at high temperature. Sens. Actuators B Chem. 93, 221–228 (2003).
Miura, N., Lu, G., Ono, M. & Yamazoe, N. Selective detection of NO by using an amperometric sensor based on stabilized zirconia and oxide electrode. Solid State Ion. 117, 283–290 (1999).
Miura, N., Iio, M., Lu, G. Y. & Yamazoe, N. Solid-state amperometric NO2 sensor using a sodium ion conductor. Sens. Actuators B Chem. 35, 124–129 (1996).
Shimizu, Y. & Maeda, K. Solid electrolyte NOx sensor using pyrochlore-type oxide electrode. Sens. Actuators B Chem. 52, 84–89 (1998).
Yao, S., Shimizu, Y., Miura, N. & Yamazoe, N. Use of sodium-nitrite auxiliary electrode for solid electrolyte sensor to detect nitrogen-oxides. Chem. Lett. 21, 587–590 (1992).
Orfanidou, C. M. et al. Stoichiometry and volume dependent transport in lithium ion memristive devices. AIP Adv. 8, 115211 (2018).
Li, H. T. et al. Memristive behaviors of LiNbO3 ferroelectric diodes. Appl. Phys. Lett. 97, 012902 (2010).
Pan, X. Q. et al. Rectifying filamentary resistive switching in ion-exfoliated LiNbO3 thin films. Appl. Phys. Lett. 108, 032904 (2016).
Wu, J. F. et al. Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity. ACS Appl. Mater. Interfaces 9, 1542–1552 (2017).
Kwon, W. J. et al. Enhanced Li+ conduction in perovskite Li3xLa2/3-x□1/3-2xTiO3 solid-electrolytes via microstructural engineering. J. Mater. Chem. A 5, 6257–6262 (2017).
Furusawa, S., Tabuchi, H., Sugiyama, T., Tao, S. W. & Irvine, J. T. S. Ionic conductivity of amorphous lithium lanthanum titanate thin film. Solid State Ion. 176, 553–558 (2005).
Bucharsky, E. C., Schell, K. G., Hintennach, A. & Hoffmann, M. J. Preparation and characterization of sol–gel derived high lithium ion conductive NZP-type ceramics Li1 + x AlxTi2 - x(PO4)3. Solid State Ion. 274, 77–82 (2015).
Chen, H. P., Tao, H. Z., Zhao, X. J. & Wu, Q. D. Fabrication and ionic conductivity of amorphous Li–Al–Ti–P–O thin film. J. Non-Cryst. Solids 357, 3267–3271 (2011).
Zhu, Y. Z., He, X. F. & Mo, Y. F. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015).
Julien, C. M., Mauger, A., Zaghib, Z. & Groult, H. Comparative issues of cathode materials for Li-ion batteries. Inorganics 2, 132–154 (2014).
Min, H. S. et al. Fabrication and properties of a carbon/polypyrrole three-dimensional microbattery. J. Power Sources 178, 795–800 (2008).
Nishizawa, M., Mukai, K., Kuwabata, S., Martin, C. R. & Yoneyama, H. Template synthesis of polypyrrole-coated spinel LiMn2O4 nanotubules and their properties as cathode active materials for lithium batteries. J. Electrochem. Soc. 144, 1923–1927 (1997).
Kotobuki, M. et al. Electrochemical property of honeycomb type all-solid-state Li battery at high temperature. Electrochemistry 79, 464–466 (2011).
Shaijumon, M. M. et al. Nanoarchitectured 3D cathodes for Li-ion microbatteries. Adv. Mater. 22, 4978–4981 (2010).
Mazor, H., Golodnitsky, D., Burstein, L., Gladkich, A. & Peled, E. Electrophoretic deposition of lithium iron phosphate cathode for thin-film 3D-microbatteries. J. Power Sources 198, 264–272 (2012).
Kim, H., Proell, J., Kohler, R., Pfleging, W. & Pique, A. Laser-printed and processed LiCoO2 cathodethick films for Li-ion microbatteries. J. Laser Micro Nanoeng. 7, 320–325 (2012).
Gowda, S. R., Reddy, A. L. M., Zhan, X. B., Jafry, H. R. & Ajayan, P. M. 3D nanoporous nanowire current collectors for thin film microbatteries. Nano Lett. 12, 1198–1202 (2012).
Lai, W. et al. Ultrahigh-energy-density microbatteries enabled by new electrode architecture and micropackaging design. Adv. Mater. 22, E139–E144 (2010).
Yoshima, K., Munakata, H. & Kanamura, K. Fabrication of micro lithium-ion battery with 3D anode and 3D cathode by using polymer wall. J. Power Sources 208, 404–408 (2012).
Pikul, J. H., Zhang, H. G., Cho, J., Braun, P. V. & King, W. P. High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 4, 1732 (2013).
Gaikwad, A. M., Whiting, G. L., Steingart, D. A. & Arias, A. C. Highly flexible, printed alkaline batteries based on mesh-embedded electrodes. Adv. Mater. 23, 3251–3255 (2011).
