Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lithium-film ceramics for solid-state lithionic devices

Abstract

The search for alternatives to traditional Li-ion batteries has sparked interest in the chemistry and manufacturing of solid-state Li-ion conductors. Li-ion conductors are traditionally processed as millimetre-sized pellets using conventional ceramic-processing routes. However, in thin-film form, Li-ion conductors offer applications beyond energy storage, including artificial intelligence, in-memory computing and smart sensing. In this Review, we examine the chemistry and thin-film processing of Li oxides and discuss challenges and opportunities for the integration of Li-oxide films in microbatteries for energy storage, neuromorphic computation mimicking human-brain operations and sensors for toxins and greenhouse gases. Li oxides in thin-film form provide fast Li-ion movement and connected electronic-state changes, which improve energy and information density and increase cycle speed and endurance of Li-conductor-based devices. Finally, we provide a future vision of lithionic devices integrating Li-based ceramics for the design of microdevices beyond batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Oxide-based Li-ion conductors.
Fig. 2: Li-controlled electronic configurations.
Fig. 3: Thin-film solid-state battery designs.
Fig. 4: Neuromorphic computing with Li-based memristors.
Fig. 5: Solid-state electrochemical gas sensors.

Similar content being viewed by others

References

  1. Becerra, J. The digital revolution is not about technology – it’s about people. World Economic Forum https://www.weforum.org/agenda/2017/03/the-digital-revolution-is-not-about-technology-it-s-about-people/ (2017).

  2. Gerrish, H. H. Transistor Electronics (Goodheart-Willcox, 1969).

  3. Shilov, A. Samsung completes development of 5nm EUV process technology. AnandTech https://www.anandtech.com/show/14231/samsung-completes-development-of-5-nm-euv-process-technology (2019).

  4. Shilov, A. TSMC announces performance-enhanced 7nm & 5nm process technologies. AnandTech https://www.anandtech.com/show/14687/tsmc-announces-performanceenhanced-7nm-5nm-process-technologies (2019).

  5. Olofsson, A. Silicon compilers - version 2.0. Int. Symp. Phys. Des. http://www.ispd.cc/slides/ispd2018.html (2018).

  6. Von Neumann, J. First draft of a report on the EDVAC. IEEE Ann. Hist. Comput. 15, 27–75 (1993).

    Google Scholar 

  7. Hruska, J. Microfluidics: DARPA is betting embedded water droplets could cool next-gen chips. ExtremeTech https://www.extremetech.com/extreme/224516-microfluidics-darpa-is-betting-embedded-water-droplets-could-cool-next-gen-chips (2016).

  8. NanoMarkets. Opportunities for thin-film batteries. SlideShare https://www.slideshare.net/NanoMarkets/thin-batteries (2014).

  9. Frank, R. What’s happening in air quality sensing? Sensor Tips https://www.sensortips.com/featured/whats-happening-in-air-quality-sensing/ (2019).

  10. Maier, J. Space charge regions in solid two-phase systems and their conduction contribution. III. Defect chemistry and ionic-conductivity in thin-films. Solid State Ion. 23, 59–67 (1987).

    CAS  Google Scholar 

  11. Lacivita, V. et al. Resolving the amorphous structure of lithium phosphorus oxynitride (Lipon). J. Am. Chem. Soc. 140, 11029–11038 (2018).

    CAS  Google Scholar 

  12. Bates, J. B. et al. Rechargeable thin-film lithium microbatteries. Solid State Technol. 36, 59–64 (1993).

    CAS  Google Scholar 

  13. Johnson, R. T., Biefeld, R. M., Knotek, M. L. & Morosin, B. Ionic-conductivity in solid electrolytes based on lithium aluminosilicate glass and glass-ceramic. J. Electrochem. Soc. 123, 680–687 (1976).

    CAS  Google Scholar 

  14. Kennedy, J. H. & Yang, Y. A highly conductive Li+-glass system: (1-x)(0.4SiS2-0.6Li2S)-xLiI. J. Electrochem. Soc. 133, 2437–2438 (1986).

    CAS  Google Scholar 

  15. Mercier, R., Malugani, J. P., Fahys, B. & Robert, G. Superionic conduction in Li2S-P2S5-LiI-glasses. Solid State Ion. 5, 663–666 (1981).

    CAS  Google Scholar 

  16. Pizzini, S. Ionic conductivity in lithium compounds. J. Appl. Electrochem. 1, 153–161 (1971).

    CAS  Google Scholar 

  17. Dudney, N. J., Bates, J. B., Zuhr, R. A., Luck, C. F. & Robertson, J. D. Sputtering of lithium compounds for preparation of electrolyte thin-films. Solid State Ion. 53, 655–661 (1992).

    Google Scholar 

  18. Bates, J. B. et al. Electrical-properties of amorphous lithium electrolyte thin-films. Solid State Ion. 53, 647–654 (1992).

    Google Scholar 

  19. Bates, J. B. et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J. Power Sources 43, 103–110 (1993).

    CAS  Google Scholar 

  20. Put, B., Vereecken, P. M. & Stesmans, A. On the chemistry and electrochemistry of LiPON breakdown. J. Mater. Chem. A 6, 4848–4859 (2018).

    CAS  Google Scholar 

  21. Lee, C., Akbar, S. A. & Park, C. O. Potentiometric CO2 gas sensor with lithium phosphorous oxynitride electrolyte. Sens. Actuators B Chem. 80, 234–242 (2001).

    CAS  Google Scholar 

  22. Zhao, E. Q., Ma, F. R., Guo, Y. D. & Jin, Y. C. Stable LATP/LAGP double-layer solid electrolyte prepared via a simple dry-pressing method for solid state lithium ion batteries. RSC Adv. 6, 92579–92585 (2016).

    CAS  Google Scholar 

  23. Aono, H., Sugimoto, E., Sadaoka, Y., Imanaka, N. & Adachi, G. Ionic-conductivity of solid electrolytes based on lithium titanium phosphate. J. Electrochem. Soc. 137, 1023–1027 (1990).

    CAS  Google Scholar 

  24. Belous, A. G., Novitskaya, G. N., Polyanetskaya, S. V. & Gornikov, Y. I. Study of complex oxides with the composition La2/3-xLi3xTiO3. Inorg. Mater. 23, 412–415 (1987).

    Google Scholar 

  25. Yoon, J., Hunter, G., Akbar, S. & Dutta, P. K. Interface reaction and its effect on the performance of a CO2 gas sensor based on Li0.35La0.55TiO3 electrolyte and Li2CO3 sensing electrode. Sens. Actuators B Chem. 182, 95–103 (2013).

