Abstract
Despite their widespread use for performing advanced computational tasks, digital signal processors suffer from several restrictions, including low speed, high power consumption and complexity, caused by costly analogue-to-digital converters. For this reason, there has recently been a surge of interest in performing wave-based analogue computations that avoid analogue-to-digital conversion and allow massively parallel operation. In particular, novel schemes for wave-based analogue computing have been proposed based on artificially engineered photonic structures, that is, metamaterials. Such kinds of computing systems, referred to as computational metamaterials, can be as fast as the speed of light and as small as its wavelength, yet, impart complex mathematical operations on an incoming wave packet or even provide solutions to integro-differential equations. These much-sought features promise to enable a new generation of ultra-fast, compact and efficient processing and computing hardware based on light-wave propagation. In this Review, we discuss recent advances in the field of computational metamaterials, surveying the state-of-the-art metastructures proposed to perform analogue computation. We further describe some of the most exciting applications suggested for these computing systems, including image processing, edge detection, equation solving and machine learning. Finally, we provide an outlook for the possible directions and the key problems for future research.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout







Similar content being viewed by others
References
Lim, J. S. et al. Digital Signal Processing (Massachusetts Institute of Technology, 1987).
Solli, D. R. & Jalali, B. Analog optical computing. Nat. Photon. 9, 704–706 (2015).
Small, J. S. General-purpose electronic analog computing: 1945-1965. IEEE Ann. Hist. Comput. 15, 8–18 (1993).
Silva, A. et al. Performing mathematical operations with metamaterials. Science 343, 160–163 (2014).
Engheta, N. & Ziolkowski, R. W. (eds) Metamaterials: Physics and Engineering Explorations (Wiley, 2006).
Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000).
Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009).
Zhang, W., Cheng, K., Wu, C., Li, H. Y. & Zhang, X. Implementing quantum search algorithm with metamaterials. Adv. Mater. 30, 1703986 (2018).
Li, L. & Cui, T. J. Information metamaterials–from effective media to real-time information processing systems. Nanophotonics 8, 703–724 (2019).
Xie, Y. et al. Acoustic holographic rendering with two-dimensional metamaterial-based passive phased array. Sci. Rep. 6, 35437 (2016).
Zhou, J. et al. Optical edge detection based on high-efficiency dielectric metasurface. Proc. Natl Acad. Sci. USA 116, 11137–11140 (2019).
Molerón, M. & Daraio, C. Acoustic metamaterial for subwavelength edge detection. Nat. Commun. 6, 8037 (2015).
Memoli, G. et al. Metamaterial bricks and quantization of meta-surfaces. Nat. Commun. 8, 14608 (2017).
Khorasaninejad, M. et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).
High, A. A. et al. Visible-frequency hyperbolic metasurface. Nature 522, 192–196 (2015).
Tran, M. C. et al. Broadband microwave coding metamaterial absorbers. Sci. Rep. 10, 1810 (2020).
Fan, W., Yan, B., Wang, Z. & Wu, L. Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies. Sci. Adv. 2, e1600901 (2016).
Cui, T. J., Qi, M. Q., Wan, X., Zhao, J. & Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 3, e218 (2014).
Goodman, J. W. Introduction to Fourier Optics (Roberts, 2005).
Athale, R. & Psaltis, D. Optical computing: past and future. Opt. Photonics News 27, 32–39 (2016).
Kou, S. S. et al. On-chip photonic Fourier transform with surface plasmon polaritons. Light Sci. Appl. 5, e16034 (2016).
Zhou, Y., Zheng, H., Kravchenko, I. I. & Valentine, J. Flat optics for image differentiation. Nat. Photonics 14, 316–323 (2020).
Bykov, D. A., Doskolovich, L. L., Bezus, E. A. & Soifer, V. A. Optical computation of the Laplace operator using phase-shifted Bragg grating. Opt. Express 22, 25084–25092 (2014).
Liu, X. & Shu, X. Design of an all-optical fractional-order differentiator with terahertz bandwidth based on a fiber Bragg grating in transmission. Appl. Opt. 56, 6714–6719 (2017).
Wesemann, L. et al. Selective near-perfect absorbing mirror as a spatial frequency filter for optical image processing. APL Photonics 4, 100801 (2019).
Karimi, P., Khavasi, A. & Khaleghi, S. S. M. Fundamental limit for gain and resolution in analog optical edge detection. Opt. Express 28, 898–911 (2020).
Zangeneh-Nejad, F., Khavasi, A. & Rejaei, B. Analog optical computing by half-wavelength slabs. Opt. Commun. 407, 338–343 (2018).
Zhang, J., Ying, Q. & Ruan, Z. Time response of plasmonic spatial differentiators. Opt. Lett. 44, 4511–4514 (2019).
Hwang, Y., Davis, T. J., Lin, J. & Yuan, X. C. Plasmonic circuit for second-order spatial differentiation at the subwavelength scale. Opt. Express 26, 7368–7375 (2018).
Dong, Z., Si, J., Yu, X. & Deng, X. Optical spatial differentiator based on subwavelength high-contrast gratings. Appl. Phys. Lett. 112, 181102 (2018).
Bezus, E. A., Doskolovich, L. L., Bykov, D. A. & Soifer, V. A. Spatial integration and differentiation of optical beams in a slab waveguide by a dielectric ridge supporting high-Q resonances. Opt. Express 26, 25156–25165 (2018).
Lv, Z., Ding, Y. & Pei, Y. Acoustic computational metamaterials for dispersion Fourier transform in time domain. J. Appl. Phys. 127, 123101 (2020).
Eftekhari, F., Gómez, D. E. & Davis, T. J. Measuring subwavelength phase differences with a plasmonic circuit — an example of nanoscale optical signal processing. Opt. Lett. 39, 2994–2997 (2014).
Guo, C., Xiao, M., Minkov, M., Shi, Y. & Fan, S. Isotropic wavevector domain image filters by a photonic crystal slab device. JOSA A 35, 1685–1691 (2018).
Guo, C., Xiao, M., Minkov, M., Shi, Y. & Fan, S. Photonic crystal slab Laplace operator for image differentiation. Optica 5, 251–256 (2018).
Davis, T. J., Eftekhari, F., Gómez, D. E. & Roberts, A. Metasurfaces with asymmetric optical transfer functions for optical signal processing. Phys. Rev. Lett. 123, 013901 (2019).
Wu, W., Jiang, W., Yang, J., Gong, S. & Ma, Y. Multilayered analog optical differentiating device: performance analysis on structural parameters. Opt. Lett. 42, 5270–5273 (2017).
Fang, Y., Lou, Y. & Ruan, Y. On-grating graphene surface plasmons enabling spatial differentiation in the terahertz region. Opt. Lett. 42, 3840–3843 (2017).
Idemen, M. M. Discontinuities in the Electromagnetic Field Vol. 40 (Wiley, 2011).
Youssefi, A., Zangeneh-Nejad, F., Abdollahramezani, S. & Khavasi, A. Analog computing by Brewster effect. Opt. Lett. 41, 3467–3470 (2016).
Chen, Z. et al. Graphene controlled Brewster angle device for ultra broadband terahertz modulation. Nat. Commun. 9, 4909 (2018).
Zangeneh-Nejad, F. & Khavasi, A. Spatial integration by a dielectric slab and its planar graphene-based counterpart. Opt. Lett. 42, 1954–1957 (2017).
Zhu, T. et al. Plasmonic computing of spatial differentiation. Nat. Commun. 8, 15391 (2017).
Ma, C., Kim, S. & Fang, N. X. Far-field acoustic subwavelength imaging and edge detection based on spatial filtering and wave vector conversion. Nat. Commun. 10, 204 (2019).
Zhu, T. et al. Generalized spatial differentiation from the spin Hall effect of light and its application in image processing of edge detection. Phys. Rev. Appl. 11, 034043 (2019).
Kwon, H., Sounas, D., Cordaro, A., Polman, A. & Alù, A. Nonlocal metasurfaces for optical signal processing. Phys. Rev. Lett. 121, 173004 (2018).
Cordaro, A., Kwon, H., Sounas, D., Koenderink, A. F., Alu, A. & Polman, A. High-index dielectric metasurfaces performing mathematical operations. Nano Lett. 19, 8418–8423 (2019).
Kwon, H., Cordaro, A., Sounas, D., Polman, A. & Alù, A. Dual-polarization analog 2D image processing with nonlocal metasurfaces. ACS Photonics 7, 1799–1805 (2020).
Zhou, Y. et al. Analog optical spatial differentiators based on dielectric metasurfaces. Adv. Opt. Mater. 8, 1901523 (2020).
Chen, H., An, D., Li, Z. & Zhao, X. Performing differential operation with a silver dendritic metasurface at visible wavelengths. Opt. Express 25, 26417–26426 (2017).
Roberts, A., Gómez, D. E. & Davis, T. J. Optical image processing with metasurface dark modes. JOSA A 35, 1575–1584 (2018).
Wang, L., Li, L., Li, Y., Zhang, H. C. & Cui, T. J. Single-shot and single-sensor high super-resolution microwave imaging based on metasurface. Sci. Rep. 6, 26959 (2016).
Minovich, A. E. et al. Functional and nonlinear optical metasurfaces. Laser Photonics Rev. 9, 195–213 (2015).
Gao, L. H. et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces. Light Sci. Appl. 4, e324 (2015).
Huo, P. et al. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Lett. 4, 2791–2798 (2020).
Wang, H. et al. Off-axis holography with uniform illumination via 3D printed diffractive optical elements. Adv. Opt. Mater. 7, 1900068 (2019).
Zuo, S. Y., Wei, Q., Cheng, Y. & Liu, X. J. Mathematical operations for acoustic signals based on layered labyrinthine metasurfaces. Appl. Phys. Lett. 110, 011904 (2017).
Kamali, S. M. et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles. Phys. Rev. X 7, 041056 (2017).
Liu, Z., Zhu, D., Rodrigues, S. P., Lee, K. T. & Cai, W. Generative model for the inverse design of metasurfaces. Nano Lett. 18, 6570–6576 (2018).
Pfeiffer, C. & Grbic, A. Bianisotropic metasurfaces for optimal polarization control: Analysis and synthesis. Phys. Rev. Appl. 2, 044011 (2014).
Bao, L. et al. Design of digital coding metasurfaces with independent controls of phase and amplitude responses. Appl. Phys. Lett. 113, 063502 (2018).
Liu, T., Chen, F., Liang, S., Gao, H. & Zhu, J. Subwavelength sound focusing and imaging via gradient metasurface-enabled spoof surface acoustic wave modulation. Phys. Rev. Appl. 11, 034061 (2019).
Sun, S., He, Q., Hao, J., Xiao, S. & Zhou, L. Electromagnetic metasurfaces: physics and applications. Adv. Opt. Photonics 11, 380–479 (2019).
Zhang, L., Mei, S., Huang, K. & Qiu, C. W. Advances in full control of electromagnetic waves with metasurfaces. Adv. Opt. Mater. 4, 818–833 (2016).
He, Q., Sun, S., Xiao, S. & Zhou, L. High-efficiency metasurfaces: principles, realizations, and applications. Adv. Opt. Mater. 6, 1800415 (2018).
La Spada, L., Spooner, C., Haq, S. & Hao, Y. Curvilinear metasurfaces for surface wave manipulation. Sci. Rep. 9, 3107 (2019).
Zuo, S. Y., Tian, Y., Wei, Q., Cheng, Y. & Liu, X. J. Acoustic analog computing based on a reflective metasurface with decoupled modulation of phase and amplitude. J. Appl. Phys. 123, 091704 (2018).
Hwang, Y. & Davis, T. J. Optical metasurfaces for subwavelength difference operations. Appl. Phys. Lett. 109, 181101 (2016).
Ozaktas, H. M. & Mendlovic, D. Fourier transforms of fractional order and their optical interpretation. Opt. Commun. 101, 163–169 (1993).
Monticone, F., Estakhri, N. M. & Alu, A. Full control of nanoscale optical transmission with a composite metascreen. Phys. Rev. Lett. 110, 203903 (2013).
Pors, A., Nielsen, M. G. & Bozhevolnyi, S. I. Analog computing using reflective plasmonic metasurfaces. Nano Lett. 15, 791–797 (2015).
Chizari, A., Abdollahramezani, S., Jamali, M. V. & Salehi, J. A. Analog optical computing based on a dielectric meta-reflect array. Opt. Lett. 41, 3451–3454 (2016).
Zuo, S., Wei, Q., Tian, Y., Cheng, Y. & Liu, X. Acoustic analog computing system based on labyrinthine metasurfaces. Sci. Rep. 8, 10103 (2018).
Zangeneh-Nejad, F. & Fleury, R. Performing mathematical operations using high-index acoustic metamaterials. New J. Phys. 20, 073001 (2018).
Zangeneh-Nejad, F. & Fleury, R. Acoustic analogues of high-index optical waveguide devices. Sci. Rep. 8, 10401 (2018).
Barrios, G. A., Retamal, J. C., Solano, E. & Sanz, M. Analog simulator of integro-differential equations with classical memristors. Sci. Rep. 9, 12928 (2019).
Zhang, W., Qu, C. & Zhang, X. Solving constant-coefficient differential equations with dielectric metamaterials. J. Opt. 18, 075102 (2016).
Zangeneh-Nejad, F. & Fleury, R. Acoustic rat-race coupler and its applications in non-reciprocal systems. J. Acoust. Soc. Am. 146, 843–849 (2019).
Estakhri, N. M., Edwards, B. & Engheta, N. Inverse-designed metastructures that solve equations. Science 363, 1333–1338 (2019).
Zangeneh-Nejad, F. & Fleury, R. Topological fano resonances. Phys. Rev. Lett. 122, 014301 (2019).
Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).
Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).
Xia, J. P. et al. Programmable coding acoustic topological insulator. Adv. Mater. 30, 1805002 (2018).
Huber, S. D. Topological mechanics. Nat. Phys. 12, 621–623 (2016).
Zangeneh-Nejad, F. & Fleury, R. Nonlinear second-order topological insulators. Phys. Rev. Lett. 123, 053902 (2019).
Zangeneh-Nejad, F. & Fleury, R. Topological analog signal processing. Nat. Commun. 10, 2058 (2019).
Xiao, Y. X., Ma, G., Zhang, Z. Q. & Chan, C. T. Topological subspace-induced bound state in the continuum. Phys. Rev. Lett. 118, 166803 (2017).
Jalas, D. et al. What is — and what is not — an optical isolator. Nat. Photonics 7, 579–582 (2013).
Zangeneh-Nejad, F. et al. Nonreciprocal manipulation of subwavelength fields in locally resonant metamaterial crystals. IEEE Trans. Antennas Propag. 68, 1726–1732 (2019).
Zhang, W. & Zhang, X. Backscattering-immune computing of spatial differentiation by nonreciprocal plasmonics. Phys. Rev. Appl. 11, 054033 (2019).
Alpaydin, E. Introduction to Machine Learning (MIT Press, 2020).
Beale, H. D., Demuth, H. B. & Hagan, M. T. Neural Network Design (PWS, 1996).
Orazbayev, B. & Fleury, R. Far-field subwavelength acoustic imaging by deep learning. Phys. Rev. X 10, 031029 (2020).
Chakrabarti, A. Learning sensor multiplexing design through back-propagation. Adv. Neural Inf. Process. Syst. 29, 3081–3089 (2016).
Horstmeyer, R., Chen, R. Y., Kappes, B. & Judkewitz, B. Convolutional neural networks that teach microscopes how to image. Preprint at arXiv https://arxiv.org/abs/1709.07223 (2017).
Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).
Hunt, J. et al. Metamaterial apertures for computational imaging. Science 339, 310–313 (2013).
Gollub, J. N. et al. Large metasurface aperture for millimeter wave computational imaging at the human-scale. Sci. Rep. 7, 42650 (2017).
Sleasman, T., Imani, M. F., Gollub, J. N. & Smith, D. R. Dynamic metamaterial aperture for microwave imaging. Appl. Phys. Lett. 107, 204104 (2015).
Sleasman, T. et al. Implementation and characterization of a two-dimensional printed circuit dynamic metasurface aperture for computational microwave imaging. Preprint at arXiv https://arxiv.org/abs/1911.08952 (2019).
Li, L. et al. Intelligent metasurface imager and recognizer. Light Sci. Appl. 8, 97 (2019).
Li, L. et al. Machine-learning reprogrammable metasurface imager. Nat. Commun. 10, 1082 (2019).
Liang, M., Li, Y., Meng, H., Neifeld, M. A. & Xin, H. Reconfigurable array design to realize principal component analysis (PCA)-based microwave compressive sensing imaging system. IEEE Antennas Wirel. Propag. Lett. 14, 1039–1042 (2015).
del Hougne, P., Imani, M. F., Diebold, A. V., Horstmeyer, R. & Smith, D. R. Learned integrated sensing pipeline: Reconfigurable metasurface transceivers as trainable physical layer in an artificial neural network. Adv. Sci. 7, 1901913 (2020).
Li, H. Y. et al. Intelligent electromagnetic sensing with learnable data acquisition and processing. Patterns 1, 100006 (2020).
Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017).
del Hougne, P. & Lerosey, G. Leveraging chaos for wave-based analog computation: Demonstration with indoor wireless communication signals. Phys. Rev. X 8, 041037 (2018).
Matthès, M. W., del Hougne, P., de Rosny, J., Lerosey, G. & Popoff, S. M. Optical complex media as universal reconfigurable linear operators. Optica 6, 465–472 (2019).
Pierangeli, D., Marcucci, G. & Conti, C. Large-scale photonic Ising machine by spatial light modulation. Phys. Rev. Lett. 122, 213902 (2019).
Abdolali, A., Momeni, A., Rajabalipanah, H. & Achouri, K. Parallel integro-differential equation solving via multi-channel reciprocal bianisotropic metasurface augmented by normal susceptibilities. New J. Phys. 21, 113048 (2019).
Wu, Y. et al. Arbitrary multi-way parallel mathematical operations based on planar discrete metamaterials. Plasmonics 13, 599–607 (2018).
Momeni, A., Rajabalipanah, H., Abdolali, A. & Achouri, K. Generalized optical signal processing based on multioperator metasurfaces synthesized by susceptibility tensors. Phys. Rev. Appl. 11, 064042 (2019).
Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics 6, 283–292 (2012).
Lee, P. A. & Fisher, D. S. Anderson localization in two dimensions. Phys. Rev. Lett. 47, 882 (1981).
Titum, P., Lindner, N. H., Rechtsman, M. C. & Refael, G. Disorder-induced Floquet topological insulators. Phys. Rev. Lett. 114, 056801 (2015).
Zangeneh-Nejad, F. & Fleury, R. Disorder-induced signal filtering with topological metamaterials. Adv. Mater. 32, 2001034 (2020).
He, S. et al. Broadband optical fully differential operation based on the spin-orbit interaction of light. Preprint at arXiv https://arxiv.org/abs/1910.09789 (2019).
He, S. et al. Spatial differential operation and edge detection based on the geometric spin Hall effect of light. Opt. Lett. 45, 877–880 (2020).
Popa, B. I. & Cummer, S. A. Non-reciprocal and highly nonlinear active acoustic metamaterials. Nat. Commun. 5, 3398 (2014).
Hess, O. et al. Active nanoplasmonic metamaterials. Nat. Mater. 11, 573–584 (2012).
Chen, K. et al. A reconfigurable active Huygens’ metalens. Adv. Mater. 29, 1606422 (2017).
Ghatak, A., Brandenbourger, M., van Wezel, J. & Coulais, C. Observation of non-Hermitian topology and its bulk-edge correspondence. Preprint at arXiv https://arxiv.org/abs/1907.11619 (2019).
Koutserimpas, T. T., Rivet, E., Lissek, H. & Fleury, R. Active acoustic resonators with reconfigurable resonance frequency, absorption, and bandwidth. Phys. Rev. Appl. 12, 054064 (2019).
Zibar, D., Wymeersch, H. & Lyubomirsky, I. Machine learning under the spotlight. Nat. Photonics 11, 749–751 (2017).
Zhou, H. et al. Self-learning photonic signal processor with an optical neural network chip. Preprint at arXiv https://arxiv.org/abs/1902.07318v1 (2019).
Hughes, T. W., Williamson, I. A., Minkov, M. & Fan, S. Wave physics as an analog recurrent neural network. Sci. Adv. 5, eaay6946 (2019).
Tahersima, M. H. et al. Deep neural network inverse design of integrated photonic power splitters. Sci. Rep. 9, 1368 (2019).
Yan, T. Fourier-space diffractive deep neural network. Phys. Rev. Lett. 123, 023901 (2019).
Luo, Y. et al. Design of task-specific optical systems using broadband diffractive neural networks. Light Sci. Appl. 8, 112 (2019).
Zhou, Y., Chen, R., Chen, W., Chen, R. P. & Ma, Y. Optical analog computing devices designed by deep neural network. Opt. Commun. 458, 124674 (2020).
Guo, X., Lissek, H. & Fleury, R. Improving sound absorption through nonlinear active electroacoustic resonators. Phys. Rev. Appl. 13, 014018 (2020).
Inagaki, T. et al. A coherent Ising machine for 2000-node optimization problems. Science 354, 603–606 (2016).
Marandi, A., Wang, Z., Takata, K., Byer, R. L. & Yamamoto, Y. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine. Nat. Photonics 8, 937–942 (2014).
Yang, T. et al. All-optical differential equation solver with constant-coefficient tunable based on a single microring resonator. Sci. Rep. 4, 5581 (2014).
MacLennan, B. J. A review of analog computing. Univ. Tennessee https://library.eecs.utk.edu/pub/123 (2007).
de Solla Price, D. Gears from the Greeks. The mechanism: a calendar computer from ca. 80 BC. Trans. Am. Philos. Soc. 64, 31–70 (1974).
Carr, B. Astronomical clocks: probing the early Universe with the millisecond pulsar. Nature 315, 540 (1985).
I. Szalkai. General two-variable functions on the slide-rule. Preprint at arXiv https://arxiv.org/abs/1612.03955 (2016).
Jenkins, H. V. An airflow planimeter for measuring the area of detached leaves. Plant. Physiol. 34, 532–536 (1959).
Chapman, R. W. A simple form of tide predictor. Nature 68, 322 (1903).
Lawshe, C. H. Jr. A nomograph for estimating the validity of test items. J. Appl. Psychol. 26, 846–849 (1942).
Acknowledgements
R.F. and F.Z.-N. would like to acknowledge the support from the Swiss National Science Foundation, under grant number 172487. A.A. and D.L.S. acknowledge the support from the Air Force Office of Scientific Research, the Simons Foundation and the National Science Foundation. The authors acknowledge useful discussions with P. del Hougne about machine-learning applications of computing metamaterials.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to writing the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zangeneh-Nejad, F., Sounas, D.L., Alù, A. et al. Analogue computing with metamaterials. Nat Rev Mater 6, 207–225 (2021). https://doi.org/10.1038/s41578-020-00243-2
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41578-020-00243-2
This article is cited by
-
Solving integral equations in free space with inverse-designed ultrathin optical metagratings
Nature Nanotechnology (2023)
-
Mechanical metamaterials and beyond
Nature Communications (2023)
-
Design and analysis for the SPICE parameters of waveform-selective metasurfaces varying with the incident pulse width at a constant oscillation frequency
Scientific Reports (2023)
-
Metasurface enabled broadband all optical edge detection in visible frequencies
Nature Communications (2023)
-
Local resonance bandgap control in a particle-aligned magnetorheological metamaterial
Communications Materials (2023)