Nathan, M. et al. Three-dimensional thin-film Li-ion microbatteries for autonomous MEMS. J. Microelectromech. Syst. 14, 879–885 (2005).
Sun, K. et al. 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater. 25, 4539–4543 (2013).
Wang, Z. R. et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1, 137–145 (2018).
Ma, C. et al. Sub-ppb SO2 gas sensor based on NASICON and LaxSm1-xFeO3 sensing electrode. Sens. Actuators B Chem. 256, 648–655 (2018).
Izu, N., Hagen, G., Schonauer, D., Roder-Roith, U. & Moos, R. Planar potentiometric SO2 gas sensor for high temperatures using NASICON electrolyte combined with V2O5/WO3/TiO2 + Au or Pt electrode. J. Ceram. Soc. Jpn. 119, 687–691 (2011).
Wang, L. & Kumar, R. V. A SO2 gas sensor based upon composite Nasicon/Sr-β-Al2O3 bielectrolyte. Mater. Res. Bull. 40, 1802–1815 (2005).
Mari, C. M., Beghi, M., Pizzini, S. & Faltemier, J. Electrochemical solid-state sensor for SO2 determination in air. Sens. Actuators B Chem. 2, 51–55 (1990).
Wang, H., Liu, Z., Chen, D. & Jiang, Z. A new potentiometric SO2 sensor based on Li3PO4 electrolyte film and its response characteristics. Rev. Sci. Instrum. 86, 075007 (2015).
Chen, K. D., Zhang, M., Wang, H. R. & Gu, H. Q. A potentiometric SO2 gas sensor based on the Li3PO4-Li2SiO3 solid electrolyte thin film. Rev. Sci. Instrum. 90, 065001 (2019).
White, B., Chatterjee, S., Macam, E. & Wachsman, E. Effect of electrode microstructure on the sensitivity and response time of potentiometric NOX sensors. J. Am. Ceram. Soc. 91, 2024–2031 (2008).
Zhuiykov, S., Nakano, T., Kunimoto, A., Yamazoe, N. & Miura, N. Potentiometric NOx sensor based on stabilized zirconia and NiCr2O4 sensing electrode operating at high temperatures. Electrochem. Commun. 3, 97–101 (2001).
Mondal, S. P. et al. Development of high sensitivity potentiometric NOx sensor and its application to breath analysis. Sens. Actuators B Chem. 158, 292–298 (2011).
Miura, N., Lu, G. Y. & Yamazoe, N. High-temperature potentiometric/amperometric NOx sensors combining stabilized zirconia with mixed-metal oxide electrode. Sens. Actuators B Chem. 52, 169–178 (1998).
Romanytsia, I., Viricelle, J. P., Vernoux, P. & Pijolat, C. Application of advanced morphology Au–X (X = YSZ, ZrO2) composites as sensing electrode for solid state mixed-potential exhaust NOx sensor. Sens. Actuators B Chem. 207, 391–397 (2015).
Yoo, J., Chatterjee, S. & Wachsman, E. D. Sensing properties and selectivities of a WO3/YSZ/Pt potentiometric NOx sensor. Sens. Actuators B Chem. 122, 644–652 (2007).
Obata, K. & Matsushima, S. NASICON-based NO2 device attached with metal oxide and nitrite compound for the low temperature operation. Sens. Actuators B Chem. 130, 269–276 (2008).
Acknowledgements
Y.Z., J.C.G.-R., Z.D.H. and K.J.K. were supported by Samsung Electronics, NGK Inc., Swiss National Science Foundation (grant no. BSSGI0_155986) and National Science Foundation MRSEC Program (grant no. DMR-1419807). M.B. acknowledges financial support from the US-Israel Fulbright Program, the Zuckerman Israeli Postdoctoral Scholars Program and the MIT-Technion Postdoctoral Fellowship. J.L.M.R. thanks the Thomas Lord Foundation for financial support. The authors thank A. Westover for the fruitful discussions and final proofreading.
Author information
Authors and Affiliations
Contributions
All authors contributed to the research and discussion of data, figure preparation and proofreading of the manuscript. Y.Z. contributed to the writing and editing of all sections of the manuscript. J.C.G.-R. wrote the Li-controlled electronic configurations and Neuromorphic computing with Li sections. M.B. contributed to the writing of the Solid-state electrochemical sensors and the editing of the Solid-state Li-conducting films sections. Z.D.H. contributed to the writing of the Solid-state thin-film batteries and the editing of the Solid-state electrochemical sensors sections. K.J.K. contributed to the writing of the Solid-state Li-conducting films section. J.L.M.R. initiated the concept for the ‘lithionics’, discussed, edited and revised the manuscript in all parts.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Memristors to Machine Intelligence: https://knowm.org/
Supplementary information
Rights and permissions
About this article
Cite this article
Zhu, Y., Gonzalez-Rosillo, J.C., Balaish, M. et al. Lithium-film ceramics for solid-state lithionic devices. Nat Rev Mater 6, 313–331 (2021). https://doi.org/10.1038/s41578-020-00261-0
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41578-020-00261-0