    CAS  Google Scholar 

  26. Shi, T., Wu, J. F., Liu, Y., Yang, R. & Guo, X. Behavioral plasticity emulated with lithium lanthanum titanate-based memristive devices: habituation. Adv. Electron. Mater. 3, 1700046 (2017).

    Google Scholar 

  27. Lee, J. Z., Wang, Z. Y., Xin, H. L. L., Wynn, T. A. & Meng, Y. S. Amorphous lithium lanthanum titanate for solid-state microbatteries. J. Electrochem. Soc. 164, A6268–A6273 (2017).

    CAS  Google Scholar 

  28. Meesala, Y., Jena, A., Chang, H. & Liu, R. S. Recent advancements in Li-ion conductors for all-solid-state Li-ion batteries. ACS Energy Lett. 2, 2734–2751 (2017).

    CAS  Google Scholar 

  29. Struzik, M., Garbayo, I., Pfenninger, R. & Rupp, J. L. M. A simple and fast electrochemical CO2 sensor based on Li7La3Zr2O12 for environmental monitoring. Adv. Mater. 30, 1804098 (2018).

    Google Scholar 

  30. Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007).

    CAS  Google Scholar 

  31. Kotobuki, M., Munakata, H., Kanamura, K., Sato, Y. & Yoshida, T. Compatibility of Li7La3Zr2O12 solid electrolyte to all-solid-state battery using Li metal anode. J. Electrochem. Soc. 157, A1076–A1079 (2010).

    CAS  Google Scholar 

  32. Wang, B., Kwak, B. S., Sales, B. C. & Bates, J. B. Ionic conductivities and structure of lithium phosphorus oxynitride glasses. J. Non-Cryst. Solids 183, 297–306 (1995).

    CAS  Google Scholar 

  33. Pfenninger, R., Struzik, M., Garbayo, I., Stilp, E. & Rupp, J. L. M. A low ride on processing temperature for fast lithium conduction in garnet solid-state battery films. Nat. Energy 4, 475–483 (2019).

    CAS  Google Scholar 

  34. Sastre, J. et al. Lithium garnet Li7La3Zr2O12 electrolyte for all-solid-state batteries: closing the gap between bulk and thin film Li-ion conductivities. Adv. Mater. Interfaces 7, 2000425 (2020).

    CAS  Google Scholar 

  35. Jones, S. D., Akridge, J. R. & Shokoohi, F. K. Thin-film rechargeable Li batteries. Solid State Ion. 69, 357–368 (1994).

    CAS  Google Scholar 

  36. Bates, J. B., Dudney, N. J., Neudecker, B., Ueda, A. & Evans, C. D. Thin-film lithium and lithium-ion batteries. Solid State Ion. 135, 33–45 (2000).

    CAS  Google Scholar 

  37. Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997).

    CAS  Google Scholar 

  38. Zhang, L. et al. The nature of lithium-ion transport in low power consumption LiFePO4 resistive memory with graphite as electrode. Phys. Status Solidi RRL 12, 1800320 (2018).

    Google Scholar 

  39. Nizamidin, P., Yimit, A., Abdurrahman, A. & Itoh, K. Formaldehyde gas sensor based on silver-and-yttrium-co doped-lithium iron phosphate thin film optical waveguide. Sens. Actuators B Chem. 176, 460–466 (2013).

    CAS  Google Scholar 

  40. Lee, H., Kim, S., Kim, K. B. & Choi, J. W. Scalable fabrication of flexible thin-film batteries for smart lens applications. Nano Energy 53, 225–231 (2018).

    CAS  Google Scholar 

  41. Mizushima, K., Jones, P. C., Wiseman, P. J. & Goodenough, J. B. LixCoO2 (O<x≤1): A new cathode material for batteries of high energy density. Solid State Ion. 3–4, 171–174 (1981).

    Google Scholar 

  42. Wang, B. et al. Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes. J. Electrochem. Soc. 143, 3203–3213 (1996).

    CAS  Google Scholar 

  43. Moradpour, A. et al. Resistive switching phenomena in LixCoO2 thin films. Adv. Mater. 23, 4141–4145 (2011).

    CAS  Google Scholar 

  44. Gonzalez-Rosillo, J. C. et al. Lithium-battery anode gains additional functionality for neuromorphic computing through metal–insulator phase separation. Adv. Mater. 32, 1907465 (2020).

    CAS  Google Scholar 

  45. Thackeray, M. M., Johnson, P. J., Depicciotto, L. A., Bruce, P. G. & Goodenough, J. B. Electrochemical extraction of lithium from LiMn2O4. Mater. Res. Bull. 19, 179–187 (1984).

    CAS  Google Scholar 

  46. Bates, J. B. et al. Thin-film rechargeable lithium batteries. J. Power Sources 54, 58–62 (1995).

    CAS  Google Scholar 

  47. Morcrette, M., Barboux, P., Perriere, J. & Brousse, T. LiMn2O4 thin films for lithium ion sensors. Solid State Ion. 112, 249–254 (1998).

    CAS  Google Scholar 

  48. Menetrier, M., Saadoune, I., Levasseur, S. & Delmas, C. The insulator-metal transition upon lithium deintercalation from LiCoO2: electronic properties and 7Li NMR study. J. Mater. Chem. 9, 1135–1140 (1999).

    CAS  Google Scholar 

  49. Marianetti, C. A., Kotliar, G. & Ceder, G. A first-order Mott transition in LixCoO2. Nat. Mater. 3, 627–631 (2004).

    CAS  Google Scholar 

  50. Milewska, A. et al. The nature of the nonmetal-metal transition in LixCoO2 oxide. Solid State Ion. 263, 110–118 (2014).

    CAS  Google Scholar 

  51. Gokmen, T. & Vlasov, Y. Acceleration of deep neural network training with resistive cross-point devices: design considerations. Front. Neurosci. 10, 333 (2016).

    Google Scholar 

  52. Wang, Z. R. et al. Resistive switching materials for information processing. Nat. Rev. Mater. 5, 173–195 (2020).

    CAS  Google Scholar 

  53. Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009).

    CAS  Google Scholar 

  54. He, P., Yu, H. J., Li, D. & Zhou, H. S. Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J. Mater. Chem. 22, 3680–3695 (2012).

    CAS  Google Scholar 

  55. Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).

    CAS  Google Scholar 

  56. Antolini, E. LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties. Solid State Ion. 170, 159–171 (2004).

    CAS  Google Scholar 

  57. Fuller, E. J. et al. Li-ion synaptic transistor for low power analog computing. Adv. Mater. 29, 1604310 (2017).

    Google Scholar 

  58. Nadkarni, N., Zhou, T. T., Fraggedakis, D., Gao, T. & Bazant, M. Z. Modeling the metal–insulator phase transition in LixCoO2 for energy and information storage. Adv. Funct. Mater. 29, 1902821 (2019).

  59. Thackeray, M. M., David, W. I. F., Bruce, P. G. & Goodenough, J. B. Lithium insertion into manganese spinels. Mater. Res. Bull. 18, 461–472 (1983).

    CAS  Google Scholar 

  60. Nizamidin, P., Yin, Y., Turdi, G. & Yimit, A. Characterization of the optical and gas sensitivities of a nickel-doped lithium iron phosphate thin film. Anal. Lett. 51, 2039–2049 (2018).

    CAS  Google Scholar 

  61. Moore, S. K. Two startups use processing in flash memory for AI at the edge. IEEE Spectrum https://spectrum.ieee.org/tech-talk/computing/embedded-systems/two-startups-use-processing-in-flash-memory-for-ai-at-the-edge (2018).

  62. Li, J. C., Ma, C., Chi, M. F., Liang, C. D. & Dudney, N. J. Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015).

    Google Scholar 

  63. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    CAS  Google Scholar 

  64. Quartarone, E. & Mustarelli, P. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem. Soc. Rev. 40, 2525–2540 (2011).

    CAS  Google Scholar 

  65. Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017).

    Google Scholar 

  66. US Department of Energy. Vehicle Technologies Office annual merit review 2017 report (DOE, 2017).

  67. Andre, D. et al. Future generations of cathode materials: an automotive industry perspective. J. Mater. Chem. A 3, 6709–6732 (2015).

    CAS  Google Scholar 

  68. Ohta, S., Kobayashi, T., Seki, J. & Asaoka, T. Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte. J. Power Sources 202, 332–335 (2012).

    CAS  Google Scholar 

  69. Wu, J. F., Pang, W. K., Peterson, V. K., Wei, L. & Guo, X. Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries. ACS Appl. Mater. Interfaces 9, 12461–12468 (2017).

    CAS  Google Scholar 

  70. Ahn, B. Y. et al. Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323, 1590–1593 (2009).

    CAS  Google Scholar 

  71. Oudenhoven, J. F. M., Baggetto, L. & Notten, P. H. L. All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts. Adv. Energy Mater. 1, 10–33 (2011).

    CAS  Google Scholar 

  72. Roberts, M. et al. 3D lithium ion batteries-from fundamentals to fabrication. J. Mater. Chem. 21, 9876–9890 (2011).

    CAS  Google Scholar 

  73. Cheah, S. K. et al. Self-supported three-dimensional nanoelectrodes for microbattery applications. Nano Lett. 9, 3230–3233 (2009).

    CAS  Google Scholar 

  74. Perre, E. et al. Direct electrodeposition of aluminium nano-rods. Electrochem. Commun. 10, 1467–1470 (2008).

    CAS  Google Scholar 

  75. Taberna, L., Mitra, S., Poizot, P., Simon, P. & Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5, 567–573 (2006).

    CAS  Google Scholar 

  76. Mazor, H., Golodnitsky, D., Burstein, L. & Peled, E. High power copper sulfide cathodes for thin-film microbatteries. Electrochem. Solid-State Lett. 12, A232–A235 (2009).

    CAS  Google Scholar 

  77. Baggetto, L., Knoops, H. C. M., Niessen, R. A. H., Kessels, W. M. M. & Notten, P. H. L. 3D negative electrode stacks for integrated all-solid-state lithium-ion microbatteries. J. Mater. Chem. 20, 3703–3708 (2010).

    CAS  Google Scholar 

  78. Pearse, A. et al. Three-dimensional solid-state lithium-ion batteries fabricated by conformal vapor-phase chemistry. ACS Nano 12, 4286–4294 (2018).

    CAS  Google Scholar 

  79. Yao, H. B. et al. Crab shells as sustainable templates from nature for nanostructured battery electrodes. Nano Lett. 13, 3385–3390 (2013).

    CAS  Google Scholar 

  80. Hyde, S. T. & Schröder-Turk, G. E. Geometry of interfaces: topological complexity in biology and materials. Interface Focus 2, 529–538 (2012).

    Google Scholar 

  81. Zhu, C. et al. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 6962 (2015).

    CAS  Google Scholar 

  82. Kim, C. et al. High-power aqueous zinc-ion batteries for customized electronic devices. ACS Nano 12, 11838–11846 (2018).

    CAS  Google Scholar 

  83. Han, F. D. et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019).

    CAS  Google Scholar 

  84. Porz, L. et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017).

    Google Scholar 

  85. Westover, A. S., Dudney, N. J., Sacci, R. L. & Kalnaus, S. Deposition and confinement of Li metal along an artificial lipon–lipon interface. ACS Energy Lett. 4, 651–655 (2019).

    CAS  Google Scholar 

  86. Dudney, N. J. Solid-state thin-film rechargeable batteries. Mat. Sci. Eng. B 116, 245–249 (2005).

    Google Scholar 

  87. Garbayo, I. et al. Glass-type polyamorphism in Li-garnet thin film solid state battery conductors. Adv. Energy Mater. 8, 1702265 (2018).

    Google Scholar 

  88. Ahn, J. K. & Yoon, S. G. Characteristics of amorphous lithium lanthanum titanate electrolyte thin films grown by PLD for use in rechargeable lithium microbatteries. Electrochem. Solid-State Lett. 8, A75–A78 (2005).

    CAS  Google Scholar 

  89. Li, C. L., Zhang, B. & Fu, Z. W. Physical and electrochemical characterization of amorphous lithium lanthanum titanate solid electrolyte thin-film fabricated by e-beam evaporation. Thin Solid Films 515, 1886–1892 (2006).

    CAS  Google Scholar 

  90. Tan, D. H. S., Banerjee, A., Chen, Z. & Meng, Y. S. From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 15, 170–180 (2020).

    CAS  Google Scholar 

  91. Li, X. L. et al. LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery. J. Energy Chem. 40, 39–45 (2020).

    Google Scholar 

  92. Kim, K. J. & Rupp, J. L. M. All ceramic cathode composite design and manufacturing towards low interfacial resistance for garnet-based solid-state batteries. Energy Environ. Sci. https://doi.org/10.1039/D0EE02062A (2020).

  93. Kim, K. J., Balaish, M., Wadaguchi, M., Kong, L. & Rupp, J. L. M. Solid-state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Adv. Energy Mater. https://doi.org/10.1002/aenm.202002689 (2020).

    Article  Google Scholar 

  94. Hwang, C. S. Prospective of semiconductor memory devices: from memory system to materials. Adv. Electron. Mater. 1, 1400056 (2015).

    Google Scholar 

  95. Berggren, K. et al. Roadmap on emerging hardware and technology for machine learning. Nanotechnology 32, 012002 (2020).

    Google Scholar 

  96. Mead, C. Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636 (1990).

    Google Scholar 

  97. Xia, Q. F. & Yang, J. J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18, 309–323 (2019).

    CAS  Google Scholar 

  98. Tang, J. S. et al. Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges. Adv. Mater. 31, e1902761 (2019).

    Google Scholar 

  99. Chua, L. O. Memristor-the missing circuit element. IEEE Trans. Circuits Syst. 18, 507–519 (1971).

    Google Scholar 

  100. Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007).

    CAS  Google Scholar 

  101. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    CAS  Google Scholar 

  102. Pan, F., Gao, S., Chen, C., Song, C. & Zeng, F. Recent progress in resistive random access memories: Materials, switching mechanisms, and performance. Mat. Sci. Eng. R. Rep 83, 1–59 (2014).

    Google Scholar 

  103. Burr, G. W. et al. Overview of candidate device technologies for storage-class memory. IBM J. Res. Dev. 52, 449–464 (2008).

    Google Scholar 

  104. Chen, Y. Y. & Petti, C. ReRAM technology evolution for storage class memory application (IEEE, 2016).

  105. Burr, G. W. et al. Neuromorphic computing using non-volatile memory. Adv. Phys X 2, 89–124 (2017).

    Google Scholar 

  106. Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015).

    CAS  Google Scholar 

  107. Borghetti, J. et al. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–876 (2010).

    CAS  Google Scholar 

  108. Yang, J. J. S., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013).

    CAS  Google Scholar 

  109. Torrezan, A. C., Strachan, J. P., Medeiros-Ribeiro, G. & Williams, R. S. Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 22, 485203 (2011).

    Google Scholar 

  110. Wei, Z. et al. Demonstration of high-density ReRAM ensuring 10-year retention at 85º C based on a newly developed reliability model (IEEE, 2011).

  111. Zhirnov, V. V., Meade, R., Cavin, R. K. & Sandhu, G. Scaling limits of resistive memories. Nanotechnology 22, 254027 (2011).

    Google Scholar 

  112. Yoon, J. H. et al. Truly electroforming-free and low-energy memristors with preconditioned conductive tunneling paths. Adv. Funct. Mater. 27, 1702010 (2017).

    Google Scholar 

  113. Messerschmitt, F., Kubicek, M., Schweiger, S. & Rupp, J. L. M. Memristor kinetics and diffusion characteristics for mixed anionic-electronic SrTiO3-δ bits: The memristor-based Cottrell analysis connecting material to device performance. Adv. Funct. Mater. 24, 7448–7460 (2014).

    CAS  Google Scholar 

  114. Valov, I., Waser, R., Jameson, J. R. & Kozicki, M. N. Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 22, 254003 (2011).

    Google Scholar 

  115. Banno, N., Sakamoto, T., Hasegawa, T., Terabe, K. & Aono, M. Effect of ion diffusion on switching voltage of solid-electrolyte nanometer switch. Jpn. J. Appl. Phys. 45, 3666–3668 (2006).

    CAS  Google Scholar 

  116. Kozicki, M. N. & Barnaby, H. J. Conductive bridging random access memory—materials, devices and applications. Semicond. Sci. Technol. 31, 113001 (2016).

    Google Scholar 

  117. Yao, P. et al. Face classification using electronic synapses. Nat. Commun. 8, 15199 (2017).

    CAS  Google Scholar 

  118. Wang, W. et al. Learning of spatiotemporal patterns in a spiking neural network with resistive switching synapses. Sci. Adv. 4, eaat4752 (2018).

    CAS  Google Scholar 

  119. Li, Y. Y. & Chueh, W. C. Electrochemical and chemical insertion for energy transformation and switching. Annu. Rev. Mater. Res. 48, 137–165 (2018).

    CAS  Google Scholar 

  120. Xia, H., Lu, L. & Ceder, G. Li diffusion in LiCoO2 thin films prepared by pulsed laser deposition. J. Power Sources 159, 1422–1427 (2006).

    CAS  Google Scholar 

  121. Stanje, B. et al. Solid electrolytes: extremely fast charge carriers in garnet-type Li6La3ZrTaO12 single crystals. Ann. Phys. (Berl.) 529, 1700140 (2017).

    Google Scholar 

  122. van den Broek, J., Afyon, S. & Rupp, J. L. M. Interface-engineered all-solid-state Li-ion batteries based on garnet-type fast Li+ conductors. Adv. Energy Mater. 6, 1600736 (2016).

    Google Scholar 

  123. Zhu, X. J. et al. Direct observation of lithium-ion transport under an electrical field in LixCoO2 nanograins. Sci. Rep. 3, 1084 (2013).

    Google Scholar 

  124. Mai, V. H. et al. Memristive and neuromorphic behavior in a LixCoO2 nanobattery. Sci. Rep. 5, 7761 (2015).

    CAS  Google Scholar 

  125. Nguyen, V. S. et al. Direct evidence of lithium ion migration in resistive switching of lithium cobalt oxide nanobatteries. Small 14, e1801038 (2018).

    Google Scholar 

  126. Greenlee, J. D. et al. In-situ oxygen x-ray absorption spectroscopy investigation of the resistance modulation mechanism in LiNbO2 memristors. Appl. Phys. Lett. 100, 182106 (2012).

    Google Scholar 

  127. Yakopcic, C. et al. Filament formation in lithium niobate memristors supports neuromorphic programming capability. Neural Comput. Appl. 30, 3773–3779 (2018).

    Google Scholar 

  128. Greenlee, J. D. et al. Radiation effects on LiNbO2 memristors for neuromorphic computing applications. IEEE Trans. Nucl. Sci. 60, 4555–4562 (2013).

    CAS  Google Scholar 

  129. Wang, S. et al. Experimental study of LiNbO3 memristors for use in neuromorphic computing. Microelectron. Eng. 168, 37–40 (2017).

    CAS  Google Scholar 

  130. Wang, S. et al. Lithium based memristive device (IEEE, 2015).

  131. Zhu, X. J. et al. In situ nanoscale electric field control of magnetism by nanoionics. Adv. Mater. 28, 7658–7665 (2016).

    CAS  Google Scholar 

  132. Fraggedakis, D. M. M., Zhou, T. & Bazant, M. Z. Dielectric breakdown by electric-field induced phase separation. J. Electrochem. Soc. 167, 11 (2020).

    Google Scholar 

  133. Watanabe, Y. et al. Low-energy-consumption three-valued memory device inspired by solid-state batteries. ACS Appl. Mater. Interfaces 11, 45150–45154 (2019).

    CAS  Google Scholar 

  134. Hu, Q. et al. Lithium ion trapping mechanism of SiO2 in LiCoO2 based memristors. Sci. Rep. 9, 5081 (2019).

    Google Scholar 

  135. Li, Y. Y. et al. Low-voltage, CMOS-free synaptic memory based on LixTiO2 redox transistors. ACS Appl. Mater. Interfaces 11, 38982–38992 (2019).

    CAS  Google Scholar 

  136. Speulmanns, J., Kia, A. M., Kühnel, K., Bönhardt, S. & Weinreich, W. Surface-dependent performance of ultrathin TiN films as an electrically conducting Li diffusion barrier for Li-ion-based devices. ACS Appl. Mater. Interfaces 12, 39252–39260 (2020).

    CAS  Google Scholar 

  137. Gurney, K. R. et al. High resolution fossil fuel combustion CO2 emission fluxes for the United States. Environ. Sci. Technol. 43, 5535–5541 (2009).

    CAS  Google Scholar 

  138. Wang, C., Chen, J. N. & Zou, J. Decomposition of energy-related CO2 emission in China: 1957–2000. Energy 30, 73–83 (2005).

    Google Scholar 

  139. Joughin, I., Smith, B. E. & Medley, B. Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science 344, 735–738 (2014).

    CAS  Google Scholar 

  140. Feldmann, J. & Levermann, A. Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin. Proc. Natl Acad. Sci. USA 112, 14191–14196 (2015).

    CAS  Google Scholar 

  141. Obama, B. The irreversible momentum of clean energy. Science 355, 126–129 (2017).

    CAS  Google Scholar 

  142. Aleixandre, M. & Gerboles, M. Review of small commercial sensors for indicative monitoring of ambient gas. Chem. Eng. Trans. 30, 169–174 (2012).

    Google Scholar 

  143. Szulczynski, B. & Gebicki, J. Currently commercially available chemical sensors employed for detection of volatile organic compounds in outdoor and indoor air. Environments 4, 21 (2017).

    Google Scholar 

  144. Dinh, T. V., Choi, I. Y., Son, Y. S. & Kim, J. C. A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction. Sens. Actuators B Chem. 231, 529–538 (2016).

    CAS  Google Scholar 

  145. Park, C. O. & Akbar, S. A. Ceramics for chemical sensing. J. Mater. Sci. 38, 4611–4637 (2003).

    CAS  Google Scholar 

  146. Liu, Y. X., Parisi, J., Sun, X. C. & Lei, Y. Solid-state gas sensors for high temperature applications–a review. J. Mater. Chem. A 2, 9919–9943 (2014).

    CAS  Google Scholar 

  147. Yamazoe, N. & Miura, N. Environmental gas-sensing. Sens. Actuators B Chem. 20, 95–102 (1994).

    CAS  Google Scholar 

  148. Maskell, W. C. Inorganic solid state chemically sensitive devices: electrochemical oxygen gas sensors. J. Phys. E Sci. Instrum. 20, 1156–1168 (1987).

    CAS  Google Scholar 

  149. Weppner, W. Solid-state electrochemical gas sensors. Sens. Actuators 12, 107–119 (1987).

    CAS  Google Scholar 

  150. Ramamoorthy, R., Dutta, P. K. & Akbar, S. A. Oxygen sensors: materials, methods, designs and applications. J. Mater. Sci. 38, 4271–4282 (2003).

    CAS  Google Scholar 

  151. Chamberland, M. G. A. Solid-state detectors for the potentiometric determination of gaseous oxides. J. Electrochem. Soc. 124, 1579–1583 (1977).

    Google Scholar 

  152. Worrell, W. L. & Liu, Q. G. A new sulphur dioxide sensor using a novel two-phase solid-sulphate electrolyte. J. Electroanal. Chem. Interfacial Electrochem. 168, 355–362 (1984).

    CAS  Google Scholar 

  153. Akila, R. & Jacob, K. T. Use of the Nasicon/Na2So4 couple in a solid state sensor for Sox (x=2,3). J. Appl. Electrochem. 18, 245–251 (1988).

    CAS  Google Scholar 

  154. Wang, H. R., Chen, D., Zhang, M. & Wang, J. H. Influence of the sensing and reference electrodes relative size on the sensing properties of Li3PO4-based potentiometric CO2 sensors. Surf. Coat. Technol. 320, 542–547 (2017).

    CAS  Google Scholar 

  155. Yu, X. H., Bates, J. B., Jellison, G. E. & Hart, F. X. A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride. J. Electrochem. Soc. 144, 524–532 (1997).

    CAS  Google Scholar 

  156. Su, Y. et al. LiPON thin films with high nitrogen content for application in lithium batteries and electrochromic devices prepared by RF magnetron sputtering. Solid State Ion. 282, 63–69 (2015).

    CAS  Google Scholar 

  157. Ivanov-Shitz, A. K., Kireev, V. V., Mel’nikov, O. K. & Demianets, L. N. Growth and ionic conductivity of γ-Li3PO4. Crystallogr. Rep. 46, 864–867 (2001).

    Google Scholar 

  158. Menil, F., Daddah, B. O., Tardy, P., Debeda, H. & Lucat, C. Planar LiSICON-based potentiometric CO2 sensors: influence of the working and reference electrodes relative size on the sensing properties. Sens. Actuators B Chem. 107, 695–707 (2005).

    CAS  Google Scholar 

  159. Obata, K., Motohi, S. & Matsushima, S. NO2 and CO2 sensing properties of LISICON-based sensor operative at room temperature. Sens. Mater. 24, 43–56 (2012).

    CAS  Google Scholar 

  160. Satyanarayana, L., Choi, G. P., Noh, W. S., Lee, W. Y. & Park, J. S. Characteristics and performance of binary carbonate auxiliary phase CO2 sensor based on Li3PO4 solid electrolyte. Solid State Ion. 177, 3485–3490 (2007).

    CAS  Google Scholar 

  161. Lee, H. K., Choi, N. J., Moon, S. E., Yang, W. S. & Kim, J. A solid electrolyte potentiometric CO2 gas sensor composed of lithium phosphate as both the reference and the solid electrolyte materials. J. Korean Phys. Soc. 61, 938–941 (2012).

    CAS  Google Scholar 

  162. Choi, N. J., Lee, H. K., Moon, S. E., Yang, W. S. & Kim, J. Stacked-type potentiometric solid-state CO2 gas sensor. Sens. Actuators B Chem. 187, 340–346 (2013).

    CAS  Google Scholar 

  163. Sun, G. L., Wang, H. R., Li, P., Liu, Z. & Jiang, Z. D. Response characteristics of a potentiometric CO2 gas sensor based on Li3PO4 solid electrolyte using Au film as the electrodes. J. Appl. Phys. 115, 124505 (2014).

    Google Scholar 

  164. Noh, W. S., Satyanarayana, L. & Park, J. S. Potentiometric CO2 sensor using Li+ ion conducting Li3PO4 thin film electrolyte. Sensors 5, 465–472 (2005).

    CAS  Google Scholar 

  165. Zhu, Y. M., Thangadurai, V. & Weppner, W. Garnet-like solid state electrolyte Li6BaLa2Ta2O12 based potentiometric CO2 gas sensor. Sens. Actuators B Chem. 176, 284–289 (2013).

    CAS  Google Scholar 

  166. Thangadurai, V., Narayanan, S. & Pinzaru, D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43, 4714–4727 (2014).

    CAS  Google Scholar 

  167. Bachman, J. C. et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016).

    CAS  Google Scholar 

  168. Alonso-Porta, M. & Kumar, R. V. Use of NASICON/Na2CO3 system for measuring CO2. Sens. Actuators B Chem. 71, 173–178 (2000).

    CAS  Google Scholar 

  169. Sahner, K. et al. CO2 selective potentiometric sensor in thick-film technology. Sensors 8, 4774–4785 (2008).

    CAS  Google Scholar 

  170. Obata, K., Kumazawa, S., Shimanoe, K., Miura, N. & Yamazoe, N. Potentiometric sensor based on NASICON and In2O3 for detection of CO2 at room temperature — modification with foreign substances. Sens. Actuators B Chem. 76, 639–643 (2001).

    CAS  Google Scholar 

  171. Dang, H. Y. & Guo, X. M. Characteristics of NASICON-based thick-film CO2 sensor attached with integrated auxiliary electrode. IEEE Sens. J. 12, 2430–2434 (2012).

    CAS  Google Scholar 

  172. Yao, S., Shimizu, Y., Miura, N. & Yamazoe, N. Solid electrolyte carbon dioxide sensor using sodium-ion conductor and Li2CO3-BaCO3 electrode. Jpn. J. Appl. Phys. 31, L197–L199 (1992).

    CAS  Google Scholar 

  173. Kida, T., Kishi, S., Yuasa, M., Shimanoe, K. & Yamazoe, N. Planar NASICON-based CO2 sensor using BiCuVOx/perovskite-type oxide as a solid-reference electrode. J. Electrochem. Soc. 155, J117–J121 (2008).

    CAS  Google Scholar 

  174. Aono, H., Sadaoka, Y., Montanaro, L., Di Bartolomeo, E. & Traversa, E. Humidity influence on the CO2 response of potentiometric sensors based on NASICON pellets with new compositions, Na3Zr2-(x/4)Si2-xP1+xO12 (x=1.333). J. Am. Ceram. Soc. 85, 585–589 (2002).

    CAS  Google Scholar 

  175. Kim, H. J., Choi, J. W., Do Kim, S. & Yoo, K. S. Thick-film CO2 sensors based on NASICON synthesized by a sol-gel process. Mater. Sci. Forum 544–545, 925–928 (2007).

    Google Scholar 

  176. Kida, T., Shimanoe, K., Miura, N. & Yamazoe, N. Stability of NASICON-based CO2 sensor under humid conditions at low temperature. Sens. Actuators B Chem. 75, 179–187 (2001).

    CAS  Google Scholar 

  177. Kaneyasu, K. et al. A carbon dioxide gas sensor based on solid electrolyte for air quality control. Sens. Actuators B Chem. 66, 56–58 (2000).

    CAS  Google Scholar 

  178. Izquierdo, R. et al. Pulsed laser deposition of NASICON thin films for the fabrication of ion selective membranes. J. Electrochem. Soc. 144, L323–L325 (1997).

    CAS  Google Scholar 

  179. Wang, L. & Kumar, R. V. Cross-sensitivity effects on a new carbon dioxide gas sensor based on solid bielectrolyte. Meas. Sci. Technol. 15, 1005–1010 (2004).

    CAS  Google Scholar 

  180. Hong, H. S., Kim, J. W., Jung, S. J. & Park, C. O. Suppression of NO and SO2 cross-sensitivity in electrochemical CO2 sensors with filter layers. Sens. Actuators B Chem. 113, 71–79 (2006).

    CAS  Google Scholar 

  181. Salam, F., Bredikhin, S., Birke, P. & Weppner, W. Effect of the thickness of the gas-sensitive layer on the response of solid state electrochemical CO2 sensors. Solid State Ion. 110, 319–325 (1998).

    CAS  Google Scholar 

  182. Yan, Y. T., Shimizu, Y., Miura, N. & Yamazoe, N. High-performance solid-electrolyte SOx sensor using MgO-stabilized zirconia tube and Li2SO4-CaSO4-SiO2 auxiliary phase. Sens. Actuators B Chem. 20, 81–87 (1994).

    CAS  Google Scholar 

  183. Yan, Y., Shimizu, Y., Miura, N. & Yamazoe, N. Solid-state sensor for sulfur-oxides based on stabilized zirconia and metal sulfate. Chem. Lett. 21, 635–638 (1992).

    Google Scholar 

  184. Maruyama, T., Saito, Y., Matsumoto, Y. & Yano, Y. Potentiometric sensor for sulfur-oxides using NASICON as a solid electrolyte. Solid State Ion. 17, 281–286 (1985).

    CAS  Google Scholar 

  185. Min, B. Y. & Choi, S. D. SO2-sensing characteristics of Nasicon sensors with Na2SO4–BaSO4 auxiliary electrolytes. Sens. Actuators B Chem. 93, 209–213 (2003).

    CAS  Google Scholar 

  186. Rao, N., van den Bleek, C. M., Schoonman, J. & Sorensen, O. T. A novel temperature-gradient Na+-β″-alumina solid electrolyte based SOx gas sensor without gaseous reference electrode. Solid State Ion. 53, 30–38 (1992).

    Google Scholar 

  187. Itoh, M., Sugimoto, E. & Kozuka, Z. Solid reference electrode of SO2 sensor using β-alumina solid electrolyte. Trans. Jpn. Inst. Met. 25, 504–510 (1984).

    CAS  Google Scholar 

  188. Yang, J. H., Yang, P. H. & Meng, G. Y. A fully solid-state SOx (x = 2,3) gas sensor utilizing Ag-β″-alumina as solid electrolyte. Sens. Actuators B Chem. 31, 209–212 (1996).

    CAS  Google Scholar 

  189. Yang, P. H., Yang, J. H., Chen, C. S., Peng, D. K. & Meng, G. Y. Performance evaluation of SOx (x = 2,3) gas sensors using Ag-β″-alumina solid electrolyte. Solid State Ion. 86–88, 1095–1099 (1996).

    Google Scholar 

  190. Wang, L. & Kumar, R. V. Potentiometric SO2 gas sensor based on a thick film of Ca2+ ion conducting solid electrolyte. J. Appl. Electrochem. 36, 173–178 (2006).

    Google Scholar 

  191. Wang, L. & Kumar, R. V. A new SO2 gas sensor based on an Mg2+ conducting solid electrolyte. J. Electroanal. Chem. 543, 109–114 (2003).

    CAS  Google Scholar 

  192. Dutta, A. & Ishihara, T. Amperometric NOX sensor based on oxygen pumping current by using LaGaO3-based solid electrolyte for monitoring exhaust gas. Sens. Actuators B Chem. 108, 309–313 (2005).

    CAS  Google Scholar 

  193. Zhuiykov, S., Ono, T., Yamazoe, N. & Miura, N. High-temperature NOx sensors using zirconia solid electrolyte and zinc-family oxide sensing electrode. Solid State Ion. 152, 801–807 (2002).

    Google Scholar 

  194. Miura, N., Nakatou, M. & Zhuiykov, S. Impedancemetric gas sensor based on zirconia solid electrolyte and oxide sensing electrode for detecting total NOx at high temperature. Sens. Actuators B Chem. 93, 221–228 (2003).

    CAS  Google Scholar 

  195. Miura, N., Lu, G., Ono, M. & Yamazoe, N. Selective detection of NO by using an amperometric sensor based on stabilized zirconia and oxide electrode. Solid State Ion. 117, 283–290 (1999).

    CAS  Google Scholar 

  196. Miura, N., Iio, M., Lu, G. Y. & Yamazoe, N. Solid-state amperometric NO2 sensor using a sodium ion conductor. Sens. Actuators B Chem. 35, 124–129 (1996).

    CAS  Google Scholar 

  197. Shimizu, Y. & Maeda, K. Solid electrolyte NOx sensor using pyrochlore-type oxide electrode. Sens. Actuators B Chem. 52, 84–89 (1998).

    CAS  Google Scholar 

  198. Yao, S., Shimizu, Y., Miura, N. & Yamazoe, N. Use of sodium-nitrite auxiliary electrode for solid electrolyte sensor to detect nitrogen-oxides. Chem. Lett. 21, 587–590 (1992).

    Google Scholar 

  199. Orfanidou, C. M. et al. Stoichiometry and volume dependent transport in lithium ion memristive devices. AIP Adv. 8, 115211 (2018).

    Google Scholar 

  200. Li, H. T. et al. Memristive behaviors of LiNbO3 ferroelectric diodes. Appl. Phys. Lett. 97, 012902 (2010).

    Google Scholar 

  201. Pan, X. Q. et al. Rectifying filamentary resistive switching in ion-exfoliated LiNbO3 thin films. Appl. Phys. Lett. 108, 032904 (2016).

    Google Scholar 

  202. Wu, J. F. et al. Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity. ACS Appl. Mater. Interfaces 9, 1542–1552 (2017).

    CAS  Google Scholar 

  203. Kwon, W. J. et al. Enhanced Li+ conduction in perovskite Li3xLa2/3-x1/3-2xTiO3 solid-electrolytes via microstructural engineering. J. Mater. Chem. A 5, 6257–6262 (2017).

    CAS  Google Scholar 

  204. Furusawa, S., Tabuchi, H., Sugiyama, T., Tao, S. W. & Irvine, J. T. S. Ionic conductivity of amorphous lithium lanthanum titanate thin film. Solid State Ion. 176, 553–558 (2005).

    CAS  Google Scholar 

  205. Bucharsky, E. C., Schell, K. G., Hintennach, A. & Hoffmann, M. J. Preparation and characterization of sol–gel derived high lithium ion conductive NZP-type ceramics Li1 + x AlxTi2 - x(PO4)3. Solid State Ion. 274, 77–82 (2015).

    CAS  Google Scholar 

  206. Chen, H. P., Tao, H. Z., Zhao, X. J. & Wu, Q. D. Fabrication and ionic conductivity of amorphous Li–Al–Ti–P–O thin film. J. Non-Cryst. Solids 357, 3267–3271 (2011).

    CAS  Google Scholar 

  207. Zhu, Y. Z., He, X. F. & Mo, Y. F. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015).

    CAS  Google Scholar 

  208. Julien, C. M., Mauger, A., Zaghib, Z. & Groult, H. Comparative issues of cathode materials for Li-ion batteries. Inorganics 2, 132–154 (2014).

    CAS  Google Scholar 

  209. Min, H. S. et al. Fabrication and properties of a carbon/polypyrrole three-dimensional microbattery. J. Power Sources 178, 795–800 (2008).

    CAS  Google Scholar 

  210. Nishizawa, M., Mukai, K., Kuwabata, S., Martin, C. R. & Yoneyama, H. Template synthesis of polypyrrole-coated spinel LiMn2O4 nanotubules and their properties as cathode active materials for lithium batteries. J. Electrochem. Soc. 144, 1923–1927 (1997).

    CAS  Google Scholar 

  211. Kotobuki, M. et al. Electrochemical property of honeycomb type all-solid-state Li battery at high temperature. Electrochemistry 79, 464–466 (2011).

    CAS  Google Scholar 

  212. Shaijumon, M. M. et al. Nanoarchitectured 3D cathodes for Li-ion microbatteries. Adv. Mater. 22, 4978–4981 (2010).

    CAS  Google Scholar 

  213. Mazor, H., Golodnitsky, D., Burstein, L., Gladkich, A. & Peled, E. Electrophoretic deposition of lithium iron phosphate cathode for thin-film 3D-microbatteries. J. Power Sources 198, 264–272 (2012).

    CAS  Google Scholar 

  214. Kim, H., Proell, J., Kohler, R., Pfleging, W. & Pique, A. Laser-printed and processed LiCoO2 cathodethick films for Li-ion microbatteries. J. Laser Micro Nanoeng. 7, 320–325 (2012).

    CAS  Google Scholar 

  215. Gowda, S. R., Reddy, A. L. M., Zhan, X. B., Jafry, H. R. & Ajayan, P. M. 3D nanoporous nanowire current collectors for thin film microbatteries. Nano Lett. 12, 1198–1202 (2012).

    CAS  Google Scholar 

  216. Lai, W. et al. Ultrahigh-energy-density microbatteries enabled by new electrode architecture and micropackaging design. Adv. Mater. 22, E139–E144 (2010).

    CAS  Google Scholar 

  217. Yoshima, K., Munakata, H. & Kanamura, K. Fabrication of micro lithium-ion battery with 3D anode and 3D cathode by using polymer wall. J. Power Sources 208, 404–408 (2012).

    CAS  Google Scholar 

  218. Pikul, J. H., Zhang, H. G., Cho, J., Braun, P. V. & King, W. P. High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 4, 1732 (2013).

    Google Scholar 

  219. Gaikwad, A. M., Whiting, G. L., Steingart, D. A. & Arias, A. C. Highly flexible, printed alkaline batteries based on mesh-embedded electrodes. Adv. Mater. 23, 3251–3255 (2011).

    CAS  Google Scholar 

  220. Nathan, M. et al. Three-dimensional thin-film Li-ion microbatteries for autonomous MEMS. J. Microelectromech. Syst. 14, 879–885 (2005).

    CAS  Google Scholar 

  221. Sun, K. et al. 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater. 25, 4539–4543 (2013).

    CAS  Google Scholar 

  222. Wang, Z. R. et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1, 137–145 (2018).

    Google Scholar 

  223. Ma, C. et al. Sub-ppb SO2 gas sensor based on NASICON and LaxSm1-xFeO3 sensing electrode. Sens. Actuators B Chem. 256, 648–655 (2018).

    CAS  Google Scholar 

  224. Izu, N., Hagen, G., Schonauer, D., Roder-Roith, U. & Moos, R. Planar potentiometric SO2 gas sensor for high temperatures using NASICON electrolyte combined with V2O5/WO3/TiO2 + Au or Pt electrode. J. Ceram. Soc. Jpn. 119, 687–691 (2011).

    CAS  Google Scholar 

  225. Wang, L. & Kumar, R. V. A SO2 gas sensor based upon composite Nasicon/Sr-β-Al2O3 bielectrolyte. Mater. Res. Bull. 40, 1802–1815 (2005).

    CAS  Google Scholar 

  226. Mari, C. M., Beghi, M., Pizzini, S. & Faltemier, J. Electrochemical solid-state sensor for SO2 determination in air. Sens. Actuators B Chem. 2, 51–55 (1990).

    CAS  Google Scholar 

  227. Wang, H., Liu, Z., Chen, D. & Jiang, Z. A new potentiometric SO2 sensor based on Li3PO4 electrolyte film and its response characteristics. Rev. Sci. Instrum. 86, 075007 (2015).

    CAS  Google Scholar 

  228. Chen, K. D., Zhang, M., Wang, H. R. & Gu, H. Q. A potentiometric SO2 gas sensor based on the Li3PO4-Li2SiO3 solid electrolyte thin film. Rev. Sci. Instrum. 90, 065001 (2019).

    Google Scholar 

  229. White, B., Chatterjee, S., Macam, E. & Wachsman, E. Effect of electrode microstructure on the sensitivity and response time of potentiometric NOX sensors. J. Am. Ceram. Soc. 91, 2024–2031 (2008).

    CAS  Google Scholar 

  230. Zhuiykov, S., Nakano, T., Kunimoto, A., Yamazoe, N. & Miura, N. Potentiometric NOx sensor based on stabilized zirconia and NiCr2O4 sensing electrode operating at high temperatures. Electrochem. Commun. 3, 97–101 (2001).

    CAS  Google Scholar 

  231. Mondal, S. P. et al. Development of high sensitivity potentiometric NOx sensor and its application to breath analysis. Sens. Actuators B Chem. 158, 292–298 (2011).

    CAS  Google Scholar 

  232. Miura, N., Lu, G. Y. & Yamazoe, N. High-temperature potentiometric/amperometric NOx sensors combining stabilized zirconia with mixed-metal oxide electrode. Sens. Actuators B Chem. 52, 169–178 (1998).

    CAS  Google Scholar 

  233. Romanytsia, I., Viricelle, J. P., Vernoux, P. & Pijolat, C. Application of advanced morphology Au–X (X = YSZ, ZrO2) composites as sensing electrode for solid state mixed-potential exhaust NOx sensor. Sens. Actuators B Chem. 207, 391–397 (2015).

    CAS  Google Scholar 

  234. Yoo, J., Chatterjee, S. & Wachsman, E. D. Sensing properties and selectivities of a WO3/YSZ/Pt potentiometric NOx sensor. Sens. Actuators B Chem. 122, 644–652 (2007).

    CAS  Google Scholar 

  235. Obata, K. & Matsushima, S. NASICON-based NO2 device attached with metal oxide and nitrite compound for the low temperature operation. Sens. Actuators B Chem. 130, 269–276 (2008).

    CAS  Google Scholar 

Download references

Acknowledgements

Y.Z., J.C.G.-R., Z.D.H. and K.J.K. were supported by Samsung Electronics, NGK Inc., Swiss National Science Foundation (grant no. BSSGI0_155986) and National Science Foundation MRSEC Program (grant no. DMR-1419807). M.B. acknowledges financial support from the US-Israel Fulbright Program, the Zuckerman Israeli Postdoctoral Scholars Program and the MIT-Technion Postdoctoral Fellowship. J.L.M.R. thanks the Thomas Lord Foundation for financial support. The authors thank A. Westover for the fruitful discussions and final proofreading.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the research and discussion of data, figure preparation and proofreading of the manuscript. Y.Z. contributed to the writing and editing of all sections of the manuscript. J.C.G.-R. wrote the Li-controlled electronic configurations and Neuromorphic computing with Li sections. M.B. contributed to the writing of the Solid-state electrochemical sensors and the editing of the Solid-state Li-conducting films sections. Z.D.H. contributed to the writing of the Solid-state thin-film batteries and the editing of the Solid-state electrochemical sensors sections. K.J.K. contributed to the writing of the Solid-state Li-conducting films section. J.L.M.R. initiated the concept for the ‘lithionics’, discussed, edited and revised the manuscript in all parts.

Corresponding author

Correspondence to Jennifer L. M. Rupp.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Memristors to Machine Intelligence: https://knowm.org/

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Gonzalez-Rosillo, J.C., Balaish, M. et al. Lithium-film ceramics for solid-state lithionic devices. Nat Rev Mater 6, 313–331 (2021). https://doi.org/10.1038/s41578-020-00261-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-020-00261-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing