Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging materials intelligence ecosystems propelled by machine learning

Abstract

The age of cognitive computing and artificial intelligence (AI) is just dawning. Inspired by its successes and promises, several AI ecosystems are blossoming, many of them within the domain of materials science and engineering. These materials intelligence ecosystems are being shaped by several independent developments. Machine learning (ML) algorithms and extant materials data are utilized to create surrogate models of materials properties and performance predictions. Materials data repositories, which fuel such surrogate model development, are mushrooming. Automated data and knowledge capture from the literature (to populate data repositories) using natural language processing approaches is being explored. The design of materials that meet target property requirements and of synthesis steps to create target materials appear to be within reach, either by closed-loop active-learning strategies or by inverting the prediction pipeline using advanced generative algorithms. AI and ML concepts are also transforming the computational and physical laboratory infrastructural landscapes used to create materials data in the first place. Surrogate models that can outstrip physics-based simulations (on which they are trained) by several orders of magnitude in speed while preserving accuracy are being actively developed. Automation, autonomy and guided high-throughput techniques are imparting enormous efficiencies and eliminating redundancies in materials synthesis and characterization. The integration of the various parts of the burgeoning ML landscape may lead to materials-savvy digital assistants and to a human–machine partnership that could enable dramatic efficiencies, accelerated discoveries and increased productivity. Here, we review these emergent materials intelligence ecosystems and discuss the imminent challenges and opportunities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Materials intelligence ecosystems.
Fig. 2: Strategies for materials data generation and acquisition.
Fig. 3: Materials fingerprinting.
Fig. 4: The general learning problem in materials science and its solution using common machine learning techniques.
Fig. 5: Impact of machine learning on the materials research infrastructure.
Fig. 6: Opportunities for materials design using advanced machine learning algorithms.

Similar content being viewed by others

References

  1. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    CAS  Google Scholar 

  2. Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559, 547–555 (2018).

    CAS  Google Scholar 

  3. Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A. & Kim, C. Machine learning in materials informatics: Recent applications and prospects. NPJ Comput. Mater. 3, 54 (2017).

    Google Scholar 

  4. Schmidt, J., Marques, M. R., Botti, S. & Marques, M. A. Recent advances and applications of machine learning in solid-state materials science. NPJ Comput. Mater. 5, 83 (2019).

    Google Scholar 

  5. Coley, C. W. et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 365, eaax1566 (2019).

    CAS  Google Scholar 

  6. Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular design using machine learning: Generative models for matter engineering. Science 361, 360–365 (2018).

    CAS  Google Scholar 

  7. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Google Scholar 

  8. The Minerals Metals & Materials Society (TMS). Building a Materials Data Infrastructure: Opening New Pathways to Discovery and Innovation in Science and Engineering (TMS, 2017).

  9. Fisher, R. A. The Design of Experiments 9th edn (Macmillan, 1971).

  10. Cao, B. et al. How to optimize materials and devices via design of experiments and machine learning: Demonstration using organic photovoltaics. ACS Nano 12, 7434–7444 (2018).

    CAS  Google Scholar 

  11. Morris, M. D. & Mitchell, T. J. Exploratory designs for computational experiments. J. Stat. Plan. Inference 43, 381–402 (1995).

    Google Scholar 

  12. Qian, P. Z. Sliced Latin hypercube designs. J. Am. Stat. Assoc. 107, 393–399 (2012).

    Google Scholar 

  13. Joseph, V. R., Gul, E. & Ba, S. Designing computer experiments with multiple types of factors: The MaxPro approach. J. Qual. Technol. 52, 343–354 (2019).

    Google Scholar 

  14. Zhang, Y., Yoon, H. S., Koh, C. S. & Xie, D. in 2007 International Conference on Electrical Machines and Systems (ICEMS) 1414–1418 (IEEE, 2007).

  15. Joseph, V. R. Space-filling designs for computer experiments: A review. Qual. Eng. 28, 28–35 (2016).

    Google Scholar 

  16. Castillo, A. R. & Kalidindi, S. R. A Bayesian framework for the estimation of the single crystal elastic parameters from spherical indentation stress-strain measurements. Front. Mater. 6, 136 (2019).

    Google Scholar 

  17. Castillo, A. R. & Kalidindi, S. R. Bayesian estimation of single ply anisotropic elastic constants from spherical indentations on multi-laminate polymer-matrix fiber-reinforced composite samples. Meccanica https://doi.org/10.1007/s11012-020-01154-w (2020).

    Article  Google Scholar 

  18. Rasmussen, C. E. & Williams, C. K. I. Gaussian Processes for Machine Learning Vol. 2 (MIT Press, 2006).

  19. Forrester, A. I. J., Sóbester, A. & Keane, A. J. Engineering Design via Surrogate Modelling: A Practical Guide (Wiley, 2008).

  20. Shahriari, B., Swersky, K., Wang, Z., Adams, R. P. & De Freitas, N. Taking the human out of the loop: A review of Bayesian optimization. Proc. IEEE 104, 148–175 (2015).

    Google Scholar 

  21. Kushner, H. J. A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. J. Basic Eng. 86, 97–106 (1964).

    Google Scholar 

  22. Russo, D. J. et al. A tutorial on Thompson sampling. Found. Trends Mach. Learn. 11, 1–96 (2018).

    Google Scholar 

  23. Xue, D. et al. Accelerated search for materials with targeted properties by adaptive design. Nat. Commun. 7, 11241 (2016).

    CAS  Google Scholar 

  24. Kim, C., Chandrasekaran, A., Jha, A. & Ramprasad, R. Active-learning and materials design: The example of high glass transition temperature polymers. MRS Commun. 9, 860–866 (2019).

    CAS  Google Scholar 

  25. Yuan, R. et al. Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learning. Adv. Mater. 30, 1702884 (2018).

    Google Scholar 

  26. Wen, C. et al. Machine learning assisted design of high entropy alloys with desired property. Acta Mater. 170, 109–117 (2019).

    CAS  Google Scholar 

  27. Xue, D. et al. Accelerated search for BaTiO3-based piezoelectrics with vertical morphotropic phase boundary using Bayesian learning. Proc. Natl Acad. Sci. USA 113, 13301–13306 (2016).

    CAS  Google Scholar 

  28. Lookman, T., Balachandran, P. V., Xue, D., Hogden, J. & Theiler, J. Statistical inference and adaptive design for materials discovery. Curr. Opin. Solid State Mater. Sci. 21, 121–128 (2017).

    CAS  Google Scholar 

  29. Lookman, T., Balachandran, P. V., Xue, D. & Yuan, R. Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design. NPJ Comput. Mater. 5, 21 (2019).

    Google Scholar 

  30. Rohr, B. et al. Benchmarking the acceleration of materials discovery by sequential learning. Chem. Sci. 11, 2696–2706 (2020).

    Google Scholar 

  31. Swain, M. C. & Cole, J. M. ChemDataExtractor: A toolkit for automated extraction of chemical information from the scientific literature. J. Chem. Inf. Model. 56, 1894–1904 (2016).

    CAS  Google Scholar 

  32. Pennington, J., Socher, R. & Manning, C. D. in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1532–1543 (Association for Computational Linguistics, 2014).

  33. Mikolov, T., Chen, K., Corrado, G. & Dean, J. Efficient estimation of word representations in vector space. Preprint at arXiv https://arxiv.org/abs/1301.3781 (2013).

  34. Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).

    CAS  Google Scholar 

  35. Court, C. J. & Cole, J. M. Auto-generated materials database of Curie and Néel temperatures via semi-supervised relationship extraction. Sci. Data 5, 180111 (2018).

    CAS  Google Scholar 

  36. Jensen, Z. et al. A machine learning approach to zeolite synthesis enabled by automatic literature data extraction. ACS Cent. Sci. 5, 892–899 (2019).

    CAS  Google Scholar 

  37. Kim, E. et al. Materials synthesis insights from scientific literature via text extraction and machine learning. Chem. Mater. 29, 9436–9444 (2017).

    CAS  Google Scholar 

  38. Kim, E. et al. Inorganic materials synthesis planning with literature-trained neural networks. J. Chem. Inf. Model. 60, 1194–1201 (2020).

    CAS  Google Scholar 

  39. He, T. et al. Similarity of precursors in solid-state synthesis as text-mined from scientific literature. Chem. Mater. 32, 7861–7873 (2020).

    CAS  Google Scholar 

  40. Writer, B. Lithium-Ion Batteries. A Machine-Generated Summary of Current Research (Springer, 2019).

  41. Wu, P., Carberry, S., Elzer, S. & Chester, D. in International Conference on Theory and Application of Diagrams 220–234 (Springer, 2010).

  42. Savva, M. et al. in Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology 393–402 (ACM, 2011).

  43. Ray Choudhury, S. & Giles, C. L. in Proceedings of the 24th International Conference on World Wide Web 667–672 (ACM, 2015).

  44. Siegel, N., Horvitz, Z., Levin, R., Divvala, S. & Farhadi, A. in European Conference on Computer Vision 664–680 (Springer, 2016).

  45. Seo, M., Hajishirzi, H., Farhadi, A., Etzioni, O. & Malcolm, C. in Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing 1466–1476 (Association for Computational Linguistics, 2015).

  46. Sachan, M., Dubey, K. & Xing, E. in Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing 773–784 (Association for Computational Linguistics, 2017).

  47. Sachan, M. et al. Discourse in multimedia: A case study in extracting geometry knowledge from textbooks. Comput. Linguist. 45, 627–665 (2019).

    Google Scholar 

  48. Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  49. Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous distributed systems. Preprint at arXiv https://arxiv.org/abs/1603.04467 (2015).

  50. Mueller, T., Kusne, A. G. & Ramprasad, R. Machine learning in materials science: Recent progress and emerging applications. Rev. Comput. Chem. 29, 186–273 (2016).

    CAS  Google Scholar 

  51. Schleder, G. R., Padilha, A. C., Acosta, C. M., Costa, M. & Fazzio, A. From DFT to machine learning: Recent approaches to materials science–a review. J. Phys. Mater. 2, 032001 (2019).

    CAS  Google Scholar 

  52. Mannodi-Kanakkithodi, A. et al. Scoping the polymer genome: A roadmap for rational polymer dielectrics design and beyond. Mater. Today 21, 785–796 (2018).

    CAS  Google Scholar 

  53. Huang, A., Huo, Y., Yang, J. & Li, G. Computational simulation and prediction on electrical conductivity of oxide-based melts by big data mining. Materials 12, 1059 (2019).

    CAS  Google Scholar 

  54. Kim, C., Pilania, G. & Ramprasad, R. Machine learning assisted predictions of intrinsic dielectric breakdown strength of ABX3 perovskites. J. Phys. Chem. C 120, 14575–14580 (2016).

    CAS  Google Scholar 

  55. Kim, C., Pilania, G. & Ramprasad, R. From organized high-throughput data to phenomenological theory using machine learning: The example of dielectric breakdown. Chem. Mater. 28, 1304–1311 (2016).

    CAS  Google Scholar 

  56. Santos, I., Nieves, J., Penya, Y. K. & Bringas, P. G. in 2009 ICCAS-SICE 4536–4541 (IEEE, 2009).

  57. Yaseen, Z. M. et al. Predicting compressive strength of lightweight foamed concrete using extreme learning machine model. Adv. Eng. Softw. 115, 112–125 (2018).

    Google Scholar 

  58. De Jong, M. et al. A statistical learning framework for materials science: Application to elastic moduli of k-nary inorganic polycrystalline compounds. Sci. Rep. 6, 34256 (2016).

    Google Scholar 

  59. Hamdia, K. M., Lahmer, T., Nguyen-Thoi, T. & Rabczuk, T. Predicting the fracture toughness of PNCs: A stochastic approach based on ANN and ANFIS. Comput. Mater. Sci. 102, 304–313 (2015).

    CAS  Google Scholar 

  60. Kauwe, S. K., Graser, J., Vazquez, A. & Sparks, T. D. Machine learning prediction of heat capacity for solid inorganics. Integrat. Mater. Manuf. Innov. 7, 43–51 (2018).

    Google Scholar 

  61. Legrain, F., Carrete, J., van Roekeghem, A., Curtarolo, S. & Mingo, N. How chemical composition alone can predict vibrational free energies and entropies of solids. Chem. Mater. 29, 6220–6227 (2017).

    CAS  Google Scholar 

  62. Chen, L., Tran, H., Batra, R., Kim, C. & Ramprasad, R. Machine learning models for the lattice thermal conductivity prediction of inorganic materials. Comput. Mater. Sci. 170, 109155 (2019).

    CAS  Google Scholar 

  63. Stanev, V. et al. Machine learning modeling of superconducting critical temperature. NPJ Comput. Mater. 4, 29 (2018).

    Google Scholar 

  64. Balachandran, P. V., Kowalski, B., Sehirlioglu, A. & Lookman, T. Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning. Nat. Commun. 9, 1668 (2018).

    Google Scholar 

  65. Zhang, Y. & Kim, E.-A. Quantum loop topography for machine learning. Phys. Rev. Lett. 118, 216401 (2017).

    Google Scholar 

  66. Gaultois, M. W. et al. Perspective: Web-based machine learning models for real-time screening of thermoelectric materials properties. APL Mater. 4, 053213 (2016).

    Google Scholar 

  67. Sendek, A. D. et al. Machine learning-assisted discovery of solid Li-ion conducting materials. Chem. Mater. 31, 342–352 (2018).

    Google Scholar 

  68. Mansouri Tehrani, A. et al. Machine learning directed search for ultraincompressible, superhard materials. J. Am. Chem. Soc. 140, 9844–9853 (2018).

    CAS  Google Scholar 

  69. Wu, Y.-J., Sasaki, M., Goto, M., Fang, L. & Xu, Y. Electrically conductive thermally insulating Bi–Si nanocomposites by interface design for thermal management. ACS Appl. Nano Mater. 1, 3355–3363 (2018).

    CAS  Google Scholar 

  70. Ren, F. et al. Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments. Sci. Adv. 4, eaaq1566 (2018).

    Google Scholar 

  71. Kim, C., Chandrasekaran, A., Huan, T. D., Das, D. & Ramprasad, R. Polymer genome: A data-powered polymer informatics platform for property predictions. J. Phys. Chem. C 122, 17575–17585 (2018).

    CAS  Google Scholar 

  72. Kim, C., Batra, R., Chen, L., Tran, H. & Ramprasad, R. Polymer design using genetic algorithm and machine learning. Comput. Mat. Sci. 186, 110067 (2020).

    Google Scholar 

  73. Yoshida, M. et al. Using evolutionary algorithms and machine learning to explore sequence space for the discovery of antimicrobial peptides. Chem 4, 533–543 (2018).

    CAS  Google Scholar 

  74. Meredig, B. et al. Can machine learning identify the next high-temperature superconductor? Examining extrapolation performance for materials discovery. Mol. Syst. Des. Eng. 3, 819–825 (2018).

    CAS  Google Scholar 

  75. Bajusz, D., Rácz, A. & Héberger, K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. Cheminform. 7, 20 (2015).

    Google Scholar 

  76. Venkatram, S. et al. Predicting crystallization tendency of polymers using multi-fidelity information fusion and machine learning. J. Phys. Chem. B 124, 6046–6054 (2020).

    CAS  Google Scholar 

  77. Pilania, G., Gubernatis, J. E. & Lookman, T. Multi-fidelity machine learning models for accurate bandgap predictions of solids. Comput. Mater. Sci. 129, 156–163 (2017).

    CAS  Google Scholar 

  78. Zaspel, P., Huang, B., Harbrecht, H. & von Lilienfeld, O. A. Boosting quantum machine learning models with a multilevel combination technique: Pople diagrams revisited. J. Chem. Theory Comput. 15, 1546–1559 (2018).

    Google Scholar 

  79. Patra, A. et al. A multi-fidelity information-fusion approach to machine learn and predict polymer bandgap. Comput. Mater. Sci. 172, 109286 (2020).

    CAS  Google Scholar 

  80. Batra, R., Pilania, G., Uberuaga, B. P. & Ramprasad, R. Multifidelity information fusion with machine learning: A case study of dopant formation energies in hafnia. ACS Appl. Mater. Interfaces 11, 24906–24918 (2019).

    CAS  Google Scholar 

  81. Kukreja, S. L., Löfberg, J. & Brenner, M. J. A least absolute shrinkage and selection operator (LASSO) for nonlinear system identification. IFAC Proc. Vol. 39, 814–819 (2006).

    Google Scholar 

  82. Ghiringhelli, L. M. et al. Learning physical descriptors for materials science by compressed sensing. New J. Phys. 19, 023017 (2017).

    Google Scholar 

  83. Ouyang, R., Curtarolo, S., Ahmetcik, E., Scheffler, M. & Ghiringhelli, L. M. SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Phys. Rev. Mater. 2, 083802 (2018).

    CAS  Google Scholar 

  84. Bartel, C. J. et al. New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 5, eaav0693 (2019).

    CAS  Google Scholar 

  85. Goldschmidt, V. M. Die gesetze der krystallochemie. Naturwissenschaften 14, 477–485 (1926).

    CAS  Google Scholar 

  86. Bartel, C. J. et al. Physical descriptor for the Gibbs energy of inorganic crystalline solids and temperature-dependent materials chemistry. Nat. Commun. 9, 4168 (2018).

    Google Scholar 

  87. Andersen, M., Levchenko, S. V., Scheffler, M. & Reuter, K. Beyond scaling relations for the description of catalytic materials. ACS Catal. 9, 2752–2759 (2019).

    CAS  Google Scholar 

  88. Sun, S., Ouyang, R., Zhang, B. & Zhang, T.-Y. Data-driven discovery of formulas by symbolic regression. MRS Bull. 44, 559–564 (2019).

    Google Scholar 

  89. Wang, Y., Wagner, N. & Rondinelli, J. M. Symbolic regression in materials science. MRS Commun. 9, 793–805 (2019).

    Google Scholar 

  90. Hernandez, A., Balasubramanian, A., Yuan, F., Mason, S. A. & Mueller, T. Fast, accurate, and transferable many-body interatomic potentials by symbolic regression. NPJ Comput. Mater. 5, 112 (2019).

    Google Scholar 

  91. Sastry, K., Johnson, D. D., Goldberg, D. E. & Bellon, P. Genetic programming for multitimescale modeling. Phys. Rev. B 72, 085438 (2005).

    Google Scholar 

  92. Gandomi, A. H., Sajedi, S., Kiani, B. & Huang, Q. Genetic programming for experimental big data mining: A case study on concrete creep formulation. Autom. Constr. 70, 89–97 (2016).

    Google Scholar 

  93. Batra, R. & Sankaranarayanan, S. Machine learning for multi-fidelity scale bridging and dynamical simulations of materials. J. Phys. Mater. 3, 031002 (2020).

    CAS  Google Scholar 

  94. Jackson, N. E., Webb, M. A. & de Pablo, J. J. Recent advances in machine learning towards multiscale soft materials design. Curr. Opin. Chem. Eng. 23, 106–114 (2019).

    Google Scholar 

  95. Ye, W., Chen, C., Wang, Z., Chu, I.-H. & Ong, S. P. Deep neural networks for accurate predictions of crystal stability. Nat. Commun. 9, 3800 (2018).

    Google Scholar 

  96. Jha, D. et al. ElemNet: Deep learning the chemistry of materials from only elemental composition. Sci. Rep. 8, 17593 (2018).

    Google Scholar 

  97. DeCost, B. L., Lei, B., Francis, T. & Holm, E. A. High throughput quantitative metallography for complex microstructures using deep learning: A case study in ultrahigh carbon steel. Microsc. Microanal. 25, 21–29 (2019).

    CAS  Google Scholar 

  98. Nash, W., Drummond, T. & Birbilis, N. A review of deep learning in the study of materials degradation. NPJ Mater. Degrad. 2, 37 (2018).

    Google Scholar 

  99. Cecen, A., Dai, H., Yabansu, Y. C., Kalidindi, S. R. & Song, L. Material structure-property linkages using three-dimensional convolutional neural networks. Acta Mater. 146, 76–84 (2018).

    CAS  Google Scholar 

  100. Sanyal, S. et al. MT-CGCNN: Integrating crystal graph convolutional neural network with multitask learning for material property prediction. Preprint at https://arxiv.org/abs/1811.05660 (2018).

  101. Agrawal, A. & Choudhary, A. Deep materials informatics: Applications of deep learning in materials science. MRS Commun. 9, 779–792 (2019).

    CAS  Google Scholar 

  102. Zheng, X., Zheng, P. & Zhang, R.-Z. Machine learning material properties from the periodic table using convolutional neural networks. Chem. Sci. 9, 8426–8432 (2018).

    CAS  Google Scholar 

  103. Schütt, K. T., Sauceda, H. E., Kindermans, P.-J., Tkatchenko, A. & Müller, K.-R. Schnet–A deep learning architecture for molecules and materials. J. Chem. Phys. 148, 241722 (2018).

    Google Scholar 

  104. Dai, H., Li, C., Coley, C., Dai, B. & Song, L. in Advances in Neural Information Processing Systems 32 (eds Wallach, H. et al.) 8870–8880 (Curran Associates, 2019).

  105. Coley, C. W. et al. A graph-convolutional neural network model for the prediction of chemical reactivity. Chem. Sci. 10, 370–377 (2019).

    CAS  Google Scholar 

  106. You, J., Liu, B., Ying, Z., Pande, V. & Leskovec, J. in Advances in Neural Information Processing Systems 31 (eds Bengio, S. et al) 6410–6421 (Curran Associates, 2018).

  107. Xie, T. & Grossman, J. C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120, 145301 (2018).

    CAS  Google Scholar 

  108. Chen, C., Ye, W., Zuo, Y., Zheng, C. & Ong, S. P. Graph networks as a universal machine learning framework for molecules and crystals. Chem. Mater. 31, 3564–3572 (2019).

    CAS  Google Scholar 

  109. Aykol, M. et al. Network analysis of synthesizable materials discovery. Nat. Commun. 10, 2018 (2019).

    Google Scholar 

  110. Kearnes, S., McCloskey, K., Berndl, M., Pande, V. & Riley, P. Molecular graph convolutions: Moving beyond fingerprints. J. Comput. Mol. Des. 30, 595–608 (2016).

    CAS  Google Scholar 

  111. Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. Preprint at arXiv https://arxiv.org/abs/1312.6114 (2014).

  112. Goodfellow, I. et al. in Advances in Neural Information Processing Systems 27 (eds Ghahramani, Z. et al.) 2672–2680 (Curran Associates, 2014).

  113. Li, W., Jacobs, R. & Morgan, D. Predicting the thermodynamic stability of perovskite oxides using machine learning models. Comput. Mater. Sci. 150, 454–463 (2018).

    CAS  Google Scholar 

  114. Ziletti, A., Kumar, D., Scheffler, M. & Ghiringhelli, L. M. Insightful classification of crystal structures using deep learning. Nat. Commun. 9, 2775 (2018).

    Google Scholar 

  115. Lennard-Jones, J. E. On the determination of molecular fields. II. From the equation of state of gas. Proc. R. Soc. Lond. A 106, 463–477 (1924).

    Google Scholar 

  116. Chenoweth, K., Van Duin, A. C. & Goddard, W. A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J. Phys. Chem. A 112, 1040–1053 (2008).

    CAS  Google Scholar 

  117. Liu, H., Fu, Z., Li, Y., Sabri, N. F. A. & Bauchy, M. Parameterization of empirical forcefields for glassy silica using machine learning. MRS Commun. 9, 593–599 (2019).

    CAS  Google Scholar 

  118. Chan, H. et al. Machine learning coarse grained models for water. Nat. Commun. 10, 379 (2019).

    CAS  Google Scholar 

  119. Chan, H. et al. Machine learning a bond order potential model to study thermal transport in WSe2 nanostructures. Nanoscale 11, 10381–10392 (2019).

    CAS  Google Scholar 

  120. Chan, H. et al. Machine learning classical interatomic potentials for molecular dynamics from first-principles training data. J. Phys. Chem. C 123, 6941–6957 (2019).

    CAS  Google Scholar 

  121. Bartók, A. P., Kondor, R. & Csányi, G. On representing chemical environments. Phys. Rev. B 87, 184115 (2013).

    Google Scholar 

  122. Deringer, V. L., Caro, M. A. & Csányi, G. Machine learning interatomic potentials as emerging tools for materials science. Adv. Mater. 31, 1902765 (2019).

    CAS  Google Scholar 

  123. Behler, J. Perspective: Machine learning potentials for atomistic simulations. J. Chem. Phys. 145, 170901 (2016).

    Google Scholar 

  124. Handley, C. M. & Popelier, P. L. Potential energy surfaces fitted by artificial neural networks. J. Phys. Chem. A 114, 3371–3383 (2010).

    CAS  Google Scholar 

  125. Botu, V., Batra, R., Chapman, J. & Ramprasad, R. Machine learning force fields: Construction, validation, and outlook. J. Phys. Chem. C 121, 511–522 (2017).

    CAS  Google Scholar 

  126. Huan, T. D. et al. A universal strategy for the creation of machine learning-based atomistic force fields. NPJ Comput. Mater. 3, 37 (2017).

    Google Scholar 

  127. Rowe, P., Csányi, G., Alfè, D. & Michaelides, A. Development of a machine learning potential for graphene. Phys. Rev. B 97, 054303 (2018).

    Google Scholar 

  128. Podryabinkin, E. V., Tikhonov, E. V., Shapeev, A. V. & Oganov, A. R. Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning. Phys. Rev. B 99, 064114 (2019).

    CAS  Google Scholar 

  129. Podryabinkin, E. V. & Shapeev, A. V. Active learning of linearly parametrized interatomic potentials. Comput. Mater. Sci. 140, 171–180 (2017).

    CAS  Google Scholar 

  130. Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

    Google Scholar 

  131. Deringer, V. L. et al. Realistic atomistic structure of amorphous silicon from machine-learning-driven molecular dynamics. J. Phys. Chem. Lett. 9, 2879–2885 (2018).

    CAS  Google Scholar 

  132. Dragoni, D., Daff, T. D., Csányi, G. & Marzari, N. Achieving DFT accuracy with a machine-learning interatomic potential: Thermomechanics and defects in bcc ferromagnetic iron. Phys. Rev. Mater. 2, 013808 (2018).

    Google Scholar 

  133. Zong, H., Pilania, G., Ding, X., Ackland, G. J. & Lookman, T. Developing an interatomic potential for martensitic phase transformations in zirconium by machine learning. NPJ Comput. Mater. 4, 48 (2018).

    Google Scholar 

  134. Artrith, N. & Kolpak, A. M. Grand canonical molecular dynamics simulations of Cu–Au nanoalloys in thermal equilibrium using reactive ANN potentials. Comput. Mater. Sci. 110, 20–28 (2015).

    CAS  Google Scholar 

  135. Chiriki, S. & Bulusu, S. S. Modeling of DFT quality neural network potential for sodium clusters: Application to melting of sodium clusters (Na20 to Na40). Chem. Phys. Lett. 652, 130–135 (2016).

    CAS  Google Scholar 

  136. Chiriki, S., Jindal, S. & Bulusu, S. S. Neural network potentials for dynamics and thermodynamics of gold nanoparticles. J. Chem. Phys. 146, 084314 (2017).

    Google Scholar 

  137. Sosso, G. C., Miceli, G., Caravati, S., Behler, J. & Bernasconi, M. Neural network interatomic potential for the phase change material GeTe. Phys. Rev. B 85, 174103 (2012).

    Google Scholar 

  138. Artrith, N., Morawietz, T. & Behler, J. High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide. Phys. Rev. B 83, 153101 (2011).

    Google Scholar 

  139. Artrith, N. & Urban, A. An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for TiO2. Comput. Mater. Sci. 114, 135–150 (2016).

    CAS  Google Scholar 

  140. Morawietz, T., Singraber, A., Dellago, C. & Behler, J. How van der Waals interactions determine the unique properties of water. Proc. Natl Acad. Sci. USA 113, 8368–8373 (2016).

    CAS  Google Scholar 

  141. Cheng, B., Behler, J. & Ceriotti, M. Nuclear quantum effects in water at the triple point: Using theory as a link between experiments. J. Phys. Chem. Lett. 7, 2210–2215 (2016).

    CAS  Google Scholar 

  142. Jose, K. J., Artrith, N. & Behler, J. Construction of high-dimensional neural network potentials using environment-dependent atom pairs. J. Chem. Phys. 136, 194111 (2012).

    Google Scholar 

  143. Gastegger, M., Kauffmann, C., Behler, J. & Marquetand, P. Comparing the accuracy of high-dimensional neural network potentials and the systematic molecular fragmentation method: A benchmark study for all-trans alkanes. J. Chem. Phys. 144, 194110 (2016).

    Google Scholar 

  144. Boes, J. R. & Kitchin, J. R. Neural network predictions of oxygen interactions on a dynamic Pd surface. Mol. Simul. 43, 346–354 (2017).

    CAS  Google Scholar 

  145. Bartók, A. P., Payne, M. C., Kondor, R. & Csányi, G. Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).

    Google Scholar 

  146. Khorshidi, A. & Peterson, A. A. Amp: A modular approach to machine learning in atomistic simulations. Comput. Phys. Commun. 207, 310–324 (2016).

    CAS  Google Scholar 

  147. Wang, H., Zhang, L., Han, J. & Weinan, E. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics. Comput. Phys. Commun. 228, 178–184 (2018).

    CAS  Google Scholar 

  148. Shapeev, A. V. Moment tensor potentials: A class of systematically improvable interatomic potentials. Multiscale Model. Simul. 14, 1153–1173 (2016).

    Google Scholar 

  149. Schutt, K. et al. SchNetPack: A deep learning toolbox for atomistic systems. J. Chem. Theory Comput. 15, 448–455 (2018).

    Google Scholar 

  150. Desai, S., Reeve, S. T. & Belak, J. F. Implementing a neural network interatomic model with performance portability for emerging exascale architectures. Preprint at arXiv https://arxiv.org/abs/2002.00054 (2020).

  151. Thompson, A. P., Swiler, L. P., Trott, C. R., Foiles, S. M. & Tucker, G. J. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. J. Comput. Phys. 285, 316–330 (2015).

    CAS  Google Scholar 

  152. Zuo, Y. et al. Performance and cost assessment of machine learning interatomic potentials. J. Phys. Chem. A 124, 731–745 (2020).

    CAS  Google Scholar 

  153. Artrith, N., Urban, A. & Ceder, G. Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species. Phys. Rev. B 96, 014112 (2017).

    Google Scholar 

  154. Musil, F., Willatt, M. J., Langovoy, M. A. & Ceriotti, M. Fast and accurate uncertainty estimation in chemical machine learning. J. Chem. Theory Comput. 15, 906–915 (2019).

    Google Scholar 

  155. Smith, J. S., Nebgen, B., Lubbers, N., Isayev, O. & Roitberg, A. E. Less is more: Sampling chemical space with active learning. J. Chem. Phys. 148, 241733 (2018).

    Google Scholar 

  156. Huan, T. D. et al. Iterative-learning strategy for the development of application-specific atomistic force fields. J. Phys. Chem. C 123, 20715–20722 (2019).

    CAS  Google Scholar 

  157. Smith, J. S. et al. Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning. Nat. Commun. 10, 2903 (2019).

    Google Scholar 

  158. Brockherde, F. et al. Bypassing the Kohn-Sham equations with machine learning. Nat. Commun. 8, 872 (2017).

    Google Scholar 

  159. Grisafi, A. et al. Transferable machine-learning model of the electron density. ACS Cent. Sci. 5, 57–64 (2018).

    Google Scholar 

  160. Chandrasekaran, A. et al. Solving the electronic structure problem with machine learning. NPJ Comput. Mater. 5, 22 (2019).

    Google Scholar 

  161. Kamal, D., Chandrasekaran, A., Batra, R. & Ramprasad, R. A charge density prediction model for hydrocarbons using deep neural networks. Mach. Learn. 1, 025003 (2020).

    Google Scholar 

  162. Schmidt, J., Benavides-Riveros, C. L. & Marques, M. A. Machine learning the physical nonlocal exchange–correlation functional of density-functional theory. J. Phys. Chem. Lett. 10, 6425–6431 (2019).

    CAS  Google Scholar 

  163. Lei, X. & Medford, A. J. Design and analysis of machine learning exchange-correlation functionals via rotationally invariant convolutional descriptors. Phys. Rev. Mater. 3, 063801 (2019).

    CAS  Google Scholar 

  164. Snyder, J. C., Rupp, M., Hansen, K., Müller, K.-R. & Burke, K. Finding density functionals with machine learning. Phys. Rev. Lett. 108, 253002 (2012).

    Google Scholar 

  165. Comer, M., Bouman, C. A., De Graef, M. & Simmons, J. P. Bayesian methods for image segmentation. JOM 63, 55–57 (2011).

    Google Scholar 

  166. Simmons, J. et al. Application and further development of advanced image processing algorithms for automated analysis of serial section image data. Model. Simul. Mater. Sci. Eng. 17, 025002 (2008).

    Google Scholar 

  167. Gibert, X., Patel, V. M. & Chellappa, R. Deep multitask learning for railway track inspection. IEEE Trans. Intell. Transp Syst. 18, 153–164 (2016).

    Google Scholar 

  168. Niezgoda, S. R., Yabansu, Y. C. & Kalidindi, S. R. Understanding and visualizing microstructure and microstructure variance as a stochastic process. Acta Mater. 59, 6387–6400 (2011).

    CAS  Google Scholar 

  169. Steinmetz, P. et al. Analytics for microstructure datasets produced by phase-field simulations. Acta Mater. 103, 192–203 (2016).

    CAS  Google Scholar 

  170. Yang, Z. et al. Establishing structure-property localization linkages for elastic deformation of three-dimensional high contrast composites using deep learning approaches. Acta Mater. 166, 335–345 (2019).

    CAS  Google Scholar 

  171. Yang, Z. et al. Deep learning approaches for mining structure-property linkages in high contrast composites from simulation datasets. Comput. Mater. Sci. 151, 278–287 (2018).

    CAS  Google Scholar 

  172. Yang, Z. et al. Microstructural materials design via deep adversarial learning methodology. J. Mech. Des. 140, 111416 (2018).

    Google Scholar 

  173. Jha, D. et al. Extracting grain orientations from EBSD patterns of polycrystalline materials using convolutional neural networks. Microsc. Microanal. 24, 497–502 (2018).

    CAS  Google Scholar 

  174. Ziatdinov, M. et al. Imaging mechanism for hyperspectral scanning probe microscopy via Gaussian process modelling. NPJ Comput. Mater. 6, 21 (2020).

    Google Scholar 

  175. Maksov, A. et al. Deep learning analysis of defect and phase evolution during electron beam-induced transformations in WS2. NPJ Comput. Mater. 5, 12 (2019).

    Google Scholar 

  176. Vasudevan, R. K. et al. Mapping mesoscopic phase evolution during E-beam induced transformations via deep learning of atomically resolved images. NPJ Comput. Mater. 4, 30 (2018).

    Google Scholar 

  177. Laanait, N., He, Q. & Borisevich, A. Y. Reconstruction of 3-D atomic distortions from electron microscopy with deep learning. Preprint at arXiv https://arxiv.org/abs/1902.06876 (2019).

  178. Laanait, N., Yin, J. & Borisevich, A. in Conference on Neural Information Processing Systems (NeurIPS) 2019 Workshop Deep Inverse (OpenReview, 2019).

  179. Cherukara, M. J., Nashed, Y. S. & Harder, R. J. Real-time coherent diffraction inversion using deep generative networks. Sci. Rep. 8, 16520 (2018).

    Google Scholar 

  180. Godaliyadda, G. D. et al. A supervised learning approach for dynamic sampling. Electron. Imaging 2016, 1–8 (2016).

    Google Scholar 

  181. Attia, P. M. et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature 578, 397–402 (2020).

    CAS  Google Scholar 

  182. Severson, K. A. et al. Data-driven prediction of battery cycle life before capacity degradation. Nat. Energy 4, 383–391 (2019).

    Google Scholar 

  183. Kusne, A. G. et al. On-the-fly machine-learning for high-throughput experiments: Search for rare-earth-free permanent magnets. Sci. Rep. 4, 6367 (2014).

    Google Scholar 

  184. Long, C. et al. Rapid structural mapping of ternary metallic alloy systems using the combinatorial approach and cluster analysis. Rev. Sci. Instrum. 78, 072217 (2007).

    CAS  Google Scholar 

  185. Long, C., Bunker, D., Li, X., Karen, V. & Takeuchi, I. Rapid identification of structural phases in combinatorial thin-film libraries using x-ray diffraction and non-negative matrix factorization. Rev. Sci. Instrum. 80, 103902 (2009).

    CAS  Google Scholar 

  186. Suram, S. K. et al. Automated phase mapping with AgileFD and its application to light absorber discovery in the V–Mn–Nb oxide system. ACS Comb. Sci. 19, 37–46 (2017).

    CAS  Google Scholar 

  187. Gomes, C. P. et al. CRYSTAL: a multi-agent AI system for automated mapping of materials’ crystal structures. MRS Commun. 9, 600–608 (2019).

    CAS  Google Scholar 

  188. Bai, J. et al. Phase mapper: Accelerating materials discovery with AI. AI Mag. 39, 15–26 (2018).

    Google Scholar 

  189. Tabor, D. P. et al. Accelerating the discovery of materials for clean energy in the era of smart automation. Nat. Rev. Mater. 3, 5–20 (2018).

    CAS  Google Scholar 

  190. King, R. D. et al. The automation of science. Science 324, 85–89 (2009).

    CAS  Google Scholar 

  191. Williams, K. et al. Cheaper faster drug development validated by the repositioning of drugs against neglected tropical diseases. J. R. Soc. Interface 12, 20141289 (2015).

    Google Scholar 

  192. Nikolaev, P. et al. Autonomy in materials research: A case study in carbon nanotube growth. NPJ Comput. Mater. 2, 16031 (2016).

    Google Scholar 

  193. Wigley, P. B. et al. Fast machine-learning online optimization of ultra-cold-atom experiments. Sci. Rep. 6, 25890 (2016).

    CAS  Google Scholar 

  194. Duros, V. et al. Human versus robots in the discovery and crystallization of gigantic polyoxometalates. Angew. Chem. 129, 10955–10960 (2017).

    Google Scholar 

  195. Noack, M. M. et al. A kriging-based approach to autonomous experimentation with applications to x-ray scattering. Sci. Rep. 9, 11809 (2019).

    Google Scholar 

  196. Masubuchi, S. et al. Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices. Nat. Commun. 9, 1413 (2018).

    Google Scholar 

  197. Chen, S. et al. Exploring the stability of novel wide bandgap perovskites by a robot based high throughput approach. Adv. Energy Mater. 8, 1701543 (2018).

    Google Scholar 

  198. Jensen, K. F. Automated synthesis on a hub-and-spoke system. Nature 579, 346–348 (2020).

    CAS  Google Scholar 

  199. Roch, L. M. et al. Chemos: An orchestration software to democratize autonomous discovery. PLoS ONE 15, e0229862 (2020).

    CAS  Google Scholar 

  200. Montoya, J. H. et al. Autonomous intelligent agents for accelerated materials discovery. Chem. Sci. 11, 8517–8532 (2020).

    CAS  Google Scholar 

  201. Mannodi-Kanakkithodi, A. et al. Rational co-design of polymer dielectrics for energy storage. Adv. Mater. 28, 6277–6291 (2016).

    CAS  Google Scholar 

  202. Mannodi-Kanakkithodi, A., Pilania, G., Huan, T. D., Lookman, T. & Ramprasad, R. Machine learning strategy for accelerated design of polymer dielectrics. Sci. Rep. 6, 20952 (2016).

    Google Scholar 

  203. Pilania, G., Iverson, C. N., Lookman, T. & Marrone, B. L. Machine-learning-based predictive modeling of glass transition temperatures: A case of polyhydroxyalkanoate homopolymers and copolymers. J. Chem. Inf. Model. 59, 5013–5025 (2019).

    CAS  Google Scholar 

  204. Batra, R. et al. Polymers for extreme conditions designed using syntax-directed variational autoencoders. Preprint at http://arxiv.org/abs/2011.02551v1 (2020).

  205. Dai, H., Tian, Y., Dai, B., Skiena, S. & Song, L. Syntax-directed variational autoencoder for structured data. Preprint at arXiv https://arxiv.org/abs/1802.08786 (2018).

  206. Kim, B., Lee, S. & Kim, J. Inverse design of porous materials using artificial neural networks. Sci. Adv. 6, eaax9324 (2020).

    CAS  Google Scholar 

  207. Corey, E. J. The Logic of Chemical Synthesis (Wiley, 1991).

  208. Coley, C. W., Green, W. H. & Jensen, K. F. Machine learning in computer-aided synthesis planning. Acc. Chem. Res. 51, 1281–1289 (2018).

    CAS  Google Scholar 

  209. Coley, C. W., Barzilay, R., Jaakkola, T. S., Green, W. H. & Jensen, K. F. Prediction of organic reaction outcomes using machine learning. ACS Cent. Sci. 3, 434–443 (2017).

    CAS  Google Scholar 

  210. Segler, M. H., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555, 604–601 (2018).

    CAS  Google Scholar 

  211. Jin, W., Coley, C., Barzilay, R. & Jaakkola, T. Predicting organic reaction outcomes with Weisfeiler-Lehman network. in Advances in Neural Information Processing Systems 2607–2616 (Cornell University, 2017).

  212. Bradshaw, J., Kusner, M. J., Paige, B., Segler, M. H. & Hernández-Lobato, J. M. A generative model for electron paths. Preprint at arXiv https://arxiv.org/abs/1805.10970 (2018).

  213. Coley, C. W., Rogers, L., Green, W. H. & Jensen, K. F. Computer-assisted retrosynthesis based on molecular similarity. ACS Cent. Sci. 3, 1237–1245 (2017).

    CAS  Google Scholar 

  214. Segler, M. H. & Waller, M. P. Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry 23, 5966–5971 (2017).

    CAS  Google Scholar 

  215. Liu, B. et al. Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS Cent. Sci. 3, 1103–1113 (2017).

    CAS  Google Scholar 

  216. Karpov, P., Godin, G. & Tetko, I. V. in International Conference on Artificial Neural Networks 817–830 (Springer, 2019).

  217. Schwaller, P., Gaudin, T., Lanyi, D., Bekas, C. & Laino, T. “Found in Translation”: Predicting outcomes of complex organic chemistry reactions using neural sequence-to-sequence models. Chem. Sci. 9, 6091–6098 (2018).

    CAS  Google Scholar 

  218. Schwaller, P. et al. Molecular transformer for chemical reaction prediction and uncertainty estimation. ACS Cent. Sci. 5, 1572–1583 (2018).

    Google Scholar 

  219. Kim, E., Huang, K., Jegelka, S. & Olivetti, E. Virtual screening of inorganic materials synthesis parameters with deep learning. NPJ Comput. Mater. 3, 53 (2017).

    Google Scholar 

  220. Rossi, F., Van Beek, P. & Walsh, T. Handbook of Constraint Programming (Elsevier, 2006).

  221. Pun, G. P., Batra, R., Ramprasad, R. & Mishin, Y. Physically informed artificial neural networks for atomistic modeling of materials. Nat. Commun. 10, 2339 (2019).

    Google Scholar 

  222. Zaheer, M. et al. in Advances in Neural Information Processing Systems 3391–3401 (Cornell University, 2017).

  223. Schütt, K. et al. in Advances in Neural Information Processing Systems 991–1001 (Cornell University, 2017).

  224. Zhang, L. et al. in Advances in Neural Information Processing Systems 4436–4446 (Association for Computing Machinery, 2018).

  225. Noé, F., Tkatchenko, A., Müller, K.-R. & Clementi, C. Machine learning for molecular simulation. Annu. Rev. Phys. Chem. 71, 361–390 (2020).

    Google Scholar 

  226. Chmiela, S. et al. Machine learning of accurate energy-conserving molecular force fields. Sci. Adv. 3, e1603015 (2017).

    Google Scholar 

  227. Chandrasekaran, A., Kim, C., Venkatram, S. & Ramprasad, R. A deep learning solvent-selection paradigm powered by a massive solvent/nonsolvent database for polymers. Macromolecules 53, 4764–4769 (2020).

    CAS  Google Scholar 

  228. Zhu, G. et al. Polymer genome–based prediction of gas permeabilities in polymers. J. Polym. Eng. 40, 451–457 (2020).

    CAS  Google Scholar 

  229. Zubatyuk, R., Smith, J. S., Leszczynski, J. & Isayev, O. Accurate and transferable multitask prediction of chemical properties with an atoms-in-molecules neural network. Sci. Adv. 5, eaav6490 (2019).

    CAS  Google Scholar 

  230. Finn, C., Abbeel, P. & Levine, S. in Proceedings of the 34th International Conference on Machine Learning - Volume 70 1126–1135 (JMLR.org, 2017).

  231. Levin, I. NIST Inorganic Crystal Structure Database (ICSD) (National Institute of Standards and Technology, 2018).

  232. Pauling File. paulingfile.com (2020).

  233. Otsuka, S., Kuwajima, I., Hosoya, J., Xu, Y. & Yamazaki, M. in 2011 International Conference on Emerging Intelligent Data and Web Technologies 22–29 (IEEE, 2011).

  234. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. The Cambridge structural database. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 72, 171–179 (2016).

    CAS  Google Scholar 

  235. MatWeb. www.matweb.com (2020).

  236. Total Materia. www.totalmateria.com (2020).

  237. INTERGLAD. www.newglass.jp/interglad_n/gaiyo/info_e.html (2020).

  238. Mindat. www.mindat.org (2020).

  239. ASM International. www.asminternational.org (2020).

  240. Downs, R. T. & Hall-Wallace, M. The American Mineralogist crystal structure database. Am. Mineral 88, 247–250 (2003).

    CAS  Google Scholar 

  241. O’Mara, J., Meredig, B. & Michel, K. Materials data infrastructure: A case study of the citrination platform to examine data import, storage, and access. JOM 68, 2031–2034 (2016).

    Google Scholar 

  242. Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. Recent developments in the Inorganic Crystal Structure Database: Theoretical crystal structure data and related features. J. Appl. Crystallogr. 52, 918–925 (2019).

    CAS  Google Scholar 

  243. Pence, H. E. & Williams, A. ChemSpider: An online chemical information resource. J. Chem. Educ. 87, 1123–1124 (2010).

    CAS  Google Scholar 

  244. Ogata, T. & Yamazaki, M. in Harnessing The Materials Genome: Accelerated Materials Development via Computational and Experimental Tools, ECI Symposium Series (ECI Digital Archives, 2012).

  245. NIST Materials Data Repository. materialsdata.nist.gov (2020).

  246. Zhao, H. et al. Perspective: NanoMine: A material genome approach for polymer nanocomposites analysis and design. APL Mater. 4, 053204 (2016).

    Google Scholar 

  247. SpringerMaterials Databases. materials.springer.com (2020).

  248. Quirós, M., Gražulis, S., Girdzijauskaite˙, S., Merkys, A. & Vaitkus, A. Using SMILES strings for the description of chemical connectivity in the Crystallography Open Database. J. Cheminform. 10, 23 (2018).

    Google Scholar 

  249. Jain, A. et al. The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Google Scholar 

  250. Kirklin, S. et al. The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. NPJ Comput. Mater. 1, 15010 (2015).

    CAS  Google Scholar 

  251. Calderon, C. E. et al. The AFLOW standard for high-throughput materials science calculations. Comput. Mater. Sci. 108, 233–238 (2015).

    CAS  Google Scholar 

  252. Choudhary, K. et al. Computational screening of high-performance optoelectronic materials using OptB88vdW and TB-mBJ formalisms. Sci. Data 5, 180082 (2018).

    CAS  Google Scholar 

  253. Hafiz, H. et al. A high-throughput data analysis and materials discovery tool for strongly correlated materials. NPJ Comput. Mater. 4, 63 (2018).

    Google Scholar 

  254. Hummelshøj, J. S., Abild-Pedersen, F., Studt, F., Bligaard, T. & Nørskov, J. K. CatApp: A web application for surface chemistry and heterogeneous catalysis. Angew. Chem. Int. Ed. 51, 272–274 (2012).

    Google Scholar 

  255. NOMAD Centre of Excellence. nomad-coe.eu (2020).

  256. Nieves, P. et al. Database of novel magnetic materials for high-performance permanent magnet development. Comput. Mater. Sci. 168, 188–202 (2019).

    CAS  Google Scholar 

  257. Spencer, P. A brief history of CALPHAD. Calphad 32, 1–8 (2008).

    CAS  Google Scholar 

  258. Landis, D. D. et al. The computational materials repository. Comput. Sci. Eng. 14, 51–57 (2012).

    Google Scholar 

  259. Ashton, M., Paul, J., Sinnott, S. B. & Hennig, R. G. Topology-scaling identification of layered solids and stable exfoliated 2D materials. Phys. Rev. Lett. 118, 106101 (2017).

    Google Scholar 

Download references

Acknowledgements

R.R. is grateful to the Office of Naval Research, the Toyota Research Institute, the Department of Energy and the National Science Foundation for financial support on machine-learning-related research through several grants. R.B was supported by Laboratory Directed Research and Development (LDRD) funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under contract no. DE-AC02-06CH11357. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. Discussions with K. Lipkowitz on various aspects of informatics and machine learning are greatly acknowledged. The authors are thankful to B. Storey for critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Rampi Ramprasad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batra, R., Song, L. & Ramprasad, R. Emerging materials intelligence ecosystems propelled by machine learning. Nat Rev Mater 6, 655–678 (2021). https://doi.org/10.1038/s41578-020-00255-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-020-00255-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing